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Abstract : In this article, an alternative method is proposed to compute a fast Fourier transform (FFT) on Altera 

FPGAs. This method is using the Altera FFT intellectual property (IP) core, but it is more efficient than the 

direct use of the Altera FFT IP core, in the sense that the processing time or the resources can be reduced. For 

the FPGA user, the implementation of the proposed method is more complex than using directly the Altera FFT 

IP core because additional elements are required, such as a numerically controlled oscillator (NCO) or a 

memory, a complex multiplier, adders and scaling, but it may be worth it since the decrease in processing time or 

resources is significant, especially regarding the memory with large FFTs. The proposed method can also be 

applied to the computation of the convolution or correlation using FFTs. 

1 Introduction 

The fast Fourier transform (FFT) algorithms [1, 2] are widely used in many fields, whether for spectral analysis 

to detect a signal, or for computation purposes (since for example the convolution of two signals can be 

computed efficiently using FFTs, and the convolution is the operation performed by finite impulse response 

filters) [3], or for compression purposes [4] or signal enhancements [5]. In other words, FFTs are everywhere. 

Many applications requires the use of FPGAs, therefore, computing an FFT on an FPGA is an important 

problem, even in domains such as astrophysics [6]. The FPGA companies usually provide an intellectual 

property (IP) core to compute FFTs of length that is a power of two on their FPGA, such as Altera [7], Xilinx 

[8], Lattice [9] or Microsemi [10]. One could think that such IP cores are optimized for the corresponding 

FPGAs, however it has been found that a more efficient implementation of the Altera FFT is possible. More 

efficient means that the resources can be reduced for a same processing time, or that the processing time can be 

reduced for a moderate increase of the resources. The most surprising fact is that the alternative implementation 

proposed here corresponds to one step of the well-known radix-2 FFT algorithm, where two FFTs of smaller 

length are computed and the FFT inputs or outputs are combined. 

In Section 2, we review the characteristics and parameters of the Altera FFT. In Section 3, we recall the radix-2 

FFT algorithm, and show how it can be used to reduce the processing time or the resources with the Altera FFT. 

In Section 4, the same idea is applied for the convolution computed by FFT. Section 5 provides an application 

example, indicating the additional complications of the proposed implementation and the real resource usage. 

Finally, Section 6 concludes this paper. 

2 Description of the Altera FFT 

The implementation of an FFT algorithm on an FPGA is not an easy task. Hopefully, FPGA companies usually 

provide an FFT IP core. In this paper, we will concentrate on the FFT core provided by Altera, because we are 

working with Altera FPGAs in our different research projects. The Altera FFT [7] is highly configurable, for 

example we can select : 

 The transform length, which must be a power of two. Currently, the minimum length is 8 points and the 

maximum length is 262 144 points (this is for the version 14.1 of August 2014; the maximum length 

may grow in the next years). 

 The input/output (I/O) data flow (more details about this are provided below). 
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 The number of bits to quantify the input data, the output data, and the twiddle factors. 

 The order of the input and of the output (natural order or bit-reversed order, see Chapter 2 of [11] for 

more information on this). 

 Some options for the FFT engine. 

 Some options for the implementation of the complex multipliers (we can use 4 multipliers and 2 adders 

or 3 multipliers and 5 adders, and we can implement them using digital signal processing (DSP) blocks 

or logic cells). 

 The repartition of the memory between the different memory types. 

Regarding the I/O data flow, four are available : variable streaming, streaming, buffered burst, burst. For the 

variable streaming and the streaming I/O data flows, the input and output data flows can be continuous, without 

any break between consecutive transforms. The corresponding timing diagram of an 𝑁-point FFT (shown in Fig. 

1 (a)) is given in Fig. 1 (b). Between the last input sample and the first output sample of the FFT, there is a 

latency, denoted 𝐿𝑁, which depends on the transform length. Therefore, in this case, the 𝑃th FFT result is fully 

available after 𝑁 + 𝐿𝑁 + 𝑃𝑁 = (𝑃 + 1)𝑁 + 𝐿𝑁 clock cycles. For the burst I/O data flow, it is possible to load a 

new input only when the output is completely unloaded. This means that the throughput is reduced compared to 

the variable streaming and streaming implementations. The buffered burst data flow is between the two previous 

cases. The flow cannot be continuous, but it is not required to wait for the complete unload of the output samples 

before loading new input samples. 

Of course, the higher is the throughput, the higher are the required resources. For example, an estimate of the 

resources considering three I/O data flows is provided in Table 1. Playing with the engine options may lower the 

resources (logic, memory and DSP) for the buffered burst and burst I/O data flows, in exchange of a reduced 

throughput. 
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Fig. 1: (a) 𝑵-point Altera FFT, (b) corresponding timing diagram with the streaming I/O data flow (the number in the 

boxes identifies the sequences). 

Table 1: Resources estimated with the Altera FFT IP core for an FFT of 2048 points implemented on a Cyclone V 

FPGA, considering 16 bits for the data and twiddle precision, and 2 FFT engines with quad output. (1)Defined as the 

minimum number of cycles between the start of two consecutive sequences. (2)An M10K memory contains 10 Kibit = 

10 240 bits, however, the number of bits is divided by 8 instead of 10 for the conversion here due to the 16 bits 

resolution and the memory limitation (see Chapter 2 of [12]). 

I/O data flow 
Inverse of the 

throughput
(1)

 (cycle) 

Logic usage 

(logical element, LE) 

Memory usage Multipliers usage 

(DSP block) bit M10K
(2)

 

Streaming 2048 5930 311 296 38 12 

Buffered Burst 2304 6186 245 760 30 12 

Burst 5485 5709 114 688 14 12 
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Due to the large number of possibilities for the FFT implementation, for the evaluation of the resources in the 

following sections, we will consider a Cyclone V FPGA, the streaming I/O data flow, a data and twiddle 

precision of 16 bits, complex multipliers implemented in DSP blocks using four real multipliers, and no logic 

function implemented in memory. 

Under these conditions, the resources according to the FFT length are given in Table 2. It can be observed that 

doubling the FFT length doubles the processing time, increases slightly the logic (except for some cases), 

roughly doubles the memory (except for lengths lower than 512 points), and the number of DSP blocks stays the 

same (except between 1024 and 2048 where it doubles). Seeing this, and knowing that an FFT can be computed 

as two FFTs of length halved (or using time multiplexing technique, only one FFT of length halved can be used), 

one can imagine that these characteristics can be exploited to improve the efficiency of the implementation, 

which is shown in the next section. 

Table 2: Resources estimated with the Altera FFT IP core for an implementation on a Cyclone V FPGA, considering 

the streaming I/O data flow and 16 bits for the data and twiddle precision. 

3 Efficient FFT computation on Altera FPGAs  

3.1 Radix-2 FFT algorithm 

The discrete Fourier transform (DFT) of a sequence  𝑛 of 𝑁 points is defined as 

with  = 0, 1, … , 𝑁 − 1. The radix-2 FFT algorithm consists in separating the input or the output in even and 

odd samples, and repeats the process until a certain limit [11]. Doing so once for the input, we have 

still with  = 0, 1, … , 𝑁 − 1. The two sums does not correspond to DFTs because the range for   and   is 

different. The first half of  𝑘 is obtained from Eq. (2) for  = 0, 1,… , 𝑁/2 − 1, and is 

FFT length 
Inverse of the 

throughput (cycle) 

Logic usage 

(LE) 

Memory usage 

(bit) 

Multipliers usage 

(DSP block) 

64 64 3584 90 112 6 

128 128 3170 90 112 6 

256 256 3741 90 112 6 

512 512 4135 90 112 6 

1024 1024 4712 155 648 6 

2048 2048 5930 311 296 12 

4096 4096 6331 622 592 12 

8192 8192 6080 1 245 184 12 

16 384 16 384 6487 2 334 720 12 

32 768 32 768 6230 4 513 492 12 

65 536 65 536 6644 8 871 936 12 
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with  = 0, 1, … , 𝑁/2 − 1 (in fact the equation is the same, only the range of   has changed). The two sums 

correspond to the DFT of the sequences  2𝑛 and  2𝑛+1, respectively. The second half of  𝑘 is obtained from Eq. 

(2) for  = 𝑁/2, 𝑁/2 + 1,… , 𝑁 − 1, and can be expressed as 

with  = 0, 1, … , 𝑁/2 − 1. The two sums are the same as for Eq. (3), therefore an FFT of 𝑁 points can be 

computed using two FFTs of 𝑁/2 points as shown in Fig. 2 (a). In the same way, by separating the output in 

even and odd samples, we obtain 

with  = 0, 1, … , 𝑁/2 − 1,  𝑛 is the first half of the input sequence, and  𝑛+𝑁/2 is the second half. The two sums 

correspond to the DFT of the sequences  𝑛 +  𝑛+𝑁/2 and ( 𝑛 −  𝑛+𝑁/2)𝑒
−
𝑗2𝜋𝑛

𝑁 , respectively. Therefore, an FFT 

of 𝑁 points can also be computed using two FFTs of 𝑁/2 points as shown in Fig. 2 (b). 
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Fig. 2 : Computation of an 𝑵-point FFT using two 𝑵/𝟐-point FFTs, (a) where the input is separated by parity and the 

output is separated by section, (b) where the input is separated by section and the output is separated by parity. 

 

3.2 Application to reduce the processing time 

The timing diagram corresponding to the implementation of Fig. 2(a) using Altera FFTs is depicted in Fig. 3, 

where 𝐿𝑁/2 denotes the latency of the FFT when the transform length is 𝑁/2. In this case, the 𝑃th FFT result is 

fully available after 𝑁/2 + 𝐿𝑁/2 + 𝑃𝑁/2 = (𝑃 + 1)𝑁/2 + 𝐿𝑁/2 clock cycles. Therefore, compared to the direct 

implementation of an 𝑁-point FFT, the processing time is approximately halved (see Fig. 1 (b)). Note however 

that this requires having access to even and odd samples of the input sequence simultaneously. 

For the evaluation of the resources, we consider 𝑁 = 2048, the resources for the FFT are estimated with the 

Altera IP core, and the simple elements (multiplier and adder) can be easily estimated (see e.g. the models given 

in [13]). The complex exponential in Fig. 2 (a) can be generated either using a numerically controlled oscillator 

(NCO), such as the NCO IP core provided by Altera [14], or using a memory. There are different generation 

algorithms for the NCO IP core of Altera, and the most interesting in terms of resources is the multiplier-based 

one, which requires some logic, two M10K memories and two DSP blocks. 
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Fig. 3: Timing diagram of the implementation of Fig. 2(a) using Altera FFTs (the number in the boxes identifies the 

sequences). 

If a memory is used instead, only 512 samples of 16 bits must be stored, since we need to generate half the 

period of a cosine and a sine, which can be obtained from only a quarter of the period of a sine wave by inverting 

the value and reading the memory in both directions, as shown in Fig. 4. Thus, using a dual port memory would 

require only one M10K, which is more interesting than using an NCO in this case, therefore this option is 

considered for the following. Note however, that for longer FFT lengths, the NCO becomes more interesting 

because it would not require more resources while the memory would need to store more samples. 

0 511
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0

memory

address

value

 
(a) 

Read from 0 to 511
+

inversion

–1 

1 

0

Read from 511 to 0 Read from 0 to 511Read from 511 to 0

 
(b) 

Fig. 4: (a) Portion of a sine wave stored in the memory, (b) cosine and sine waves generated by reading the memory. 

The y-axis is not scaled in this illustration (e.g. using 16 bits the amplitude would be 32 767). 
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Table 3: Comparison of the resources for Fig. 2 (a) and Fig. 1 (a) using the Altera FFT with 𝑵 = 𝟐𝟎𝟒𝟖 (estimation 

based on Altera IP cores and models of [13]). 

The summary of this basic estimation of the resources is given in Table 3, where we consider little logic for the 

addressing of the memory (2 buses of 8 bits). It can be seen that the implementation of Fig. 2 (a) requires more 

resources than the implementation of Fig. 1 (a), especially regarding the logic usage while the memory usage is 

almost the same. However, as shown previously, the processing time for Fig. 2 (a) is half the one for Fig. 1 (a). 

Since the resources are increased by a factor less than two, the implementation of Fig. 2 (a) is more efficient than 

the implementation of Fig. 1 (a). 

3.3 Application to reduce the resources 

In the previous subsection, the proposed implementation was more efficient, but the resources were increased. In 

this subsection, we adapt it to use only one FFT, at the expense of an additional memory. The implementation is 

given in Fig. 5 (a), and the corresponding timing diagram is given in Fig. 5 (b). The idea is to first compute the 

FFT of the even samples of the sequence and to store the result in the memory. Then, the FFT of the odd samples 

of the sequence is computed. When the result is available, the memory is read and the first and second half of the 

FFT of the initial sequence is computed. The first half is outputted while the second half is stored in the memory. 

Once the first half is fully outputted, the memory is read and the second half is outputted. In this way, the FFT 

result is provided in the exact same order as the direct implementation of the FFT (Fig. 1). In this case, the 𝑃th 

FFT result is fully available after 𝑁/2 + 𝐿𝑁/2 +𝑁/2 + 𝑃𝑁 = (𝑃 + 1)𝑁 + 𝐿𝑁/2 clock cycles, which is slightly 

lower than for the direct implementation because of the lower latency (𝐿𝑁/2 < 𝐿𝑁). 

The basic estimation of the corresponding resources is given in Table 4. For the memory, we need to store twice 

(because the FFT output is complex) 1024 × 16 bits, which requires 4 M10K memories. It can be seen that the 

resources are reduced, by 19 % for the logic, 37 % for the memory, and 33 % for the DSP blocks, which is not 

negligible. 

The implementation of Fig. 5 (a) assumes that the even and odd samples of the input sequence can be accessed 

simultaneously. If it is not the case, it is possible to add a memory to store the sequence, implying an additional 

latency of 𝑁/2 clock cycles. In this case, 2048 samples of 16 bits should be stored, which would require 4 

M10K for a real signal and 8 M10K for a complex signal. Even with this additional memory, the memory usage 

of the proposed implementation would be reduced by 26 % and 15 % for a real and a complex signal, 

respectively. 

If we extrapolate to other transform lengths, the results regarding the logic and the memory would be about the 

same (except for lengths below 512 since the memory is not reduced anymore, as shown in Table 2). For the 

DSP blocks, reducing the FFT length would not reduce the number of DSP blocks (see Table 2), thus due to the 

additional complex multiplier, the number of DSP blocks would be slightly higher (for example if 𝑁 > 2048, 

the proposed implementation will require 16 DSP blocks, which means an increase of 33.3 %). However, these 

relative values do not have the same impact because the memory usage increases linearly with the FFT length 

while the logic and DSP block do not, and the memory is the most used of the resources. Therefore, the absolute 

resource usage should be verified also, and this can represent a significant saving, especially for large FFTs. For 

Implementation Function 
Logic usage 

(LE) 

Memory usage 

(M10K) 

Multipliers usage 

(DSP block) 

Fig. 2 (a) 

2 FFTs (1024 points) 2 × 4712 2 × 19 2 × 6 

Exponential 

generation 
16 1 0 

1 Multiplier 0 0 2 

2 Adders 2 × 32 0 0 

Total 9504 39 14 

Fig. 1 (a) 
1 FFT (2048 points) 5930 38 12 

Total 5930 38 12 

Difference between Fig. 2 (a) and Fig. 1 (a) 
+3574 +1 +2 

(+60.3 %) (+2.6 %) (+16.7 %) 
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example, if we now consider 𝑁 = 65 536, the estimation given in Table 5 shows that if the proposed 

implementation has 4 additional DSP blocks (+33.3 %), the reduction of the memory resources (still of 37.1 %) 

means that 402 M10K blocks are saved, which is a huge amount of resources. Even if we need to store the signal 

before, this would require 256 M10K blocks for a complex signal (65 536 × 2 × 16 bits), meaning that there still 

would be a saving of 146 M10K blocks. 
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Fig. 5: (a) Implementation of an 𝑵-point FFT using one 𝑵/𝟐-point FFT and a memory to reduce the resources, (b) 

corresponding timing diagram using Altera FFTs (the colors inside the boxes identify the sequences). 
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Table 4: Comparison of the resources for Fig. 5 (a) and Fig. 1 (a) using the Altera FFT with 𝑵 = 𝟐𝟎𝟒𝟖 (estimation 

based on Altera IP cores and models of [13]). 

Table 5: Comparison of the resources for Fig. 5 (a) and Fig. 1 (a) using the Altera FFT with 𝑵 = 𝟔𝟓 𝟓𝟑𝟔 (estimation 

based on Altera IP cores and models of [13]). 

4 Efficient convolution computation on Altera FPGAs 

4.1 Direct implementation of the convolution  

The circular convolution of two sequences ℎ𝑛 and  𝑛 of 𝑁 points is defined as 

with  = 0, 1, … , 𝑁 − 1, and where mod denotes the modulo operation, i.e. ( + 𝑚𝑁) mod 𝑁 =   with 𝑚 an 

integer. The circular convolution can also be expressed as 

where 𝑌𝑘, 𝐻𝑘 and  𝑘 are the DFTs of 𝑦𝑛, ℎ𝑛 and  𝑛, respectively. So, by computing the IDFT of 𝐻𝑘 𝑘 we obtain 

𝑦𝑛. Therefore, the circular convolution can be computed efficiently as shown in Fig. 6 (a), and the corresponding 

timing diagram is given in Fig. 6 (b). In this case, the 𝑃th convolution result is fully available after 𝑁 + 𝐿𝑁 +

𝑁 + 𝐿𝑁 + 𝑃𝑁 = (𝑃 + 2)𝑁 + 2𝐿𝑁 clock cycles. 

Implementation Function 
Logic usage 

(LE) 

Memory usage 

(M10K) 

Multipliers usage 

(DSP block) 

Fig. 5 (a) 

1 FFT (1024 points) 4712 19 6 

Exponential 

generation 
16 1 0 

1 Multiplier 0 0 2 

2 Adders 2 × 32 0 0 

1 Memory 22 4 0 

Total 4814 24 8 

Fig. 1 (a) 
1 FFT (2048 points) 5930 38 12 

Total 5930 38 12 

Difference between Fig. 5 (a) and Fig. 1 (a) 
–1116 –14 –4 

(–18.8 %) (–36.8 %) (–33.3 %) 

Implementation Function 
Logic usage 

(LE) 

Memory usage 

(M10K) 

Multipliers usage 

(DSP block) 

Fig. 5 (a) 

1 FFT (32 768 points) 6230 551 12 

NCO exponential 

generation 
96 2 2 

1 Multiplier 0 0 2 

2 Adders 2 × 32 0 0 

1 Memory 32 128 0 

Total 6422 681 16 

Fig. 1 (a) 
1 FFT (65 536 points) 6644 1083 12 

Total 6644 1083 12 

Difference between Fig. 5 (a) and Fig. 1 (a) 
–222 –402 +4 

(–3.3 %) (–37.1 %) (+33.3 %) 

 𝑦𝑛 = ∑ ℎ𝑘 (𝑛−𝑘) mod 𝑁

𝑁−1

𝑘=0

, (6)   

 𝑌𝑘 = 𝐻𝑘 𝑘, (7)   
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Fig. 6: (a) Implementation of the circular convolution of two sequences of 𝑵 points using FFTs, (b) corresponding 

timing diagram using Altera FFTs (the colors inside the boxes identify the sequences). 

4.2 Application of the radix-2 FFT 

Replacing each FFT block in Fig. 6 (a) by the Fig. 2 (b), the circular convolution can be computed as shown in 

Fig. 7 (a), and the corresponding timing diagram is given in Fig. 7 (b). In this case, the 𝑃th convolution result is 

fully available after 𝑁/2 + 𝐿𝑁/2 +𝑁/2 + 𝐿𝑁/2 + 𝑃𝑁/2 = (𝑃 + 2)𝑁/2 + 2𝐿𝑁/2 clock cycles. Therefore, 

compared to the direct implementation of the circular convolution (Fig. 6 (a)), the processing time is 

approximately halved (see Fig. 6 (b)). 

For the evaluation of the resources, the same conditions as in Section 3 are considered. The basic estimation of 

the corresponding resources is given in Table 6. As in Section 3.2, the resources for the proposed 

implementation are increased by a factor less than two while the processing time is halved. Therefore, the 

implementation of Fig. 7 (a) is more efficient than the implementation of Fig. 6 (a). Note that moreover, slightly 

different implementations than Fig. 7 (a), using four multipliers instead of five, are also possible (see Chapter 4 

of [15]). 

The same principle can be applied to reduce the resources of the convolution, by using three 𝑁/2-point FFTs 

and an additional memory, and it can be verified that for the same processing time, the resources can be reduced 

(the reduction is even slightly higher than for the computation of an FFT shown in Section 0, see Chapter 4 of 

[15]). 
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Fig. 7: (a) Implementation of a circular convolution of 𝑵 points using 𝑵/𝟐-point FFTs, where the inputs and the 

output are separated by section, (b) corresponding timing diagram using Altera FFTs (the colors inside the boxes 

identify the sequences). 
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Table 6: Comparison of the resources for Fig. 7 (a) and Fig. 6 (a) using the Altera FFT with 𝑵 = 𝟐𝟎𝟒𝟖 (estimation 

based on Altera IP cores and models of [13]). 

5 Application example 

In the previous sections, the estimation of the resources was based on estimates from the Altera IP cores and 

from models. To validate the previous results, the direct implementation of the Altera FFT (Fig. 1 (a)) and the 

proposed implementation of the Altera FFT (Fig. 2 (a)) have been implemented into a Cyclone V FPGA, in order 

to measure the resources after the place and route operation using the Quartus II software. The two 

implementations (in fact three because the proposed one has been implemented with an NCO and with a memory 

for the complex exponential generation), and validation by ModelSim and Matlab are available at 

https://documents.epfl.ch/groups/e/es/esplab-unit/www/AlteraFFT/. 

5.1 Real implementation 

The real implementation of the proposed method is slightly more complex than the schematic depicted in Fig. 2 

(a), and is shown in Fig. 8, where the numbers represent the resolution of the signals in bit. 

Regarding the memory, as indicated previously, only a quarter of a sine wave is stored. Therefore, little logic is 

needed to obtain the cosine and sine wave wanted. Then, the sine wave stored in the memory has an amplitude of 

32 767 (since 16 bits allow a value between –32 768 and 32 767), while the theoretical amplitude of the complex 

exponential is 1. Therefore, the output of the FFT of  2𝑛 should also be multiplied by 32 767. This, however, can 

be approximated by a multiplication by 32 768, which is much easier to implement since it simply corresponds 

to a shift of 15 bits to the left of the signal. Therefore, this does not add resources. 

With the streaming, buffered burst and burst data I/O data flows, the FFT outputs a signal and an exponent 

because a block-floating-point scaling is performed inside the FFT [7], and the actual FFT output can be 

computed as 𝐹𝐹 𝑜𝑢𝑡𝑝𝑢𝑡 × 2−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 . Even if the even and odd samples of the input signal have the same 

characteristics (such as mean and variance), the exponent provided by the two FFTs can be different (typically 

they differ at most by 1), and therefore a scaling must be performed before adding/subtracting the signals. 

However, this scaling is not overly complex and does not add a lot of logic resources. 

With these additional operations, the output signal has a resolution of 34 bits instead of 16 bits. The impact of 

this depends on the process implemented after the FFT, storing it would have a big impact, while detecting a 

maximum on the FFT output would have a small impact. Also, a rounding to 16 bits could be performed, at the 

expense of a slight reduction in the accuracy, as shown in the last plot of Fig. 9. 

Implementation Function 
Logic usage 

(LE) 

Memory usage 

(M10K) 

Multipliers usage 

(DSP block) 

Fig. 7 (a) 

6 FFTs (1024 points) 6 × 4712 6 × 19 6 × 6 

Exponentials 

generation 
32 2 0 

5 Multipliers 0 0 5 × 2 

6 Adders 6 × 32 0 0 

Total 28 496 116 46 

Fig. 6 (a) 

3 FFTs (2048 points) 3 × 5930 3 × 38 3 × 12 

1 Multiplier 0 0 2 

Total 17 790 114 38 

Difference between Fig. 7 (a) and Fig. 6 (a) 
+10 706 +2 +8 

(+60.2 %) (+1.8 %) (+21.1 %) 

https://documents.epfl.ch/groups/e/es/esplab-unit/www/AlteraFFT/
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Fig. 8 : Actual implementation of Fig. 2 (a). 

 

5.2 Performance evaluation 

For testing the implementations, a memory is used to store and generate 20 480 samples of  𝑛, which allows the 

computation of 10 FFTs. For the direct implementation, the FFT latency is of 1402 clock cycles, and the time to 

get the 10 FFTs is 23 930 clock cycles, whereas for the proposed implementation, the FFT latency is 1084 clock 

cycles, and the 10 FFTs are obtained after 12 348 clock cycles. The processing time is thus divided by about 1.94 

(because the length of the 10 sequences is divided by two but the FFT latency is not divided by two), as 

expected. The resources after the place and route operation are given in Table 7, where the Top function includes 

the adders, the scaling and the control signals (note that the unit for the logic is now adaptive logic module 

(ALM), with the approximation 1 ALM = 2.5 LEs). Comparing these values with Table 3, the performances are 

close to those expected, being better regarding the logic. 

For checking the accuracy of the implementations, the input signal has been generated as a cosine with an 

additive white Gaussian noise, i.e.  𝑛 = cos(2 𝑓 /𝑓𝑠) + 𝜂( ), with 𝑓 = 200 kHz, 𝑓𝑠 = 2.048 MHz, where 𝜂 

follows a normalized Gaussian distribution (mean of zero, variance of one). A normalization factor is also 

applied before and after the FFT to use the full resolution (16 bits here), because the error of the Altera FFT is 

higher if the most significant bits are not used. Looking at the output of the FFT, where the real part is shown in 

Fig. 9, it can be seen that the proposed implementation (Fig. 8) has a slightly lower error than the direct 

implementation (Fig. 1 (a)) of the Altera FFT if there is no rounding. If the output of the proposed 

implementation is rounded to 16 bits (by taking the 16 most significant bits, thus in fact it is a floor operation), 

the error becomes higher, but still clearly reasonable. 

Table 7: Comparison of the resources for Fig. 8 and Fig. 1 (a) using the Altera FFT with 𝑵 = 𝟐𝟎𝟒𝟖 (resources given 

by the Quartus II software after place and route). 

Implementation Function 
Logic usage 

(ALM) 

Memory usage 

(M10K) 

Multipliers usage 

(DSP block) 

Fig. 8 

Top 553 0 0 

FFT 1 (1024 points) 1578.3 20 6 

FFT 2 (1024 points) 1572.5 20 6 

Exponential 

generation memory 
0 1 0 

1 Multiplier 0 0 2 

Total 3703.8 41 14 

Fig. 1 (a) 

Top 292.3 0 0 

FFT (2048 points) 2345.8 38 12 

Total 2638.1 38 12 

Difference between Fig. 8 and Fig. 1 (a) 
+1066.7 +3 +2 

(+40.4 %) (+7.9 %) (+16.7 %) 



 13  

 

Fig. 9 : For the signal considered, (a) Output of the Matlab FFT, (b) Difference between the outputs of the Matlab 

FFT and of the Altera FFT, (c) Difference between the outputs of the Matlab FFT and of the proposed 

implementation using the Altera FFT (Fig. 8), (d) Difference between the outputs of the Matlab FFT and of the 

proposed implementation using the Altera FFT (Fig. 8) rounding the output to 16 bits. Only the real part is shown. 

6 Conclusions 

In this paper, we have shown a relatively simple way to compute an FFT on Altera FPGAs using the Altera FFT 

IP core providing with a better efficiency than the direct implementation of one Altera FFT. This means that it is 

possible to have the same processing time and use fewer resources, or that it is possible time to reduce the 

processing for a moderate increase of the resources. The method used here is in fact one step of the radix-2 FFT, 

therefore the improvement may seem surprising. The method is also interesting for the convolution or correlation 

computed by FFT. 

The potential improvement can be estimated easily with the IP cores tools, and an application example with a 

measure of the resources after place and route has validated the estimation. It has been shown for example that it 

is possible to halve the processing time for an increase of 40 %, 8 % and 17 % of the logic, memory and DSP 

resources, respectively. Potentially, for a same processing time, it is possible to reduce the resources by 19 %, 

37 % and 33 % for the logic, memory and DSP, respectively. However, these relative values do not have the 

same impact because the memory usage increases linearly with the FFT length while the logic and DSP block do 

not, and the memory is the most used of the resources. Therefore, the absolute resource usage should be verified 

also, and this can represent a significant saving, especially for large FFTs. For example, with the proposed 

method, a streaming FFT of 65 536 points using 16 bits can be implemented with 4 additional DSP blocks 
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(+33 %) but with about 400 M10K blocks less (–37 %), for the same processing time, which is clearly 

interesting because this represents a huge amount of resources. Finally, the actual improvement will depend on 

the I/O data flow, the parameters and the FPGA selected. 
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