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Abstract—We describe the real-time monitoring infrastructure 
of the smart-grid pilot on the EPFL campus. We experimentally 
validate the concept of a real-time state-estimation for a 20 kV 
active distribution network. We designed and put into operation 
the whole infrastructure composed by the following main 
elements: (1) dedicated PMUs connected on the medium-voltage 
side of the network secondary substations by means of specific 
current/voltage transducers; (2) a dedicated communication 
network engineered to support stringent time limits and (3) an 
innovative state estimation process for real-time monitoring that 
incorporates phasor-data concentration and state estimation 
processes. Special care was taken to make the whole chain 
resilient to cyber-attacks, equipment failures and power outages. 
The achieved latency is within 65ms. The refresh rate of the 
estimated state is 20ms. The real-time visualization of the state 
estimator output is made publicly available, as well as the 
historical data (PMU measurements and estimated states). To 
the best of our knowledge, the work presented here is the first 
operational system that provides low-latency real-time state-
estimation by using PMU measurements of a real active 
distribution network. 

Index Terms--Active distribution networks, communication 
network, phasor measurement units, real-time monitoring, state 
estimation, synchrophasors. 

I. INTRODUCTION 

The evolution of distribution networks towards the so-
called active distribution networks (ADNs) requires the 
availability of suitable distributed/centralized processes 
designed to achieve specific operation objectives (e.g., IEEE 
Standards: 1547.4, 1547.6, 2030): (i) optimal voltage control, 
(ii) line congestion management, (iii) fault detection and 
location, (iv) post-fault management, (v) local load balance, 
(vi) network losses minimization. 

These operations are significantly improved if the system 
state is known. In this respect, typical refresh rates of the 
existing SCADA-based state estimation (SE) processes are in 
the order of a few minutes/seconds, whereas the above-
mentioned functionalities’ time frames are between few 
hundreds of milliseconds (fault management) to a few seconds 
(voltage control and line congestions in presence of highly-
volatile renewables). In view of the typical streaming rates of 
PMUs (i.e., in the order of some tens of synchrophasors per 

second, as described in IEEE C37.118 standard), there is, in 
principle, the possibility of developing sub-second SE 
processes that can enable, the definition of new protection and 
control schemes for ADNs. 

However, to the best of the our knowledge, none of the 
contributions listed in Section II below, has proposed and 
experimentally validated the timing latency and accuracy of a 
full real-time 3-phase SE process deployed in a real ADN. In 
this respect, this work contributes the following: (a) describes 
specific PMUs embedding dedicated synchrophasor 
estimation processes designed for ADN applications, (b) 
describes the formulation of a 3-phase discrete Kalman filter 
(DKF) SE algorithm previously developed by the Authors and 
used in the context of this paper, (c) illustrates a dedicated 
communication network engineered to support stringent time 
limits and, finally, (d) describes a dedicated process 
incorporating the phasor-data concentration and state-
estimation functionalities. 

II. STATE OF THE ART 

The literature has produced a number of contributions 
discussing the methodological aspects related to the 3-phase 
state estimation of ADNs. Classic methods used for the 
solution of the 3-phase SE problem are usually based on the 
use of the weighted least squares (WLS) method (e.g., [1], 
[2]). In [3] Dzafic et al. present a new RTSE algorithm based 
on a weighted grouping of measurements. Methods based on 
the use of current measurements that use rectangular 
coordinates (e.g., [4]-[7]) have been proposed too. In [8] Li 
used a 3-phase WLS to make an assessment of the SE 
accuracy as a function of the load-error correlation, the 
availability of RT measurements, pseudo-measurement errors 
and measurement placement. The work presented in [9] 
illustrates a comparison, in terms of estimation accuracy and 
computation time, between a 1-phase equivalent and a 3-phase 
WLS-based SE for both transmission and distribution 
networks. In [10], the authors proposed the use of RT 
measurements with the forecasted loads or pseudo-
measurements to improve the accuracy of SE, and they show 
the impact of power flow and current measurements on bad-
data identification. 



State estimation with PMU measurements is also vastly 
treated in the literature. The deployment, however, of such 
technology in real networks has not yet been largely 
experienced, especially in the distribution networks. The 
implementation, testing and performance assessment of a 
phasor-assisted state estimation for transmission networks is 
provided in [11]. A 3-phase linear-state estimation using 
phasor measurements only is presented in [12]. This is the first 
real implementation able to provide the 3-phase system’s state 
with a refresh rate up to 30 times per second. However, the 
paper presents the results obtained on a transmission network 
and does not mention the possibility of extending such a 
concept to distribution networks. Furthermore, this 
contribution has not assessed the latency of the process as well 
as the accuracy of the SE. 

Few works present a state-estimation process capable of 
operating at the distribution level. In [13] inputs to the state 
estimator are provided by analog measurements and by 
pseudo-measurements provided by load profiles instead of 
PMUs. Microgrid at IIT project (http://www.iitmicrogrid.net/) 
does not comprise real-time state estimation. The work 
presented in [14] reported state estimation only as a future 
work. In addition, the communication network that is 
described is not dedicated nor fully controlled, making the 
whole system unreliable. Therefore, to the best of our 
knowledge, the work presented in this paper is the very first 
deployed real-time state estimator for distribution-networks. 

III. THE SYSTEM ARCHITECTURE 

Our smart grid infrastructure is deployed on the electrical 
network of the EPFL campus. It is a particularly challenging 
distribution network where all the peculiarities of ADN are 
stressed. The lines are short (most of them below 100 m), and 
the load demand is largely variable in function of the hour of 
the day and the weather conditions. Moreover, active power 
injections are present as 2MW of photovoltaic panels are 
installed together with 6MW of combined heat and power 
generation units. These conditions, and the large use of power 
electronics, heavily affect the voltage and current profiles 
which makes the EPFL campus a challenging test bed for the 
developed infrastructure. Figure 1 depicts the map of the 
campus with the feeder that is equipped with PMUs and for 
which the state estimation is performed. 

The whole process starts with the sensors that are 
connected to the medium-voltage side of the transformers. 
Voltage and current scaled waveforms are then fed to the 
PMUs in order to estimate the synchrophasors. Specific 
characteristics of sensors and PMUs are given in Section 
III.A. PMUs encapsulate UDP datagrams according to IEEE 
C37.118.2-2011. Datagrams are transmitted over a secured 
and dedicated communication network (Sections III.B and 
III.C). A dedicated low-latency PDC has been developed 
(Section III.D). It takes care of decapsulation, time-alignment 
and the replacement of missing measurements in order to feed 
the real-time SE with a consistent and complete set of data. 
The SE is based on Kalman filtering technique and it is 
developed in LabVIEW (see Section III.E). The measurements 
sent by the PMUs and the state estimator outputs are saved on 
our servers and made publicly available (Section IV). 

 
Figure 1 - EPFL smart-grid infrastructure. 

A. Phasor Measurement Units 

Phasor measurement unit (PMU) technology is widely 
considered as the most advanced metering infrastructure for 
power systems, because it allows for synchronized and fast 
measurements of frequency, amplitude and phase of the 
power-system waveforms. The requirements defined by the 
IEEE Std. C37.118.1-2011 and its latest amendment IEEE 
Std. C37.118.1a-2014 were originally intended for PMUs 
deployed in transmission networks. In order to allow for the 
use of this technology in ADNs, PMUs need to satisfy severe 
requirements in terms of phase accuracy, harmonic rejection 
and performances during power system dynamics [15]. 

 
Figure 2 - EPFL-campus smart-grid components: (top left figure) GPS 
antenna, (bottom left figure) Altea CVS-24 current and voltage sensors and 
(figure on the right) rack containing the PMU (top shelf), the SHDSL modem 
(middle shelf) and the UPS (bottom shelf). 

 
In this respect we have adopted the PMUs discussed in 

[16] where the Authors have presented a novel synchrophasor 
estimation algorithm that improves the performances of the 
so-called interpolated-DFT method by means of a specific 
compensation scheme for the spectral interference produced 
by the negative image of the spectrum. In [16] the 
synchrophasor estimation algorithm is presented, together 
with its deployment in a National Instruments CompactRIO 
9068, composed by a reconfigurable Artix-7 FPGA and a 
dual-core ARM Cortex-A9 processor and equipped with a 
customized Linux-RT OS. The chassis has been equipped 
with a stationary GPS unit (NI-9467) for the synchronization 
to the UTC-time and two analog input modules (NI-9215) 
characterized by an input range of ± 10 V and a sampling 
frequency of 50 kHz (see Figure 2). The synchrophasor 
estimation algorithm has been fully deployed on the FPGA 



target only, letting the CPU free to perform any other task 
such as the streaming of the estimated quantities based on the 
protocol specified by the standard. The experimental 
validation presented in [16] demonstrates that the developed 
PMU prototype exhibits peculiar characteristics that enable 
its use in ADNs. In particular, this PMU satisfies every 
requirement defined in the standard for class-P PMUs. 

In order to interface the PMU analog input modules with 
the power-system waveforms (i.e., 3-phase nodal voltages 
and nodal injected currents), the high-voltage/current signals 
need to be transformed to low voltage signals with the 
minimum amplitude/phase distortion possible. In this respect, 
an improved version of the Altea CVS-24 [17] was selected 
as the one that offers the best performances at a reasonable 
cost and size. These sensors are 0.1-class compliant (Figure 2 
shows a sensor installation). The connection between the 
sensors output and the PMU has been made by means of 
dedicated shielded-cables of equal fixed length for all the 
substations. The PMU synchronization is achieved by means 
of dedicated GPS installations for each electrical substation 
(see Figure 2). The connection between the GPS antenna 
mounted on the rooftop and the PMU was designed using 
RG213 cables in order not to attenuate the GPS signal also 
with more than 100 meters of cables. The cable length delay 
was suitably compensated on the PMU side. 

B. Communication Network 

We built a dedicated communication network for security 
and robustness (the campus intranet is not secured in case of 
power outages). We use IPv6 rather than IPv4 in order to 
prevent future transition issues. We avoided expensive 
cabling deployments by re-using existing twisted pair cables, 
originally installed for telephony. These cables are passive 
and are star-wired from a central point, the “PBX room”, 
where backup power is available. Communication over 
twisted pair cables uses the single-pair high-speed digital 
subscriber line (SHDSL) technology, as these cables are too 
long for Ethernet.  Traffic from all PMUs is concentrated at 
the SHDSL concentrators (called DSLAMs) located in the 
PBX room. This would also be the natural place to locate the 
PDC and SE machines; however, we have only very 
restricted access to it. Thus, we had to place the PDC and SE 
machines in a more convenient location; for communications 
from the PBX room to PDC, we had to use more expensive 
optical fibers at 100 Mb/s, as the bitrate of SHDSL (2 Mb/s) 
is not sufficient here. The whole network is resilient to up to 
8 hours of power outage; it is traffic-engineered to ensure 
enough capacity for the generated traffic. 

The entire communication network is in fact duplicated, 
as seen in Figure 3. We developed an IP version of the 
parallel redundancy protocol, called IPRP [18]; it takes care 
of duplicating UDP packets (at PMUs) and removing 
duplicates (at the PDC). This provides 0-ms repair of packet 
losses. We implemented IPRP as a transport layer solution in 
the Linux operating systems of the PMUs and PDC; this has 
the benefit of not requiring any changes to any PMU/PDC 
applications or to any network devices. 

Raw measurements and state estimator outputs are made 

public through a web interface1. Every stored file contains 
one hour of data; it is a self-explanatory text file that is 
digitally signed.  

 

 
Figure 3 - EPFL-campus smart-grid communication network. 

C. Cyber-security 

We have also put security mechanisms into place to 
ensure that the ICT infrastructure is resilient to insider and 
outsider cyber-attacks. The security mechanisms we 
implement guarantee that access to all devices in the ADN is 
limited only to authorized personnel. Each authorized 
personnel is assigned separate user credentials; everyone is 
held accountable for their activities in the network. 
Accountability is enforced by implementing a logging 
mechanism to record each and every activity a user performs 
and by analyzing the log data to identify suspicious activities.  

We have also implemented network-access control 
mechanisms to prevent an outsider from gaining access to the 
AND that uses a malicious (rogue) device. All devices 
directly connected to the ADN are authenticated using their 
credentials (digital certificates) before they start any sort of 
communication with any device in the network. The digital 
certificates are also used to secure the communication 
between the field devices (PMU’s) and the PDC. DTLS is 
used for application-layer (end-to-end) secure 
communication. We also implement MACSec for hop-by-hop 
security in order to ensure that bogus traffic injected by a 
rogue device is discarded at the next switch. This prevents 
DoS attacks because such traffic does not propagate beyond 
the first link where the traffic is injected.  

The ADN’s communication infrastructure is also 
physically separate from the rest of the campus’ public 
communication infrastructure. There is only minimal 
communication with the public network in order to publish 
the synchrophasor data, as well as the SE output, to the 
outside world. This communication passes through a single 
tightly secured interfacing point (security gateway) that opens 
only the required ports (Figure 3). This security gateway 
serves as a protective barrier by effectively shielding the 
ADN from any incoming attacks from the public network. 

D. Phasor-Data Concentrator 

The phasor-data concentrator (PDC) collects 
synchrophasor data and other quantities (i.e., frequency, rate-
of-change-of-frequency, nodal injected/absorbed powers, 

                                                           
1 http://smartgrid.epfl.ch/ 



etc.) estimated by the PMUs and transmits the information to 
other applications such as visualization tools or state 
estimator (see Section III.E). The PDC deployed on the EPFL 
campus was fully developed by the Authors in LabVIEW and 
it is hosted, together with the state estimation, on a dedicated 
workstation. Among other functionalities, the PDC is able to 
communicate with the PMUs and decapsulates their IEEE 
C37.118.2 datagrams. The synchrophasors are aggregated and 
time-aligned in a circular buffer, according to their 
timestamps. A subset of these measurements is then pushed 
to the state estimator with minimum time latency which 
distribution is shown in Section IV. Indeed, when dealing 
with real communication networks and devices, 
measurements can be delayed due to non-determinism in the 
data streaming, network traffic, different reporting rates 
among the devices, etc. In this case, there is no way to 
determine the exact amount of time the data packet takes to 
be received. For this reason, an adaptive algorithm was 
developed that determines, based on an event-timeout, the 
amount of time each dataset has to actively wait for the rest 
of phasors with the same timestamp. The timeout expires 
with the arrival of any measurement with a more recent 
timestamp compared to the one that the buffer is currently 
waiting for. When the event is triggered, the current dataset is 
forwarded to the SE application without waiting for the 
eventual missing measurements to arrive. This solution 
always ensures that the available measurements will be 
forwarded in an acceptable time range (~20ms in case of 
PMUs streaming at 50 fps) thus increases the determinism of 
the process. 

Finally, we note that the machine hosting the PDC and SE 
is GPS synchronized, hence we are able to identify and solve 
eventual bottlenecks in the whole chain that might result in an 
increased total latency (see Section IV). 

E. State Estimation 

The state estimator receives the data from the PDC and 
estimates the system state x ∈ ℝ3x(2n), defined as 
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1, , 1, ,, , , , ,
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Here n is the number of buses and , , , ,
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i r i imV V  are the 3-

phase real and imaginary parts of the voltage phasor at bus i. 
Two different SE methods were implemented in the context 
of this project, i.e., the classic weighted least squares (WLS) 
and the discrete Kalman filter (DKF). However, after 
assessing off-line the two SE algorithms discussed in [19], we 
find that the latter has provided more accurate estimations; 
therefore DKF has been finally adopted over WLS. 

As known, DKF with no control input addresses the 
problem of estimating the state of a discrete-time system 
process governed by the following set of linear stochastic 
equations (e.g., [20]): 

 1 1k k k− −= +x x w  (2) 

 k k k= +z Hx v  (3) 

where: 
• k is the time-step index; 
• w ∈ ℝ3x(2n)  represents the process noise, p(w)∼N(0,Q); 
• z ∈ ℝm represents the set of measurements; 
• v ∈ ℝ m represents the measurement noise, p(v)∼N(0,R); 

The adopted DKF-SE is suitable for 3-phase systems and 
relies only on nodal synchrophasor measurements provided by 
PMUs; therefore z depends linearly – through matrix H - on 
the system state x and includes nodal voltage and injected 
current phasors. As a consequence, H consists of constant 
elements, namely: zeroes and ones for the part that is related 
to the nodal voltage measurements, and the admittance matrix 
elements for the part related to the measured injected currents. 

Equation (2) represents the DKF process model, assumed 
to be an autoregressive integrated moving average (ARIMA) 
model of order (0,1,0) (see [19]). 

The two noise-covariance matrices R and Q influence 
significantly the DKF-SE accuracy: R = diag (σ1

2
,…, σm

2) 
represents the accuracies of the measurement devices (PMU + 
sensors); each term σi

2 is inferred by analyzing the 
measurement noise at the PDC side. 

Q represents the uncertainty introduced by the process 
model to predict the system state and it is not trivial to 
determine. Therefore, in this paper, we assess Q at every time-
step as proposed by Method #2 in [19]. 

IV. PERFORMANCE EVALUATION 

In this section, we present the performances of the entire 
monitoring system by making reference to a typical dynamic 
observed on the EPFL campus within a time window of 5min.  
The state estimation is performed by using the following 
measurement set: voltage phasors in bus PC-2 and injected 
current phasors in all the buses.  

Figure 4 shows the profiles of the voltage magnitude and 
phase at bus EL-E, phase C, within a time window of 10s. It 
comprises the measured and the estimated states (similar 
results are obtained for the other buses and phases). The 
measurement noise filtering action of the KF can be clearly 
observed.  

In order to evaluate the SE accuracy, we compare the 
results obtained by two state estimators. The first one uses the 
measurement set defined before (i.e., voltage phasors in bus 
PC-2 and injected current phasors in all the other buses), and 
the second one uses all voltage and current phasors measured 
by PMUs in all the nodes. The state estimated by the latter is 
assumed to be the reference. Indeed, it relies on a 
measurement set with almost two times the amount of 
information compared to the first. The distributions of the 
differences of the estimated nodal injected/absorbed powers of 
these estimators is shown in Figure 5 with respect to the whole 
5min time window. The order of magnitude of the errors of 
nodal absorbed/injected powers are in the range of hundreds 
of W/VAr. Considering that the typical values of these 
quantities in the considered network are in the range of a few 
kW/kVAr to tens of kW/kVAr, we obtain an overall accuracy 
of the estimated state in the range of few percents. 



 
Figure 4 - Magnitude and phase of the phase-to-ground voltage of bus EL-E, 
phase C: comparison between measured and estimated states (line-to-line 
base voltage equal to 20kV). 

 
Figure 5 - P, Q estimation errors: mean and standard deviation. 

 
Figure 6 shows the latency of the overall process expressed 

as cumulative distribution functions (CDFs) of time 
differences between specific sections of the above-described 
chain. As it can be seen, the PMU data sampling and 
synchrophasor estimation (t1 and t2) are deterministic as they 
are performed on an FPGA [16]. The data encapsulation (t3) is 
the most non-deterministic contribution to latency. A delay of 
approx. 1.5ms is added by data streaming (t4). The buffering in 
the PDC (t5) allows us to reduce the non-determinism added 
by the encapsulation. The overall latency has a mean value of 
61ms with a standard deviation of 1.8ms. 

 
Figure 6 - CDF of time latencies. 

V. CONCLUSION AND FUTURE WORK 

The paper has illustrated the architecture for the real-time 
monitoring of the medium voltage network of the EPFL 
campus. This network was selected because it contains all the 
peculiarities of an ADN, namely short lines, high-volatile load 
demand, active power injections due to 2MW photovoltaic 
panels, and 6MW of combined heat and power generation 
units. The monitoring system that we built estimates the 
network state by using only PMU measurements in order to 
achieve extremely low latencies and high state estimation 
frame rates. To the best of our knowledge, this contribution is 
the first one to illustrate, and experimentally validate, the 
accuracy and time latency of a full real time 3-ph SE process 
deployed into a real ADN. The performances of the developed 

system appear compatible for its coupling with real-time 
protection and control functionalities expected to be 
developed for ADNs. 
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