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Abstract

Generalized Additive Models (GAM) are a widely pop-
ular class of regression models to forecast electricity
demand, due to their high accuracy, flexibility and inter-
pretability. However, the residuals of the fitted GAM are
typically heteroscedastic and leptokurtic caused by the
nature of energy data. In this paper we propose a novel
approach to estimate the time-varying conditional vari-
ance of the GAM residuals, which we call the GAM?
algorithm. It allows utility companies and network op-
erators to assess the uncertainty of future electricity de-
mand and incorporate it into their planning processes.
The basic idea of our algorithm is to apply another
GAM to the squared residuals to explain the depen-
dence of uncertainty on exogenous variables. Empiri-
cal evidence shows that the residuals rescaled by the
estimated conditional variance are approximately nor-
mal. We combine our modeling approach with online
learning algorithms that adjust for dynamic changes in
the distributions of demand. We illustrate our method
by a case study on data from Réseau de transport
d’électricité, the operator of the French transmission
grid.

1 Introduction

Forecasting electricity demand is a key instrument in opera-
tional and planning processes of electric utilities. In this pa-
per, we focus on short-term forecasts (with a forecast hori-
zon of 24-48 hour ahead), which are required, e.g., by elec-
tricity suppliers to bid generation/load into electricity mar-
kets, and by network operators for day-ahead outage plan-
ning. Due to an ever growing population and carbon emis-
sion, however, the electricity sector has been changing dra-
matically in the last few years, which made electricity de-
mand forecasting even more challenging. Electric vehicles
(EVs), for example, pose a new challenge to electricity grids
by drawing a large amount of energy in a very short time.
Charging one EV can consume 32 kWh, which is compa-
rable to one household’s daily consumption (Ramchurn et
al. 2012). Moreover, the integration of renewable energy
sources to the grid, as an effort to reduce our dependency on
fossil fuel, adds additional complexity to efforts at balancing
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supply and demand, since their generation is intermittent and
unpredictable.

Therefore, it is imperative for utility companies and net-
works operators to forecast not only the conditional expecta-
tion but also the uncertainty of the future demand, compute
the risk/benefit associated with it, and incorporate it into
their planning process. However, a large body of literature
so far has been focused on single-valued, “point” forecast to
estimate the conditional mean of the future demand. Com-
pared to the point forecast, forecasting uncertainty is more
challenging since it requires us to estimate the entire dis-
tribution of the future demand. In this paper, we propose a
novel approach to address the problem by modeling the time
varying conditional mean and variance of the future demand
using Generalized Additive Models (GAM).

Among other forecasting methods in the literature (see
Section 2), GAM has been increasingly popular due to
its accuracy, flexibility, and interpretability (Wood 2006;
Hastie et al. 2009). Those advantages have made GAM at-
tractive also for energy analytics where understandability is
a key criteria for a model to be deployed by utility compa-
nies. While other (accurate) models are typically opaque and
difficult to interpret, GAM consists of transfer functions that
are easy to understand.! Additionally, the “transparency” of
GAM opens possibilities for practitioners to discover new
insights about the relationship between some exogenous and
response variables, or the other way around, to spot a po-
tential overfitting when a relationship does not conform a
well-established physical law.

The contributions of this paper are as follows. We propose
a novel GAM? (or GAM squared) algorithm to forecast un-
certainty in electricity demand (Section 3.1). First, we use a
GAM to model the conditional expectation of the demand.
The residuals of the fitted GAM, however, are typically het-
eroscedastic and leptokurtic due to the nature of energy data.
To this end, we apply a second GAM to the squared residu-
als to explain the dependence of uncertainty on exogeneous
variables and estimate the (time-varying) conditional vari-
ance. Under normality assumptions, the estimated condi-
tional mean and variance allow us to construct prediction
intervals. Although we showcase our method specifically for

'See, e.g., Figure 1 in (Ba et al. 2012), Figure 4 in (Cho et al.
2013).
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electricity demand, it can also be applied to other domain, as
long as the rescaled residual is (approximately) normal. The
online learning mechanism in Section 4.1 is based on (Ba et
al. 2012). Then, we propose a novel algorithm that adjust the
prediction intervals to the non-stationary nature of electricity
demand (Section 4.2). Finally, we illustrate the effectiveness
of our approach on real electricity demand data provided by
Réseau de transport d’électricité, France (Section 5).

2 Related work

Electricity demand forecasting There exists a rich body
of literature on point forecasts, i.e., forecasting the mean de-
mand, typically conditional on a number of exogeneous vari-
ables such as time of day, weekday, temperature etc. Various
techniques have been considered and applied both in experi-
mental settings and real system designs, e.g., regression (Pa-
palexopoulos and Hesterberg 1990; Hong 2010), Artificial
Neural Networks (Khotanzad et al. 1997; Hippert, Pedreira,
and Souza 2001), (Seasonal) ARMA (Huang and Shih
2003; Taylor 2010), Boosting (Taieb and Hyndman 2014),
Support Vector Regression (Chen, Chang, and Lin 2004;
Sapankevych and Sankar 2009), and GAM (Fan and Hyn-
dman 2012; Ba et al. 2012; Cho et al. 2013). With the on-
going roll-out of smart metering in many countries world-
wide, there are also other approaches that aim to improve
the demand forecast by first segmenting customers into sev-
eral clusters, forecast each cluster separately, and then ag-
gregate the forecast from the clusters into a single fore-
cast (Misiti et al. 2010; Humeau et al. 2013; Alzate and
Sinn 2013). Some other approaches have also used demo-
graphic/survey information (Mohamed and Bodger 2005;
Kolter and Ferreira 2011; Jarrah Nezhad et al. 2014).

Probabilistic forecasting Gneiting and Katzfuss (2014)
provide a good overview on probabilistic forecasting. It
has been an increasingly important direction to model un-
certainty in various fields, such as healthcare (Jones and
Spiegelhalter 2012), politics (Montgomery, Hollenbach, and
Ward 2012), weather (Palmer et al. 2005; Warner 2011),
and finance (Groen, Paap, and Ravazzolo 2013). Probabilis-
tic forecasting has also drawn more and more interest in
the energy domain, e.g., for long-term (Hyndman and Fan
2010; Hong, Wilson, and Xie 2014) and short-term elec-
tricity demand forecasting (Fan and Hyndman 2012), so-
lar power (Bacher, Madsen, and Nielsen 2009), and wind
power forecasting (Wytock and Kolter 2013). While this pa-
per was being written, even a public competition has been
dedicated to probabilistic energy forecasts.” Probabilistic
forecasts typically rely on computationally expensive ap-
proaches such as simulation, bootstrapping, or ensemble
forecasting, which all require running multiple forecast to
generate prediction intervals. In contrast, our approach con-
structs prediction intervals directly using the estimated con-
ditional mean and variance. Thus, it does not require multi-
ple runs of forecasting simulations/scenarios.

2See  GEFCom2014, http://www.drhongtao.com/
gefcom.

3 Modeling uncertainty
3.1 The GAM? algorithm

We use the following general regression model for electric-
ity demand:

Vi = p(xe) + oz )es QY

where y; is the demand at time ¢, x; is a vector of covariates
(e.g., weekday, time of day, temperature, etc) and ¢, is the
error, which we assume to have zero mean and unit variance.
Note that under this assumption, the conditional mean and
variance of Y; (given x;) are obtained by

EYi] = ple),
Var(Y;) = o%(xy).

In practice, the functions p(-) and o2(-) are unknown and
need to be estimated from empirical data. A wide range of
methods has been explored in the literature for modeling the
conditional mean demand function p(-), including Artifical
Neural Networks, Support Vector Regression, seasonal time
series models, and semi-parametric regression. In this paper,
we use GAM and express the conditional mean function as

I
F(u(zy)) = Zfz‘(l’t),

where F'(-) is a link function (e.g., the identity or logarithm
function). The f;(-) are called transfer functions and have
the following form:

filz) = LgeanBibi(ze). ()

Here 1(,) denotes the indicator function which returns 1 if
the expression « is evaluated to true and 0, otherwise, and
b;(-) is a vector of basis functions (we mostly use cubic
b-splines), typically depending on one or two continuous
variables in the vector of covariates z;. The indicator func-
tion allows for “switching on/off” transfer functions, e.g., to
model the effect of the time of day depending on the week-
day. See the experimental sections for examples.

We learn the GAM model using the mgcv package in R.
This gives us an empirical fit fi(-) of the conditional mean
function p(-). In order to forecast the conditional mean at
time ¢, given the vector of covariates x;, we calculate

Yr = (). 3)
The forecasting accuracy can be evaluated by considering
the errors 3j; — y; (or statistics thereof) on a held-out part of
the training set.

Next, we focus on the uncertainty term z; := o(x:)e; in
Eq. 1. For now, our only assumption on the random variable
€, 1s that it has zero mean and unit variance. We will discuss
further assumptions (and their empirical justifications) be-
low. For modeling the conditional variance function o2(-),
we use another GAM model,

J
02(3%) = Zgj(l“t)-

where the transfer functions g; have the same form as the
fi in Eq. 2. Note that the functions y(-) and o(-) may de-



pend on different subsets of the covariates z,. We will see
examples in the experimental sections.

In order to fit a function 52(-) to empirical data, we pro-
ceed as follows:

1. We fit a function fi(+) for the conditional mean demand,
as explained above.

2. We calculate empirical residuals z; = 4z — y.

3. We fit a GAM model to the squared empirical residuals
%2, again using the mgcv package in R.

Given the covariates z;, we use this model to compute the
estimate 52 (z;) of the conditional variance. Note that a simi-
lar two-stage estimation procedure, based on non-parametric
regression, was proposed in (Fan and Yao 1998). Our mod-
eling approach takes into account the dependency of uncer-
tainty on exogenous variable. In particular, the variance of
electricity demand is typically higher during peak periods
such as in the evening or on days with extreme tempera-
tures. In statistical terms, such time-varying variance effects
are known as heteroscedasticity. Normalizing z; by & (x+)
can be thought of a way to scale the empirical residuals such
that the rescaled version has zero mean and one standard de-
viation.

Distributional assumptions So far we have been only as-
suming zero mean and unit variance of €;. If we assume
normality, the conditional mean and variance uniquely pa-
rameterize the entire conditional distribution of y; given x;.
As we show in the following paragraphs, this allows us to
construct one- and two-sided prediction intervals. Without
assuming normality, the conditional variance provides some
information about the dispersion (and hence some quantifi-
cation of uncertainty), which can be used, e.g., by apply-
ing Chebyshev’s inequality to make probabilistic statements
about deviations of the actual demand from its mean value.
An empirical analysis in the experimental section shows sta-
tistical evidence that the normality assumption is indeed jus-
tified.

Another comment: in this paper, we only focus on
marginal distributions, i.e., characterizing the uncertainty
at one particular time point . In order to make statements
about the uncertainty of demand in a time interval T =
{t1, ..., t|7|}, one would have to make assumptions about the
dependency structure of the process {¢; }, however, this goes
beyond the scope of this work.

Prediction intervals Let p € [0, 1] and ¢(p) be the quan-
tile function of the standard normal distribution, i.e., if X
has a standard normal distribution, then Pr(X < ¢(p)) = p.
We construct the one-sided prediction interval at the p - 100
percentile for Y; as follows:

o1 (e, p) = fi(ze) + q(p) - T(xy). )

If the estimates i(-) and &2(-) are statistically consistent
and ¢; follows a standard normal distribution, then we have
Pr(Y; < ¢{(xt,p)) = p. In the following, whenever the
context is clear, we omit x; and write ¢; (p) instead.

Similarly, the rwo-sided prediction interval at the p - 100
percentile is constructed as:

¢ (x4,p) = Alze) £ q((L = p)/2) |- 3(X]). ()
Whenever the context is clear, we omit x; and refer to the

right endpoint of the interval as ¢?* (p) and to the left end-
point as ¢?" (p), respectively.

3.2 Evaluation metrics

Practitioners, e.g., trading power demand/supply in day-
ahead electricity markets, require reliable prediction inter-
vals. A key performance indicator is: Does the prediction
interval for the 95 percentile, in the long run, cover the de-
mand indeed 95% of the time & Additionally, smaller inter-
val sizes are preferred over too conservative uncertainty es-
timates, since they generally lead to more efficient opera-
tional decisions. The pinball loss function is widely used in
the literature to assess the accuracy of probabilistic/quantile
forecast (Koenker and Bassett 1978; Takeuchi et al. 2006).
However, it does not express how reliable or how wide the
prediction intervals are, and thus provides only limited in-
sights into the quality of uncertainty forecasts. To this end,
we propose evaluation metrics that measure explicitly the
quantities of interest above, i.e., the coverage accuracy and
the width of the intervals.

Empirical coverage We define the empirical one-sided
coverage of our estimated intervals for the p - 100 percentile
during a time period T = {t1,...,t|7|} as:

1
ci(p,T) = [ Z Ly <o) (6)
teT

This can be seen as an estimate of Pr(Y; < ¢;(p)) over a
time period 7. The closer the coverage is to p, the better.
Similarly, the empirical two-sided coverage is defined as:

1

c(p,T) = il D e my<n < () )
teT

Similar to the one-sided case, we can see this is an estimate
of Pr(¢?V(p) < Y: < ¢?*(p)) over a time period T, and
the closer this coverage is to p, the better.

Coverage absolute error (CAE) Given the estimates of
one- and two-sided coverages for the p-100 percentile during
a time period 7', we define the CAE of the one-sided interval
as |p — ¢1(p, T)| and the CAE of the two-sided interval as

|p - 02(paT)"

Mean percentage width (MPW) We define the MPW
of the one-sided interval at the p - 100 percentile as:
17 e |01 (2e, ) — ()], and the MPW of the two sided

interval as: 57 e (67°(p) — 677 (p)). Note that, we

3See also (Wytock and Kolter 2013; Weron 2014). Note that,
reliability over other percentiles can be expressed similarly, we use
95 percentile only as an example.



divide the latter by two so that it has the same dimension
as the one-sided version.

4 Online learning
4.1 Adaptive forecasting of electricity demand

In order to track trends in the mean demand and keep the
forecasting models up to date, we deploy the online learn-
ing algorithm for Additive Models introduced in (Ba et al.
2012). The basic protocol we have in mind is the follow-
ing: every day at midnight (one could also choose a different
time), we provide demand forecasts with uncertainty for the
next 24 hours. After the 24 hours have elapsed, we use the
observed actual demand values to update our model.

The online learning algorithm by (Ba et al. 2012) works
as follows: write the empirical function for the conditional
mean as linear combination of model weights and basis
functions:

ie(w) = B blz)

Note that here the model weights Bt have a time index ¢.
Given the vector of covariates x; and the actual demand
value y,, the model weights are updated using the formula

Bt+1 = Bt + 9, (ye — Be(zt))
where g, denotes the Kalman gain
_ P.b,
90 = TP,

w € (0,1] is a parameter of the algorithm called the forger-
ting factor, and P is the precision matrix which is updated
using the iterative formula

P, = wfl[Pt *gtthPt]-

The vector 3, and the matrix Py can be either set to default
values, or calibrated on a batch of historical data by fitting a
GAM and taking the model parameters and sample precision
matrix as initial values.

The forgetting factor w allows for discounting of past ob-
servations: If w = 1, then all observations are weighted
equally, but the smaller w, the more weight will be given to
recent observations. In our experiments, we choose w using
the rule of thumb

1
1—w’

e.g., if we have hourly data and hence 365 - 24 observations
per year, we choose w = 0.9998858.

number of observations per year =~

4.2 Adaptive construction of prediction intervals

Next, we outline our approach to adapt the prediction inter-
vals to the non-stationary nature of the electricity demand.
That is, when the prediction interval achieves the desired
coverage, then the adaptive construction algorithm practi-
cally has no effect. On the other hand, when the prediction
interval starts to cover lower or higher percentile than ex-
pected, the algorithm adjust the interval by gradually widen-
ing or narrowing it.

Let us denote the empirical coverage as described in Eq. 6
and 7 as c. Then, the coverage ¢ that we should target for the
next time periods (or construction horizon) h to cover the
desired p portion of the data (or the p - 100 percentile) is
given by:

ac+(l—a)c = p
. p—ac ®)
& = )
l-«

where we call « € [0,1) the aggressivity parameter. The
higher the aggressivity parameter «, the more eager we are
in adjusting ¢ to cover the p- 100 percentile. The construction
horizon h should be equal to or greater than the forecasting
horizon. Additionally, since Eq. 8 might yield values smaller
than O or greater than 1, we set the minimum value of ¢ to
€, and the maximum value to 1 — &, where ¢ is a positive
number close to zero.*

Let g be the quantile function of the standard normal dis-
tribution. Then, for the next time periods h, we construct the
(adaptive) intervals as follows.

Adaptive one-sided interval We define the adaptive one-
sided interval as

o1 (e, p) = filae) + q(@) - 5(xy), 9)

i.e., we modify the one-sided interval construction in Eq. 4
by using ¢(¢) instead of ¢(p).

Adaptive two-sided interval Similarly, we define the
adaptive two-sided interval to cover p portion of the data
as

67 (ze,p) = i(Xe) £ ¢(1=9)/2) - (w0),  (10)
i.e., we modify the two-sided interval construction in Eq. 5
by using ¢((1 —¢)/2) instead of ¢((1 — p)/2).

5 Experimental results

We focus on day-ahead forecasts, where the demand forecast
and its prediction interval for each hour for the next 24 hours
are delivered once per day at a specific time of day (e.g.,
midnight).

5.1 Dataset

We use the publicly available dataset provided by the Réseau
de transport d’électricité (or simply RTE dataset)® which
contains the national electricity demand of France from
January 2003 to December 2012. While the original data
is recorded every 30 minutes, we aggregated the measure-
ment into hourly measurements. The resulting time series is
shown in Figure 1: in (a) one can see clear seasonal cycles
over the 10 years, while (b) shows typical daily patterns of
electricity demand. Notice the overall increasing trend in de-
mand and the unusually high peak in winter 2011/2012 that

*In our experiments, we use &€ = 0.0001.

SSee http://clients.rte—-france.com/lang/an/visiteurs/
vie/vie_stats_conso_inst. jsp (aCCCSSCdZ 2014-02-28). See also
our supplementary materials at https://github.com/tritritri/
uncertainty.



MWh
7e+04 9e+04
| |

5e+04
1

3e+04
1

2003 2004 2005 2006 2007 2008 2009

Time (years)

(a)

2010 2011 2012 0 50 100 150

Time (hours)

(b)

Figure 1: Hourly electricity demand in France; (a) the complete view of the dataset (from January 2003 to December 2012), and (b) the first

week of the dataset.

Table 1: Our out-of-sample, non-overlapping, rolling window test
period.

Eval. Train period Test period
#1 Jan 2003 - Dec 2010  Jan 2011 - Dec 2011
#2 Jan 2004 - Dec 2011  Jan 2012 - Dec 2012

are interesting challenges for evaluating the effectiveness of
our online learning mechanisms.

5.2 Forecasting uncertainty

We evaluate the accuracy of our model using out-of-sample,
non-overlapping, rolling window test periods. There are two
evaluation windows (see Table 1). We use the first eight
years as the train period and the subsequent year as the test
period.

Modeling the conditional mean In this experiment, we
model the conditional mean of the electricity demand using
the following GAM:

log(E[Y]) = By + BitmrwDayType,+
8
>~ j=1 L(payType, =) f1,j (HourOfDay, )+
f2(TimeOfYear;) + f3(TempC,, Humidity,)+
fa(TempC,, Hour0fDay,) + f5(LagNSameDTLoad, )+

Z?=1 1(DayTypet:j)f6-,j (LagLoadt),

(1)
The covariate DayType is a categorical variable with 8
values that represent the seven days of the week and public
holidays, tmrwDayType models transitions between differ-
ent day types, LagLoad is the load for the same hour of the
previous day, and LagNSameDTLoad is the average load for
the same hour of the previous two days with the same day
types (i.e., weekday/weekend). The covariate TempC (and
Humidity) are the weighted average of the temperature (and
the humidity) of the 6 biggest cities in France, proportional
to their annual energy consumption. This model achieves a
Mean Absolute Percentage Error (MAPE) of 1.65 (averaged

over the two test periods).
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Figure 2: Normal Q-Q plot of (a) the empirical residuals Z;, (b)
the rescaled residuals €;.

Modeling the conditional variance As described in Sec-
tion 3.1, we obtain the estimated conditional variance func-
tion 2 (-) by fitting a second GAM to the squared empirical
residuals Z7. We model it as follows:

log(E[2?]) = Bo + B1DayType,+
2?21 1(payType, =j) f1,j (Hour0OfDay, )+
f2(TimeOfYear;) + f3(TempCy, Humidity, )+
fa(TempC,, Hour0fDay, ).
(12)

To justify our normality assumption and evaluate the ef-
fectiveness of our model above, we show the normal Q-Q
plot of the empirical residuals Z; (Figure 2a) and the rescaled
empirical residuals €; (Figure 2b). The rescaled residuals
are indeed much more normal than the original residuals Z;.
Next, to evaluate the accuracy and the width of the predic-
tion intervals we compute their CAE and MPW. Figure 3
shows that the coverage error (CAE) is around 1%-2% (ap-
proximately at the same level as the forecasting error for the
conditional mean) with lower error and higher interval width
(MPW) in the tail. Moreover, note that our MPW are fairly
small (mostly around 3%-4%). For instance, if the MPW at
the 95 percentile is around 4% and the average demand is
around 55000 MWHh, then on average, the two-sided predic-
tion interval for the 95 percentile is around [52800, 57200]
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Figure 3: The mean percentage width (MPW) and the coverage
absolute error (CAE) of the estimated (a) one- and (b) two sided
prediction intervals, averaged over the two test periods.
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Figure 4: The forecasting error (MAPE) over time for the two
models, i.e., with and without online learning. The online learning
mechanism succeeds to keep the forecasting error low over time.

MWh.

5.3 Online learning

Although we have already relatively small prediction errors
(19%-2%), this high accuracy might not be sustained over a
long period time. In a real-world implementation, a drop in
model performance could be caused by trends and dynamic
changes in the way people consume electricity, e.g., related
to new electricity tariffs, the emergence of new appliances,
or changes in macroeconomic conditions. In this section, we
show the effectiveness of the online learning mechanism in
addressing these challenges and maintaining high forecast-
ing accuracy. For this experiment, we use the first two years
of the RTE data set as the train period and the last eight years
as the test period.

Figure 4 shows the forecasting error (MAPE) of both
models, without and with online learning. Although at the
beginning both models have similar performance, the MAPE
of the model without online learning continues to increase
over time, whereas with online learning we are able to keep
the error low. Intuitively, using the online learning mecha-
nism, the model is able to adapt to the dynamic changes of
the electricity demand, and thus prevent the MAPE from in-
creasing.

Next, to evaluate the effectiveness of the adaptive con-
struction of the prediction intervals, we compute the cov-

0.49807914
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0.09516175¢ T 0.09922010
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Figure 5: Empirical coverage (a) without and (b) with adaptive
interval construction over time. The solid lines represent the two-
sided coverages for the (from top to bottom) 90, 80, ..., 20, and 10
percentiles. The numbers on the right hand side show the empirical
coverages at the end of the test period. The dotted lines are the bi-
nomial (95%) confidence interval for each percentile, which serve
as a guide on approximate ranges of acceptable coverages.

erage of the intervals without and with the adaptive con-
struction for various percentiles, i.e., 90, 80, ..., 20, 10 per-
centiles. For the adaptive construction, we use the param-
eters @ = 0.95 and h = 24 hours (equal to the forecast-
ing horizon). Figure 5 shows that the adaptive construction
successfully maintains the coverage accuracy for all the per-
centiles shown, whereas without it, the accuracy tends to de-
crease over time (with lower accuracy for the higher per-
centiles).

6 Conclusion and future work

In this paper, we proposed a novel GAM? algorithm to fore-
cast uncertainty in electricity demand by modeling the time-
varying conditional mean and variance. Our method is effi-
cient since it does not require multiple runs of simulations or
bootstrapping. We assessed the coverage accuracy as well as
the width of the prediction intervals. Furthermore, we incor-
porated online learning mechanisms to adapt the forecasted
mean and prediction intervals to the dynamic changes in
the distribution of the demand. Although we showcase our
method specifically for electricity demand, we are confident
that it is applicable to other domain as well.

In the future, we plan to investigate spatio-temporal de-
pendencies and correlations between uncertainty of demand
and renewable energy sources. Another important direction
is to study the trade-off between the coverage accuracy and
the interval width emerging from the adaptive construction
algorithm.
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