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Ion temperature has been measured to be of the same order, or higher, than the electron
temperature in the scrape-off layer (SOL) of tokamak machines, questioning its importance
in determining the SOL turbulent dynamics. Here, we present a detailed analysis of finite ion
temperature effects on the linear SOL instabilities, such as the resistive and inertial branches
of drift waves and ballooning modes, and a discussion of the properties of the ion temperature
gradient (ITG) instability in the SOL, identifying the gi ¼ Ln=LTi threshold necessary to drive the
mode unstable. The non-linear analysis of the SOL turbulent regimes by means of the gradient
removal theory is performed, revealing that the ITG plays a negligible role in limited SOL
discharges, since the ion temperature gradient is generally below the threshold for driving the
mode unstable. It follows that the resistive ballooning mode is the prevailing turbulence regime for
typical limited SOL parameters. The theoretical estimates are confirmed by non-linear flux-driven
simulations of SOL plasma dynamics. [http://dx.doi.org/10.1063/1.4904300]

I. INTRODUCTION

In the last years, an increased effort has been devoted to
the measurement of ion temperature in the tokamak scrape-
off layer (SOL). While most of the experimental campaigns
are based on the use of retarding field analyzer probes (see
Ref. 1 and references therein for a review of measurements
before 2010, and Refs. 2–6 for more recent experimental
campaigns), also other techniques are employed, such as the
charge-exchange recombination spectroscopy,7 the ion sensi-
tive probe,8 or the pinhole probe.9 In Ref. 1, a collection of
Ti/Te measurements from a number of tokamak SOL has
been examined for measurements taken before 2010, show-
ing values that range from the lower Ti/Te " 1 to the extreme
Ti/Te " 10, with most of the data falling between 1 and 4.
More recent measurements, in HL-2A,3 in MAST,2,4 in
Alcator C-MOD,7,8 and in ASDEX Upgrade6 have confirmed
these findings. The ion temperature is therefore usually higher
than the electron one in the SOL. Moreover, in Ref. 1, the
SOL e-folding lengths for Te and Ti are shown for different
tokamaks, indicating that the electron profile is usually steeper
than the ion profile, leading to geð¼Ln=LTeÞ > gið¼Ln=LTiÞ.
The gi value has been measured, e.g., during limited dis-
charges in Tore Supra,10 and during diverted discharges in
JFT-2M11 resulting in gi< 1 in both cases.

The numerical simulation of edge turbulence in the pres-
ence of ion temperature dynamics has been the subject of
numerous studies.12–20 Ion temperature gradient (ITG) is re-
sponsible for the rising of an instability called ITG mode
(see, e.g., Ref. 12), which can drive cross-field transport of
particles and energy. Moreover, Ti effects have an impact on
SOL instabilities that exist in the cold ion limit, such as the
ballooning mode (BM) and the drift wave (DW) instabilities.

In general, the ratio between the background ion and electron
temperature, s ¼ Ti0=Te0, and gi, is found to be crucial pa-
rameter for determining the role of ITG turbulence in the
SOL, and of the Ti effects on other instabilities. Zeiler
et al.12–15 describe the linear and non-linear transition
between resistive ballooning mode (RBM) and ITG-driven
turbulence in the tokamak edge by using a gradient-driven
flux-tube code,16 identifying the non-linearly prevailing
instability as a function of the gradient scale length and the
ad parameter that represents the ratio between the diamag-
netic frequency and the BM growth rate. It is found that at
steep gradients the RBM drives turbulence when diamag-
netic effects are negligible (small ad) and it is overpowered
by the non-linear drift wave instability for increasing values
of ad. The ITG instability dominates instead at high values
of ad and broad gradients. In a later study,15 Hallatschek and
Zeiler focus on non-locality effects on the transition between
RBM and ITG, finding a general quenching of the instability
when the turbulence scale length becomes comparable to the
gradient scale length (increasing non-locality). Scott et al.
also developed a suite of numerical tools for the simulation
of the SOL turbulence finite ion temperature effects; in par-
ticular, the fluid DALF code17,18 and the gyrofluid GEM
code.18,21 The ITG signature is identified in large and domi-
nant Ti fluctuations associated with a higher ion with respect
to electron radial transport.17

The goal of the present paper is to improve the under-
standing of the role of finite ion temperature in SOL turbu-
lence. First, we study Ti effects on the SOL linear
instabilities that exist also in the cold ion limit, and we intro-
duce the main properties of the ITG instability. Second, we
identify the SOL turbulent regimes based on the instability
that drive the non-linear transport as a function of the SOL
operational parameters. We show that ITG modes, and, in
general, finite ion temperature effects, play a negligible role
in limited SOL discharges. The methodology we use to
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identify the non-linear SOL instability is supported by the
analysis of non-linear simulations performed with the GBS
code.22 GBS is a three-dimensional fluid code used to
describe the evolution of the plasma density, electric poten-
tial, electron and ion parallel velocities, and electron and ion
temperatures in the tokamak SOL. The code advances the
plasma dynamics as an interplay among the plasma density
and energy outflowing from the plasma core, the parallel
losses at the limiter plates, and the cross field transport due
to turbulence, without separation of equilibrium and
fluctuations.

The drift-reduced Braginskii model we use12 includes
the effect of the polarisation drift in the Ti equation that
becomes important for kyqs " 1 (Refs. 14 and 21).
Nevertheless, finite Larmor radius (FLR) effects contained in
the stress tensor are neglected, and the electric potential is
evaluated at the particle gyrocentre, contrary to gyrofluid
models (see, e.g., Ref. 23). We also remark that other effects
present in collisionless plasmas, such as trapped particles
and wave-particle resonances, are not contained in the
Braginskii equations. Therefore, our model does not describe
accurately perturbations with a perpendicular wavelength of
the order of qi, or where kinetic effects are important.
However, for typical limited SOL parameters, turbulence is
dominated by modes with perpendicular scales much larger
than qi, and kinetic effects are expected to be negligible due
to the large collisionality, justifying our model assumptions.
The setting, a plasma limited on the high field side at the
equatorial midplane, is rather simple, nevertheless allows us
to identify the key mechanisms at play in the SOL.

The present paper is organized as follows. In Sec. II, we
describe the model we use for the SOL description and its
boundary conditions in the presence of hot ions. Ion tempera-
ture effects on the linear SOL instabilities are presented in
Sec. III. In Sec. IV, we describe estimate of the SOL equilib-
rium pressure gradient length, then, in Sec. V, we identify
the SOL turbulent regimes with hot ions. We discuss the
results of non-linear GBS simulations with hot ions and we
compare our expectations to the GBS results in Sec. VI
Finally, in Sec. VII, we draw our conclusions.

II. THE MODEL

A. The drift-reduced Braginskii equations with
hot ions

Our study of plasma turbulence in the SOL is based on
the two-fluid, electrostatic, non-linear, drift-reduced Braginskii
equations.24 The fluid approach is justified by the high plasma
collisionality in the SOL. We also consider the electrostatic
limit, neglecting the ideal branch of the BM. The role of the
ideal BM in SOL turbulence is investigated in Ref. 25.

In the drift-reduced limit, we assume for the perpendicu-
lar velocities V?i ¼ VE%B þ V'i þ Vpol and V?e ¼ VE%B

þV'e, where VE%B ¼ ð(r/% bÞc=B is the E% B drift ve-
locity, V'e ¼ (ðb%rpeÞc=ðenBÞ is the electron diamag-
netic drift velocity, V'i ¼ ðb%rpiÞc=ðenBÞ is the ion
diamagnetic drift velocity, and Vpol is the ion polarization
velocity (see, e.g., Ref. 13). The equations that describe the
evolution of density, n, potential, /, electron parallel

velocity, Vke, ion parallel velocity, Vki, electron temperature,
Te, and ion temperature, Ti are
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In Eq. (1), we introduce the vorticity, x ¼ r2
?/, the

adimensionalized resistivity, ! ¼ e2nR=ðmirkcs0Þ, being
rk ¼ 1:96ne2se=me the parallel Spitzer conductivity, the ion
to electron background temperature ratio, s ¼ Ti0=Te0, and
R, the tokamak major radius. The vorticity equation, second
equation in Eq. (1), is derived by applying the Boussinesq
approximation, namely

r+ nc

BXci

d

dt
E?(r?pi

en

) *
’ nc

BXci

d
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(r2

?/(r2
?Ti
e

) *
: (2)

Despite the fact that the detailed evaluation of the divergence
of the polarization drift has been carried out,26,27 the
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Boussinesq approximation is widely used in the numerical
studies of drift-reduced models as it makes the solution of
the equation considerably simpler. A number of studies have
been performed to evaluate the impact of this approximation
and they can be found, for example, in Refs. 28–30. The
source terms Sn, STe , and STi mimic the flow of plasma into
the SOL through the last closed flux surface. The terms
Df ðf Þ represent small perpendicular diffusion added for
numerical reasons. For the gyroviscous part of the stress ten-
sor,31 represented by Ge and Gi, we use the expressions
derived in Ref. 22. The Poisson brackets are expressed
as ½f ; g* ¼ b + ðrf %rgÞ, where b is the unit magnetic
field vector and the curvature operator is Cðf Þ ¼ RB=2
½r % ðb=BÞ* + rf . In Eq. (1), and in the remainder of the
present paper, we normalize n to the reference density n0, /
to Te0/e, Te to the reference electron temperature Te0, Ti
to the reference ion temperature Ti0; Vke and Vki to
cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
(and therefore cs to cs0), and time t to R/cs0.

Lengths in the perpendicular direction are adimensionalized
to qs0 ¼ cs0=Xci and in the parallel direction to R.

For simplicity, we consider the system of Eq. (1) in s-a
circular geometry32 with a toroidal limiter positioned on the
high field side equatorial midplane of the device. In this ge-
ometry, operators are computed in the a/R ! 0 limit (a is the
tokamak minor radius) and we neglect magnetic shear.
Therefore, the Poisson brackets reduce to ½f ; g* ¼ @yf@xg
(@xf@yg, where x is the flux coordinate and corresponds, in a
circular magnetic flux surface configuration, to the radial
direction, while y is the coordinate perpendicular to x and
B. In the a=R ! 0 limit, the plane (x, y) coincides with
the poloidal plane and, as a consequence, y ¼ ah, where
0 < h < 2p is the poloidal angle, with h¼ 0 and h ¼ 2p at
the outer midplane, where the toroidal limiter is located.
Moreover, the expression of the curvature operator is
Cðf Þ ¼ sin h@xf þ cos h@yf . The perpendicular Laplace oper-
ator is r2

?f ¼ @2
x f þ @2

y f , and the parallel gradient reads as
rkf ¼ @zf , where z is the direction parallel to the field lines,
0 < z < 2pq. The system of Eq. (1) is completed by an
appropriate set of boundary conditions at the magnetic pre-
sheath (MP) entrance, derived in Sec. II B.

B. Boundary conditions at the magnetic
presheath entrance

The boundary conditions for the drift-reduced
Braginskii equations at the MP entrance have been derived
in the cold ion limit in Ref. 33. In the following, we extend
the study presented in Ref. 33 to the Ti 6¼ 0 case. These
boundary conditions have to be applied at h¼ 0 and h ¼ 2p,
where the plasma touches the limiter and spontaneously gen-
erates a thin layer contiguous to the wall, the so-called
sheath, where quasi-neutrality and the drift approximations
are broken. In particular, when the magnetic field is oblique
with respect to an absorbing wall, three regions can be iden-
tified at the plasma-wall transition: the collisional presheath
(CP), the MP, and the Debye sheath (DS). They are charac-
terized by very different length scales. In the CP, whose size
scales with the ion mean free path, kmfp, the ions are magne-
tized and the plasma is quasi-neutral. At the MP entrance,

the ions reach the sound speed. The width of the MP scales
as qs. In this region, the plasma is still quasi-neutral, but
ions are demagnetized due to the high electric field. The
DS scales as the Debye length, kD, being in this region
quasi-neutrality violated. Since quasi-neutrality is violated
in the DS and the ion drift approximation loses its validity
in the MP, the validity of the drift-reduced Braginskii
equations stops at the MP entrance, where boundary condi-
tions that properly describe the sheath physics have to be
applied.

The dynamics at the plasma-wall transition is described
by using the same coordinate system introduced in Sec. II A.
We also define the coordinate s ¼ y cos aþ z sin a, normal to
the wall, being a the angle of incidence of the magnetic field
to the wall. The s coordinate is adimensionalized to qs0. The
magnetic field is assumed constant.

To describe the steady-state dynamics of the plasma in the
CP, we use the ion continuity, the parallel ion velocity, and the
electron parallel velocity equations. We consider plasma
gradients in the x direction with an ordering " ¼ qs=Ln
" qs=LT " qs=L/ , 1. Moreover, we neglect ion FLR
effects; in particular, we assume that the particles are lost to
the wall when their gyrocenters are.

The steady-state ion continuity equation reads as
r + ðnViÞ ¼ Sp;i, where Sp;i represents the ion density source
and the perpendicular components of Vi (Vx,i and Vy,i) are com-
puted by neglecting Vpol, as in Ref. 33, therefore retaining
only 0th order terms in ð1=xiÞd=dt, and assuming @sTi ¼ 0

Vx;i ¼ Vx;Ei þ Vx;'i ¼ (@y/( s
Ti
n
@yn; (3)

Vy;i ¼ Vy;Ei þ Vy;'i ¼ @x/þ s
Ti
n
@xn: (4)

The validity of the isothermal ion assumption as well as
@sTe ¼ 0, used later, are discussed in Appendix. The first
terms on the right-hand side of Eqs. (3) and (4) represent the
E% B drift contribution to the ion velocity, while the second
terms are due to the diamagnetic drift. Using the relation
Vs;i ¼ Vk;i sin aþ Vy;i cos a, we obtain, for the ion continuity
equation

r + ðnViÞ ¼ n@xVx;Ei þ n cos a@sVy;Ei þ Vs;i@sn

( Vy;'i cos a@snþ n sin a@sVki þ Vx;Ei@xn ¼ Sp;i:

(5)

The sum of the first and the second terms on the right hand side
vanishes since n cos a@sVy;Ei ¼ n cos a@s@x/ ¼ (n@xVx;Ei.
The third and fourth terms are gathered together by introducing
V0
s;i ¼ Vs;i ( Vy;'i cos a. We remark that the diamagnetic con-

tribution appearing in the fourth term cancels out with the iden-
tical term appearing in the definition of Vs;i, as expected, since
the ion diamagnetic flux is divergence free. For the sixth term,
we have Vx;Ei@xn ¼ (@xn cos a@s/. Accordingly, Eq. (5) is
simplified as

V0
s;i@snþ n sin a@sVk;i ( @xn cos a@s/ ¼ Sp;i; (6)

which constitutes the form of the ion continuity equation that
we consider for our analysis.
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The steady state ion momentum equation reads as

nðVi + rÞVi ¼ nEþ nVi % b(rpi þ Smi ; (7)

where Smi represents the ion momentum source. For sake of
simplicity, we write the total derivative dt ¼ @t þ ðVki
þVE%BÞ + r, by neglecting the polarization drift, since
smaller than the other contributions. We note that the dia-
magnetic velocity does not appear in the convective deriva-
tive due to the diamagnetic cancellation.12 The parallel
component of Eq. (7) can be written therefore as

nðV0
si@s þVxi@xÞVki ¼(n@s/ sina( sTi@sn sinaþ Skmi

: (8)

Substituting Eq. (3) into Eq. (8), we find

nV0
si@sVki þ sin aðn@s/þ sTi@snÞ ( n@xVki cos a@s/ ¼ Skmi

;

(9)

where the third term represents the ion pressure contribution.
Finally, the momentum equation for the electrons reads as

nðVe + rÞVe ¼ (lðnEþ nVe % bþrpeÞ þ Sme ; (10)

where Sme is the electron momentum source, and l ¼ mi=me.
Equation (10) is simplified assuming l - 1 and isothermal
electrons in the CP, i.e., @sTe ¼ 0. The parallel component of
Eq. (10) reads, therefore, as

l sin aTe@sn( l sin an@s/ ¼ Skme
: (11)

Equations (6), (9), and (11) can be written in the form of a sys-
tem of linear equations,MX ¼ S, where X ¼ ½@sn; @sVki; @s/*;
S ¼ ½Sp;i; Skmi

; Skme
*, and

M ¼
V0
si n sin a (@xn cos a

sin asTi nV0
si nðsin a( @xVki cos aÞ

l sin aTe 0 (ln sin a

0

@

1

A: (12)

In the Ti¼ 0 limit, we retrieve the system of equations
reported in Eq. (11) of Ref. 33. When Ti dynamics is
included, a new term, due to the ion pressure, appears in
Eq. (12) and Vs;i is redefined as V0

s;i, to take into account the
presence of the ion diamagnetic drift. Equations (6), (9), and
(11) are valid in the CP, up to the MP entrance. In the
CP, the source terms are responsible for the small plasma
gradients. Approaching the MP entrance, gradients become
large, while the intensity of the source terms remains the
same as in the main SOL plasma. Non-zero gradients in
the MP exist, therefore, with negligible sources, leading to
MX ’ 0 to define the location of the MP entrance. This con-
dition requires that detM ¼ 0 is satisfied, resulting in

V0
s;i ¼

ffiffiffiffiffi
Te

p
sin a hn6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s
Ti
Te

) *
þ h2n (

@xVki

tan a

s2

4

3

5; (13)

where

hn ¼
ffiffiffiffiffi
Te

p

2 tan a
@xn

n
(14)

has been defined. In Eq. (13) and in the following, the upper
sign is for the case when the coordinate s increases towards
the wall and the lower sign is for the opposite case, corre-
sponding in our setting to the upper and lower sides of the
limiter, respectively. Recalling Vs;i ¼ Vk;i sin aþ Vy;i cos a
and Vy;i " Oð"Þ, from Eq. (13) we have @xVki ¼ @x

ffiffiffiffiffi
Te

p

þOð"2Þ. We can, therefore, write Eq. (13) as

V0
s;i ¼

ffiffiffiffiffi
Te

p
sin a hn 6
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þ h2n ( hT

s2

4

3

5; (15)

where

hT ¼
ffiffiffiffiffi
Te

p

2 tan a
@xTe
Te

: (16)

In the following, we neglect terms of order Oð"2Þ and higher.
By introducing FT ¼ 1þ sTi=Te, the condition for V0

s;i
becomes therefore

V0
s;i ¼

ffiffiffiffiffi
Te

p
sin a hn6

ffiffiffiffiffiffi
FT

p
( 1

2
ffiffiffiffiffiffi
FT

p hT

) *% &
; (17)

and the boundary conditions for Vki are derived from Eq.
(15), using the relation

Vki sin a ¼ Vs;i ( Vy;i cos a: (18)

In the evaluation of Vki, we remark that the ion diamagnetic
contributions in Vy,i and in V0

s;i cancel out, so that only Vy;Ei

appears in Eq. (19). The boundary condition for Vki reads as

Vki ¼
ffiffiffiffiffi
Te

p
hn6

ffiffiffiffiffiffi
FT

p
7

1

2
ffiffiffiffiffiffi
FT

p hT (
2/
Te

h/

) *
; (19)

where

h/ ¼
ffiffiffiffiffi
Te

p

2 tan a
@x/
/

; (20)

and, therefore, the fourth term in Eq. (19) is the contribution
to Vki of the E% B drift. The boundary conditions for the
density n and the potential / can be derived by solving for
detM ¼ 0, the linear system of equations MX ¼ 0, obtaining

@sn ¼ n

Te
@s/ (21)

and

@s/ ¼ (
V0
s;i@sVki

sin aFT ( cos a@xVki
: (22)

Keeping only first order terms in ", Eqs. (21) and (22) can be
written as

@sn ¼ ( nffiffiffiffiffi
Te

p 6
1ffiffiffiffiffiffi
FT

p þ hn
FT

6
hT

2F3=2
T

 !
@sVki; (23)

@s/ ¼ (
ffiffiffiffiffi
Te

p
6

1ffiffiffiffiffiffi
FT

p þ hn
FT

6
hT

2F3=2
T

 !
@sVki: (24)
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The boundary condition for the vorticity is derived from
the boundary condition for /

x ¼ r2
?/ ¼ @2

y/þ @2
x/ ¼ @2

y/þ Oð"2Þ; (25)

where "2 terms are neglected. Moreover, we can use
@2
y/ ¼ cos2a@2

s/, where we estimate @2
s/ at the MP en-

trance, deriving Eq. (22) with respect to s. Finally, neglecting
second order terms in ", and substituting V0

s;i with its expres-
sion in Eq. (17), we obtain

x ¼( cos2a

"
1

FT
þ 1

F2
T

hT

) *
@sVki
# $2

þ
ffiffiffiffiffi
Te

p
6

1ffiffiffiffiffiffi
FT

p þ hn
FT

6
hT

2F3=2
T

 !
@2
s Vki

#

: (26)

The Vke boundary condition is derived by using a detailed ki-
netic treatment of the electron dynamics in the sheath region,
including gradients in the x direction (see Ref. 33 and refer-
ences therein), and reads as

Vke ¼
ffiffiffiffiffi
Te

p
6exp K( gmð Þ (

2/
Te

h/ þ 2 hn þ hTð Þ
) *

; (27)

where gm ¼ ð/MPE ( /wallÞ=Te, being /MPE ( /wall the
potential drop between the MP entrance and the wall, and
K ¼ log

ffiffiffiffiffiffiffiffiffiffiffi
l=2p

p
. Equation (27) is valid in the limit

qe , kD, i.e., when electrons are magnetized all the way to
the wall. The case qe ! kD leads to complex electron trajec-
tories in the DS, preventing us from obtaining a simple
expression of the Vke boundary conditions, such as the one
in Eq. (27).

Equations (19), (27), (23), (24), and (26) are the bound-
ary conditions for Vki; Vke, n, /, and x at the magnetic pre-
sheath entrance. Together with the conditions of isothermal
ions and electron (@sTe ¼ 0 and @sTi ¼ 0), they form the set
of boundary conditions, generalized to the case of hot ions,
that can be applied to the drift-reduced Braginskii equations.
In the s¼ 0 limit, we retrieve Eqs. (33)–(38) of Ref. 33. We
note that the s derivative can be approximated by the deriva-
tive taken along the y direction.

In the radial direction, the SOL boundaries correspond
to the tokamak vessel wall and to the separatrix. Since
most of the particles are lost at the limiter plates, prevent-
ing them from reaching the vessel wall, the conditions
applied to the outer edge of the simulation domain do not
significantly impact the turbulence. Ad hoc boundary condi-
tions are therefore applied at this location. On the other
hand, at the separatrix, the hot plasma reaches the SOL
from the core. In GBS, a particle and heat source mimic
the plasma outflow from the core. This source is located at
a finite distance from the inner boundary of the computa-
tional domain. The region of the domain between the
source and the inner boundary acts as a buffer region and it
has not to be taken into account for turbulence analysis.
Therefore, also at the inner boundary, ad hoc boundary
conditions are used as their impact on turbulence properties
is not significant.

III. THE LINEAR INSTABILITIES

In this section, we present the main linear SOL instabil-
ities in the presence of hot ions, focusing on the electrostatic
limit. In Ref. 34, the resistive and inertial branches of the
drift wave (RDW and InDW) and of the ballooning mode
(RBM and InBM) are described in the cold ion limit, identi-
fying the instability with the largest growth rate as a function
of the SOL parameters. In the following, we first describe
the impact of the hot ion dynamics on the fore-mentioned
instabilities. We then introduce a mode driven unstable by
the presence of the ion temperature gradient, the so-called
ITG instability, with its slab (sITG) and toroidal (tITG)
branches.

The linear analysis is based on the following system of
equations, obtained from Eq. (1), by assuming constant back-
ground radial gradients of n, Te, and Ti (Ln, LTe, and LTi),
while neglecting the background gradient of /

cn ¼ R

Ln

@/
@y

þ 2Ĉ n( /þ Teð Þ ( rkVke;

cr2
?/þ scr2

?Ti ¼ 2 Ĉ Te þ nð Þ þ sĈ Ti þ nð Þ
! "

þ rkVki (rkVke
# $

;

cVke ¼ ( mi

me
rk n( /þ 1:71Teð Þ

þ mi

me
! Vki ( Vke
# $

;

cVki ¼ (rk nþ Te þ s nþ Tið Þ½ *;

cTe ¼
R

LTe

@/
@y

þ 4

3
Ĉ n( /þ 7

2
Te

) *

þ 2

3
0:71 rkVki (rkVke
# $

( 2

3
rkVke;

cTi ¼
R

LTi

@/
@y

þ 4

3
Ĉ n( /þ Teð Þ

( 2

3
rkVke (

10

3
sĈ Tið Þ; (28)

where we ignore the radial dependence of the unstable
modes assuming kx , ky. Therefore, the curvature operator
reads as Ĉ ¼ cos h@y, and the Laplacian operator reduces to
r2

? ¼ @2
y .

A. Drift waves instability

The linear DW instability has been described in the cold
ion limit in Ref. 34. In the following, we describe the DW
instability including finite Ti effects, simplifying Eq. (28) by
neglecting the sound wave coupling, i.e., by assuming
c - kk, the ballooning drive, the compressibility terms in
the continuity and temperature equations, and finite b effects.
Under these assumptions, if we furthermore assume @y ! iky
and rk ! ikk, we reduce Eq. (28) to an algebraic dispersion
relation in the form

c3aDW þ c2bDW þ ccDW þ dDW ¼ 0; (29)

where the coefficients are
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aDW ¼ (me

mi
k2y ;

bDW ¼ (k2y ! þ isgi
me

mi
x'

) *
;

cDW ¼ (k2k 1þ 2:95k2y

, -
( sk2y igi!x' þ

2

3
k2k

) *
;

dDW ¼ ik2kx' 1þ 1:71geð Þ þ isk2kx'k
2
y

% 2

3
1þ 1:71geð Þ ( 2:95gi

% &
; (30)

where x' ¼ kyR=Ln; ge ¼ Ln=LTe , and gi ¼ Ln=LTi . First, we
note that in the limit s ! 0, we retrieve the dispersion rela-
tion of the RDW, if me=mi ! 0, and of the InDW, if ! ! 0,
as presented in Ref. 35. Second, we observe that, in the resis-
tive limit, Eq. (29) can be rewritten by using exclusively the

following parameters: #c ¼ c=½R=Lnð1þ 1:71geÞ*; k2k' ¼ k2k=

½k2y!x'ð1þ 1:71geÞ*, ky, gi' ¼ gi=ð1þ 1:71geÞ, and s. For

s¼ 0, we retrieve the cold ion limit results: peak growth rate
at ky ’ 0:57 and kk' ’ 0:56, with #c ¼ #c0 ’ 0:085 (see Ref.

35). In Fig. 1(a), we show #c=#c0, solution of Eq. (29), in the
resistive limit, maximized over kk' and ky, as a function of s
and gi'. The maximum growth rate decreases with gi' and
this effect is more evident at large s. The gi' terms in the
dDW and cDW coefficients of Eq. (30) are responsible for
the decrease of the growth rate for 0:5" gi " 1, and for
gi' ! 1, respectively. Similarly, in the inertial limit, Eq. (29)

can be rewritten by introducing k2k' ¼ k2k=½k
2
yx

2
'me=mi

ð1þ 1:71geÞ
2*, and gi' ¼ gi=ð1þ 1:71geÞ. For s¼ 0, we

retrieve the cold ion limit results: peak growth rate #c ¼ #c0 ’
0:17 at ky ’ 0:57 and kk' ’ 0:6 (see Ref. 35).

In Fig. 1(b), we show #c=#c0, solution of Eq. (29), in the
inertial limit, maximized over kk' and ky, as a function of s
and gi'. As in the resistive limit, the maximum growth rate
decreases with gi' and this effect is more evident at large s.
Moreover, as in the resistive limit, the gi' term in the dDW
coefficient of Eq. (29) is responsible for the decrease of the
growth rate at 0:5" gi " 1, while the gi' term in bDW reduces
the growth rate at gi' ! 1. In general, the Ti dynamics tends

to increase the DW growth rate for gi' " 0:5 and for typical s
values in experiments the growth rate is about 5 times larger
than in the cold ion limit.

B. Ballooning modes

Here, we extend the cold ion description of the BM of
Ref. 34 to include finite ion temperature effects. In the fol-
lowing, we describe the BM instability with hot ion dynam-
ics. We simplify Eq. (28) by neglecting the coupling with
sound waves, i.e., c - kk, and compressibility terms in the
continuity and temperature equations. Moreover, rk terms
in the density and temperature equations, as well as the dia-
magnetic terms in Ohm’s law are neglected, in order to avoid
the coupling with DW. Finally, we ignore finite b effects.
Under these assumptions, imposing @y ! iky and rk ! ikk,
we reduce Eq. (28) to a dispersion relation in the form of a
third-order algebraic equation

c3aBM þ c2bBM þ ccBM þ dBM ¼ 0; (31)

where

aBM ¼ k2y
me

mi
;

bBM ¼ k2y! þ ik2ysx'gi
me

mi
;

cBM ¼ ik2ysx'gi! ( xjx' 1þ ge þ s 1þ gið Þ½ *
me

mi
þ k2k;

dBM ¼ (xjx' 1þ ge þ s 1þ gið Þ½ *!; (32)

being xj ¼ 2ky cos h the frequency associated with the cur-

vature and the gradient of the magnetic field. Equation (31)
reduces to the results of Ref. 34, for s¼ 0. In the limit
kk=ky ! 0, the maximum growth rate of the BM is attained,

cmaxB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=Lnð1þ sþ ge þ sgiÞ

p
, which is larger than the

cold ion growth rate because of the presence of the ðsgi þ sÞ
term. Finite values of kk=ky reduce the growth rate. This

effect is ascribed to the k2k term in the cBM coefficient of Eq.

(32). Similar to what observed in Ref. 34, we find that the

FIG. 1. Maximum #c=#cjs¼0, solution of the DW dispersion relation, Eq. (29), in the resistive (a) and in the inertial (b) limits, respectively.
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BMs are stabilized for ky < kminy , where kminy ¼ kk=
ffiffiffiffiffiffiffiffiffiffiffi
cmaxB !

p

for the RBM, and kminy ¼ kk
ffiffiffiffiffi
mi

p
=ðcmaxB

ffiffiffiffiffiffi
me

p Þ for the InBM.

We use the linear solver described in Ref. 34 to
determine the eigenfunctions of system (28), simplified
according to the BM assumptions previously listed (we
point out that we preserve the dependence of the eigen-
functions on the parallel coordinate). In Figs. 2(a) and
2(b), we show c=cmaxB , solution of the BM version of
Eq. (28), maximized over ky, with q¼ 4, in the resistive
(!¼ 0.1) and inertial (me=mi¼ 1=200) limits, respectively.
For both RBM and InBM, the reduction of the growth
rate observed at high gi is due to finite kk effects. In fact,
at large gi, c peaks at low ky, where the term k2k in the
cBM coefficient of Eq. (32) becomes larger, therefore,
reducing c with respect to cmaxB . We remark that, for both
RBM and InBM, the ky corresponding to the maximum
growth rate is large at low R=Ln, since kminy is a decreas-
ing function of R=Ln.

Finally, stemming from linear calculation (not shown)
performed with s ranging from 1 to 4, we observe that the
BM growth rate decreases with s, with respect to cmaxB , due to
the term proportional to s in the bBM coefficient of Eq. (31),
for the InBM, and due to the first term in the cBM coefficient
of Eq. (31), for the RBM. To summarize, the Ti dynamics
tends to decrease the BM growth rate, with respect to cmaxB ,
for increasing values of gi and s.

C. Ion temperature gradient instability

The presence of an ion temperature gradient can lead to
the ITG instability, which develops in two branches, the
sITG and the tITG. We can derive a simple dispersion rela-
tion that includes both branches of the ITG instability, within
the hypothesis of isothermal and adiabatic electrons, from
Eq. (28), with @y ! iky, and rk ! ikk, obtaining the follow-
ing dispersion relation:

aITGc3 þ bITGc2 þ cITGcþ dITG ¼ 0; (33)

where

aITG ¼ 1þ k2y 1þ 2

3
s

) *
;

bITG ¼ i x' (1þ k2ys gi (
2

3

) *% &
þxj 1þ 5

3
s 2þ k2y

, -% &( )

;

cITG ¼ k2k 1þ 5

3
s

) *
þxjs x'

7

3
( gi

) *
( 5

3
xj 1þ sð Þ

% &
;

dITG ¼ ik2ks x' gi (
2

3

) *
þ 5

3
xj 1þ sð Þ

% &
; (34)

which describes both the slab and toroidal branches of the
ITG instability, analyzed below.

It is the parallel compression of the plasma, that in a
homogeneous plasma simply develops a parallel sound
wave, that in a inhomogeneous plasma drives the sITG insta-
bility. An estimate of the peak value of c for the ITG
instability, and of the corresponding kk, can be found by sim-
plifying the dispersion relation Eq. (33). Beside neglecting
xj in Eq. (33) and assuming rkjk ¼ 0, we suppose x' , c
and gi - 1. The ITG dispersion relation becomes

ĉ3 þ 1þ 5

3
s

) *
k2k'ĉ þ ik2k's ¼ 0; (35)

where ĉ ¼ c=ðx'giÞ and kk' ¼ kk=ðx'giÞ. Therefore, the
peak growth rate can be written as cmax ’ gðsÞx'gi, and it
occurs at kk ’ f ðsÞx'gi. It is found that g(s) is an increasing
function of s, while f(s) decreases with s.

The tITG instability is a curvature driven instability,
similar to the BM and contrary to the sITG, due to the pres-
ence of an ion temperature gradient in the plasma. The insta-
bility mechanism is similar to one of the BMs,12 with the
drive provided by Ti fluctuations. While a p/2 shift between
n and / characterizes the BM instability, in case of tITG, a
p/2 shift between Ti and / is maintained, and electrons can
be adiabatic. With respect to the sITG, the tITG branch
exists at kk ¼ 0. We can retrieve a simple dispersion relation
of the tITG starting from Eq. (33), by neglecting the r2

k
terms

FIG. 2. Growth rate of the RBM for ! ¼ 0:1; me=mi ! 0 (a), and of the InBM for ! ! 0; me=mi ¼ 1=200 (b), ge ¼ 0:79. It is s¼ 1.
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c2 1þ k2? 1þ s
2

3

) *% &
þ ci (x' þ xj 1þ 10

3
s

) *%

þ k2?s x' gi (
2

3

) *
þ 5

3
xj

) *&

(xjs x' gi (
7

3

) *
þ 5

3
xj 1þ sð Þ

% &
: (36)

The largest growth rate is attained by the modes for which
the linear term of Eq. (36) is small.14 Since xj=x' " Ln=R
, 1, this can be written as

k2? ’ 1

s gi (
2

3

) * : (37)

Having described the two branches of the ITG instability,
we now analyze the solution of the ITG dispersion relation,
Eq. (33), that includes both of them. In Fig. 3, we show the
growth rate, solution of Eq. (33), for xj ¼ 2ky, normalized to
giR=Ln, i.e., ĉky ¼ c=ðgiR=LnÞ, as suggested by Eq. (35), and
maximized over ky and kk, as a function of R=Ln and gi, and for
s ranging from 1 to 4. The normalized growth rate, ĉky, can be
expressed, following the results for the sITG, as ĉky ’ gðsÞky.
We find that ĉky decreases with s, despite the fact that g(s)
increases with s, because ky decreases with s. In fact, our nu-
merical results confirm that the poloidal wavenumber, ky,

decreases with s and gi, according to Eq. (37), being the ky at
the maximum growth rate inversely proportional to

ffiffiffiffiffiffi
sgi

p
.

The normalized parallel wavenumber at the peak growth
rate, kk=ðgiR=LnÞ, is found to be a decreasing function of s;
in fact, it can be estimated as kk=ðgiR=LnÞ ’ f ðsÞky, where
both f(s), as well as ky, are decreasing functions of s. We
also observe that both the normalized growth rate,
c=ðgiR=LnÞ and the normalized parallel wavenumber,
kk=ðgiR=LnÞ are almost independent of gi and R/Ln for
gi ! 1. We remark that, according to Fig. 3, the ITG instabil-
ity is unstable above a certain gi threshold, that decreases
with R/Ln, and for values R=Ln ! 15 it is given by gi ’ 1.

As an aside, we note that a second instability, which
develops at ky ! 1, for small R/Ln and small gi, is also pres-
ent in Eq. (33). This mode, dependent on the Boussinesq’s
approximation used in deducing the vorticity equation (see
Eq. (28)) and driven by magnetic curvature, is typically over-
powered by the ITG instability. We exclude this mode from
the analysis that follows, as it appears in a parameter regime
that is not of relevance for SOL turbulence.

IV. ESTIMATE OF THE EQUILIBRIUM
PRESSURE GRADIENT

We now determine an estimate of the equilibrium pressure
gradient. We use the same methodology described in Ref. 36,
based on the gradient removal theory,24,25,36,37 which assumes

FIG. 3. Normalized growth rate ĉky ¼ c=ðgiR=LnÞ for the ITG mode, solution of Eq. (33) as a function of gi and R/Ln for s¼ 1 (a), s¼ 2 (b), s¼ 3 (c), and s¼ 4 (d).
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that turbulence saturation occurs when the background time-
averaged pressure radial gradient is comparable to the per-
turbed pressure radial gradient, kx~p " $p=Lp, where kx gives the
typical radial extension of the pressure fluctuations, and tilde
and overbar are used to indicate the fluctuations and the back-
ground components, respectively. The range of applicability of
the gradient removal hypothesis in estimating the turbulent
saturation level, versus other mechanisms, e.g., Kelvin-
Helmholtz secondary instability, is discussed in Ref. 24.

From a time, toroidal, and poloidal average of the pressure
equation, it is possible to write a balance between radial E%B
transport and parallel losses, @x$Cx " $p cs=ðqRÞ. Estimating

the radial E%B flux as $Cx " ky~/~p , the potential fluctuations
from the leading term of the pressure equation, obtained by
summing the density and the temperature equations,

c~p " iky~/R=Lp; (38)

and the pressure fluctuations from the gradient removal hy-
pothesis, we can derive an estimate of Lp

L2p ¼
cq

k2xcs
ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p : (39)

We note that, in the present paper, the pressure gradient Lp
refers to the total pressure p ¼ pe þ pi. Equation (39) consti-
tutes the equation that provides Lp as a function of the SOL
operational parameters, and strongly depends on the linear
instability driving the turbulent transport, through the values
of c and kx. In the following, we estimate Lp by assuming
that transport is driven by the ITG instability, Lp,ITG. We
then recall the scaling of Lp when the RBM drives turbu-
lence, Lp,RBM. Using these results, in Sec. V we deduce the
SOL turbulent regimes, and we identify the SOL turbulence
driving instability.

To calculate Lp,ITG according to Eq. (39), we first esti-
mate the ITG typical radial extension of the unstable mode,
kx. Applying the non-local linear method outlined in Ref. 38,
we write the dispersion relation of the ITG, taking Eq. (33),
in the kk ! 0 limit for simplicity, as

@2/
@x2

( k2y 1þ G xð Þ½ */ ¼ 0; (40)

where

G xð Þ ¼
(c( 2iky 1þ sð Þ þ ikyR=Ln (

2ikys 2cþ i (2þ 3gið ÞkyR=Ln
! "

3cþ 10ikys

ck2y 1þ
s 2cþ i (2þ 3gið ÞkyR=Ln
! "

3cþ 10iky + s

( ) : (41)

Then, we Taylor expand G(x) around x0, the point of steepest
gradient

GðxÞ ’ G0 þ G00
0ðx( x0Þ2=2; (42)

obtaining a harmonic oscillator equation, @2
x/( k2y ½1þ G0

þG00
0ðx( x0Þ2=2*/ ¼ 0, whose solution can be written as

/ " exp
(a x( x0ð Þ2

2

% &
; (43)

being

a ¼ ky

ffiffiffiffiffiffiffiffiffi
jG00

0j
2

r
; (44)

and where G00
0 ¼ @2

xGðxÞ. The estimate of the ITG radial
eddy extension is kx ¼

ffiffiffi
a

p
. The Lp,ITG, evaluated according

to Eq. (39), is shown in Fig. 4(a), where c is evaluated from
Eq. (33), in the kk ! 0 limit, and G00

0 has been evaluated by
deriving Eq. (41).

A simplified scaling law for Lp,ITG can be analyti-
cally obtained to explain qualitatively the results in
Fig. 4(a). The growth rate, c, solution of Eq. (33), is
developed to the lowest order in ky, and in the limit
R=Ln - 1, that is

c ¼ ky
iR

2Ln
þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( 9R2

L2n
þ 72giRs

Ln
( 160s2

s0

@

1

A; (45)

while the kx estimate is obtained from Eq. (44), in the limit
R=Ln - 1, and considering only the lowest order terms in ky,
obtaining

k2x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 1þ gisð Þ

2L2n 3þ 2sð Þ2

s
: (46)

Comparing Eq. (46) to the radial mode number estimate for
BM and DW, kx ’

ffiffiffiffiffiffiffiffiffiffiffi
ky=Lp

p
,39–41 we note that the radial

extension of the ITG is the macroscale kx " Lp, while for the
BM and DW is the mesoscale kx "

ffiffiffiffiffiffiffiffiffiffiffi
Lp=ky

p
. Substituting

Eqs. (45) and (46) into Eq. (39), we obtain a polynomial
equation for Lp

aL4p þ cL2p þ dLp þ e ¼ 0; (47)

a ¼ 18ð1þ sÞð1þ gisÞ;
c ¼ 160=9k2yq

2ð3þ 2sÞ2ð1þ giÞ
2s2;

d ¼ (8k2yq
2Rgisð3þ 2sÞ2ð1þ giÞ;

e ¼ 4k2yq
2R2ð3þ 2sÞ2:

(48)
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For large s, the Lp estimate can be evaluated as a balance
between the second and the first order terms, leading to

Lp;ITG " 9Rgi
20s 1þ gið Þ

: (49)

Equation (49) describes qualitatively the Lp,ITG estimates
shown in Fig. 4(a): Lp,ITG decreases with s, and increases with
gi, becoming weakly dependent on gi at large values of gi.

We recall that a scaling law for Lp,RBM has been
obtained in Ref. 37. Starting from Eq. (39) and assuming
c ’ cmaxB ; kx ¼

ffiffiffiffiffiffiffiffiffiffiffi
ky=Lp

p
, and ky ’ kminy (see Sec. III B), the

following scaling law Lp,RBM is derived

Lp;RBM ¼ R3=7

qs0
23=7q8=7ð1þ sÞ1=7!2=7: (50)

The RBM gradient length estimate from Eq. (50) has been
compared to a large number of non-linear SOL simulations
performed with the GBS code, covering a wide range of
SOL parameters in the s¼ 0 limit, showing good agree-
ment.37,42 Moreover, Eq. (50) estimates have been compared
against experimental results of the Alcator C-MOD,
Compass, JET, TCV, and Tore Supra tokamaks, also show-
ing good agreement.37

V. SCRAPE-OFF LAYER TURBULENT REGIMES

In the following, we evaluate the SOL turbulent regimes
by identifying the linear instability driving the SOL turbu-
lence, demonstrating that the ITG instability is non-linearly
overpowered by the RBM instability. The instability driving
turbulence in the SOL is expected to be the one leading to the
largest Lp, since it allows the system to relax to the state with
the lowest turbulent drive. Therefore, we expect that turbu-
lence is driven by the ITG when Lp;ITG > Lp;RBM. In Fig. 4(b),
we show the gi threshold above which LpITG > LpRBM as a
function of s and !, evaluated according to the results showed
for the ITG case in Fig. 4(a), and Eq. (50) for the RBM case.
At low s and !, turbulence is driven by ITG modes at gi ! 2
and the gi threshold increases with s and !. Finally, in the
white area, for high s and !, the RBM always drives transport.

This analysis confirms therefore our predictions based on the
linear result: the ITG instability is active in the SOL when gi
overcomes a threshold that depends on s and !, being in any
case gi ! 2 necessary to have development of ITG-driven
turbulence.

It turns out that the value of gi in the SOL can be theo-
retically estimated by generalizing the method described in
Ref. 40. We consider the leading terms in the density, the
electron temperature, and the ion temperature equations,
neglecting curvature and diffusion terms, since smaller than
the radial E% B turbulent transport and the parallel advec-
tion terms. We can therefore write, by time, toroidally, and
poloidally averaging the density equation

@$Cn

@x
’ ( 1

2pqR
nVke jlimiter; (51)

where @x$C is the radial E%B turbulent flux, toroidally and
poloidally averaged, while nVke jlimiter is the toroidally and
time averaged parallel flux of n evaluated at the two limiter
plates. The same notation is used for the Te and Ti parallel
fluxes, i.e., TeVke jlimiter and TiVke jlimiter. Analogously, for the
electron temperature equation it is possible to write

@$CTe

@x
’ ( 2

3

1

2pqR
TeVke jlimiter; (52)

and for the ion temperature equation,

@$CTi

@x
’ ( 2

3

1

2pqR
TiVke jlimiter: (53)

Similar to the pressure E%B turbulent flux, we can write $Cn,
as

$Cn ¼ ky~n~/ : (54)

The density fluctuations, ~n, are estimated from the leading
order term of the continuity equation as ~n " ~/$nRky=ðcLnÞ;
~/ using Eq. (38), and ~p according to the gradient removal
theory, ~p=$p ¼ 1=ðkxLpÞ. Inserting these approximations into
Eq. (54), the radial density turbulent flux becomes

FIG. 4. Estimate of the equilibrium pressure scale length, LpITG, from Eq. (39), in the hypothesis of ITG modes driving turbulence and transport (a). gi thresh-
old above which the turbulence is driven by the ITG (b).
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$Cn "
c$n

k2xRLn
; (55)

and analogous expressions can be written for $CTe " cTe=
ðk2xRLTeÞ and $CTi " cTi=ðk2xRLTiÞ. We assume that n admits
solutions in the form $n ¼ nmax exp ½ðx( xsÞ=Ln* for x > xs,
where xs is the radial position of the source, and corresponds
to the location of the last closed flux surface. Analogous
assumptions are made for Te and Ti. Moreover, we write the

linear growth rate as c ¼ f Te
1=2

, where f ¼ f ðR=Lp; ge; giÞ,
and depends also on the SOL operational parameters. This
representation is valid for all the linear instabilities under

investigation. Substituting the expressions for $n, Te ; Ti and
for c into Eq. (55), we obtain

@$Cn

@x
¼

f $nmax $T
1=2
e;max

k2xRLn

1

Ln
þ 1

2LTe

) *
exp x( xsð Þ

1

Ln
þ 1

2LTe

) *% &
;

(56)

and analogous expressions can be written for @x$CTe and
@x$CTi . Inserting Eq. (56), and similar ones for @x$CTe and
@x$CTi into Eqs. (51)–(53), we obtain

f

k2xLn

1

Ln
þ 1

2LTe

) *
¼ 1

2pq
;

3f

2k2xL
2
Te

¼ 1

3pq
;

f

k2xLTi

1

LTi
þ 1

2LTe

) *
¼ 1

3pq
;

(57)

where we have approximated nVke jlimiter " nmaxT1=2
e;max

exp x( xsð Þ 1
Ln
þ 1

2LTe

, -h i
. Analogous estimates are used for

TeVke jlimiter and TiVke jlimiter. Combining Eq. (57), we obtain

that ge ¼ gi and that ge is the solution of a second order
equation in the form

g2e (
2

9
ge (

4

9
¼ 0; (58)

FIG. 5. R/Lp estimate (a) and turbulent regimes (b) at mi=me ¼ 1836; different colors identify different regimes: RBM (black), RDW (white), and InDW (light blue).

FIG. 6. Snapshots of density (a), electron temperature (b), ion temperature
(c), vorticity (d), electron parallel velocity (e), and ion parallel velocity (f),
in a poloidal cross section for the non-linear simulation with s¼ 1.
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that gives ge ¼ gi ¼ 0:79. As this value is smaller than the gi
value required for the development of the ITG instability,
shown in Fig. 4(b), we conclude that RBM constitutes a
stronger turbulence drive than the ITG. As a matter of fact,
this also proves that the ITG mode is sub-dominant with
respect to the DW in the case the latter dominates over the
RBM.

We now identify the SOL turbulent regimes in the pres-
ence of hot ions following the same technique described in
Ref. 36, concentrating on DW and BM only. We first calcu-
late the equilibrium pressure gradient length resulting from
the interplay of turbulent transport and parallel losses using
Eq. (39). Since we focus on DW and BM only, we can esti-
mate the radial wavenumber as kx ’

ffiffiffiffiffiffiffiffiffiffiffi
ky=Lp

p
, as discussed

in Refs. 39, 40, and 41. Equation (39) results in

Lp "
q

cs
ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p c
ky

) *

max

: (59)

We consider the theoretically estimated values ge ¼ 0:79
and gi ¼ 0:79, ! varying between 10( 3 and 1, s varying
between 0 and 5, q¼ 4, and in Fig. 5(a) we plot the value of
Lp evaluated according to Eq. (59). We use the obtained val-
ues of R/Lp and ky to calculate the growth rate of RBM,
InBM, RDW, and InDW. The instability driving turbulence

is expected to be the one with the largest growth rate. We
observe that the RBM drives turbulence for !! 5% 10(3,
while for lower values of ! the InDW prevails. The RDW
appears at ! ¼ 10(2 and s¼ 0.

VI. NON-LINEAR TURBULENCE SIMULATIONS

In order to support the validity of the turbulent regimes
identified in Sec. V, we perform a series of non-linear simu-
lations, having set ! ¼ 0:1; me=mi ¼ 1=200, Ly¼ 800,
Lx¼ 100, and R¼ 500, while s is varied from 0 to 4. In Fig.
6, we present a snapshot of the different fields evolved dur-
ing the simulation with s¼ 1 in a poloidal cross section: the
density, n, the electron temperature, Te, the ion temperature,
Ti, the vorticity, x, the electron parallel velocity, Vke, and
the ion parallel velocity, Vki.

The plasma injected from the core is transported radially
by streamers elongated in the radial direction. This is visible
in the density, electron, and ion temperature snapshots (the
similarity of these snapshots is not surprising, since the na-
ture of the equations governing these quantities is similar).
The analysis of the ion and the electron parallel velocities
shows that the particles flow towards the limiter plates, with
fluctuations of the electron parallel velocity being larger than
the ion ones, due to the higher electron mobility.

FIG. 7. Joint probability between ~/ and ~n for s¼ 1 (a), s¼ 2 (b), s¼ 3 (c), and s¼ 4 (d).
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In order to have a first insight into the nature of the tur-
bulent transport, we compute the joint probability between ~n
and ~/ in Fig. 7, and their phase shift in Fig. 8, for s¼ 1, 2, 3,
and 4, according to the methodology explained in Ref. 36.
For all the considered values of s, we observe that there is not
a clear correlation between the two fluctuations; moreover,
the phase shift between them is close to p/2. These results are
the footprint of a ballooning type of instability (see Ref. 36).
This confirms the results of Sec. V, obtained by using the gra-
dient removal theory method presented in Ref. 24.

In Table I, we summarize the most important results
coming from our simulations, among which the pressure gra-
dient length, R/Lp, and the mode number in the poloidal
direction, ky. We observe that both R/Lp and ky values are
almost independent of s. In order to test the validity of our
predictions, we compare R/Lp and ky of the non-linear simu-
lations to the gradient removal estimates from Eq. (59). The
maximum difference of R/Lp between our prediction and the
simulation results is of the order of 10%. The uncertainty
affecting ky is estimated by considering a 10% variation of
the c/ky value with respect to its maximum at the predicted
R/Lp, and evaluating the ky range corresponding to this varia-
tion. In Table I, we also list the growth rates of each instabil-
ity separately, in order to identify the instability regime of
the non-linear simulations. We observe that the turbulence is

RBM driven in all simulations. Finally, in Table I the values
of ge and gi computed from non-linear simulation results are
listed. We note that, ge decreases from ge" 0.72 to
ge " 0.55, for s from s¼ 0 to s¼ 4, while gi decreases from
0.59, for s¼ 1, to 0.31, for s¼ 4. By comparing these values
with the theoretical estimates ge¼ gi¼ 0.79, computed in
Sec. V, we observe that, while the theoretical estimate is def-
initely good for ge, the simulation values of gi are in general
smaller than the theoretical estimate, particularly at large s.
We have found that this is due to a curvature term,
(10sTiCðTiÞ=ð3RÞ, presented in the Ti equation and
neglected in Eq. (53). In fact, the parallel outflow terms
appearing in Eq. (53) can be estimated as follows:

2

3

1

2pqR
TiVke jlimiter "

2

3

1

2pqR
Ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te 1þ sð Þ

q
; (60)

while for the curvature term we have

10

3R
sTiC Tið Þ " 10s

3R

Ti
2

2pLTi
; (61)

where the poloidal gradient of Ti has been neglected
with respect to the radial gradient. The ratio of the parallel
outflow term with respect to the curvature term is

FIG. 8. Phase shift between ~/ and ~n for s¼ 1 (a), s¼ 2 (b), s¼ 3 (c), and s¼ 4 (d).
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LTi
ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p
=ð5qsÞ. Since, from non-linear simulations results,

LTi " 200, and typically q" 4, the curvature term is "10
times smaller than the parallel outflow term for s ’ 1, but
the two terms can become comparable at larger s.

From these observations, it emerges that Ti effects have
a relatively minor influence on the turbulent properties and
that the turbulent regime driving transport for the considered
SOL parameters is the RBM, as predicted in Sec. V.

VII. CONCLUSIONS

In the present paper, we discuss the effects of finite ion
temperature on SOL turbulence, by using the drift-reduced
Braginskii equations, in the electrostatic limit. This study is
motivated by experimental observations that show Ti ! Te in
the SOL. As finite ion temperature introduces the ITG mode,
and modifies the properties of the instabilities that exist in
the cold ion limit, like the inertial and resistive branches of
the DW and of the BM, one might expect an impact on the
non-linear plasma dynamics. To address the role of finite ion
temperature, we consider a relatively simple scenario: a toka-
mak SOL limited on the high field side equatorial midplane,
with circular magnetic flux surfaces. The model we use is lim-
ited to scenarios in which the perpendicular wavelength of the
perturbation is longer than the ion gyroradius, k?qi < 1, and
other kinetic effects, such as wave-particle resonances and
trapped particles, are not important. Moreover, our investiga-
tion does not consider magnetic shear effects.

The investigation of finite ion temperature on the linear
SOL instabilities shows that both the RDW and the InDW
growth rates decrease for increasing gi, with respect to the
maximum attainable value. For the two branches of the BM
instability, finite ion temperature increases the maximum
growth rate, cmaxB , with respect to the cold ion limit. As in the
cold ion limit, the BM instability is damped for ky < kminy ,
where kminy is determined by the parallel dynamics stabiliza-
tion that becomes more important at large gi. The ITG mode
is unstable at gi above a threshold that decreases with R/Ln,
the threshold being gi ’ 1 for R=Ln ! 15. When unstable,
the ITG mode shows a growth rate c " gix' at kk " gix'.
The ky corresponding to the maximum growth rate is inver-
sely proportional to

ffiffiffiffiffiffi
sgi

p
.

The gi observed in the non-linear simulations of Sec. VI
and theoretically estimated, also in agreement with experi-
mental observations,10,11 is smaller than the linear threshold
for ITG instability. Therefore, we expect ITG to have a neg-
ligible role on SOL turbulence. This is confirmed by the
analysis of the SOL turbulent regimes. Indeed, by comparing

the Lp estimates for the ITG and for the BM, obtained by
means of the gradient removal theory, we show that the ITG
is either not active, or it is overcome by the BM, unless
gi ! 2, being the threshold an increasing function of s and !.

In order to assess the validity of our methodology, we
present the results of a set of non-linear GBS simulations
with hot ions, for s ranging from 0 to 4. By means of the
joint probability analysis between ~/ and ~n, and their phase
shift, we conclude that the observed instability has the typi-
cal footprint of a BM, being / and n weakly correlated and
exhibiting a phase shift close to p/2. Moreover, the compari-
son between R/Lp from non-linear simulations and the gradi-
ent removal estimate shows good agreement. These findings
support the validity of our predictions of the RBM being the
turbulent regime driving turbulence.

As a consequence, we conclude that, in the SOL sce-
nario considered here, the ITG instability is expected to play
a negligible role in driving and regulating SOL turbulence.
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APPENDIX: BOUNDARY CONDITIONS AT THE
MAGNETIC PRESHEATH ENTRANCE OF
NON-ISOTHERMAL PLASMAS

The derivation of boundary conditions at the magnetic
presheath entrance, including hot ion dynamics, in the
limit of isothermal ions and electrons, has been the subject
of Sec. II B. We now discuss the isothermal hypothesis,
showing that the boundary conditions derived in Sec. II B
are reasonable. For this purpose, we follow a derivation of
the boundary conditions similar to the one presented in the
Appendix of Ref. 33, where we include non-isothermal ion

TABLE I. Parameters for the non-linear simulations (! ¼ 0:1; me=mi ¼ 1=200 in all cases). The domain dimensions are Ly¼ 800 and Lx¼ 100. The major ra-

dius is R¼ 500. The major radius to the pressure gradient length ratio, R/Lp, is evaluated by fitting n, Te, and Ti with an exponential function 0 < x( xs < 70.
The radial window over which ky is evaluated is 5 < x( xs < 17. The two values ky,min and ky,max are computed considering the ky range corresponding to a
10% variation of the value c/ky with respect to its maximum at the R/Lp and ky predicted.

s ge gi R/Lp simulation R/Lp estimated ky simulation ky estimated ky,min estimated ky,max estimated cRBM cIBM cRDW cIDW cITG

0 0.72 … 12.34 11.94 0.13 0.18 0.13 0.26 2.35 ’0 0.99 ’0 …

1 0.64 0.59 12.34 11.30 0.11 0.17 0.11 0.24 2.94 ’0 0.42 ’0 0.01

2 0.61 0.49 12.56 10.88 0.09 0.15 0.11 0.22 3.70 ’0 0.48 ’0 0.36

3 0.57 0.42 12.56 10.59 0.09 0.15 0.10 0.20 4.07 ’0 0.44 ’0 0.45

4 0.55 0.31 12.78 10.34 0.09 0.14 0.10 0.19 4.66 ’0 0.45 ’0 0.51
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and electron dynamics. For sake of simplicity, we consider
the case of no gradients along the x direction. We consider
the ion continuity equation, the ion and electron parallel
velocity equations, and the electron and ion temperature
equations. We use the adimensionalization introduced in
Sec. II B. The ion continuity equation, Eq. (6), holds also
in the case of non-isothermal ions and electrons. The ion
parallel momentum equation, Eq. (9), is modified as
follows:

nV0
si@sVki þ sin aðn@s/þ sTi@snÞ þ sin asn@sTi ¼ Skmi

;

(A1)

the last term on the left hand side representing the non-
isothermal ion contribution. The electron parallel velocity
equation, Eq. (11), is also modified, obtaining

l sin aTe@sn( l sin an@s/þ 1:71ln sin a@sTe ¼ Skme
; (A2)

the last term on the left hand side representing the non-
isothermal electron contribution. The electron temperature
equation is derived from the electron temperature equation
in Eq. (1), in steady state, neglecting inertia, diffusion, and
resistivity effects

nVke sin a@sTe þ
2

3
Te 1:71n sin a@sVke
!

( 0:71n sin a@sVki þ(0:71 Vki ( Vke
# $

sin a@sn*

þ 2

3
sin a@sqe ¼ STe : (A3)

We note that in Eq. (A3) two terms account for the micro-
scopic electron heat flux: the term (2 + 0:71=3TeðVki ( VkeÞ
sin a@sn, and the term 2=3 sin a@sqe. While the first term is
calculated according to Braginskii closure, supposing a
perturbed Maxwellian distribution for the electrons (see
Ref. 43), the second term is associated with the deviation
from a Maxwellian distribution function due to the sheath
physics. For sake of simplicity, in the present derivation
we assume that these two contributions can be summed.
To evaluate qe, we note that when a plasma is in contact

with an absorbing wall, a non-neutral sheath develops,
where the electrostatic potential drops, causing the repul-
sion of the electrons. As the electrons having an energy
higher than the potential barrier can flow out from the sys-
tem, without being reflected, the electron population can
be described as a truncated Maxwellian. The heat flux in
the direction parallel to the magnetic field, associated with
the truncated Maxwellian distribution, can be expressed as
(see Ref. 44)

qe ¼
nT3=2

effiffiffiffiffiffi
2p

p
I gð Þ

mi

me

) *1=2

e(g g(1

2

) *
þ3

2

ffiffiffi
g
p

r
e(2g

I gð Þ
þ e(3g

2pI2 gð Þ

" #
;

(A4)

where g ¼ /=Te, and IðgÞ ¼ ½1þ erfð ffiffiffigp Þ*. The last term on
the left hand side of Eq. (A3) can therefore be written as

2

3
sin a@sqe ¼

2

3
sin a

1

Te
@s/@gqe: (A5)

Introducing Eq. (A4) into Eq. (A5), we obtain

2

3
sin a@sqe ¼

2

3
sin a

1ffiffiffiffiffiffi
2p

p n
ffiffiffiffiffi
Te

p ffiffiffiffiffiffi
mi

me

r
A1@s/; (A6)

where A1 is

A1 ¼
@

@g
1

I gð Þ
e(g g( 1

2

) *
þ 3

2

ffiffiffi
g
p

r
e(2g

I gð Þ
þ e(3g

2pI2 gð Þ

" # !
:

(A7)

Finally, the ion temperature equation is derived from the
ion temperature equation in Eq. (1), where Vpol is neglected
in V?i

2

3
Ti sin a@sVki þ Vki sin a@sTi ¼ STi : (A8)

Equations (6), (A1), (A2), (A3), and (A8) can be written
as a linear system of equations, MX ¼ S, where
X ¼ ð@sn; @sVki; @s/; @sTe; @sTiÞ; S is the source vector, and
the M matrix is

M ¼

V0
si n sin a 0 0 0

sin asTi nV0
si n sin a 0 sin asn

l sin aTe 0 (ln sin a 1:71ln sin a 0

2=3 0:71Te sin aVkeþ (2=3 0:71nTe sin a 2=3 1:71c/nTe sin aþ 2=3 1:71cTenTe sin aþ 0

(2=3 0:71Te sin aVki þn
ffiffiffiffiffi
Te

p
A2 sin a þnVke sin a

0 2=3 Ti sin a 0 0 Vki sin a

0

BBBBBBBBB@

1

CCCCCCCCCA

; (A9)

where A2 ¼ 2A1
ffiffiffiffiffi
mi

p
=ð3

ffiffiffiffiffiffiffiffiffiffiffi
2pme

p
Þ. In Eq. (A9), we have assumed that @sVke ¼ c/@s/þ cTe@sTe, where c/ ¼ @/Vke and

cTe ¼ @TeVke are known functions.33 Imposing again detM ¼ 0 at the magnetic presheath entrance, we find

V2
ki ¼ Te

0:19þ 1:14ĉTe þ ssse 3:25ĉ/ þ 3:1ĉTe þ 5=3þ 2:85A2

! "

1:14 1:71ĉ/ þ ĉTeð Þ þ 1þ 1:71A2
; (A10)
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where sse ¼ Ti=Te at the magnetic presheath entrance,
ĉ/ ¼ c/Te=Vke ¼ (1, and ĉTe ¼ cTeTe=Vke ¼ 0:5þ /=Te
’ 0:5þ K. For K¼ 3, and mi=me ¼ 1836; Vki=cs is a
decreasing function of s, at s¼ 0 its value is 1.70, at s¼ 1 its
value is 1.51, and its limit for s ! 1 is 1.29. The previous
result shows therefore that the Bohm-Chodura criterion,
Vki ¼ cs at the magnetic presheath entrance does not hold
perfectly, even in the s¼ 0 limit, when non-isothermal ion
and electron dynamics is taken into account. Finally, we can
obtain an expression for @sTi

@sTi ¼ @s/
sse

F3=2( 5=2ssse
’ 0:23 @s/; (A11)

where F ¼ V2
ki=Te. We remark that the value of @sTi does not

depend on s. Analogously, we obtain for @sTe

@sTe ¼ @s/
1:71þ 3=2A2 ( 0:71= F( ssseð Þ

1:71 0:5þ Kð Þ þ 3=2
: (A12)

The function @sTe increases with s. At s¼ 0, we find
@sTe=@s/ ’ 1% 10(3, at s ¼ 1 @sTe=@s/ ’ 0:015, and in the
limit s ! 1, it is @sTe=@s/ ’ 0:04. According to Eqs.
(A11) and (A12), @sTi and @sTe can be therefore neglected in
comparison with @s/, confirming the validity of the deriva-
tion of the boundary conditions presented in Sec. II B.
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