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Abstract— A new method for robust fixed-order H∞ con-
troller design for uncertain time-delayed MIMO systems is pre-
sented. It is shown that the H∞ robust performance condition
can be represented by a set of convex constraints with respect to
the parameters of a linearly parameterized primary controller
in the Smith predictor structure. Therefore, the parameters of
the primary controller can be obtained by convex optimization.
The proposed method will be applied to stable MIMO models
with uncertain dead-time and with multimodel and frequency-
dependent uncertainty. The performance of this method is
illustrated by simulation examples of industrial processes.

I. INTRODUCTION

Many dynamical systems in the industry possess unavoid-
able time delays. These delays can be caused by accumu-
lation of time lags for dynamic systems interconnected in
series, transportation delay or measurement delay [1]. Time
delays in control loops can cause significant complications
in modern industrial applications. The rapid development in
data and communication network technologies has caused a
need for real-time data processing [2]. The first time-delay
compensation method was proposed in the late 1950s by [3].
This method is known as the Smith Predictor (SP), and it has
become one of the most widely implemented control schemes
used to regulate industrial systems with time delays.

The SP, however, is somewhat limited in its performance,
since an accurate model of the system is generally required
for satisfactory operation. In certain circumstances, small
modeling errors may lead to undesirable performance, where
the system can become unstable. For this reason, research
efforts have been focused on robustness issues of the SP.

Many researchers are interested in the optimal control of
dead-time systems, especially H∞ control, i.e., to find a
controller to internally stabilize the system and to minimize
the H∞-norm of an associated transfer function. Many
relevant results have been presented in this framework using
modified versions of the SP. See, for instance, [4], [5] and [6].
Recently, the single-input-single-output (SISO) SP has been
extended and generalized for multiple-input-multiple-output
(MIMO) systems. In [7], a structured uncertainty approach
was implemented for SP’s with diagonal delay matrices. This
method, however, does not consider general and distinct
time delays for each element of the plant transfer matrix.
A diagonal H2 optimal controller for non-square plants is
designed by factorization methods in [8]. In [9], a generalized
predictive control (GPC) method is implemented on MIMO
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SP systems with multiple delays. These control techniques,
although efficient, are quite complex from both the design
and implementation perspective.

There are a wide variety of industrial applications that
involve MIMO processes with time delays, and it is of
practical interest to develop robust control techniques for
such systems. The proposed control scheme is based on
the ideas presented in [10] for SP design of SISO systems
and in [11] for designing decoupling MIMO controllers.
However, in this paper, the SP design method for computing
H∞ controllers for SISO models is extended to MIMO SP’s
with process plants that possess uncertain time delays. A
convex optimization approach is implemented to design a
linearly parameterized primary controller in a SP structure
for a MIMO system with uncertain time delays.

This paper is organized as follows: In Section (II), the class
of models, controllers and control objectives are defined.
Section (III) will discuss the control design methodology
and stability conditions of the proposed method for the
MIMO Smith predictor. This methodology is based on the
convex constraints in the Nyquist diagram. Section (IV) will
demonstrate the effectiveness of the proposed method by
considering several case studies from industrial processes.
Finally the concluding remarks are given in Section (V).

II. PROBLEM FORMULATION

In this section, the SP for MIMO systems with generalized
time delays is investigated. For notation purposes, bold face
characters will represent transfer function matrices.

A. Class of models

Let no and ni represent the number of outputs and the
number of inputs of a system, respectively. The set of
LTI-MIMO stable strictly proper models with multiplicative
uncertainty and uncertain time delays can be defined as
follows:

P = {Pc(s)[I+∆c(s)W2c(s)]; c = 1, . . . ,m} (1)

where each element in Pc(s) possesses a time delay that
can vary over a range of specified values, and W2c is a
transfer function matrix that represents the multiplicative in-
put uncertainty of the system. ∆c(s) represents the unknown
stable transfer function matrix satisfying ‖∆c‖∞ < 1. For
simplicity, one model from the set P will be investigated,
and the subscript c will be omitted. The uncertain no × ni



time delayed plant has the following form:

P(s) =




G11(s)e
−τ11s · · · G1ni(s)e

−τ1ni
s

...
. . .

...
Gno1(s)e

−τno1s · · · Gnoni(s)e
−τnoni

s


 (2)

where Gqp(s) is a strictly proper delay-free transfer function,
and τqp is the uncertain time-delay of the process for p =
1, . . . , ni and q = 1, . . . , no. Note that τqp is a set that is
composed of elements τqpi for i = 1, . . . , l and belongs in
the domain {τqp ∈ R : τqpi > 0 ∀ {p, q, i}}.

B. Class of controllers

As stated in [11], an ni × no matrix can be formed to
represent the controller C(s, ρ). The elements of C(s, ρ) will
possess linearly parameterized elements

Cpq(s, ρ) = ρTpqφpq(s) (3)

where ρTpq is a vector of parameters, and φpq(s) is a vector
of stable transfer functions chosen from a set of orthogonal
basis functions. The non-diagonal elements of C(s, ρ) strive
to decouple the system, while the diagonal elements aim
to control the single-loop subsystems. The main purpose of
parameterizing the controller in this manner is due to the fact
that the components of the open loop transfer function can
be written as a linear function of the control parameters ρ,

ρ = [ρ11, . . . , ρ1ni
, . . . , ρno1, . . . , ρnoni ] (4)

C. Design specifications

Fig. 1 displays the SP for the MIMO case, where Gn(s) is
an no × ni nominal delay-free transfer function matrix with
elements Gqp(s), and Pn(s) is an no × ni nominal transfer
function matrix that includes the nominal values of the time
delays, which is comprised of elements Gqp(s)e

−ζqps (where
ζqp represents the qp-th nominal time delay). Both Y(s)
and R(s) are no × 1 column vectors that possess elements
yq(s) and rq(s), respectively. The transfer function from the
inputs of C(s) to Yp(s) will represent the open-loop transfer
function,

L(s) = [P(s) +H(s)]C(s) (5)

where H(s) = Gn(s)−Pn(s). Notice that if P(s) = Pn(s),
then L(s) = Gn(s)C(s). Since the class of controllers to
be designed for this system are linearly parameterized, the
elements of the controller C(s) will actually be a linear
function of the controller parameters ρ. Therefore, C(s)
will be represented as C(s, ρ) with elements Cpq(s, ρ), as
asserted in (3).

The transfer function from the output disturbance D(s)
to Y(s) is the output sensitivity function S(s, ρ), while the
transfer function from R(s) to Y(s) is the complementary
sensitivity function T(s, ρ):

S(s, ρ) = [I+H(s)C(s, ρ)]Z−1(s, ρ)

T(s, ρ) = P(s)C(s, ρ)Z−1(s, ρ)
(6)

where Z(s, ρ) = [I+L(s, ρ)]. The objective is to determine
the controller C(s, ρ) that will guarantee the robust perfor-
mance and robust stability of the closed-loop SP system.
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Fig. 1. MIMO representation of the Smith Predictor

III. PROPOSED METHOD

It is well known that if a SISO model is described by
unstructured multiplicative uncertainty, and possesses both
robustness and performance weighing functions W1 and
W2, then the necessary and sufficient condition for robust
performance is given by [12]:

‖|W1S|+ |W2T |‖∞ < 1 (7)

where S and T are the sensitivity and complementary
sensitivity functions of a SISO system, respectively.

For the moment, assume the case when a closed-loop
MIMO system is fully decoupled. Then the MIMO sensitivity
and complementary sensitivity functions can essentially be
treated as functions containing independent SISO subsys-
tems. Thus it is judicious to define W1(s) as a diagonal filter
with diagonal elements W1q and a diagonal filter W2(s)
with diagonal elements W2q representing, respectively, the
nominal performance and multiplicative uncertainty for the
SISO subsystems. This rationalization leads to the following
theorem:

Theorem 1 Let Mqq(jω, ρ) represent the diagonal elements
of H(jω)C(jω, ρ) and Nqq(jω, ρ) represent the diago-
nal elements of P(jω)C(jω, ρ). Suppose that S(s, ρ) and
T(s, ρ) in (6) are diagonal transfer function matrices (the
closed-loop system is fully decoupled). Then the linearly
parameterized controller in (3) will guarantee the closed-
loop stability of the system and satisfy the following robust
performance criterion:

‖|W1q (jω)Sqq(jω, ρ)|+ |W2q (jω)Tqq(jω, ρ)|‖∞ < 1

for q = 1, . . . , no (8)

if

{|W1q (jω)[1 +Mqq(jω, ρ)]|+ |W2q (jω)Nqq(jω, ρ)|}
×|1 + LDq (jω)| −Ψq(jω, ρ) < 0

∀ω for q = 1, . . . , no (9)

where

Ψq(jω, ρ) = Re{[1 + L∗
Dq

(jω)][1 + Lqq(jω, ρ)]}



and Sqq and Tqq are the q-th diagonal elements of S(s, ρ)
and T(s, ρ), respectively. LDq (s) is the q-th diagonal el-
ement of a diagonal transfer function matrix LD(s) that
contains strictly proper transfer functions which do not
encircle the critical point, and L∗

Dq
is its complex conjugate.

Proof: If the closed-loop MIMO system is fully de-
coupled, then the MIMO sensitivity and complementary
sensitivity functions can be considered as systems containing
independent SISO systems. Since the real part of a complex
number is less than or equal to its magnitude, we have

Re{[1 + L∗
Dq

(jω)][1 + Lqq(jω, ρ)]}
≤ |[1 + L∗

D(jω)][1 + Lqq(jω, ρ)]| (10)

Then, by combining (10) and (9) (and noting that |1+LDq | =
|1 + L∗

Dq
|), one obtains

∣∣W1q (1 +Mqq(jω, ρ))
∣∣+ ∣∣W2qNqq(jω, ρ)

∣∣
−|1 + Lqq((jω, ρ))| < 0

∀ω for q = 1, . . . , no (11)

The above equation can be rearranged and expressed as
follows:

|W1q (1 +Mqq(jω, ρ))|+ |W2qNqq(jω, ρ)|
|1 + Lqq((jω, ρ)| < 1

∀ω for q = 1, . . . , no (12)

Since Mqq and Nqq are the q − th diagonal elements of
H(s)C(s, ρ) and P(s)C(s, ρ) in (6), respectively, it can be
seen that (12) leads directly to (8).

In order to fully decouple the MIMO system, a controller
must be designed such that the off-diagonal elements of the
open-loop transfer function matrix are equal to zero. The pro-
posed method will be to define a diagonal open-loop transfer
function matrix LD(s), where the diagonal elements satisfy
the desired performance for single loop systems. Therefore,
by minimizing the objective function ‖L(s, ρ)−LD(s)‖22, a
controller can be designed to simultaneously minimize the
magnitudes of the off-diagonal elements of L(s, ρ) and drive
the diagonal elements to be approximately equal to LDq (s).

However, the resulting controller will stabilize the closed-
loop system only if it is fully decoupled. In practice, with
a finite order controller, it is not always possible to make
the off-diagonal elements of L(jω, ρ) equal to zero. In
this case, the generalized Nyquist stability criterion should
be used to guarantee the stability of the MIMO system.
According to this theorem, the eigenvalues of the open-loop
transfer function (5) should not encircle the critical point.
However, these eigenvalues are non-convex functions of
the linear control parameters, which complicates the design
process. A possible solution to this problem is to implement
the Gershgorin band theorem in order to approximate the
eigenvalues of L(jω, ρ). The Gershgorin bands represent
disks centered at the diagonal elements of a matrix that
include the eigenvalues. For the open-loop transfer matrix

L(jω, ρ), the radius of these disks are computed by:

rq(ω, ρ) =

no∑
p=1,p�=q

|Lqp(jω, ρ)| (13)

where Lqp(jω, ρ) represents the qp-th element of L(jω, ρ).
Note that rq(ω, ρ) is convex with respect to the control
parameter ρ. The closed-loop stability of the MIMO system
is guaranteed if these disks do not encircle the critical point.
This precondition leads to the following theorem:

Theorem 2 Given the open loop transfer function matrix
L(jω, ρ), the linearly parameterized controller (3) stabilizes
the closed-loop system if

|rq(jω, ρ)[1 + LDq (jω)]| −Ψq(ρ, ω) < 0

∀ω for q = 1, . . . , no (14)

Proof: By combining the constraint in (14) and (10)
(and noting that |1 + LDq | = |1 + L∗

Dq
|), one obtains

|rq(jω, ρ)| < |1 + Lqq(jω, ρ)|
∀ω for q = 1, . . . , no (15)

The constraint in (15) guarantees that the disk with radius
rq(jω, ρ) centered at Lqq(jω, ρ) does not encircle the critical
point (−1 + j0), and thus the system remains stable for all
ω.

A. Primary controller design

In designing the controller C(s, ρ) for the MIMO SP,
one must consider all of the possible combinations of the
uncertain delay parameters τqp. Suppose that the cardinality
of τqp is βqp. Then the total number of possible combinations
that must be considered in the design of the controller is
given by the rule of product,

m =
∏

βqp

∀ q = 1, . . . , no; p = 1, . . . , ni (16)

If the number of uncertainties are equal for each τqp (i.e.,
βqp = βpq = β ∀ {p, q}), then the total number of combi-
nations will be m = βnoni . By combining the constraints
presented in Theorem 1 and Theorem 2, one can define the
following optimization problem for the multimodel system:

min
ρ

m∑
c=1

N∑
k=1

‖Lc(jωk, ρ)− LDc(jωk)‖F

Subject to:
|rqc(jωk, ρ)[1 + LDqc

(jωk)]| −Ψqc(ρ, ωk) < 0

{|W1qc (jωk)[1 +Mqqc(jωk, ρ)]|+
|W2qc (jωk)Nqqc(jωk, ρ)|}|1 + LDqc

(jωk)|
−Ψqc(ρ, ωk) < 0

for k = 1, . . . , N ; q = 1, . . . , no; c = 1, . . . ,m (17)



where

Ψqc(jωk, ρ) = Re{[1 + L∗
Dqc

(jωk)][1 + Lqqc(jωk, ρ)]}

Mqqc(jωk, ρ) =

no∑
z=1

Gqzc(jωk)(1− e−jωkζqzc )Czqc(jωk, ρ)

Nqqc(jωk, ρ) =

no∑
z=1

Pqzc(jωk)Czqc(jωk, ρ)

and ‖ · ‖F is the Frobenius norm. The objective function
in (17), which is an approximation of the 2-norm, is convex
with respect to the controller parameters ρ. Note that the first
inequality shows that the Gershgorin bands do not encircle
the critical point and so the MIMO system remains stable
even if it is not fully decoupled. The second inequality
guarantees the robust performance for the SISO subsystems
of the decoupled MIMO system.

IV. INDUSTRIAL CASE STUDIES

The following examples will demonstrate the effectiveness
of the proposed method for several industrial processes
proposed in literature.

A. Case 1 - SP with fixed time delays

In [11], the proposed method was applied to a unity
feedback MIMO system with fixed time delays. The plant
model is represented by a 2× 2 interactive chemical process
which is used in industrial applications, and was defined as:

P(s) =

[
G11(s)e

−6s G12(s)e
−10s

G21(s)e
−12s G22(s)e

−8s

]

=




10e−6s

8s+ 1

5e−10s

30s+ 1

−8e−12s

40s+ 1

2e−8s

10s+ 1


 (18)

where the time scale is defined in minutes. The elements
Gqp(s) for q = 1, 2 and p = 1, 2 represent the strictly proper
delay-free transfer functions in Gn(s). A relative-gain-array
(RGA) analysis confirms that the system is not diagonally
dominant.

Since the time delay parameters are fixed for this process,
the nominal time-delayed plant model Pn(s) will be chosen
to be equal to P(s). In this manner, the open loop transfer
function will be L(s, ρ) = Gn(s)C(s, ρ). The performance
and uncertainty filters chosen for this case will be identical
to those in [11],

W1q = 0.5 , W2q = 0.5

(
2s+ 1

s+ 1

)
q = 1, 2 (19)

For comparative purposes, a PI MIMO controller will be
designed for this process. Thus the linearly parameterized
controller will posses the following matrix form:

C(s, ρ) =

[
[ρ111 ρ112 ]φ

T (s) [ρ121 ρ122 ]φ
T (s)

[ρ211 ρ212 ]φ
T (s) [ρ221 ρ222 ]φ

T (s)

]
(20)

where φ(s) = [1 1/s]. Additionally, the desired diagonal
open-loop transfer function LD(s) will be chosen as simple

integrators with time constants equal to 30 minutes (i.e.,
LD(s) = (1/30s)I). The optimization problem in (17) can
now be solved by repeating the stability constraints for each
ωk. The frequency grid will be chosen to be between 10−2

and 10 rad/min with N = 150 equally spaced points. The PI
MIMO controller obtained from optimization is:

C(s) =



0.03289s+ 0.001272

s

−0.03511s− 0.00311

s
0.05056s+ 0.004511

s

0.2128s+ 0.006133

s




Fig. 2 displays the closed loop response of the system
with the controller obtained in [11] and with the controller
obtained with the SP. It can be seen that the controller for
the SP produces no overshoot and asymptotically decouples
the system much faster. Note that if the time constant of the
desired open-loop transfer function matrix is decreased to 5
minutes, the rise and settling time of the system response is
significantly improved.

B. Case 2 - SP with uncertain time delays
The proposed optimization problem will now be applied to

an uncertain time-delayed MIMO SP. Consider the 2×2 plant
process P(s) (i.e., c = 1) that was analyzed in Case (1). The
time delays for this plant will now possess uncertain values
that will belong to a set. This plant will now be represented
as follows:

P(s) =



10e−τ11s

8s+ 1

5e−τ12s

30s+ 1

−8e−τ21s

40s+ 1

2e−τ22s

10s+ 1


 (21)

where the time delays τqp possess values in the sets:

τ11 = {3, 9} τ12 = {7, 13} τ21 = {9, 15} τ22 = {5, 11}
(22)

The nominal model is the same as defined in (18). Again,
the elements Gqp(s) for q = 1, 2 and p = 1, 2 represent the
strictly proper delay-free transfer functions in Gn(s). The
performance and uncertainty filters chosen for this example
will be identical to those in section (IV-A). The desired
diagonal open-loop transfer function LD(s) will be chosen
as simple integrators with time constants equal to 7 minutes
(i.e., LD(s) = (1/7s)I).

For simplicity, a PI controller will be designed for this
process. Note that in designing this controller, all possible
combinations of the uncertainties in (22) must be considered.
Therefore, since βqp = 2 ∀ {p, q}, there will be a total
of m = 24 possible cases to consider. The optimization
problem in (17) can now be solved by repeating the stability
constraints for each combination of the uncertainties in (22).
The frequency grid will be chosen to be between 10−2 and
10 rad/min with N = 150 equally spaced points. The PI
MIMO controller obtained from the optimization problem
is:

C(s) =



0.06234s+ 0.001464

s

−0.04803s− 0.005408

s
0.1585s+ 0.0168

s

0.3113s+ 0.005995

s



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Fig. 2. Closed loop comparison between time delayed MIMO system with unity feedback and time delayed MIMO SP: unit step reference signal (black,
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Fig. 3. MIMO response to a unit step input: reference signal (black,dash), the remaining Ω = 16 closed-loop responses are for all possible combinations
of the time delay parameters in (22).

Fig. 3 displays the closed-loop MIMO response to a step
input. Notice that with this controller, the MIMO process
achieves robust performance while simultaneously decou-
pling the system. The Gershgorin bands are depicted in Fig.
4 for the system possessing the largest delay time uncertainty
(τ11 = 9, τ12 = 13, τ21 = 15, τ22 = 11). The red
and blue bands possess a radius of |rq(jωk)| for q = 1, 2
and k = 1, . . . , N . Notice how the Gershgorin bands never
intersect with the performance filter centered at (−1 + j0).
This proves that the MIMO system is stable, robust, and
satisfies the optimization criterion in (17).

C. Case 3 - The Shell control problem

The multivariable heavy oil fractionator (known as the
Shell process) is a highly coupled system which is pre-
dominantly used in petrochemical processes. Efficient control

methods are essential for attaining viable production rates,
minimizing energy consumption, and reducing the overall
operating costs. These types of systems are difficult to control
for two reasons: the system interactions are strong, and the
large time delays that are inherent to the system dynamics.

Consider the 2× 3 industrial Shell problem in [13],

Pn(s) =

[
G11(s)e

−81s G12(s)e
−84s G13(s)e

−81s

G21(s)e
−54s G22(s)e

−42s G32(s)e
−45s

]

=



4.05e−81s

50s+ 1

1.77e−84s

60s+ 1

5.88e−81s

50s+ 1

5.39e−54s

50s+ 1

5.72e−42s

60s+ 1

6.9e−45s

40s+ 1


 (23)

where the time scale is defined in minutes. Note that (23) is
represented as the nominal model of the process. It should be
noted that the controller outputs [u1(t) u2(t) u3(t)]

T should
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Fig. 4. Gershgorin bands centered at Lqq with the largest time delay
combination in (22): performance filter with |W1q | = 0.5 (green circle),
Gershgorin bands corresponding to q = 1 (blue circles), Gershgorin bands
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number representation of each circle in the plot.

be within the saturation bounds of the physical system :
[−0.5 , 0.5] (see [14]). The elements Gqp(s) for q = 1, 2 and
p = 1, 2, 3 represent the strictly proper delay-free transfer
functions in Gn(s). Now consider the case when the time
delays are varied to +20% of their nominal values shown
in (23). As with the previous example, the plant P(s) can
be represented as a system with uncertain time delays. Since
βqp = 2 ∀ {p, q}, there will be a total of m = 26 = 64
possible cases to consider.

For comparative purposes, a PI controller will be designed
for this process. Thus the controller C(s, ρ) will be a 3× 2
transfer function matrix with n = 12 optimization parameters
ρ. The frequency grid will be chosen to be between 10−4

and 10 rad/min with N = 200 equally spaced points (since
the frequencies of interest of the open-loop system lie within
this range). The desired diagonal open-loop transfer function
matrix will be chosen as simple integrators with bandwidths
that are approximately 20% greater than the open-loop
system bandwidths (i.e., LD(s) = (1/35s)I). By solving
the optimization problem in (17) for each combination of
the uncertainties (i.e., {τ11, . . . , τqp} ∀ {p, q} where τqp ∈
{ζqp, 1.2ζqp}), one obtains the following PI controller

C(s) =




0.2053s+ 0.004997

s

−0.01315s− 0.00146

s−0.6735s− 0.01008

s

0.4977s+ 0.008098

s
0.2839s+ 0.004451

s

−0.1041s− 0.001432

s




Fig. 5 displays the closed-loop step response of the SP for the
nominal delay case, while Fig. 6 displays the response with
the worst case delay (the case where τqp = 1.2ζqp ∀ {p, q}).

From Fig. 5 and Fig. 6, it can be observed that the
purposed method in this paper produces improved SISO

subsystem performance with minimal overshoot. In addition,
the decoupling transients are significantly reduced for both
the nominal and worst case output responses. Fig. 7 displays
the controller outputs of the system.

V. CONCLUSION

This paper has proposed a new method for computing
multivariable SP controllers with H∞ performance. The
method is based on a convex approximation of the H∞
robust performance criterion in the Nyquist diagram. This
approximation relies on the choice of a desired open-loop
transfer function LD for the dead-time free model of the
plant. With a linearly parameterized controller, one possesses
the flexibility to design PI, PID, or higher order controllers
for a system. For the industrial processes considered in this
paper, the proposed method has been proven to be robust;
H∞ performance was achieved for MIMO systems with both
multiplicative and time delay uncertainties. The solution to
the optimization problem generates a controller such that a
system becomes decoupled and simultaneously optimizes the
single-loop performances of the SISO subsystems.
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Fig. 5. MIMO SP closed-loop response to a unit step input with τqp = ζqp ∀ {p, q}: reference signal (black,dash), output response with the proposed
optimization method (blue, solid), output response with the proposed method in [13] (red, solid), which is based on the “squared down” method.
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Fig. 6. MIMO SP closed-loop response to a unit step input with τqp = 1.2ζqp ∀ {p, q}: reference signal (black,dash), output response with the proposed
optimization method (blue, solid), output response with the proposed method in [13] (red, solid), which is based on the “squared down” method.
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Fig. 7. MIMO SP controller output response to a unit step reference: Controller output response of proposed method with τqp = ζqp (blue, solid),
controller output response of “squared down” method in [13] with τqp = ζqp (red, solid), controller output response of proposed method with τqp = 1.2ζqp
(blue, dash), controller output response of “squared down” method in [13] with τqp = 1.2ζqp (red, dash)


