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École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
bHarvard School of Engineering and Applied Sciences, Cambridge, USA

ABSTRACT

Chromatic aberration distortions such as wavelength-dependent blur are caused by imperfections in photographic
lenses. These distortions are much more severe in the case of color and near-infrared joint acquisition, as a wider
band of wavelengths is captured. In this paper, we consider a scenario where the color image is in focus, and
the NIR image captured with the same lens and same focus settings is out-of-focus and blurred. To reduce
chromatic aberration distortions, we propose an algorithm that estimates the blur kernel and deblurs the NIR
image using the sharp color image as a guide in both steps. In the deblurring step, we retrieve the lost details
of the NIR image by exploiting the sharp edges of the color image, as the gradients of color and NIR images are
often correlated. However, differences of scene reflections and light in visible and NIR bands cause the gradients
of color and NIR images to be different in some regions of the image. To handle this issue, our algorithm
measures the similarities and differences between the gradients of the NIR and color channels. The similarity
measures guide the deblurring algorithm to efficiently exploit the gradients of the color image in reconstructing
high-frequency details of NIR, without discarding the inherent differences between these images. Simulation
results verify the effectiveness of our algorithm, both in estimating the blur kernel and deblurring the NIR
image, without producing ringing artifacts inherent to the results of most deblurring methods.
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1. INTRODUCTION

We study the problem of axial chromatic aberration in the joint acquisition of color and near-infrared (NIR)
images. Differences of light and scene reflections in the visible part of the electromagnetic spectrum (with
wavelengths of 400-700 nm) and the NIR band (wavelength range of approximately 700-1100 nm) inspired
researchers to use NIR information along with color images in tasks that are traditionally performed using color
information only. Some of these applications are image denoising,1 image dehazing,2 shadow detection and
removal,3,4 and video conference relighting.5

These recent developments introduce the need for designing a consumer camera that simultaneously captures
both color (RGB) and NIR representations of the scene. The sensitivity of silicon-based sensors, placed in most
current color cameras, goes beyond the visible range and extends to the NIR band as well (see Fig. 1). This
enables designing a color and NIR camera with only a single sensor.6–8

Such an imaging system, similar to any single-sensor multispectral camera, would suffer from different aber-
ration distortions introduced by the lens. One type of these distortions, called chromatic aberration (CA), occurs
because the diffraction index of a simple lens changes with wavelength. As a result, light rays with different
wavelengths are not all focused at the same point (Fig. 1-b). This causes the image of only one spectral channel
to be sharp, whereas the others are blurred (see Fig. 2-a).

In color imaging, chromatic aberration distortions are reduced either by using multiple-element lenses and/or
by post-processing the color channels. There exist professional lenses corrected for both visible and NIR bands of
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Figure 1. (a) The overall sensitivities of silicon sensor and color filters in a conventional color camera when the NIR-
blocking filter is removed (measured in our laboratory). The visible band is the wavelength range of 400 to approximately
700 nm, and the NIR spectrum is adjacent to the visible band. In this paper, we define the NIR band to be the range of
700 to 1100 nm, where silicon sensitivity approaches zero. (b) Axial chromatic aberration caused by a simple lens. If the
sensor is placed at the focus point of the green light, the images of the red, blue, and, even more so, the NIR radiation
are out-of-focus and blurred.

the spectrum∗. However, such lenses are very expensive and too bulky to be used with most consumer cameras,
especially those integrated inside small devices such as cellphones. Therefore, we are interested mainly in digital
correction of CA after acquisition.

The algorithms developed to reduce the effects of CA in color imaging9–12 usually rely on the assumption that
edges of color channels are highly correlated. Hence, it is possible to directly use the high-frequency components
of the sharp channel in reconstructing the images of other channels. These algorithms cannot be employed in
our problem. Firstly, because distortions caused by CA become more severe as the captured wavelength range
increases. Hence, in the joint acquisition of color and NIR (wavelength range of 400-1100 nm) CA errors are
much higher compared with distortions in color imaging (range of 400-700 nm). More importantly, as there are
many differences between color and NIR channels, the main assumption of these algorithms is not valid in our
task. Figure 2-(b) shows one example of the differences between the high-frequency details of color and NIR
images.

In this paper, we assume that the lens is focused while capturing the color image†, and the NIR image,
which is recorded with the same focus settings, is blurred (see Fig. 2-a). We propose a two-step algorithm that
reduces the axial chromatic aberration distortions noticeable in the NIR image in this case. The first step of
our algorithm estimates the blur kernel by comparing the gradients of the blurred NIR channel and the sharp
(in-focus) color image. The estimated blur kernel is then used to deblur NIR, guided by the color image. The
main difficulty in deblurring is the fact that the differences of light and scene reflections in visible and NIR bands
lead to differences between the gradients of color and NIR images, either in magnitude and/or direction (see
Fig. 2-b). To account for these differences, we propose incorporating gradient masks in the deblurring step. Using
the proposed masks ensures that the high-frequency components of the RGB image are used in deblurring NIR

∗Example of a commercial product: http://www.jenoptik-inc.com/coastalopt-standard-lenses/uv-vis-nir-60mm-slr-
lens-mainmenu-155/80-uv-vis-ir-60-mm-apo-macro.html
†Note that the axial chromatic aberration produced by most current lenses is negligible in color channels. See Fig. 2-(a).



Figure 2. (a) A pair of RGB (left) and NIR (right) images captured with the same focus settings. The RGB image is in
focus and sharp, while the NIR representation is blurred because of chromatic aberration. Insets: a part of the image in
color and NIR channels (zoomed in). (b) A pair of color and NIR images. Insets show the region where color and NIR
gradients are significantly different.

only where edges of these images are highly correlated. Otherwise, without the gradient masks, the deblurring
process eliminates the inherent differences between color and NIR representations. This results in the failure of
applications that fuse color and NIR information, such as dehazing,2 as many of these applications heavily rely
on the intrinsic differences between the high-frequency details of these images. The details of computing these
gradient masks are explained in the next section.

Many deblurring algorithms use only the blurred image to estimate a sharp representation of the scene.13–16

However, similar to our proposed algorithm, a few studies use a guide image in deblurring. He et al.17 propose
the guided image filtering for the general problem of image restoration including image deblurring. The algorithm
of Yuan et al.18 uses a noisy color image to guide the deblurring of a blurred color image of the same scene.
Similarly, Zhang et al.19 propose using multiple blurred images of the scene to produce a sharp representation.
The main difference between these algorithms and our work is that in their applications both guide and target
images represent the scene in the visible band, hence their gradients are strongly correlated.

Yan et al.1 developed a guided denoising algorithm for situations where the gradients of the target and guide
images are not necessarily the same. In the denoising task addressed in,1 the gradients of the input noisy image
are not largely degraded compared with the target image. However, in our problem, the gradients of the input
image (the blurred NIR) are significantly weaker than those of the guide (the color image). This, on top of
the intrinsic differences between target and guide images, is potentially another source of confusion for a guided
reconstruction approach. We explain how our algorithm handles this difficulty in the next section.

Simulation results, presented in Section 3, verify the effectiveness of our algorithm in recovering the details
of the NIR image both when there is a strong correlation between color and NIR channels, and when the edges
of these images are independent. We conclude the paper by discussing the results and possible directions for
future research in Section 4.



2. THE PROPOSED ALGORITHM

We mathematically formulate blurring of the NIR image as follows:

NIRb = k ∗NIR, (1)

where NIR is the latent sharp image to be estimated, k is the kernel point spread function (PSF) that characterizes
the out-of-focus lens blur, NIRb is the NIR image blurred because of chromatic aberration, and ∗ denotes the
convolution operation.

In the following subsections, we explain the blur kernel estimation, and then we discuss how NIRb is deblurred
by exploiting the high-frequency details of the color image.

2.1 Estimating the Blur Point Spread Function

Let us denote the luminance channel of the color image, computed as the average of three color channels, by Y .
We estimate the blur kernel k by solving the following optimization problem:

k? = argmin ‖∇xNIRb −∇x(k ∗ Y )‖2F + ‖∇yNIRb −∇y(k ∗ Y )‖2F + Pr(k), (2)

where ∇x, ∇y, respectively, represent the horizontal and vertical gradient operators. This optimization exploits
the fact that, as opposed to absolute intensities, the edges of NIR and color channels are usually correlated (see
Fig. 2-a). Note that color and NIR images do not always share similar edges, nevertheless, our experiments show
that if there are some correlated edges in the image pair, the kernel estimated by solving the above problem is
reliable.

Pr(k) in (2) represents the prior information about the kernel. The PSF of a lens is usually modeled as a

Gaussian filter.20,21 Hence, we can write kσ = exp (−x
2+y2

2σ2 ), where σ fully characterizes the kernel and is a
measure of the filter’s spread. In this paper, we assume that the blur kernel is spatially invariant. In this case,
estimating the blur kernel is equivalent to finding one σ value:

σ? = argmin ‖∇xNIRb −∇x(kσ ∗ Y )‖2F + ‖∇yNIRb −∇y(kσ ∗ Y )‖2F s.t. kσ =
1

c
exp (−x

2 + y2

2σ2
), (3)

where c is a normalization factor ensuring that
∑
i(kσ)i = 1.

2.2 Deblurring the NIR Image

As with the other non-blind deblurring methods, we formulate the NIR deblurring as solving the following
problem:

NIR? = argmin ‖NIRb − kσ ∗NIR‖2F + λ Pr(NIR), (4)

where kσ is the blur kernel estimated in the first step (Section 2.1) and λ is the regularization parameter.

Image deblurring is an ill-posed problem, hence including a regularization term (Pr(NIR)) to constrain
the solution is necessary. Different prior terms are proposed in the deblurring literature. The most popular
regularization term is the sparsity of gradients in natural images, usually modeled by Laplacian or hyper-
Laplacian distributions.22–24

In our scenario, however, the sharp RGB representation of the scene is available. Thus, instead of using a
general distribution of natural images, we propose applying the following regularization term:

Pr(NIR) = ‖∇xNIR−Mx �∇xY ‖2F + ‖∇yNIR−My �∇yY ‖2F . (5)

Here, Mx and My are the gradient masks with the same size as the NIR and color images, and � stands for
element-wise multiplication of two matrices. Mx has high magnitudes at pixels where the NIR and Y horizontal
gradients are highly correlated. On the other hand, if the horizontal gradients are not similar enough, the
corresponding component in Mx is small. My has similar properties when the gradient is computed in the
vertical direction. Thus, we incorporate the gradient masks to ensure that the edges of the Y channel contribute
to the deblurring result only where gradients of NIR and Y channels are strongly correlated.



Figure 3. This figure shows a pair of (a) sharp color and (b) blurred NIR images captured with the same focus settings.
Image (c) is the result of deblurring guided by the color image without using gradient masks, which contains false edges
not present in the NIR image. By using the gradient masks (d), the algorithm preserves the differences between color and
NIR images (The differences are most noticeable while viewed on a screen).

The gradient masks are required to measure the similarity between the gradients of NIR and Y (luminance of
the color image) channels. If the sharp NIR image is accessible, the similarity levels can be computed as follows:

M0
x(i, j) = 1− |∇xNIR(i, j)−∇xY (i, j)|

|∇xNIR(i, j) +∇xY (i, j)|
, M0

y (i, j) = 1− |∇yNIR(i, j)−∇yY (i, j)|
|∇yNIR(i, j) +∇yY (i, j)|

, (6)

where (i, j) indicate the horizontal and vertical coordinates of the pixel. Note that as the level of similarity
between the gradients of NIR and Y channels increases, the values of M0

x(i, j) and M0
y (i, j) increase.

However, in the deblurring problem, we do not have access to the sharp NIR image in advance. Hence, the
gradient masks cannot be computed exactly as shown in (6). In addition, deblurring fails if we directly compare
the gradients of the blurred NIR and the sharp Y channel. The reason is that even the edges that are inherently
similar between the color and NIR representations, would have different profiles as they are blurred in NIR and
sharp in the Y channel. To address this difficulty, we first deblur the Y channel with the estimated blur kernel:

Yb = kσ ∗ Y. (7)

and calculate the gradient masks as

Mx(i, j) = 1− |∇xNIRb(i, j)−∇xYb(i, j)|
|∇xNIRb(i, j) +∇xYb(i, j)|

, My(i, j) = 1− |∇yNIRb(i, j)−∇yYb(i, j)|
|∇yNIRb(i, j) +∇yYb(i, j)|

, (8)

Comparing the gradients of blurred Y and NIR channels ensures large components for Mx and My when the
edges are similar. Additionally, if in one neighborhood color and NIR edges are fundamentally uncorrelated,
they are likely to look different even after blurring (unless the NIR image is severely blurred).

We discussed the significance of using gradient masks (Mx and My) in Section 1. Here, we illustrate this
effect with one example. Figure 3 shows a pair of blurred NIR and sharp color images, and also the sharp NIR
image representing the same scene (captured by re-focusing the camera for the NIR shot). Subfigure (c) is the
NIR image deblurred without using gradient masks. It can be immediately observed that false edges (the text in
the zoomed-in region) are introduced into the deblurred NIR image. However, when we incorporate the gradient
masks into deblurring (see Fig. 3-d), the inherent differences between the color image and its NIR counterpart
are preserved (the differences are more noticeable when this figure is viewed on a screen). We present more
comparisons in Section 3.3.

3. RESULTS

3.1 Data Acquisition and Ground-truth

To capture the images presented in this section, we used a Canon Rebel T1i camera with a 50 mm kit lens. We
removed the NIR-blocking filter from inside the camera, so NIR and color images were captured in two sequential
shots, when visible-light blocking and NIR-blocking filters were placed in front of the lens. For every scene, we



Figure 4. Four pairs from the dataset of color and NIR images used to evaluate the kernel estimation accuracy.

captured one color and two NIR images (blurred and sharp NIR images). We first adjusted the focus settings for
the color image. The blurred NIR image was then captured with the same settings. Afterwards, we refocused
the camera for the NIR shot, that results in the ground-truth NIR image.

We analyze the performance of our algorithm in estimating the blur kernel in subsection 3.2. We then compare
the images deblurred by our algorithm with the results of Krishnan et al.’s algorithm14 in subsection 3.3.

3.2 Blur Kernel Estimation

In a practical scenario, when the color image is in focus and NIR is blurred (out of focus), we do not have
access to the ground-truth blur kernel. Therefore, to assess our kernel estimation algorithm, we conducted a toy
experiment. For this experiment, we used the color and the sharp NIR images of each scene. Some of the images
used for this experiment are shown in Fig. 4. We blurred the NIR image, as modeled in (1), by a Gaussian kernel
with a known standard deviation (σ). The optimization problem (2) is solved to estimate the kernel spread (σ)
by using this blurred NIR and sharp color images. Table 1 summarizes ground-truth σ values used to blur the
NIR image and the values estimated by our algorithm. The results reported in this table are averaged over 30
pairs of color and NIR images. As can be seen, the estimated values are quite close to ground-truth. Note that
a small deviation from the true kernel does not greatly affect the deblurring process.

To test the kernel estimation in a more realistic case, in the second set of experiments, we used the NIR images
blurred by the lens. In this experiment, we compare our blur kernel estimation method with the algorithm of
Krishnan et al.14 Krishnan et al. proposed a blind deblurring method that first iteratively estimates the blur
kernel from the blurred image, and at the last step uses the estimated kernel to deblur the image. Figure 5-(b)
shows the image deblurred with this method. We also estimated the blur kernel with our algorithm and applied
the deblurring step of Krishnan’s method to produce the final image using our estimated kernel (Fig. 5-(c)). As
can be seen in Fig. 5, the image deblurred using our estimated kernel contains fewer artifacts compared with
the result of the blind deblurring algorithm of Krishnan et al.14 This proves the effectiveness of our algorithm
in estimating the blur kernel, as both images are produced by the same deblurring technique.

Ground-truth σ 3 4 5 6 7 8 9 10

Estimated σ
average 2.88 3.87 4.82 5.85 6.81 7.78 8.83 9.55

std. 0.25 0.32 0.38 0.44 0.61 0.65 0.77 0.77
Table 1. Blur kernel estimation: for each ground truth σ value that is used to blur the NIR images, we report the estimated
σ obtained by using the blurred NIR and sharp color images. The experiment is conducted for 30 pairs of images.



Figure 5. (a) The blurred NIR image, (b) the result of the blind deblurring algorithm of Krishnan et al.,14 and (c) the
result of the deblurring step of Krishnan’s algorithm using our estimated kernel.

3.3 Guided Deblurring

In this subsection, we analyze the performance of our guided deblurring algorithm. We first study the importance
of using gradient masks in deblurring. Figure 6-(c) shows the results of our algorithm when no gradient mask
is used in the optimization (see (4) and (5)). Images of Fig. 6-(d) are the outputs of the algorithm when Mx

and My matrices are employed. As shown in the second and fifth rows of this figure (highlighted by boxes
with green borders), without the gradient mask, false edges appear in the deblurred NIR image. We observe
that the designed gradient masks are very effective in solving this issue and in preventing the optimization from
introducing false edges into the deblurred image.

The inevitable consequence of using masks is that the fine details of the color image contribute less to the
deblurred image, even when the gradients are highly correlated (see rows 3 and 6 of Fig. 6). This is mainly
because the masks are computed using the gradients of blurred NIR and blurred Y channels. As a result, these
masks provide only an approximation of the true similarity map between the latent sharp NIR and sharp Y
channels.

In the next experiment, we study the performance of the deblurring step when different prior terms for the
sharp NIR image, Pr(NIR) in (4), are explored. Figure 7 provides some examples for this comparison. The first
and second columns of this figure are the input color and NIR images. Figure 7-(c) shows the deblurring results
when the popular TV (total variation) regularization is used as Pr(NIR). In this case, the following optimization
is solved to deblur NIR:

NIR? = argmin ‖NIRb − kσ ∗NIR‖F + λ‖∇NIR‖1. (9)

The deblurring step in the Krishnan et al. method14 is used to produce the images of Fig. 7-(d). This algorithm
exploits a more sophisticated prior, namely a normalized sparsity of image gradients. Images of subfigure (e) are
the results of our proposed algorithm when the gradients of the color image are used to constrain the problem
(see equations (4) and (5)). We also studied the effect of adding a TV regularizer to our deblurring optimization
problem as follows:

NIR? = argmin ‖NIRb−kσ∗NIR‖F +λ1(‖∇xNIR−Mx�∇xY ‖F +‖∇yNIR−My�∇yY ‖F )+λ2‖∇NIR‖1. (10)

The results are shown in Fig. 7-(f). For each image, the blur kernel estimated with our method is used with
different deblurring techniques to generate the different results in Fig. 7.

These results clearly show that using a regularization term specific to each blurred NIR image (the gradients
of the sharp color image in our algorithm) is much more effective than exploiting general distributions. Our
algorithm results in more accurate edges and significantly less noticeable artifacts, compared to other techniques
presented in Fig. 7-(c) and (d). Moreover, adding the TV regularization term does not improve the performance
of our algorithm (compare subfigures (e) and (f)).



4. CONCLUSION

We have proposed a novel algorithm that reduces the distortions caused by axial chromatic aberration in the joint
acquisition of color and NIR images. Our algorithm first estimates the blur kernel by comparing the gradient of
the blurred NIR image with the sharp color image. In the next step, being guided by the edges in the luminance
channel of the color image and by using the estimated kernel, the algorithm deblurs the NIR image. The key
component of our deblurring method is the use of gradient masks that effectively prevent the deblurred NIR
image from inheriting false edges from the color image.

In this paper, we assumed that the blur kernel is spatially invariant. However, the lens blur kernel depends on
the depth of objects in the scene. Hence, in a general case, the blur kernel varies spatially. Estimating spatially
variant kernels and adapting the proposed deblurring algorithm to use such kernels are part of our future work.
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2. Feng, C., Zhuo, S., Zhang, X., Shen, L., and Süsstrunk, S., “Near-infrared guided color image dehazing,” in
[IEEE International Conference on Image Processing (ICIP) ], (2013).
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Figure 6. (a) and (b) the color and NIR images captured with the same focus settings, (c) the results of our method when
no gradient mask is used, (d) our algorithm’s results by using the gradient mask, and (e) the sharp NIR images captured
by changing the focus settings. The differences are more easily seen when this figure is viewed on a screen.



Figure 7. (a) the color and (b) NIR images captured with the same focus settings, (c) the results of deblurring with TV
regularization, (d) Krishnan’s method deblurring output,14 (e) the results of our algorithm, (f) images deblurred by our
algorithm when a TV regularization term is added, and (f) the sharp NIR images captured by changing the focus settings.
The differences are more easily seen when the figure is viewed on a screen.


