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Abstract 

Deployable structures are structures that transform their shape from a compact state to an 

extended in-service position. Structures composed of tension elements that surround compression 

elements in equilibrium are called tensegrity structures. Tensegrities are good candidates for 

deployable structures since shape transformations occur by changing lengths of elements at low 

energy costs. Although the tensegrity concept was first introduced in 1948, few full-scale 

tensegrity-based structures have been built. Previous work has demonstrated that a tensegrity-ring 

topology is potentially a viable system for a deployable footbridge. This paper describes a study 

of a near-full-scale deployable tensegrity footbridge. The study has been carried out both 

numerically and experimentally. The deployment of two modules (one half of the footbridge) is 

achieved through changing the length of five active cables. Deployment is aided by energy stored 

in low stiffness spring elements. Self-weight significantly influences deployment, and 

deployment is not reproducible using the same sequence of cable-length changes. Active control 

is thus required for accurate positioning of front nodes in order to complete deployment through 

joining both sides at center span. Additionally, testing and numerical analyses have revealed that 

the deployment behavior of the structure is non-linear with respect to cable-length changes. 

Finally, modelling the behavior of the structure cannot be done accurately using friction-free and 

dimensionless joints. Similar deployable tensegrity structures of class two and higher are 

expected to require simulation models that include joint dimensions for accurate prediction of 

nodal positions.  

Introduction 

Tensegrity structures are structures composed of tension elements (strings, tendons or cables) 

surrounding compression elements (bars or struts) in equilibrium (Motro et al. 2003). Various 

definitions of tensegrity structures exist; a concise definition has been proposed by Skelton et al. 

(2001) who defined a class K tensegrity structure as a stable equilibrium of axially loaded 

elements, with a maximum of K compressive members at the nodes.  
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Tensegrity structures are identified by the number of infinitesimal mechanisms and states of self-

stress (Pellegrino et al. 1986).  Pellegrino et al. (1986) introduced a method for computing the 

number of infinitesimal mechanisms and self-stress states by singular value decomposition 

(SVD) of the equilibrium matrix. The design process of tensegrity structures includes 

simultaneous identification of geometry, topology, element axial stiffness, actuator position, and 

self-stressed state. Tibert and Pellegrino (2003) reviewed form-finding methods. Several studies 

have included the derivation of tangent stiffness matrix for a pre-stressed framework (Argyris and 

Scharpf 1972, Murakami 2001 and Guest 2006). Skelton et al. (2014) proposed a topology 

optimization method for minimum mass design of tensegrity bridges and showed that the 

optimized design has a multi-scale character.  

Tensegrities are attractive for deployment and active control since their shape can be changed 

through changing lengths of elements. In addition to carrying loading, the elements in tensegrity 

structures can be actuators and sensors (Skelton et al. 2001).   

In several studies, e.g. (Furuya. 1992, Tibert. 2002, Furuya et al. 2006, Dalil Safaei et al. 2013), 

tensegrities have been proposed as deployable booms for space missions. Zolesi et al. (2012) 

successfully demonstrated deployment repeatability of a large tensegrity reflector antenna 

through a 1/4 scale prototype equipped with a gravity compensation system. 

Tensegrities are good candidate for active structures since they can change their shape under 

changing environments, such as new loading situations. Fest et al. (2004) employed telescopic 

struts to investigate the active control behavior of a five-module tensegrity structure. In several 

studies, biomimetic properties of active tensegrity structures have been studied (Adam and Smith 

2008; Domer 2003; Domer and Smith 2005).  These structures were not deployable. 

Although studies have been carried out on deployment of tensegrity structures, very few near 

full-scale deployable tensegrity structures have been built.  Physical models are important for 

exploration, validation and development of ideas. In addition, a physical model should be large 

enough to be able to study important full-scale challenges.  

The influence of joint characteristics on deployment of tensegrity structures has not been studied. 

This is particularly important for structures of class 2 and higher since a pre-defined sequence of 

length changes of active cables may not result in a successful deployment due to joint 

configuration and friction effects. In addition, no study has been performed to investigate the 

influence of self-weight on deployment. 

This paper studies the deployment of a clustered-cable-spring tensegrity configuration that was 

adapted from a design proposal by Motro et.al (2006). Clustered cables are continuous cables that 

slide continuously over joints located at the ends of struts. Design and analysis of tensegrity 

footbridges have been studied by several researchers. Tensegrity-ring modules were introduced 

by Pugh (1976). These modules were studied for deployment and named ring modules by Motro 

et.al (2006) because of their hollow interior space.  Nguyen (2011) and Cevaer et al. (2012) 
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studied the structural behavior of a single pentagonal ring module under the assumption that there 

was no cable continuity. A near full-scale tensegrity footbridge has been built to study strategies 

for deployment. More specifically, objectives of this paper are as follows:  

 Describe an experimental study of a clustered-cable-spring configuration for deployment 

of a near-full-scale tensegrity footbridge.  

 Demonstrate the need for active control for reproducible deployment behavior.    

 Evaluate the assumption of dimensionless joints for prediction of deployment behavior. 

 Study the influence of self-weight on deployment.   

The next sections provide details, results and evaluations related to these goals. 

The tensegrity ring footbridge  

The footbridge is composed of four identical pentagonal ring modules connected together in a 

“hollow-rope” system (Rhode-Barbarigos et al. 2010, Bel Hadj Ali et al 2010, and Motro et.al 

2006). Each pentagonal ring module in Figure 1 has 15 struts and 30 cables. Tensegrity structures 

are characterized by the number of self-stress states and infinitesimal mechanisms. Analysis of 

the equilibrium matrix reveals no infinitesimal mechanisms and six independent states of self-

stress. Each tensegrity ring module is a class two tensegrity structure (Skelton et al. 2001). The 

empty space in the tensegrity ring module is employed for footbridge pedestrian traffic. 

 

Figure 1: Deployment illustration of four-module tensegrity footbridge. This paper studies the 

deployment of one half of a ¼ scale model of the footbridge (adapted from Rhode-Barbarigos et 

al. (2010) and Rhode-Barbarigos et al. (2012b)) 

Rhode-Barbarigos et al. (2010) and Bel Hadj Ali et al. (2010) studied the serviceability of a 16 m 

span and 6.2 m diameter tensegrity footbridge without considering clustered cables and 
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deployability.  Rhode-Barbarigos et al. (2012b) then studied several deployment methods and 

showed that utilizing springs, inspired from (Schenk et al. 2007), and clustered-cables reduces the 

number of actuators required for controlled deployment. Bel Hadj Ali et al. (2011) proposed an 

analysis method for clustered tensegrity structures through a modified dynamic relaxation 

algorithm. Clustered cable elements run continuously through nodes. They influence the 

mechanics of tensegrity structures through reducing number of kinematic constraints and 

changing the internal-force distribution of the elements (Moored and Bart-Smith 2009). 

A 1/4 scale model has been designed, manufactured and assembled in order to study deployment 

behavior (Figure 2). Each half is composed of 15 springs, 5 continuous cables, 30 struts and 20 

cables.  Also, each half is controlled by five continuous active cables. Each active continuous 

cable starts from a node connected to the support and ends at the front nodes. Figure 2 shows 

continuous actuated cables (active cables) and spring elements. Active cables are connected to 

the front nodes of the half bridge (Figure 1). The length of each active cable is changed through 

winding or unwinding the cable on a drum that is fixed on moving support (Figure 3). An 

actuation step or a control command is the length changes of the five active cables applied during 

one step of deployment. 

 

Figure 2: (a) Side view of the near-full scale tensegrity footbridge 
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Figure 2: (b) front view with node numbering of the near-full scale tensegrity footbridge 

The structural weight of each half is approximately 100 kg. Both ends move in rail-support 

systems (Figure 3). Struts are made of steel hollow tube section profiles with a length of 1.35 m, 

a diameter of 28 mm and a thickness of 1.5 mm. The steel grade of the struts is S355 with a 

modulus of elasticity of 210 GPa. Cables have a diameter of 4 mm and are made of stainless steel 

with a modulus of elasticity of 120 GPa. The value of spring stiffnesses at the support is 2 kN/m 

and is 2.9 kN/m for other springs. The footbridge has 25 joints per side including 5 inter-module 

joints and 5 support joints. Joints are designed and built to support continuous cables. Joints are 

based on fork-to-fork design with additional components for continuous cables (Figure 4). 

Position measurement has been performed with an optical tracking system. Each half bridge has 

four states of self-stress. 
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Figure 3: Support-rail system and actuator at support 

 

Figure 4: Joint connecting two struts with one continuous cable and two non-continuous cables 

Numerical analysis 

An analysis algorithm has been developed explicitly for deployment of tensegrity modules. In 

this study, dynamic relaxation (DR) (Barnes 1999) with kinetic damping is employed for 
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incremental static analysis. DR is a static analysis method based on the equation of motion, 

where the static solution is seen as the resulting equilibrium state of a damped vibration.  DR has 

been used successfully for hundreds of tent structures and cable stayed bridges. Most modern 

analysis software packages include DR modules. 

Quasi-static actuation and frictionless motion are assumed for deployment. Quasi-static actuation 

means that, due to slow deployment, acceleration and velocity terms in the deployment analysis 

are neglected. Therefore, the dynamic analysis of the deployment may be approximated by a 

series of static analyses. The inputs to the program are current configuration, pre-stress, axial 

stiffness of the elements and loading state. Self-weight is the only loading applied to the structure 

during deployment. 

The DR algorithm was modified to take into account clustered cables and spring elements. A 

detailed presentation of the modified DR method can be found in (Bel Hadj Ali et al. 2011). The 

numerical model does not include the dimensions of joints and consequently, there are modelling 

challenges associated with eccentricity, friction and the effect of strut contact on deployment. 

Although recent work shows that a beam-type model is essential for predicting dynamic behavior 

of compressed members (Ashwear and Eriksson 2014), the elements of structures in this study 

are assumed to be bars with axial forces only since behavior is modeled to be quasi-static. 

Deployment  

During deployment, the shape of structure changes from a compact state to an expanded 

configuration. The goal is to have both halves start from a compact configurations (folded), 

deploy and then become connected without human interaction. An acceptable difference between 

desired position and real position for connection of the joints is 15 mm for a near-full-scale 

structure.  

Deployment and folding are performed through changing the lengths of active cables. Due to the 

helix cable topology, the deployment motion of a hollow-rope system is composed of rotation, 

translation and dilation among the pentagonal faces of a prism. A deployment path can be pre-

defined for both numerical and physical models. Each actuation step is defined as a set of length 

changes of active cables. Each new stable configuration is obtained first through numerical 

analysis. The length changes of active cables are not equal.  

The input parameters for DR analysis are axial stiffness of elements, change of unstressed length 

of cables, and the initial configuration. Two types of DR analyses are conducted to compare the 

test results with those from experimental tests. Numerical analysis with design stresses includes 

the values from Rhode-Barbarigos et al. (2012b). Numerical analyses with measured cable loads 

are performed through introducing values that were obtained from measurements taken from the 

physical model. A tension measurement instrument is employed to obtain cable loads through a 

deformation measurement. 
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Experimental testing  

Several spring stiffnesses were analysed. Figure 5 shows the length of structure when first strut 

contact occurs during folding. The structure is set at its full deployed length of 2 m. Active cables 

are shortened equally and simultaneously. Figure 5 shows that for low spring stiffness, the length 

of the structure at first strut contact is higher than for higher spring stiffness. Higher spring 

stiffness helps reduce the deflection of the structure by increasing the stiffness of the structure. 

An important conclusion is that in addition to topology, deflection (due to self-weight) is a factor 

that influences deployment. 

 

Figure 5: Structural length change due to different values of spring stiffness. 

Figure 6 shows the relative change of position for node 4 over 10 cycles of folding and 

deployment. The cycles are performed with equal length changes of all active cables. The length 

change of active cables for each stage of folding and deployment is ± 0.215 m. Measurements are 

taken at 3 points on the horizontal deployment axis (x). 
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Figure 6: Relative change of positions for Node 4 over 10 cycles of folding and deployment. 
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Each cross in the vertical axis is the difference between the mean position over 10 cycles and the 

value in each cycle.  The two outer lines are placed at ± two standard deviations. With the 

assumption of a t-distribution (distribution law for a finite sample of a population following a 

normal distribution), approximately 95% of values are inside the two outer lines. The standard 

deviations are computed separately for each axis and percentage of deployment. 

There is significant variability for small length changes of active cables. Deployment positions 

cannot be repeated through similar length changes of active cables since the position of Node 4 

changes when the same control commands are applied. Such variation is most likely due to the 

variable effects of friction at the joints. The first measurement has, for each deployment stage, at 

least one position in the three directions (x, y and z) that is more extreme than all other 

measurement values. This difference can be due to the setting of the structure at 100% 

deployment. In order to set the structure at 100% of deployment, unequal length changes of 

active cables had to be applied. The friction effect due to these length changes results in a 

variability that is more than those obtained with equal length changes during the other tests. 

Furthermore, joint movement suffers more friction for the first deployment phase. This behavior 

is therefore representative of a footbridge that remained folded for a period of time. 

Table 1 shows the maximum differences from mean position values.  The largest difference is 

observed at full deployment state.  These values are only for one half of the footbridge. Assuming 

the same variability from the other half, the difference between the positions of two connecting 

nodes could be double in the worst case. At full scale, these numbers would be four times greater. 

This justifies the implementation of active control for connection of both halves. 

Table 1: Maximum difference from mean position values for three deployment states 

Percent deployment Maximum difference [mm] 

State 1 – 60% 9 

State 2 – 80% 22 

State 3 – 100% 28 

 

Table 2 is a comparison between numerical analyses and laboratory test results. Numerical 

analyses (DR) are performed with design stresses and measured cable loads. The length increases 

of all active cables are 100 mm. For the numerical analyses, this length increase of active cables 

is divided into ten steps of 10 mm. Table 2 shows movements of front nodes are almost equal 

when they are calculated through numerical analysis using design and experimental inputs. Table 

2 shows that the position changes for the measurement is less than the numerical analyses. This is 

likely due to the influence of joint friction. Unequal position changes of front nodes influence the 

deployment of the structure. It is concluded that structural behavior cannot be modelled 

satisfactorily using the assumption of dimensionless friction-free joints. 
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Table 2: Nodal position change of front nodes along the x axis for a 100 [mm] simultaneous 

length increase of all active cables. 

Node Assessment type Nodal position change [mm] 

1 

DR, design stresses 105 

DR, measured cable loads 91 

Measurement 79 

   

2 

DR, design stresses 100 

DR, measured cable loads 100 

Measurement - 

   

3 

DR, design stresses 104 

DR, measured cable loads 111 

Measurement 90 

   

4 

DR, design stresses 102 

DR, measured cable loads 94 

Measurement 84 

   

5 

DR, design stresses 103 

DR, measured cable loads 82 

Measurement 66 

 

Table 3 shows the influence of single active cable actuation on position changes along the x axis 

of front nodes. The bold numbers in Table 3 refer to the position changes of nodes due to 

lengthening of active cables that are attached to them. Since the bold numbers are different, nodes 

do not move equally when their closest active cable is actuated. This is likely due to the effect of 

dead load on element movement. Position changes due to lengthening of all active cables 

simultaneously (Table 2) and those with one at a time for all active cables (“Superposition” 

column of Table 3) are not equal. The relative difference between the position change due to 

simultaneous length increase of the 5 active cables and the summation of position change for 

single cable length increase is shown in the last column of Table 3. Since this error is up to 113% 

superposition of control commands is unsuccessful. Therefore, deployment behavior is non-

linearly dependent on control commands. 
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Table 3: Nodal position change along the x axis for a 100 [mm] single cable length increase 

  Nodal position change [mm]  

Node 
Assessment 

type 

Cable 

1 

Cable 

2 

Cable 

3 

Cable 

4 

Cable 

5 

Super-

position 

Relative 

difference % 

1 

DR, design 

stresses 
75 21 23 1 -44 76 38 

DR, measured 

cable loads 
39 31 48 -1 -49 68 34 

Measurement 41 6 17 11 -30 44 80 

         

2 

DR, design 

stresses 
-38 60 15 22 -9 49 104 

DR, measured 

cable loads 
-42 56 31 8 -6 47 113 

Measurement -29 16 25 23 1 36 - 

         

3 

DR, design 

stresses 
-7 -25 39 14 34 55 89 

DR, measured 

cable loads 
-1 -15 42 5 31 63 76 

Measurement -7 0 28 19 15 22 64 

         

4 

DR, design 

stresses 
30 -4 -19 41 28 76 34 

DR, measured 

cable loads 
22 15 -9 8 26 61 54 

Measurement 10 5 2 30 19 66 27 

         

5 

DR, design 

stresses 
26 25 1 -20 70 102 1 

DR, measured 

cable loads 
27 33 12 -4 24 91 -10 

Measurement 18 -3 8 0 12 34 94 
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Two control command sequences for deployment are provided in Tables 4 and 5.  The length 

changes of active cables for various lengths of structure are shown. The last row is the total 

length changes of active cables. Variability of control commands means that the paths between 

folded and deployed positions are not unique. Although the difference between the structural 

length (average position of front nodes along the x axis) at the end of sequence 1 and 2 is 8 mm, 

the cable length changes in sequence 1 differ from sequence 2. Thus control command sequences 

for deployment could be computed to minimize the length change of active cables in order to 

achieve the most control robustness for the in-service position. 

Table 4: Length changes (mm) of active cables during stages of control command sequence 1 

ΔLcable1 ΔLcable2 ΔLcable3 ΔLcable4 ΔLcable5 Structure length  [mm] 

0 0 0 0 0 406 

25 50 50 0 0 416 

50 150 100 50 50 566 

100 0 0 50 150 746 

100 50 150 50 100 911 

50 100 150 50 50 1031 

50 100 0 150 0 1153 

50 100 150 50 50 1253 

150 100 100 100 100 1405 

226 226 0 125 125 1556 

251 251 251 251 251 1819 

376 376 376 376 376 2113 

∑=1428 ∑=1503    ∑=1327 ∑=1252  ∑=1252   

       

Table 5:  Length changes [mm] of active cables during stages of control command sequence 2 

ΔLcable1 ΔLcable2 ΔLcable3 ΔLcable4 ΔLcable5 Structure length [mm] 

0 0 0 0 0 426 

150 100 100 150 75 681 

100 100 0 100 100 828 

50 201 201 0 0 999 

150 50 50 50 150 1127 

0 0 251 251 0 1246 

0 301 0 0 0 1321 

201 50 50 0 251 1465 

100 50 0 100 125 1547 

251 251 251 251 251 1810 

376 376 376 376 376 2105 

∑=1378 ∑=1479 ∑=1279 ∑=1278 ∑=1328  
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Figure 7 shows the position of node 3 along y and z axes for the previous control command 

sequences (sequences 1 and 2). Although their positions along the deployment path are different, 

they reach approximately the same position at the end of deployment. Tables 4 and 5 show that 

the compact configuration has a length of approximately 400 mm. 

 

Figure 7: Positions of node 3 during deployment for control command sequence 1 and 2 
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Rhode-Barbarigos et al. (2012a) studied contact free-deployment path of single-module hollow-

rope system. They showed that many deployment paths leading to various cable-length changes 

are possible. Results presented in Tables 4 and 5 support these conclusions through experimental 

testing.  

Numerical analyses assuming dimensionless joints, as described by results in Tables 4 and 5, 

cannot reproduce test results. Modelling the geometry and behavior of joints is necessary. 

Furthermore, since during deployment, struts slide on each other, this effect needs to be modelled 

in numerical simulations. Figure 8 gives snapshots of deployment of the near-full-scale 

footbridge. 

 

Figure 8: Snapshots of the deployment motion of the near-full-scale active deployable of one half 

of the tensegrity footbridge 



Veuve, N., Dalil Safaei, S., and Smith, I.F.C. (2015). Deployment of a Tensegrity Footbridge. Journal of 

Structural Engineering, 141(11), 04015021 

16 
 

Joints are important components of tensegrity footbridge and they significantly influence the 

behavior of the structure. Struts in tensegrity structures are intended to sustain compressive 

loading. Eccentricities at joints alter the forces through introducing bending in the struts.  

Although much effort has been devoted to reducing eccentricities for service at full deployment, 

struts are subjected to increased bending during folding. Figure 9 shows the bending of a strut 

due to eccentricities at joints when the footbridge is folded. This was not observed during an 

earlier study at 1/10 scale (Rhode-Barbarigos, et al. 2012a). Such phenomena can only be 

observed when near-full-scale structures are studied. 

 

Figure 9: Bending of a strut due to joint eccentricities when the structure is folded. Bending was 

not observed during an earlier study of a structure at 1/10 scale. 

Discussion  

The deployment of one half of a tensegrity footbridge was studied both numerically and 

experimentally. It was shown that integration of clustered-cables and springs provides a feasible 

configuration for a deployable tensegrity footbridge. The control commands for deployment are 

actuation steps in terms of length changes of active cables. Therefore a deployment path was 

created through a series of equilibrium configurations. The number of actuation steps is an 

important parameter since large actuation steps may lead to strut contact while small actuation 

steps lead to an increase in deployment time.   

This study has revealed several challenges for further work and these are discussed briefly below. 

The deployment paths caused by control command sequences are not unique. Therefore, it is 

important to find control command sequences having minimum length changes of active cables 

in order to provide flexibility when active control is needed in service. 

Although continuous cables reduce number of actuators, they provide only partial control over 

element positions and subsequent deployment.  Additionally, when active cables are slack during 

deployment, there is reduced control over their connected nodes.  This could be avoided through 

calculating control commands using an additional criterion of active-cable tension. The relation 
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between time rate of elongation and stress of members should also be investigated for the case of 

continuous cables. This was investigated for a self-stress system without continuous cables and 

external loads (Micheletti and Williams 2007). 

Springs are placed in locations so that they lengthen during folding, thereby assisting deployment 

as they shorten. In this study, there was no control over the length of springs during deployment 

and springs contain little force at the end of deployment. In further testing, the initial conditions 

of the structure will be modified to ensure that springs retain a minimum force at the end of 

deployment.  

Joints influence behavior during deployment. In further work, joint movement that modifies 

deployment will be restricted as much as possible. The current joint design, allows for too much 

movement and further numerical and experimental work will reveal opportunities for modifying 

the degrees of freedom in selected joints. 

Conclusions 

 Experimental testing demonstrates that a continuous cable and spring configuration is 

feasible for deployment of tensegrity footbridge.  Deployability of the system is aided by 

energy stored in springs.  

 Since pre-defined control commands are unsuccessful for achieving desired deployment 

positions, active control is required for correction of deployment paths. 

 The deployment behavior of this structure is non-linear with respect to cable length 

changes and therefore nodal displacements due to control commands cannot be deducted 

from simple superposition calculations. 

 Accurate prediction of deployment requires more sophisticated analytical models than 

those having friction-free dimensionless joints. Also, numerical models should include the 

influence of strut contact, since contact free deployment paths under self-weight have not 

been found.  

 Parameters that govern deployment include self-weight and topology. Spring stiffness 

also influences deployment behavior. 

 It is expected that tests on structures of similar complexity would reveal similar conclusions. The 

methodologies for determining the need for active control, non-linear analysis and explicit joint 

dimension modelling are likely to be applicable to other topologies of structures and other control 

schemes. 
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