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ABSTRACT
With the rise of metaprogramming in Scala, manipulating
ASTs has become a daily job. Yet the standard API pro-
vides only low-level mechanisms to transform or to collect
information on those data structures. Moreover, those mech-
anisms often force the programmer to manipulate state in
order to retrieve information on these ASTs.

In this report we try to solve those problems by introduc-
ing TQL, a high-level combinator Scala library to transform
and query data structures in a purely functional way. Parser
combinators allow to combine several small parsers to build
a bigger one in an expressive way. In this report, we ar-
gue that we can apply the same concept to data structure
manipulation and construct complicated traversers on top
of smaller ones. Yet combinators may feel unnatural or too
complicated for certain usage. We therefore built a library
on top of TQL to manipulate data structures as a collection.

We then put TQL in practice to scala.meta ASTs, and
describe the challenges we face when traversing a real-word
data structure, especially performance-wise.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—AST Traver-
sal and Transformation

General Terms
Languages, Performance

Keywords
combinators, macros, scala, traversal, transformation, opti-
mization

1. INTRODUCTION

1.1 The state of AST traversal and transfor-
mation in Scala

val allValNames = new Traverser {
var valNames = Set.empty[String]
override def traverse(tree: Tree) = tree match {
case ValDef(_, name,_ ,_) => valNames += name.toString
case _ => super.traverse

}
def apply(tree: Tree) = {
traverse(tree)
valNames

}
}.apply(tree)

Figure 1: A simple AST traverser in Scala

The current reflection API in Scala provides only a few
basic mechanisms to traverse and transform Scala’s ASTs.

Figure 1 presents a simple traverser which collect all dif-
ferent variable names in a given tree (a Scala AST). We can
see that even for such a simple task, the programmer has to
write a lot of boilerplate, while the only interesting part is
the following line

ValDef(_, name,_ ,_) => valNames += name.toString

Moreover, the user is forced to manipulate state and to add
boilerplate in order to collect the variable names. Further-
more the traversal strategy is implied and is always top-
bottom DFS, we cannot change it. AST transformation in
Scala currently looks quite the same except that instead of
defining a new Traverser the programmer needs to instantiate
a Transformer and override its transform method.

The rise of meta-programming in Scala allows access to
Scala ASTs to a lot more people than only compiler hackers.
This implies that AST manipulation is much more used and
that there should exist a way of making it easier to work
with.

1.2 Following on, toward a functional traver-
sal API

Our motivations to have a better AST traversal API in
Scala lead us to the following requirements for such an API:

• It should be easy to handle basic and repetitive tasks
like collecting information on a particular sub-tree (Fig-
ure 1) or transforming a sub-tree into another sub-tree.

• It should be possible to handle complex traversal mech-
anisms while still being fairly easy to write and to read.

• State manipulation should be the exception and not
the common case. Arguably purely functional pro-
gramming makes the code easier to understand and
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int cyclomaticComplexity(Program p) {
n = 1;
visit (p) {
case ifStat (_ ,_ ,_ ): n += 1;
case whileStat (_ ,_ ,_ ): n += 1;
..

}
return n;

}

Figure 2: Cyclomatic Complexity rule in Rascal,
taken from [21]

to reason about, even though state manipulation can
make some part of the code more natural or simpler
to write.

• We should be able to run advanced traversal tech-
niques, such as fusing [1] or parallelization in order to
improve performances. This requirement would make
the API scalable and not force the programmer to
change their code into a more low-level API in a per-
formance critical environment.

• Additionally it would be nice if the library was not
bound to any particular data structure, not only Scala
ASTs. That means that we should be able to use the
API on any data structure which presents a specific
set of characteristics.

1.3 Contributions
In this section we stated our motivation and requirements

for a new traversal API. We should therefore present TQL
or Traversal Query Language, a functional library for data
structure traversal and transformation in Scala.

The rest of this work is organized in the following way. In
section 2 we review the related work, how we came out with
the requirements and design of TQL. Section 3 focuses on
the design and implementation of TQL. Section 4 shows a
practical utilization of TQL in scala.meta. Section 5 discuss
the user interface of TQL and how it can be improved. Sec-
tion 6 presents examples of code written in the current Scala
traversal API and how it is translated with TQL. Section 7
discuss the limitations of our API and what can be done in
future work. Finally we conclude by summarizing what we
learnt, what works and what does not and by briefly intro-
ducing Obey: code health for scala.meta, a project which
uses TQL.

2. RELATED WORK

2.1 Inspiration
We present here the different existing traversal and trans-

formation frameworks which influence the design of TQL.

2.1.1 Rascal
Rascal [21] is a metaprogramming language used to ana-

lyze, generate and manipulate source code. Rascal rewrite
rules relies on immutable data, pattern matching and higher-
order functions. Those constructs being already at hand in
Scala, it makes sense to take inspiration from Rascal to de-
sign our library.

Figure 2 presents a small example of a traverser written
in Rascal. We can consider visit as the Traverser and its sec-

CompilationUnit idiomatic(CompilationUnit unit) = innermost visit(unit) {
case (Stm) ‘if (!<Expr cond>) <Stm a> else <Stm b>‘ =>
(Stm) ‘if (<Expr cond>) <Stm b> else <Stm a>‘

case (Stm) ‘if (<Expr cond>) <Stm a>‘ =>
(Stm) ‘if (<Expr cond>) { <Stm a> }‘
when (Stm) ‘<Block _>‘ !:= a

case (Stm) ‘if (<Expr cond>) <Stm a> else <Stm b>‘ =>
(Stm) ‘if (<Expr cond>) { <Stm a> } else { <Stm b> }‘
when (Stm) ‘<Block _>‘ !:= a

case (Stm) ‘if (<Expr cond>) { return true; } else { return false; }‘ =>
(Stm) ‘return <Expr cond>;‘

};

Figure 3: Canonicalization rule in Rascal, taken
from [11]

forStmt(hasLoopInit(declStmt(hasSingleDecl(varDecl(
hasInitializer(integerLiteral(equals(0))))))))

Figure 4: LLVM matcher expression which captures
all for statement that define a new variable initialized
to zero. Taken from [7]

ond parameter as a partial function applied to each node it
traverses. One interesting element to notice is that the func-
tion generates the result in an imperative way, much like we
currently do with Scala’s Traversers. Figure 3 presents a sim-
ple Rascal rewrite rule. Again we can see some similarities
with Scala’s Transformers. The interesting element of the code
in that example is that it is possible to define a traverser
strategy: the keyword innermost before visit. Taken from the
Rascal documentation [10] we present here 4 traversal strate-
gies which seems relevant to integrate in TQL:

• top-down: visit the subject from root to leaves.
• top-down-break: visit the subject from root to leaves,

but stop at the current path when a case matches.
• bottom-up: visit the subject from leaves to root (this

is the default).
• bottom-up-break: visit the subject from leaves to root,

but stop at the current path when a case matches.

2.1.2 LLVM ASTMatchers
LLVM AST Matchers [6] provide a DSL to query and transform

Clang AST in C++. Matchers are small predicate objects
which match a certain node of the AST. For instance the
forStmt Matcher matches for statements. There are different
categories of Matchers but the important distinction is be-
tween Matchers that operate on a node and Matchers that define
a traversal strategy. Then writing queries or rewrite rules
is simply a matter of combining those Matchers together in a
matcher expression. Figure 4 presents such a matcher ex-
pression. We also take that approach of combiningMatchers
in TQL.

2.1.3 Combinators - HXT
HXT [3] is a combinator library used to traverse and trans-

form XML documents in Haskell. Compared to the other
libraries we have introduced HXT does not rely on mutable
state in order to produce a result, but rather each combi-
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nator returns the result it has computed. Let us consider
the following combinator which selects all tables in an XML
document:

multi (isElem >>> hasName "table")

We break down the above code in 4 parts.
• multi: is a meta-combinator which takes another com-

binator as argument. In this case it defines a top-
down traversal strategy. In fact it is equivalent to the
top-down traversal strategy from Rascal defined in the
above subsection.

• isElem: is a combinator matching an XML element (of
the form <element ...>.

• hasName name: is a combinator which matches when
the current node contains an attribute with the name
name.

• >>>: is used to glue isElem and hasName together so that
the latter is only tried when the first one succeeds.

With HXT it is also possible to transform an XML docu-
ment into another, but the combinators used are all different
from the ones used for traversal. We aim to prevent that in
TQL.

2.1.4 Combinators - Kiama
We discovered Kiama [5] when the project was well under

way. Kiama is Scala library for language processing. It also
provides a combinator library inspired by Stratego [18] for
the analysis and transformation of structured data. However
it presents some differences with TQL.

1 In order to transform a data structure, a traverser
must, at each node of the data structure: 1) recursively
transform every child of the node 2) reconstruct the
node with the newly transformed children. Kiama’s
traverser can operate on generic data structures, and
its implementation uses Scala reflection to reconstruct
the transformed nodes. In TQL we aim to not use re-
flection, but rather build an user-defined traverser for
each data structure.

2 To the best of our knowledge Kiama does not allow to
combine rewriting rule and information collection at
the same time.

3 TQL provides a mechanism to prevent unsafe trans-
formations, such as transforming a Term into a Type, by
providing a type class to whitelist rewritings. In earlier
Kiama versions, rewrite rules weren’t strongly typed,
but the recent versions have rewrite rules that are built
from functions that must be T => T for some type T.

Moreover Kiama supports attribute grammars, which are not
part of the TQL design. We presently do not intend to make
TQL a full language processing tool, but only a traversal and
transforming API for arbitrary data structures.

2.2 Other approaches
We are aware of other approaches to data structure traver-

sal and we describe here why we have chosen to not use them
in our work.

2.3 Zipper
Several JSON manipulation API in Scala [4, 2] are im-

plemented with a zipper. We did not choose to take this
direction because Zippers seem to be more appropriate for
manipulating a JSON object or an XML document, when
the user wants to change a data at a specific path in the

data structure. Moreover it seems complicated to combine
several Zippers and even more to fuse them.

2.4 Transducers
The Yield paper [20] presents Transducers as a way to

traverse and transform data structures. They represent only
a transformation and are not bound to a specific input or
output data structure. Those transformations can be com-
posed and chained together such as they do not generate
intermediate data structures. While it seems very powerful
for linear data structures such as Lists it is not clear how
transformation would be carried out on trees with unfixed
and unbound number of children such as an AST.

2.5 Scalaz Traverser
Scalaz [13] implements a general Traverser for any Traversable

data structure as described in The Essence of the Iterator
Pattern [19]. The structure is very elegant and it is possi-
ble to reconstruct/transform the data structure or to collect
information and execute reduce operations on it. Indeed
any kind of loop can be represented on top of the traverse

operation:

trait Traversable[T[_]] {
def traverse[F[_] : Applicative, A, B](f: A => F[B]): T[A] => F[T[B]]

}

Here we present some examples taken from [23]:

val tree: BinaryTree[Int] = Bin(Leaf(1), Leaf(2))
tree.contents must_== List(1, 2)
def count[A]: T[A] => Int = reduce((a: A) => 1)
tree.count must_== 2

where content is implemented in term of reduce, which is
implemented on top of traverse.

def contents[A]: T[A] => List[A] = reduce((a: A) => List(a))

def reduce[A, M : Monoid](reducer: A => M): T[A] => M = {
val f = (a: A) => Const[M, Any](reducer(a))
(ta: T[A]) => traverse[({type l[A]=Const[M, A]})#l, A, Any](f)
.apply(ta).value

}

While the Traverser pattern seems convenient for simple
data structures such as a binary tree, there is a lot of boil-
erplate involved and it was deemed too intricate to make it
work on a complex ASTs such as scala.meta trees.

2.6 XPath
XPath is a small language to navigate through XML doc-

uments. It has been considered to apply XPath-like queries
to our API through a Scala’s DSL, but we found out that
it was not easily composable. In section 3 we will present a
minimalist API on top of combinators which aim to mimic
some basic functionality of XPath over arbitrary data struc-
ture.

3. TQL - TRAVERSABLE QUERY LANGUAGE

3.1 Architecture

3.1.1 Building blocks: Matcher, MatchResult, Monoid
We call TQL combinators Matcher (we borrow the term

from LLVM ASTMatchers). A Matcher is basically a function
from T to MatchResult[A], where A is the type of the information
collected on the data structure during the traversal. Thus
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the application of an element of type T on a Matcher yield a
MatchResult[A], which is an alias for Option[(T, A)]. Thus, each
combinator returns a transformed T and a result A. This al-
lows to easily construct a traverser which combine results
and reconstruct the data structure at the same place. Like-
wise this allows to transform the data structure and to col-
lect information on it at the same time.

In order to easily compose results we require them to be an
instance of a Monoid. A Monoid A is an algebraic structure
which has one associative binary operation: append(a: A, b: A): A

and an identity element zero: A. In Scala this can be modeled
by the following trait:

trait Monoid[A]{
def zero : A
def append(a: A, b: A): A

}

Hence the user does not have to worry about result compo-
sition during the traversal and we can freely choose when to
compose the results in the implementation of TQL.

Some basic Monoid instances are available in the Monoid
companion object among which:

• Monoid[List[A]]

• Monoid[B[A]] where B[A] <: Traversable[A] e.g. Sequence, Set...
• Monoid[B[(A, C)]] where B[(A, C)] <: Traversable[(A, C)] e.g. Map...
• Monoid[(A, B)] where both A and B are also Monoids
• Monoid[Unit] when we do not return a result.

3.1.2 Combining traversal and transformation
In TQL we consider traversal as a special case of trans-

formation. One important aspect of TQL is the ability to
collect information about the traversed data structure and
to transform the data structure at the same time. In order
to provide this feature it is necessary for the library to have
a traverser which is a transformer at the same time. Every
data structure that is to be manipulated with TQL has to
have a traverser that conforms to the following interface:

trait Traverser[T] {
def traverse[A : Monoid](t: T, f: Matcher[A]): MatchResult[A]

}

where T is the type of the data structure we wish to traverse.
We provide such a traverser for scala.meta trees (see section
4)

3.1.3 Combinators
We define basic combinators (Matchers) in the trait Combinator[T].

We distinguish simple combinators such as focus or transform

from meta combinators. Meta combinators are combina-
tors which take other combinators as arguments. For exam-
ple, combinators which define a traversal strategy are meta-
combinators, because they traverse the data structure and
try to apply another combinator on each of the traversed
elements. Several traversal strategies are defined:

• topDown: Top down traversal
• topDownBreak: Top down traversal but stop as soon as it

matches an element
• bottumUp: Bottom up traversal
• bottomUpBreak: Bottom up traversal but stop as soon as

it matches an element

3.1.4 AllowedTransformation
The AllowedTransformation[I, O] implicit is a opt-in mecha-

nism to help ensure that only some transformations are ex-

ecuted. If we do not want to allow the user to transform a
Literal into a Type then we simply do not provide an implicit
AllowedTransformation[Literal, Type]. We will talk about it more
in details when we describe the transform combinator.

3.2 Deep dive into the API

3.2.1 Combinators

Collect.
We find that one of the most prevalent use cases of AST

traversal is to put the result of the traversal into a sequence.
For example: returning all function names in a List, or re-
turning the name of every variable appearing in the code
into a Set. The collect combinator does just that, here is its
interface:

def collect[C[_]] = new CollectInType[C] {
def apply[A, R](f: PartialFunction[T, A])
(implicit y: Collector[C[A], A, R]): Matcher[R]

}

Its definition is two-fold. First we create a CollectInType[C]

object which defines the type (C) of the collection we want
to collect in. Secondly we use its apply method to define
which type A) of element we want to store in the collection.
Most of the time, the type of the collection will be List.
Thus, in order not to force the user to write collect[List] in
those cases, we mimic a default type parameter argument to
allow the user to omit the type parameter when he wants
to collect in a List. We implement this by using the implicit
resolution mechanism and by using the following rules:

trait Collector[C, A, R]
implicit def nothingToList[A]... = new Collector[Nothing, A, List[A]]
implicit def otherToCol[A, C[A]]... = new Collector[C[A], A, C[A]]

Where we say that:
• C is the type of the inferred Collection type (it is in-

ferred to Nothing if not specified)
• A is the type of the element we want to make a collec-

tion of.
• R is the real type of the collection which will be used

to return the results.
The f parameter is a partial function from T to A which
simply put the result of f in the collection at the nodes T

where it is defined. This allows us to write the followings:

//put every Integer literals in a List.
topDown(collect{case Lit.Int(a) => a})
//put all different String literas in a Set.
topDown(collect[Set]{case Lit.String(a) => a})

Visit.
The result of the visit combinator must be an instance

of a Monoid. The difference between the visit and the collect

combinator is that in the latter we put the result directly in
a collection. The visit combinator is a more general form of
collect:

visit{case Lit.Int(a) => List(a)}

is equivalent to

collect{case Lit.Int(a) => a}

For example we can use it to to sum all Integer literals in a
scala.meta AST, provided an instance of a Monoid summing
Integers:
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implicit val addMonoid = new Monoid[Int] {
def zero = 0
def append(a: Int, b: Int) = a + b

}
val sumAll = topDown(visit{case Lit.Int(a) => a})

Focus.
The focus combinator allows us to move in the data struc-

ture without performing any action, it does nothing else than
focus on a node. Thanks to that combinator we are able to
implement a traverser which collects only the name of the
variables declared directly in the children of an Term.If node:

val inIfs = topDownBreak(
focus{case x:Term.If => true}
andThen
children(collect{case Decl.Val(..name..) => name})

)

Where andThen is a composition operator that we define later
and children allows us to apply the combinator in argument
to the children of the current node.

Transform.
The transform combinator allows the modification of a

node into another node. But we need to explicitly allow this
transformation by defining an AllowedTransformation implicit.
The definition of the transform combinator is separated in two
parts. First we define an alias transformWithResult:

def transformWithResult[I <: T, O <: T, A]
(f: PartialFunction[I, (O, A)])
(implicit x: AllowedTransformation[I, O]): Matcher[A]

where
• I is the type of the input node.
• O is the type of the output node.
• A is the type of the result carried out with the trans-

formation. As we will soon discuss it will be rendered
optional.

• an implicit AllowedTransformation[I, O] which allows the trans-
formation of nodes of type I to nodes of type O is
needed.

The second part of the definition consists of a whitebox
macro having the following definition:

def transform(f: PartialFunction[T, Any]): Matcher[Any]

The transform macro will transform its parameter and then
call transformWithResult with the correct type parameters. It
has three responsibilities:

1 Helping the type-checker. Indeed, in Scala, the type-
checker is not able to infer the type of I in transformWithResult

because it is the parameter type of a function. Since
f is a partial function and we have an upper bound
T, we can infer the input type of the partial function
by looking at left-hand side (lhs) of the case lhs => rhs

statements.
2 Make the result optional. We inspect the AST of f and,

if the result type O of f is not a tuple then we change it
to (O, Unit) to make it compliant with transformWithResult.

3 Separate the cases. Let us consider a small type hier-
archy:

trait A
trait B extends A
trait C extends A
trait B1 extends B
trait B2 extends B

implicit object x extends AllowedTransformation[B1, C]
implicit object y extends AllowedTransformation[B2, C]

And let us consider the following transformation:

transform{
case b1: B1 => new C{}
case b2: B2 => new C{}

}

In this example, such a transformation would not be
possible without separating the cases, because the type
inferred by our macro (the lower upper bound of the lhs
of the cases statements) would be I = B and O = C, and
no such AllowedTransformation[B, C] exists in that ex-
ample. To solve this problem we need to consider each
case separately, as a different transformation. Hence
the above transformation example is transformed by
our macro into:

transformWithResult[B1, C, Unit]{
case b1: B1 => (new C{}, Void)

} orElse transformWithResult[B2, C, Unit]{
case b2: B2 => (new C{}, Void)

}

Where orElse is a composition operator that we will
define later.

3.2.2 Composition combinators
Here we describe some of the composition operators which

we use to glue combinators together. Those are defined as
methods on the Matcher[+A] trait. A more exhaustive list with
more information and examples can be found on the wiki of
the project [15].

andThen.
The andThen combinator allows to execute a second combi-

nator after and only if the first one has succeeded.

def andThen[B](m: => Matcher[B]): Matcher[B]

It works on the data structure transformed by the first com-
binator but discards the result generated.

tupled.
In the expression a tupled b, a is applied first and then b is

applied, even if a failed. Their results are kept separated in
a tuple.

def tupled[C >: A : Monoid, B : Monoid](m: => Matcher[B]): Matcher[(C, B)]

aggregate (alias: +).
In the expression a aggregate b, the combinator a is aggre-

gated with b. First a is applied and then b is applied on
the data structure transformed by a or on the original data
structure if a failed. At the same time, the result of a is
appended to the result of b.

def aggregate[B >: A : Monoid](m: => Matcher[B]): Matcher[B]

orElse (alias: |).
In the expression a orElse b, this combinator first apply a

and then applies b if the application of a has failed.

def orElse[B >: A : Monoid](m: => Matcher[B]): Matcher[B]

map.
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map simply map the result of the combinator. It does not
perform any action on the data structure.

def map[B](f: A => B): Matcher[B]

feed.
In the expression a feed x => b, the result of a is given to b

so that b can use the x the result generated by a.

def feed[B : Monoid](m: => A => Matcher[B]): Matcher[B]

3.2.3 Traversal combinators
Even though we already talked about the different traver-

sal strategies in TQL, we describe here the implementation
of such strategies in TQL because they demonstrate the
use of some combinators. We implement them as meta-
combinators i.e. combinators that take other combinators
as arguments.

children.
def children[A : Monoid](f: => Matcher[A]) = Matcher[A]{
t => this.traverse(t, f)

}

This combinator applies the Matcher f to all the immediate
children of the current node t by calling the traverse method
defined in section 3.1.2.

topDownBreak.
def topDownBreak[A : Monoid](m: Matcher[A]) =
m | children(topDownBreak[A](m))

We implement this top down strategy as a either succeeding
in applying m on the current node or on its children. This
implies that we do not continue to match m in the children
of the current node if it has succeeded.

topDown.
def topDown[A : Monoid](m: Matcher[A]): Matcher[A] =
m + children(topDown[A](m))

This is almost the same as the topDownBreak combinator except
that we continue to traverse the children of the node whether
applying m to the current node is successful or not.

bottomUpBreak.
def bottomUpBreak[A : Monoid](m: Matcher[A]): Matcher[A] =
oneOfchildren(bottomUpBreak[A](m)) | m

Like topDownBreak but in the reverse order so as to check the
children of the node first. We do not use the traversal strat-
egy children here because it would fail due to left recursion.
Instead, we use oneOfchildren which is very much like children

but succeeds only if one of the children of the node succeeds.

bottomUp.
def bottomUp[A : Monoid](m: => Matcher[A]): Matcher[A] =
children(bottomUp[A](m)) + m

Like topDown but in the reverse order so as to traverse the
children of the node first.

3.2.4 Recursion
Data structure traversal and transformation is inherently

recursive. Thus a traversal API must provide the different

val onlyThn: Matcher[Int] = topDownBreak(
flatMap(_ match {
case If(cond, thn, els) => for {
(thn2: Term, res) <- onlyThn(thn)
} yield (If(cond, thn2, els), 1 + res)
case _ => None
})

)

Figure 5: A simple traverse which counts the num-
ber of If in an imaginary language

mechanisms required to recurse through the data structure.
Here we present those mechanisms and how they are imple-
mented in TQL.

Via traversal strategy.
We have already presented the different traversal strate-

gies available in TQL. They are a form of recursion (actu-
ally, the simplest form of recursion) as they allow to ap-
ply a Matcher recursively on a whole data structure. The
cases where we would like to stop the recursion upon com-
ing across a particular node are handled by the topDownBreak

or bottomUpBreak combinators described above.

Vanilla recursion.
Sometimes the recursion pattern we want to express is not

easy or possible to implement with a traversal strategy only.
This is of course the case for the implementation of those
traversal strategies. As presented in the previous subsection
topDown, topDownBreak etc. all use vanilla recursion.

FlatMap.
One pattern which is difficult to express with the two pre-

vious recursion mechanisms in TQL is the selection traversal
or the traversal of a selection of children. For example, in an
imaginary language, upon the encounter of a If(cond, thn, els)

node, we may wish to traverse only the thn sub-tree. To
express this, we can use flatMap which, together with the
topDownBreak (or bottomUpBreak) strategy allows us to express this
pattern. An example is shown in Figure 5.

3.3 Performance tuning

3.3.1 Fusing, a deeper composition

Basic Fusing.
Let us consider the two following simple traversers:

//collect every Integer literals greater than 5.
val m1 = topDown{collect{case Lit.Int(x) if x > 5 => x}}
//collect every Integer literals smaller than 5.
val m2 = topDown{collect{case Lit.Int(x) if x < 5=> x}}

We may wish to compute the union of those two traversals
and have all the Integer literals greater than 5 and smaller
than 5 in a single List:

val m3 = m1 aggregate m2

What happens here is that in a first phase all elements
greater than 5 are collected, then all elements smaller than
5 are collected and we finally put them together (of course
it would be trivial to write a combinator which collect all
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val collectVals = {
import Traverser._

topDown(collect{case Lit.String(v) => v})
}
val collectValsFusing = {
import FusionTraverser._

topDown(collect{case Lit.String(v) => v})
}
comparePerformance(
collectVals + collectVals,
collectValsFusing + collectValsFusing

)

Figure 6: Comparing composition and fusing

elements except 5). Thus m3 traverses the data structure two
times. We can do better, we can fuse m1 and m2 together in
order to traverse the data structure only one time. Indeed
we can express the composition of m1 and m2 in the following
way:

val m4 = topDown{
collect{case Lit.Int(x) if x > 5 => x}
aggregate
collect{case Lit.Int(x) if x < 5 => x}

}

We can, fortunately, automate this process, by modifying
the topDown combinator and further modify its aggregate method
so as to perform fusing with other modified topDown combina-
tors. As a result we can automatically transform expressions
of type topDown(a) aggregate down(b) into topDown(a aggregate b). Ob-
viously the ordering of the results will not be the same any-
more. Indeed the result of m3 will be a List of Integers greater
than 5 followed by a Integers smaller than 5 while the result
of m4 will be an interleaved List of Integers greater than 5 and
Integer smaller than 5. In the same way, we implement fus-
ing for the tupled composition operator which gives us almost
the same transformation rule: topDown(a) tupled topDown(b) into
topDown(a tupled b). In this case however the ordering does not
change.

We benchmark fusing on a simple traverser consisting in
collecting all String literals in a tree (see Figure 6. We ag-
gregate this same traverser multiple times and compare the
performance between simple composition and fusing. Our
preliminary results show the following performance improve-
ments:

• The fusing of two aggregated traversals improves per-
formance by about 250%.

• The fusing of four aggregated traversals improves per-
formance by about 330%.

• The fusing of eight aggregated traversals improves per-
formance by about 660%.

More advanced Fusing.
In this section we present some of the rules used to fuse

some other kind of combinators:

topDown(a).map(f1).aggregate(topDown(b).map(f2))

becomes

topDown(a.aggregate(b)).map.{case (x, y) => f1(x) + f2(x)}

topDown(a).map(f1).tupled(topDown(b).map(f2))

becomes

val collectStrings = topDown(optimize(collect{case Lit.String(v) => v}))
val collectInts = topDown(optimize(collect{case Lit.Int(v) => v.toString}))
val collectVals = topDown(optimize(collect{case v: Decl.Val => "val"}))
val collects = collectStrings + collectInts + collectVals
val reptraversers = collects + collects + collects

Figure 7: reptraversers is the fused traverser we bench-
mark

topDown(a.tupled(b)).map{case (x, y) => (f1(x), f2(x))}

(topDown(a).feed{x => topDown(b)}).aggregate(topDown(c))

becomes

topDown(a).feed{x => topDown(b).aggregate(topDown(c))}

topDown(a).feed{x => topDown(b)}.aggregate(topDown(c).feed {y => topDown(d)})

becomes

{topDown(a).aggregate(topDown(c).feed{case (x, y) => topDown(b).aggregate(topDown(d))})

3.3.2 The optimize combinator
Scala-abide [1] proposes an interesting optimization which

comes naturally with fusing. Let us consider the following
traversers

topDown(collect{case .. : A => ... : U})
topDown(collect{case .. : B => ... : U})
topDown(collect{case .. : A | B => ... : U})

When we fuse them together we obtain the following tra-
verser

topDown(
collect{case .. : A => ... : U} +
collect{case .. : B => ... : U} +
collect{case .. : A | B => ... : U}

)

The problem here is that all three traversers will be tried
on each node of the traversed data structure. We can do
better by checking the node beforehand and only applying
the traversers which have a chance to match this node. In
TQL we do that by checking the type of the patterns in the
case part of the partial functions. Hence our traverser above
becomes (in pseudo-code):

topDown({ node match
case _: A =>
collect{case .. : A => ... : U} +
collect{case .. : A | B => ... : U} apply(node)

case _: B =>
collect{case .. : B => ... : U} +
collect{case .. : A | B => ... : U} apply(node)

})

We benchmark the use of this optimize combinator with
three very simple traversers shown in Figure 7. The results
we obtain show that we do not gain much, the use of the
optimize combinator makes the traversal only 18% faster.

Would parallelization make sense?.
When talking about speeding up performances it makes

sense to ask ourselves the following question: can we paral-
lelize it? In the context of data structure traversal there are
two places where we can think of parallelization:

1 Parallelization inside a traversal, for instance when
traversing a If(cond, thn, els) node with three children,
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would it make sense to traverse the children in par-
allel? The answer here is: probably not. Indeed the
time required to set up parallelization would probably
outweigh the small gain that we get from this paral-
lelization.

2 Parallelization instead of fusing. There is probably
more to gain in this area. Even though we cannot
parallelize rewriting rules in the general case (because
rewriting one rule may influence the next one) there is
probably a lot to gain when only traversing and col-
lecting information on the data structure. We did not
implement this during the semester project due to time
constraints.

4. TQL IN PRACTICE: TRAVERSING SCALA
META TREES

In order to put TQL into practice and to use it with
scala.meta we need to write a traverser for scala.meta trees,
this is the only requirement to use TQL. This proved to be
complicated and we observe that the way we write this tra-
verser has a huge influence on the performance of TQL. In
this section we present the different approaches we tried to
build a fast traverser for scala.meta.

4.1 Traversing scala.meta trees
We use macros to generate the scala.meta Traverser. As

there are a lot of different nodes to traverse it would be
inconvenient to write it by hand. Since the traverse pattern
is always the same, as we will see below, we can automate
the task with ease. Another reason why macros make a
lot of sense in this case is that this technique is resilient to
changes in the structure of the AST, thus requiring no effort
in modifying the traverser when existing nodes are changed
or new nodes are introduced. As we show in Figure 8, the
traverser we generate is a big pattern match on all leaves
of scala.meta trees. The traversal of a Leaf is done in three
steps:

1 Traverse each child of the leaf, transform it and collect
a result by applying the Matcher f on it.

2 If no children has been modified by f we can save the
cost of reconstructing the leaf. Otherwise we rebuild
it.

3 Return the modified tree and the appended results col-
lected on the children.

In order to analyze the performances of the TQL traverser
we also build a regular Traverser and a regular Transformer.
The former only traverses the nodes and the later only trans-
form the nodes. Both do not collect any result. They are
similar to the Traverser and Transformer in scala.reflect that we
present in the introduction. We implement the regular Tra-
verser and the regular Transformer wit a naive approach i.e
we pattern match on each leaf of the scala.meta structure.
We show an excerpt of the code in Figure 9

4.2 Unsatisfying performance
We benchmark our traversers with ScalaMeter [12]. We

write a traverser which collect all String literals in a Scala
code. We implement this traverser with TQL and the reg-
ular Traverser on scala.meta trees and with the Traverser

from scala.reflect on regular Scala ASTs. Our benchmark
shows that traversing on scala.meta trees is between 8 and
16 times slower than traversing Scala ASTs with the regu-
lar Traverser. Furthermore we observe that traversing with

def traverse[A : Monoid](tree: Tree, f: Matcher[A]): MatchResult[A] =
tree match {
case Term.If(cond, thenp, elsep) =>

for {
(a1: Term, a2) <- f(cond)
(b1: Term, b2) <- f(thenp)
(c1: Term, c2) <- f(elsep)
} yield (

if ((a1 eq cond) &&
(b1 eq thenp) &&
(c1 eq elsep))

tree
else

Term.If(a1, b1, c1),
a2 + b2 + c2)

case Term.While(expr, body) => ..
..

}

Figure 8: The TQL scala.meta tree traverser: it tra-
verses each child of a leaf while collecting the results.
If the tree is not modified we return the original,
otherwise we reconstruct it.

class Traverser {
def traverse(tree: Tree) = tree match {
case Term.If(cond, thenp, elsep) =>
traverse(cond)
traverse(thenp)
traverse(elsep)

case Term.While(expr, body) => ..
..

}
}

Figure 9: The regular scala.meta Traverser
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class Traverser {
def traverse(tree: Tree) = tree match {
case t: Term => t match {
case Term.If(cond, thenp, elsep) => ..
case Term.While(expr, body) => ..
..

}
case t: Type => t match {
case Type.Apply(tpe, args) => ..

..
}

..
}

}

Figure 10: The hierarchical scala.meta Traverser

TQL is about 10 times slower than traversing with the regu-
lar Traverser. We notice that transforming scala.meta trees
with TQL is only about 1.5 times slower than transform-
ing them with the regular Transformer. This is presumably
due to the sole overhead of returning a result together with
the transformed tree. Note that the number of nodes in a
scala.meta tree and a Scala AST varies a lot for the same file.
There are sometimes two times less nodes in the scala.meta
tree than in the Scala AST and sometimes two times more.
This makes benchmarking especially tricky even though the
traversal time is always slower with scala.meta trees.

4.3 Reorganizing the pattern matching order
One idea that comes from the Scala Traverser is that we

should place the cases that are the most visited at the top
of the pattern match. Indeed this strategy works well as we
observe a 2-3X speedup when traversing of scala.meta trees.

4.4 Hierarchical pattern matching does not work
One idea to speed up the traverser is to hierarchically

pattern match the trees. For instance a Term.If extends Term,
thus it should make sense to first check if the tree is a Term

and then pattern match the tree among the different leaf
of Term. Figure 10 illustrate that approach. The problem
is that it implies a lot more pattern matching (at least two
levels). Furthermore some leaves are rather deep in the AST
structure, which makes this approach unpractical. Indeed it
is slower than the naive approach.

4.5 Optimizing with $tag
Each scala.meta tree is associated with a $tag. A unique

Integer identifier which represent the type of the tree.

Array of functions.
Instead of executing a long pattern match we can register

a function traversing a particular leaf in an array at the po-
sition of its tag. The traverser now only needs to retrieve the
tag of the tree we want to traverse and execute the function
at the tag position in the array. This is illustrated in Figure
11. The performances improve only very slightly compared
to the naive approach (15% faster). This can be explained
by the fact that there is one extra indirection (accessing the
table), still one pattern matching and one virtual call (to
tree.tag). This would make the traverse method slower for
the most visited nodes.

class Traverser {
val table = {
val array = new Array[(Tree, Tree => Unit) => Unit]

..
array(Term.If.$tag) = (tree: Tree, f: Tree => Unit) =>
tree match {
case Term.If(cond, thenp, elsep) => ..

}
..

array
}
def traverse(tree: Tree): Unit =
table(tree.tag)(tree, traverse _)

}

Figure 11: Implementation of a regular scala.meta
Traverser with $tag

class Traverser {
def traverse(tree: Tree): Unit =
(tree.$tag : @scala.annotation.switch) match {
..
case 78 => tree match {
case Term.If(cond, thn, els) => ..

}
..
}

}

Figure 12: Implementation of a regular scala.meta
Traverser with the @switch annotation

@Switch annotation.
A similar technique to the naive approach is to make the

traverser pattern match on the $tag of the leaves instead of
on the leaves themselves. Since $tags are Integer we can sup-
posedly improve the performances with the @switch annotation

as we present in figure 12. Unfortunately we obtain about
the same performance as with the technique we describe in
the last paragraph. This is also probably due to the virtual
call to $tag and the fact that the pattern match still contains
a lot of cases.

4.6 Summary of performances
We apply these optimizations to the TQL traverser but

unfortunately only get very slight performance improvement
(about 11% faster when changing the ordering of the cases
in the pattern match). The probable reason is that there is
already too much overhead in the TQL traverser to make the
optimizations significant. We further discuss this problem
in section 7.5.

We also have to take into account that with the TQL
traverser, every traversal is implemented as a transforma-
tion. For instance when collecting information on the data
structure with the regular traverser there is no overhead as-
sociated with the reconstruction of the AST. This is not the
case with the TQL traverser, we further discuss this case in
section 7.6. For example writing a traverser with a regular
Transformer is about 6 times slower than writing it with a
regular Traverser.

In short currently traversing with TQL is about 10 times
slower than traversing with the traverser for scala.meta (with
reordering) and about 25 times slower than traversing with
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the regular Traverser from the Scala reflection API. More-
over transforming with TQL is 1.5 times slower than trans-
forming with the regular Transformer for scala.meta.

5. FOR A MORE INTUITIVE API

5.1 Collection-like API
Combinators may not be the most intuitive way in which

programmers would like to manipulate a data structure. In
this section we present another, simpler API, built on top of
TQL combinators which allows to manipulate a data struc-
ture like it were a Scala collection.

For instance, the code below shows how to collect all In-
teger literals bigger than 10 on a scala.meta tree.

val tree: scala.meta.Tree = ...
val x: List[Int] = tree.collect{case Lit.Int(a) if a > 10 => a}

Here we notice that calling collect directly return a result.
For the record here is the same traverser implemented with
combinators:

val collectInts: Matcher[List[Int]] = topDown(collect{case Lit.Int(a) if a > 10 => a})
val x: List[Int] = collectInts(tree) match {
case Some((_, result)) => result
case _ => Nil

}
/*
Which is equivalent to
val x: List[Int] = collectInts(tree).result

*/

5.1.1 Supported operations
The operations we can express with this API are more

restricted than with the combinator approach. We can still
choose with which strategy to traverse the data structure
(topDown, topDownBreak,..) but we implicitly use the top bottom
strategy topDown when the user does not explicitly select any.
Therefore

tree.collect{case Lit.Int(a) if a > 10 => a}

is equivalent to

tree.topDown.collect{case Lit.Int(a) if a > 10 => a}

. On top of the traversal strategies the three following op-
erations are supported:

collect.
As already presented, it allows to directly collect informa-

tion on the data structure. It inherits the capabilities of the
combinators, as it is still possible to collect in any type of
collection (the default still begin List).

transform.
It allows to transform the data structure directly. Here is

an example:

val tree: scala.meta.Tree = ...
val x: scala.meta.Tree = tree.transform{case x: Lit.Int => Lit.Int(1)}

Like collect transform also inherits its capabilities from its com-
binator counterpart. It is indeed not possible to execute ill-
formed transformation i.e from Term to Type. It is also still
possible to return a result at the same time as transforming
the data structure. Moreover the result type of the transform

operation changes depending on whether the a result is re-
turned or not. If no result is returned, transform only return

the transformed data structure. But in the other case it re-
turns a tuple consisting of the transformed data structure
and the result, as presented in the example below.

val x: (scala.meta.Tree, Set[Int]) = tree.transform{
case Lit.Int(a) => Lit.Int(a * 2) andCollect[Set] a

}

focus.
This operation allows to stop the traversal at a specific

position in the data structure. For example the code below
collects every Integer literal in the children of every Term.If

node.

val x: List[Int] = tree.topDownBreak
.focus{case Term.If(_,_,_) => true}
.topDown
.collect{case Lit.Int(a) => a}

5.1.2 Architecture
The architecture of the collection-like UI is quite simple,

as it is only a wrapper around TQL combinators. Here
we describe how to implement a very simple traversal of
type t.strategy.operation (as previously stated strategy is op-
tional here). All we have to do is to transform it into
strategy(operation)(t).

We implement this transformation using two componants:
• An implicit class Evaluator(t: T) which allows us to per-

form the operations described above on the data struc-
ture t.

• A class EvaluatorMeta(t: T, strategy: DelayedMeta) which de-
scribe which strategy will be used to traverse t.

Hence the transformation is done in the following way. The
t.strategy call create a new EvaluatorMeta(t, strategy). Then the
operation call simply apply the operation on t using the se-
lected strategy.

The implementation of the focus operation is a bit more
involved and we do not present it here for brevity’s sake.

5.1.3 Loosing my combination
An obvious disadvantage of this collection-like UI is that

we lose the power of combinators. The trade-off that we
are making here is that we gain a more intuitive and more
straightforward API at the expense of expressiveness and
power. The rationale behind the design of this user interface
is that it should be easy to write simple traversals which are
only used once. Indeed it is now possible to directly query
the data structure for simple information. There is no need
to write a traverser and then apply it.

5.1.4 Functional dependencies: implicits or white-
box macros?

In Scala there are two ways of implementing functional de-
pendencies (put simply it is the fact that some type parame-
ter depends on others) with whitebox macros [8] or with im-
plicits [22]. For instance, in TQL we choose to implement the
collect combinator with implicits instead of macros. White-
box macros present the following advantages over implicits:
1) they have a shorter definition as we do not need to carry
type information in the arguments, replacing them with Any

(or any super type). 2) They are supposedly easier to imple-
ment (without talking about the need to create a separate
project for the macro implementation). On the other hand,
implicits present the following advantages over macros: 1)
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It is more likely to deduce the correct signature by looking
at the definition of the function, as we do not need to delve
into the implementation. 2) It is more composable as we
only need to pass an implicit scope between functions we
want to compose. Composing with a macro is more difficult
as it, in general, requires that the functions it composes with
are macros themselves.

Macros do not integrate well with some development tools,
but they involve less compilation overhead than implicit
search, as it is quite costly.

5.2 Syntax enhancer, trying to make it like XPath
As another experimental user interface, we try to make the

writing of combinators more pleasant. For that purpose we
propose a syntax enhancer, a collection of expansion meth-
ods on the data structure we want to traverse. They present
two simple changes to the UI.

First they allow us to write the traversal strategy after the
Matcher and thus to get rid of some annoying parenthesizes.
We can therefore write

collect{..}.topDown

instead of

topDown(collect{..})

.
Secondly we try to implement a small XPath-like query

DSL on top of TQL combinators by using operator overload-
ing. We then define an expansion operator, shown in Figure
13 which should let us express

topDownBreak(focus{..} andThen topDown(collect{..}))(tree)

by

tree \ focus{..} \\ collect{..}

We can immediatly observe that the above code will not
work in Scala because of operator associativity. As is, the
above code is interpreted as

(tree \ focus{..}) \\ collect{..}

while we would like something like that

tree \ (focus{..} \\ collect{..})

Indeed the Scala reference reads:

The associativity of an operator is determined
by the operator’s last character. Operators end-
ing in a colon ‘:’ are right-associative. All other
operators are left-associative.

We can therefore replace the \ operator by \: to make
it right-associative. But we have to take into account that
a \: b is desugared to b.\:(a) and modify the execution path
accordingly (see Figure 14).

Even though the XPath-like UI is, for now, very simple
we can write some queries in a XPath fashion:

tree \: focus{..} \\: collect{..}

6. EXAMPLES
In this section we will translate some examples of Tra-

verser and Transformer written with the current scala.reflect
API and highlight the differences.

6.1 Simple Traverser

implicit class XPathEnhancer[A](a: Matcher[A]){
def \\[B : Monoid] (b: Matcher[B]) = a andThen topDown(b)
def \[B : Monoid] (b: Matcher[B]) = a andThen topDownBreak(b)
..

}

Figure 13: Adding an expansion operator to TQL
Matchers in order to provide an XPath-like user in-
terface

implicit class TEnhancer(t: T){
def \\:[B] (b: Matcher[B]) = b andThen topDownAlias(a)
def \:[B] (b: Matcher[B]) = b andThen topDownBreakAlias(a)

}

Figure 14: Modifying the \operator

This first example shows how to get the name of all meth-
ods in a tree. With scala.reflect.

def MethodNameCollector(tree: Tree): List[String] = {
private[this] val funcnames = ListBuffer[String]()
new Traverser {
override def traverse(tree: Tree) = tree match {
case DefDef(_, name, _, _, _, rhs) =>
funcnames += name.toString
traverse(rhs)

case _ =>
super.traverse(tree)

}
}.traverse(tree)
funcNames.toList

}

With TQL combinators.

val MethodNameCollector = topDown(collect{
case DefDef(_, name, _, _, _, _) =>
name.toString

})

Here the use of the topDown combinator automatically tra-
verse the children of the DefDef node. One subtle difference is
that in the TQL version all sub-tree will be visited while in
the scala.reflect version only the rhs sub-tree will be further
visited.

With the collection like UI.

val tree: scala.meta.Tree: = ..
val methodNames = tree.collect{
case DefDef(_, name, _, _, _, _) =>
name.toString

}

6.2 Simple Transformer
This transformer, taken from the Slick [14] source code, is

used to remove Type annotations. With scala.reflect.

object removeTypeAnnotations extends Transformer {
def apply(tree:Tree ) = transform(tree)
override def transform(tree: Tree): Tree = {
super.transform {
tree match {
case TypeApply( tree, _ ) => tree
case Typed( tree, _ ) => tree
case tree => tree

}
}
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}
}

With TQL.

val removeTypeAnnotations = transform{
case TypeApply(tree, _ ) => tree
case Typed(tree, _ ) => tree

}.topDown

Here the topDown combinator will automatically recurse on the
newly transformed tree.

6.3 Get all definitions
The following traverser, taken from Yin-Yang [16], retrieve

all definitions in a given tree. With scala.reflect.

class LocalDefCollector extends Traverser {
private[this] val definedValues, definedMethods = ListBuffer[Symbol]()

override def traverse(tree: Tree) = tree match {
case vd @ ValDef(mods, name, tpt, rhs) =>
definedValues += vd.symbol
traverse(rhs)

case dd @ DefDef(mods, name, tparams, vparamss, tpt, rhs) =>
definedMethods += dd.symbol
vparamss.flatten.foreach(traverse)
traverse(rhs)

case bind @ Bind(name, body) =>
definedValues += bind.symbol
traverse(body)

case _ =>
super.traverse(tree)

}
def definedSymbols(tree: Tree): List[Symbol] = {
definedValues.clear()
definedMethods.clear()
traverse(tree)
(definedValues ++ definedMethods).toList

}
}

With TQL.

val localDefCollector = topDown(
collect{
case vd: ValDef => vd.symbol
case bind: Bind => bind.symbol

} tupled
collect{
case dd: DefDef => dd.symbol

}
) map {case (vals, meths) => vals ++ meths)}
/*here we assume that the order of appearance in the list
is important otherwise we could simply have written:
topDown(collect{
case vd: ValDef => vd.symbol
case bind: Bind => bind.symbol
case dd: DefDef => dd.symbol

})

*/

6.4 Replace Var by Val
The following example comes from Obey [9]. It replaces

each var only used once by a val and return a warning at the
same time.

With TQL.

val varInsteadOfVal = collect[Set] {
case Term.Assign(b: Term.Name, _) => b

}.topDown feed { assign =>
transform {
case t @ Defn.Var(a, (b: Term.Name) :: Nil, c, Some(d))
if (!assign.contains(b)) =>
Defn.Val(a, b :: Nil, c, d) andCollect

(b + "should be a Val")
}.topDown

}

With scala.reflect we need two build two traversers.

def varInsteadOfVal(tree: Tree): (Tree, List[String]) = {
val assign = new ListBuffer[Term.Name]()
val messages = new ListBuffer[String]()
new Traverser{
override def traverse(tree: Tree) = tree match {
case Term.Assign(b: Term.Name, rhs) =>
assign += b
traverse(rhs)

case _ => super.traverse(tree)
}

}.transform(tree)
val newTree = new Transformer {
override def transform(tree: Tree) = tree match {
case t @ Defn.Var(a, (b: Term.Name) :: Nil, c, Some(d))
if (!assign.contains(b)) =>
messages += b + "should be a Val"
Defn.Val(a, b :: Nil, c, d)
case _ => super.transform(tree)

}
}.transform(tree)
(newTree, messages.toList)

}

6.5 Getting the name of the local variables of
each method

Our goal is to write a traverser which returns a Map of
method names to a list of their local variables.

With a regular Traverser it is actually quite easy to write
such a traverser. However we notice that:

1 We manipulate a state (of course it is possible to do
without it, with two mutually recursive traversers, but
the implementation would be longer).

2 We need to declare when to continue the traversal in
the children.

3 Taking into account vars would add at least 4 more
lines of code.

def getValsInMethods(tree: Tree) = {
val funcsWithVals = new HashMap[Term.Name, List[Term.Name]]()
var currentFunc: Term.Name = null
new Traverser {
override def traverse(tree: Tree): Unit = tree match {
case f: Defn.Def =>
val oldFunc = currentFunc
currentFunc = f.name
super.traverse(tree)
currentFunc = oldFunc

case Defn.Val(_, (b: Term.Name):: Nil,_, rhs)
if currentFunc != null =>
val content = funcsWithVals.getOrElse(currentFunc,Nil)
funcsWithVals += (currentFunc -> (b.name::content))
super.traverse(tree)

case _ => super.traverse(tree)
}

}.traverse(tree)
funcsWithVals.toMap

}

In order to implement this traverser with TQL let us first
introduce another traversal strategy:

def until[A : Monoid, B](m1: Matcher[A], m2: Matcher[B]): Matcher[A] =
m2 orThen (m1 + children(until(m1, m2)))

Where orThen is like the orElse combinator except that the re-
sult m2 returns is completely discarded and replaced by the
zero value of Monoid[A]. until allows us to traverse a data struc-
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ture in a top-down dfs way and applies m1 until m2 matches.
We can now write our traverser:

val getValsInMethods: Matcher[Map[Term.Name, List[Term.Name]]] =
(focus{case _: Defn.Def => true} feed { defn =>
(until(
collect{case Defn.Val(_, (b: Term.Name):: Nil,_, _) => b.name},
focus{case _: Defn.Def => true}
).map(x => Map(defn.name -> x)) + getValsInMethods).children

}).topDownBreak

This requires some explanations:
• We first use the topDownBreak strategy to stop the

recursion when we encounter a method.
• Once we are inside a method (defn) we need to collect

all the vals in its children.
• Since we want only the local vals of the methods we

need to be careful to not continue the recursion inside
an inner method of defn. For that purpose we use the
until traversal strategy which stops when a method is
encountered.

• Finally we insert the variable names into the map and
continue the recursion on the inner methods

Note that this traverser might be doing too much work as it
traverses methods multiple times (once to collect the vari-
ables and another time to get to the next method to tra-
verse).

It is possible to make it run in one only pass if we main-
tains two results at the same time: the list of variables in
the current method and a Map of method names to a list of
variables names. We can use the tupledUntil traversal strategy
which behaves like the until strategy except that it keeps the
results of both combinators and aggregates them in a tuple.

Using this knowledge, let us now define a new combinator
group which groups in a Map all the results of one combinator
value which match between nodes matching a key combinator:

def group[K, V: Monoid](key: Matcher[K], values: Matcher[V]) = {
def inner: Matcher[(V, Map[K, V])] = tupledUntil(
values,
key feed { k =>
inner.children.map{case (v, m) => Map(k -> v) ++ m}

}
)

(key andThen inner).topDownBreak.map(_._2)
}

The getValsInMethods is then easy to write:

val getValsInMethods = group(
visit{case f: Defn.Def => f.name.toString},
collect{case Defn.Val(_, (b: Term.Name):: Nil,_, _) => b.name}

)

One advantage of using TQL combinators is that if we can
easily change the code to also retrieve the locals vars of the
methods. The modification is straightforward:

val getValsAndVarsInMethods = group(
visit{case f: Defn.Def => f.name.toString},
collect{
case Defn.Val(_, (b: Term.Name):: Nil,_, _) => b.name
case Defn.Var(_, (b: Term.Name):: Nil,_, _) => b.name

}
)

Furthermore we can re-use the group combinator to build
other similar traversers, for instance here is a combinator
to retrieve all methods in every class:

val getMethodsPerClass = group(
visit{case c: Defn.Class => c.name},
collect{case f: Defn.Def => f.name}

)

7. LIMITATIONS AND FUTURE WORK

7.1 Traversing scala.meta is slow
The first limitation is that, as we already discuss in section

4, currently, traversing scala.meta trees is slow compared to
traversing Scala ASTs. Moreover TQL itself adds notice-
able overhead and, in general performance is currently a
problem. Therefore performance optimizations are needed
will be practically useful.

7.2 Stateful traversal
Stateful traversal allows to modify a state during the ma-

nipulation of a data structure. An example of such a state is
a counter. It could be used to, for instance, allow a specific
transformation only a certain number of time. Here is the
pseudo code of a traverser transforming a Var into Val at most
10 times:

topDown({(counter: Int) =>
transform{
case Decl.Var(x) if counter < 10 =>
Decl.Val(x) withState (counter + 1)

}
})

This is currently not supported in TQL even though we
present a sketch of such experiments. A first attempt is to
add a modified version of each combinator which has the
ability to carry a state.

For example the above code would be written in that way:

topDown(transformState(0)(counter => {
case Decl.Var(x) if counter < 10 =>
Decl.Val(x) withState (counter + 1)

})

Although it works, it is not realistic to separate the set of
combinators which carry state and those which do not, es-
pecially since one of the main argument of TQL is to reunite
traversal and transformation under a same API. A similar
solution would be to move the state manipulation up to the
traversal combinator, as there are less of them.

topDownState(0)(counter => {
transform(
case Decl.Var(x) if counter < 10 =>
Decl.Val(x)

) withState (counter + 1)
})

This solution, however, presents the same disadvantage as
the last one about the combinators duplication. Moreover it
moves the state manipulation out of the transform combinator.
This imply that any state manipulation that depends on the
Decl.Var(x) would not be easily feasible. A final attempt is
to write a combinator which has for only responsibility the
manipulation of the state. Here is the definition:

def stateful[A, B](init: => A)(f: ( => A) => Matcher[(B, A)]): Matcher[B]

The example from would ressemble to:

topDown(stateful(0){counter =>
transform{
case Decl.Var(x) if counter < 10 =>
Decl.Val(x) withResult (counter + 1)

}
})
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While it seems to work in most cases there is a problem with
the collect combinator. Indeed what we return in the collect

combinator is instantly put in a collection, the state with it.
To further explain this problem let us consider the following
example, where instead of transforming Var in Val, we simply
collect up to 10 Vars.

topDown(stateful(0){counter =>
collect{
case x: Decl.Var if counter < 10 =>
(x, counter + 1)

}
/*it will not typcheck here because
the type of collect{..} is now
Matcher[List[(Decl.Var, Int)]] and not
Matcher[(List[Decl.Var], Int)]*/

})

Of course we can easily implement the above code with
state being an external var but it is non-functional and so we
would like to do better in the future.

7.3 Symbol lookup
Combinators are suitable to traverse and transform data

structures like AST. But what if we want to query informa-
tion about the symbol table? For example we may wish to
retrieve the symbol for the method add on the Int class. In
this case a string query like lookup("scala/Int/add") looks much
more reasonable than say:

filter{_ == "scala"}
.children.filter{ == "Int"}
.children.collect{_ == "add"}

7.4 UI limitations due to Scala

7.4.1 No default generic type parameter
We presented the implementation of the collect combina-

tor in section 3 where we had to use implicit to mimic the
existence of a default type parameter i.e transforming collect

to collect[List]. The implementation would have been much
nicer if we simply could have done something like:

def collect[C[_] = List] = new CollectInType {
def apply[A](f: PartialFunction[T, A]): Matcher[C[A]]

}

7.4.2 No currying for type parameters
In the same example (i.e collect combinator) it would have

been easier if one were allowed to write:

def collect[C[_] = List][A](f: PartialFunction[T, A]): Matcher[C[A]]

This is very different from:

def collect[C[_], A](f: PartialFunction[T, A]): Matcher[C[A]]

Because in this case when we want to specify the type of
the collection to collect in we would also need to specify the
type parameter A, which adds boilerplate.

7.5 Removing the composition overhead
Combinators present an important overhead. They im-

ply composition and therefore a lot of object creation and
method dispatch, which may be hard on the JVM. In our
previous work we show how to remove composition overhead
and transform functional code into imperative code in parser
combinators [17]. Even though the depth of composition is
somewhat smaller in TQL we argue that TQL could benefit

from the same optimizations. Furthermore, results of TQL’s
combinators are Monoid instances. The addition of two re-
sults, through the append function of the Monoid typeclass,
is probably also a source of overhead since we do not directly
append those results but call an external Monoid instance
to do it. Moreover we could probably gain in performance
by implementing List concatenation via a ListBuffer.

7.6 Re-separating traversal and transforma-
tion

The combination of traversal and transformation is prac-
tical from an user interface point of view but not so much
performance-wise. Naturally transformation always returns
a result (the transformed data structure). This make TQL
transformation performances comparable to vanilla trans-
formation. As we point out, traversal is in itself faster than
transformation, because no result is returned. Currently, in
TQL, we represent a traversal by a transformation which
returns the original data structure. This means that, in
TQL, traversing a data structure is no faster than trans-
forming it. In the future we could imagine TQL being able
to detect that a composition of combinators will not modify
the data structure, and therefore be able to select a non-
transforming traverser. Using this strategy we would not
lose performances due to TQL being too general.

7.7 MatchResult as a Monad
Currently MatchResult[A] is a type alias for Option[(T, A)]. In-

deed each combinator returns an Option and a success is mea-
sure by a Some(..) while a failure is translated into a None. It
would be interersting to let the programmer choose what
should MatchResult be. We could restrict MatchResult to be a
Monad as it is done in [4] as we would still need to have
some way of controling the flow of the result. For example
MatchResult could become a Future and therefore TQL could
benefit from parallelization.

8. CONCLUSION
In this report we describe TQL, a combinator library for

traversing and transforming data structures. We show that
we can describe a complete traverser by combining several
combinators in an expressive and natural way. Furthermore
we present how we can combine traversal and transforma-
tion in a same API and how we can implement common
optimzations such as fusing with combinators.

The practical application of TQL to scala.meta shows that
our API shorten the code needed to write most traversals
while avoiding state mutation. We also underline some of
the limitations of TQL and how the library could be im-
proved in the future. Unfortunately, we notice that perfor-
mance of both scala.meta trees and TQL-based traversals
is suboptimal, but we have identified the problematic areas
and are hopeful that future work will resolve this problem.

Finally we should conclude by pointing out that TQL is
actually in use in the Obey project: code health for scala.meta
[9]. Obey allows an user to define rules to detect and au-
tomatically rewrite ill-formed Scala code. Its development,
in parallel to the development of TQL, has helped tremen-
dously in the design of our API.
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[17] E. Béguet and M. Jonnalagedda. Accelerating parser
combinators with macros. In Proceedings of the Fifth
Annual Scala Workshop, SCALA ’14, pages 7–17, New
York, NY, USA, 2014. ACM.

[18] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/xt 0.17. a language and toolset for
program transformation. Sci. Comput. Program.,
72(1-2):52–70, June 2008.

[19] J. Gibbons and B. c. d. s. Oliveira. The essence of the
iterator pattern. J. Funct. Program., 19(3-4):377–402,
July 2009.

[20] O. Kiselyov, S. L. P. Jones, and A. Sabry. Lazy v.
yield: Incremental, linear pretty-printing. In R. Jhala
and A. Igarashi, editors, APLAS, volume 7705 of
Lecture Notes in Computer Science, pages 190–206.
Springer, 2012.

[21] P. Klint, T. van der Storm, and J. Vinju. Rascal: A
domain-specific language for source code analysis and
manipulation. In SCAM, pages 168–177, 2009.

[22] B. C. Oliveira, A. Moors, and M. Odersky. Type
classes as objects and implicits. SIGPLAN Not.,
45(10):341–360, Oct. 2010.

[23] E. Torreborre. Eric Torreborre’s blog: The essence of
the iterator pattern. http://etorreborre.blogspot.ch/
2011/06/essence-of-iterator-pattern.html.

15


