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Abstract

Most learning methods with rank or spar-
sity constraints use convex relaxations, which
lead to optimization with the nuclear norm
or the ¢1-norm. However, several important
learning applications cannot benefit from this
approach as they feature these convex norms
as constraints in addition to the non-convex
rank and sparsity constraints. In this setting,
we derive efficient sparse projections onto
the simplex and its extension, and illustrate
how to use them to solve high-dimensional
learning problems in quantum tomography,
sparse density estimation and portfolio selec-
tion with non-convex constraints.

1. Introduction

We study the following sparse Euclidean projections:

Problem 1. (Simplex) Given w € RP, find a Eu-
clidean projection of w onto the intersection of k-
sparse vectors S, = {8 € RP : |{i: B #0}| < k}
and the simplex A} = {BeERP:8,>0, 3,8 =A}:

P(w) € 18 — w2 (1)

argmin
B:BETLNAT

Problem 2. (Hyperplane) Replace AT in (1) with the
hyperplane constraint Ay = {,8 € RpP: Zl Bi = ,\},

We prove that it is possible to compute such projections
in quasilinear time via simple greedy algorithms.

Our motivation with these projectors is to address
important learning applications where the standard
sparsity /low-rank heuristics based on the ¢; /nuclear-
norm are either given as a constraint or conflicts
with the problem constraints. For concreteness, we
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highlight quantum tomography, density learning, and
Markowitz portfolio design problems as running exam-
ples. We then illustrate provable non-convex solutions
to minimize quadratic loss functions

£8) = lly — AB)I? (2)

subject to the constraints in Problem 1 and 2 with our
projectors. In (2), we assume that y € R™ is given
and the (known) operator A : R? — R™ is linear.

For simplicity of analysis, our minimization approach
is based on the projected gradient descent algorithm:

BT =P(B — u'Vf(B), 3)
where 3" is the i-th iterate, Vf(-) is the gradient of
the loss function, p' is a step-size, and P(-) is based on
Problem 1 or 2. When the linear map A in (2) pro-
vides bi-Lipschitz embedding for the constraint sets,

we can derive rigorous approximation guarantees for

the algorithm (3); cf., (Garg & Khandekar, 2009).!

To the best of our knowledge, explicitly sparse Eu-
clidean projections onto the simplex and hyperplane
constraints have not been considered before. The clos-
est work to ours is the paper (Kyrillidis & Cevher,
2012). In (Kyrillidis & Cevher, 2012), the authors pro-
pose an alternating projection approach in regression
where the true vector is already sparse and within a
convex norm-ball constraint. In contrast, we consider
the problem of projecting an arbitrary given vector
onto convex-based and sparse constraints jointly.

At the time of this submission, we become aware of
(Pilanci et al., 2012), which considers cardinality reg-
ularized loss function minimization subject to simplex
constraints. Their convexified approach relies on solv-
ing a lower-bound to the objective function and has
O(p*) complexity, which is not scalable. We also note
that regularizing with the cardinality constraints is
generally easier: e.g., our projectors become simpler.

!Surprisingly, a recent analysis of this algorithm along
with similar assumptions indicates that rigorous guaran-
tees can be obtained for minimization of general loss func-
tions other than the quadratic (Bahmani et al., 2011).
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Notation: Plain and boldface lowercase letters rep-
resent scalars and vectors, resp. The i-th entry of a
vector w is w;, and [w;]; = max(w;, 0), while 3" is the
model estimate at the i-th iteration of an algorithm.
Given a set S C N = {1,...,p}, the complement S¢
is defined with respect to A, and the cardinality is
|S|]. The support set of w is supp(w) = {i : w; # 0}.
Given a vector w € RP, wg is the projection (in RP)
of w onto 3, i.e. (ws)g. = 0, whereas ws € RISl is
w limited to S entries. The all-ones column vector is
1, with dimensions apparent from the context. We de-
fine X, as the set of all k-sparse subsets of A/, and we
sometimes write 8 € ¥ to mean supp(3) € ¥j. The
trace of a matrix X is written tr(X).

2. Preliminaries

Basic definitions: Without loss of generality, as-
sume w is sorted in descending order, so w; is the
largest element. We denote Py+ for the (convex) Eu-
clidean projector onto the standard simplex Aj\r, and
Py for its extension to Ay. The (non-convex) Eu-
clidean projector onto the set Xy, is Py, , which retains
the k-largest in magnitude elements. In contrast to
P», the projection Ps;, need not be unique.

Definition 2.1 (Operator Pr, ). We define P, (w) as
the operator that keeps the k-largest entries of w (not
in magnitude) and sets the rest to zero. This operation
can be computed in O(pmin(k,log(p)))-time.
Definition 2.2 (Euclidean projection Py+). The pro-
jector onto the simplex is given by

(Pa+ (w)); = [wi — 7]+, where T := 1 <Z w; — /\>
P \i=

for p :=max{j : w; > %(Zzzl w; — M)}
Definition 2.3 (Euclidean projection Py). The pro-
jector onto the extended simplex is given by

1 p
(Px(w))i = w; —7, where T = ’ (Z w; — /\> )
=1

Definition 2.4 (Restricted isometry property (RIP)
(Candes et al., 2006)). A linear operator A : RP —
R™ satisfies the k-RIP with constant 0y € (0,1) if

1—0, < JAB)3/1815 < 140k, VB E Sk (4)

Guarantees of the gradient scheme (3): Let
y = A(B")+e € R™, (m < p), be a generative model
where € is an additive perturbation term and @* is
the k-sparse true model generating y. If the RIP as-
sumption (4) is satisfied, then the projected gradient

descent algorithm in (3) features the following invari-
ant on the objective (Garg & Khandekar, 2009):

2004,

1_52kf(61)+01\\€||2, (5)

f(lgi—ﬁ-l) <
for ¢; > 0 and stepsize p' = ﬁ.
dar < 1/3, the iterations of the algorithm are con-
tractive and (3) obtains a good approximation on the
loss function. In addition, (Foucart, 2010) shows that
we can guarantee approximation on the true model via

187 = B2 < 2034]18" = B[l + callell2,  (6)

for ¢; > 0 and p' = 1. Similarly, when &3, < 1/2,
the iterations of the algorithm are contractive. Differ-
ent step size u' strategies result in different guaran-
tees; c.f., (Foucart, 2010; Garg & Khandekar, 2009;
Kyrillidis & Cevher, 2011) for a more detailed dis-
cussion. Note that to satisfy a given RIP constant
0, random matrices with sub-Gaussian entries require
m = O (klog(p/k)/é6%). In low rank matrix cases, sim-
ilar RIP conditions for (3) can be derived with approx-
imation guarantees; cf., (Meka et al., 2010).

Hence, for

3. Underlying discrete problems

Let 3" be a projection of w onto ¥ N Aj\r or XpNAj.
We now make the following elementary observation:

Remark 1. The Problem 1 and 2 statements can be
equivalently transformed into the following nested min-
imization problem: {S*,3*} =

argmin | argmin (8- w) g3 + wi.[13].
S:5€X, “B:B85€AT or Ay,
Bge=0

where supp(8*) = S* and B* € AT or A,.

Therefore, given S* = supp(8*), we can find 3"
by projecting wg+ onto A;r or A, within the k-
dimensional space. Thus, the difficulty is finding S*.
Hence, we split the problem into the task of finding the
support and then finding the values on the support.

3.1. Problem 1

Given any support S, the unique corresponding esti-
mator is B = Px+(W)g). We conclude that 3% satis-
fies 8% (s+)e = 0 and Bs, = Pr+(W)s.), and

§* € argmin [Py (wig) — wigll3 + lw. I3
S:8eT, ls Isll2 lsell2

= argmax F1; (S) (7)
S:8eX;

where F(S) 1= 3¢5 (wf — (Pa+ (Wi5))i — wi)?).
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Algorithm 1 GSSP
1: 8* = supp(Pr, (W)) {Select support}
2: Big. = Pa+ (W\S*),,ﬁ'\(s*)c =0 {Final projection}

Algorithm 2 GSHP
1:0=1,8=4j, je€ argmax; [ w;]
2: Repeat: £+ (41, S + SUj, where
J € argmax;eans |wi — % {Grow}
3: Until £ =k, set S* < S {Terminate}
4: Blg. = Pa(wWg.)s 5\(3*)0 =0 {Final projection}

{Initialize}

This set function can be simplified to

Fi(8) =) (wi—77), (8)

i€S
where 7 (which depends on S) is as in Lemma 1.

Lemma 1. Let 8 = Py+(w) where B; = [w; — 7]4.
Then, w; > 7 for alli € S = supp(B). Furthermore,
T= ﬁ (Cicswi = A).

Proof. Directly from the definition of 7 in Definition
2.2. The intuition is quite simple: the “threshold” 7
should be smaller than the smallest entry in the se-
lected support, or we unnecessarily shrink the coef-
ficients that are larger without introducing any new
support to the solution. Same arguments apply to in-
flating the coefficients to meet the simplex budget. O

3.2. Problem 2

Similar to above, we conclude that 3" satisfies ﬁ\*s* =
PA(W\S*) and ﬂ\*(s*)c =0, where

S§* € argmin ||z — w||s = argmax F(S) ©))
:SeXy S:SeXy

where z € RP with z|g = Py(w|g) and z;. = 0 and
F(S) = (X,esw?) — ﬁ(zies w; — A\)2.

4. Sparse projections onto A} and A,

Algorithm 1 below suggests an obvious greedy ap-
proach for the projection onto ¥j N Aj\“. We select the
set 8* by naively projecting w as Pr, (w). Remark-
ably, this gives the correct support set for Problem 1,
as we prove in Section 5.1. We call this algorithm
the greedy selector and simplex projector (GSSP). The
overall complexity of GSSP is dominated by the sort
operation in p-dimensions.

Unfortunately, the GSSP fails for Problem 2. As a
result, we propose Algorithm 2 for the X N Ay case

which is non-obvious. The algorithm first selects the
index of the largest element that has the same sign
as A. It then grows the index set one at a time by
finding the farthest element from the current mean, as
adjusted by lambda. Surprisingly, the algorithm finds
the correct support set, as we prove in Section 5.2. We
call this algorithm the greedy selector and hyperplane
projector (GSHP), whose overall complexity is similar
to GSSP.

5. Main results

Remark 2. When the symbol S is used as S =
supp(B) for any B, then if |S| < k, we enlarge S until
it has k elements by taking the first k — |S| elements
that are not already in S, and setting B = 0 on these
elements. The lexicographic approach is used to break
ties when there are multiple solutions.

5.1. Correctness of GSSP

Theorem 1. Algorithm 1 exactly solves Problem 1.

Proof. Intuitively, the k-largest coordinates should be
in the solution. To see this, suppose that u is the
projection of w. Let w; be one of the k-(most positive)
coordinates of w and u; = 0. Also, let w; < w;, @ #
j such that u; > 0. We can then construct a new
vector u’ where v} = u; = 0 and u; = u;. Therefore,
u’ satisfies the constraints, and it is closer to w, i.e.,
|lw—ul|3 - |w—1u'||} = 2uj(w; — w;) > 0. Hence, u
cannot be the projection.

To be complete in the proof, we also need to show that
the cardinality k solutions are as good as any other
solution with cardinality less than k. Suppose there
exists a solution u with support |S| < k. Now add any
elements to S to form S with size k. Then consider
w restricted to S, and let G be its projection onto the
simplex. Because this is a projection, || — wg| <
Juig — Wil hence [ja — wl] < [ju — wl.

5.2. Correctness of GSHP

Theorem 2. Algorithm 2 exactly solves Problem 2.

Proof. To motivate the support selection of GSHP, we
now identify a key relation that holds for any b € R¥:

2

E o, j—1
Jj—1 >iz1 bi — A\2
A(2b —)\—&-E — (b, — == . 10
(261 = 3) = <j j—1 ) (10)

By its left-hand side, this relation is invariant under
permutation of b. Moreover, the summands in the sum
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over k are certainly non-negative for k > 2, so without
loss of generality the solution sparsity of the original
problem is ||3*||o = k. For k = 1, F is maximized by
picking an index ¢ that maximizes A\w;, which is what
the algorithm does.

For the sake of clarity (and space), we first describe
the proof of the case k > 2 for A = 0 and then explain
how it generalizes for A # 0. In the sequel, let us use
the shortcut avg(S) = I—é‘ 2 jes Wy

Let & be an optimal solution index set and let I be
the result computed by the algorithm. For a proof (of
the case k > 2, A = 0) by contradiction, assume that I
and S differ. Let e be the first element of I\S in the
order of insertion into I by the algorithm. Let e’ be
the element of S\ I that lies closest to e. Without loss
of generality, we may assume that w, # w,s, otherwise
we could have chosen S\{e’} U {e} rather than S as
solution in the first place. Let Iy C INS be the indices
added to I by the algorithm before e. Assume that I
is nonempty. We will later see how to ensure this.

Let a := avg(lp) and o’ := avg(S\{e'}). There are
three ways in which w,, we and a’ can be ordered
relative to each other:

1. €’ lies between e and ', thus |we — d'| < |we — @/
since we 7 Wer -

2. a’ lies between e and e’. But then, since there are
no elements of S between e and €', S\I moves the
average a’ beyond a away from e towards e’, so
lwe — d'| < |we — a] and |Jwe — a] < |we — d].
But we know that |we — a| < |we — a| since
e = argmax;¢ ;,|w; — a| by the choice of the greedy
algorithm and w, # we. Thus |we —a’| < |we —ad’|.

3. |we — d| < |wer — d], ie., e lies between o’ and

e’. But this case is impossible: compared to a, a’
averages over additional values that are closer to a
than e, and €’ is one of them. So a’ must be on the

same side as e’ relative to e, not the opposite side.

So |wer —a'| < |we —a'| is assured in all cases. Note in
particular that if |S| > 1, |w; —avg(9)] 8 |w; —avg(S)],
then

FSUiY) = F(S) + "2 (ws — av(s))
6 F(S) + % (1w — ave())’
= F(SuU{j}), (11)

where 6 is either ‘=" or ‘<’. By inequality (11), F(S) <
F((8\{¢'}) U {e}). But this means that S is not a

solution: contradiction.

We have assumed that I is nonempty; this is ensured
because any solution & must contain at least an index
i € argmax; w;. Otherwise, we could replace a max-
imal index w.r.t. w in & by this ¢ and get, by (11),
a larger F' value. This would be a contradiction with
our assumption that S is a solution. Note that this
maximal index is also picked (first) by the algorithm.
This completes the proof for the case A = 0. Let us
now consider the general case where A is unrestricted.

We reduce the general problem to the case that A = 0.
Let us write F,, » to make the parameters w and A
explicit when talking of F. Let w}. := w;» — A for one
i* for which Aw;~ is maximal, and let w} := w; for all
other i. We use the fact that, by the definition of F,

Fu(S) = 2 wl. + X2 + Fyur o(S)

when S contains such an element i* € argmax;(Aw;).
Clearly, ¢* is an extremal element w.r.t. w and w;- has
maximum distance from —\, so

Wi — A
i* € argmax wj—zzfjiz :
i J—1

By (10), ¢* must be in the optimal solution for F, .
Also, Fyy 0(S) and 20w}, +A%+F, o(S) are maximized
by the same index sets S when i* € S is required.
Thus,

argmax F,, A (S) = argmax Fy o(S).
s S:jes
Now observe that our previous proof for the case A =0
also works if one adds a constraint that one or more
indices be part of the solution: If the algorithm com-
putes these elements as part of its result I, they are
in Iy = I N'S. But this is what the algorithm does on
input (w, A); it chooses i* in its first step and then pro-
ceeds as if maximizing Fi, o. Thus we have established
the algorithm’s correctness. O

6. Application: Quantum tomography

Problem: In quantum tomography (QT), we aim to
learn a density matriz X* € C?*?, which is Hermitian
(ie., (X*)H = X*), positive semi-definite (i.e., X* =
0) and has rank(X*) = r and tr(X*) = 1. The QT
measurements are y = A(X*) +n, where (A(X*)); =
tr(E;X*) + n;, and 7; is zero-mean Gaussian. The
operators E;’s are the tensor product of the 2 x 2 Pauli
matrices (Liu, 2011).

Recently, (Liu, 2011) showed that almost all
such tensor constructions of O(rdlog®d) Pauli
measurements satisfy the so-called rank-r re-
stricted isometry property (RIP) for all X €
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{X € C¥™4: X = 0,rank(X) < 7, [|X]]« < \/FHXHF}

(1= 6 X[l < IAX)F < (140, [IX]F, (12)

where || - ||« is the nuclear norm (i.e., the sum of singu-
lar values), which reduces to tr(X) since X = 0. This
key observation enables us to leverage the recent the-
oretical and algorithmic advances in low-rank matrix
recovery from a few affine measurements.

The standard matrix-completion based approach to re-
cover X* from y is the following convex relaxation:

e . - 2
migimize |AX) =y} + AX]..  (13)

This convex approach is both tractable and amenable
to theoretical analysis (Gross et al., 2010; Liu, 2011).
As a result, we can provably reduce the number of
samples m from O(d?) to O(rd) (Liu, 2011).

Unfortunately, this convex approach fails to account
for the physical constraint ||X]||. = 1. To overcome
this difficulty, the relaxation parameter A is tuned to
obtain solutions with the desired rank followed by nor-
malization to heuristically meet the trace constraint.

In this section, we demonstrate that one can do signif-
icantly better via the non-convex algorithm based on
(3). A key ingredient then is the following projection:

Be argmin |B — W|% s.t. rank(B) = r, tr(B) = 1,
B0

(14)
for a given Hermitian matrix W € R™*™. Since the
RIP assumption holds here, we can obtain rigorous

guarantees based on a similar analysis to (Foucart,
2010; Garg & Khandekar, 2009; Meka et al., 2010).

To obtain the solution, we compute the eigenvalue de-
composition W = UAwU?¥ and then use the unitary
invariance of the problem to solve D* € argming, ||D —
Aw||F subject to | D]« < 1 and rank(D) < r, and
from D* form UD*U¥ to obtain a solution. In fact,
we can constrain D to be diagonal, and thus reduce the
matrix problem to the vector version for D = diag(d),
where the projector in Problem 1 applies. This reduc-
tion follows from the well-known result:

Proposition 6.1 ((Mirsky, 1960)). Let A,B € R™*"
and ¢ = min{m,n}. Let 0;(A) be the singular values
of A in descending order (similarly for B). Then,

(0:(A) — 0:(B))” < [|A -~ BJ3.

q
=1

3

Equation (14) has a solution if r > 1 since the con-
straint set is non-empty and compact (Weierstrass’s
theorem). As the vector reduction achieves the lower
bound, it is an optimal projection.
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Figure 1. Quantum tomography with 8 qubits and 30 dB
SNR: Each point is the median over 10 random realizations.
Convex approach 1 refers to (13) and approach 2 is (15).
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Figure 2. Same as Figure 1 but with 7 qubits, no noise.

Numerical experiments: We numerically demon-
strate that the ability to project onto trace and rank
constraints jointly can radically improve recovery even
with the simple gradient descent algorithm as in (3).
We follow the same approach in (Gross et al., 2010):
we generate random Pauli measurements and add
white noise. The experiments that follow use a 8 qubit
system (d = 28) with noise SNR at 30 dB (so the ab-
solute noise level changes depending on the number of
measurements), and a 7 qubit noiseless system.

The measurements are generated using a random real-
valued matrix X* with rank 2, although the algorithms
also work with complex-valued matrices. A d x d rank
r real-valued matrix has dr — r(r — 1) /2 = dr degrees
of freedom, hence we need at least 2dr number of mea-
surements to recover X* from noiseless measurements
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(due to the null-space of the linear map). To test the
various approaches, we vary the number of measure-
ments between 2dr and 5dr. We assume r is known,
though other computational experience suggests that
estimates of r return good answers as well.

The convex problem (13) depends on a parameter \.
We solve the problem for different A in a bracketing
search until we find the first A that provides a solution
with numerical rank r. Like (Flammia et al., 2012), we
normalize the final estimate to ensure the trace is 1.
Additionally, we test the following convex approach:
e 2

JWinimize [ AX) = yll%- (15)
Compared to (13), no parameters are needed since we
exploit prior knowledge of the trace, but there is no
guarantee on the rank. Both convex approaches can
be solved with proximal gradient descent; we use the
TFOCS package (Becker et al., 2011) since it uses a
sophisticated line search and Nesterov acceleration.

To illustrate the power of the combinatorial projec-
tions, we solve the following non-convex formulation:

IAX) —ylF (16)

minimize

X0, X« <1,rank(X)=r
Within the projected gradient algorithm (3), we use
the GSSP algorithm as described above. The stepsize
is u* = 3/||.A||> where || - || is the operator norm; we
can also apply Nesterov acceleration to speed conver-
gence, but we use (3) for simplicity. Due to the non-
convexity, the algorithm depends on the starting value
Xo. We try two strategies: (¢) random initialization,
and (i%) initializing with the solution from (15). Both
initializations often lead to the same stationary point.

Figure 1 shows the relative error ||X — X*||g/||X*||#
of the different approaches. All approaches do poorly
when there are only 2dr measurements since this is
near the noiseless information-theoretic limit. For
higher numbers of measurements, the non-convex ap-
proach substantially outperforms both convex ap-
proaches. For 2.4dr measurements, it helps to start
X with the convex solution, but otherwise the two
non-convex approaches are nearly identical.

Between the two convex solutions, (13) outperforms
(15) since it tunes A to achieve a rank r solution.
Neither convex approach is competitive with the non-
convex approaches since they do not take advantage of
the prior knowledge on trace and rank.

Figure 2 shows more results on a 7 qubit problem with-
out noise. Again, the non-convex approach gives bet-
ter results, particularly when there are fewer measure-
ments. As expected, both approaches approach perfect
recovery as the number of measurements increases.

Approach mean time standard deviation
convex 0.294 s. 0.030 s.
non-convex 0.192 s. 0.019 s.

Table 1. Time per iteration of convex and non-convex ap-
proaches for quantum state tomography with 8 qubits.

Here we highlight another key benefit of the non-
convex approach: since the number of eigenvectors
needed in the partial eigenvalue decomposition is at
most 7, it is quite scalable. In general, the convex ap-
proach has intermediate iterates which require eigen-
value decompositions close to the full dimension, espe-
cially during the first few iterations. Table 1 shows av-
erage time per iteration for the convex and non-convex
approach (overall time is more complicated, since the
number of iterations depends on linesearch and other
factors). Even using Matlab’s dense eigenvalue solver
eig, the iterations of the non-convex approach are
faster; problems that used an iterative Krylov sub-
space solver would show an even larger discrepancy.?

7. Application: Measure learning

Problem: We study the kernel density learning set-
ting: Let x(W, x® .. x(" ¢ RP be an n-size cor-
pus of p-dimensional samples, drawn from an unknown
probability density function (pdf) p(x). Here, we will
form an estimator fi(x) := > 1, Biko (x,x1)), where
Ko (X,y) is a Gaussian kernel with parameter o. Let us
choose [i(x) to minimize the integrated squared error
criterion: ISE = E||i(x) — pu(x)||3. As a result, we can
introduce a density learning problem as estimating a
weight vector B € Af. The objective can then be
written as follows (Bunea et al., 2010; Kim, 1995)

B3 € argmin {ﬁTEﬂ - CT,B} , (17)

Beaf

where ¥ € R™*"™ with Eij = K\/ﬁg(x(i)7x(j))’ and

1 , )
_ E (1) () P
Cy = n—1 — KU(X aX] )7 VZ,]. (18)
VED)

While the combination of the —c” 3 term and the non-
negativity constraint induces some sparsity, it may not
be enough. To avoid overfitting or obtain interpretable
results, one might control the level of solution sparsity
(Bunea et al., 2010). In this context, we extend (17)
to include cardinality constraints, i.e. 8* € A N 3.

2Quantum state tomography does not easily benefit

from iterative eigenvalue solvers, since the range of A* is
not sparse.
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Figure 3. Density estimation results using the Parzen method (left), the quadratic program (17) (left and middle-top),

and our approach (middle-bottom and right).
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Figure 4. Estimation results for different k: Red spikes depict the estimated kernel means as well as the their relative
contribution to the Gaussian mixture. As k increases, the additional nonzero coefficients in 3* tend to have small weights.

Numerical experiments: We consider the follow-
ing Gaussian mixture: p(z) = %2?21 Ko, (B, ),
where o; = (7/9)" and 3; = 14(0; — 1). A sample of
1000 points is drawn from p(z). We compare the den-
sity estimation performance of: (¢) the Parzen method
(Parzen, 1962), (ii) the quadratic programming for-
mulation in (17), and (4¢7) our cardinality-constrained
version of (17) using GSSP. While p(x) is constructed
by kernels with various widths, we assume a constant
width during the kernel estimation. In practice, the
width is not known a priori but can be found using
cross-validation techniques; for simplicity, we assume
kernels with width o = 1.

Figure 3(left) depicts the true pdf and the estimated
densities using the Parzen method and the quadratic
programming approach. Moreover, the figure also in-
cludes a scaled plot of 1/0;, indicating the height of
the individual Gaussian mixtures. By default, the
Parzen window method estimation interpolates 1000
Gaussian kernels with centers around the sampled
points to compute the estimate fi(x); unfortunately,
neither the quadratic programming approach (as Fig-
ure 3 (middle-top) illustrates) nor the Parzen window
estimator results are easily interpretable even though
both approaches provide a good approximation of the
true pdf.

Using our cardinality-constrained approach, we can

significantly enhance the interpretability. This is be-
cause in the sparsity-constrained approach, we can
control the number of estimated Gaussian compo-
nents. Hence, if the model order is known a priori,
the non-convex approach can be extremely useful.

To see this, we first show the coefficient profile of the
sparsity based approach for k = 5 in Figure 3 (middle-
bottom). Figure 3 (right) shows the estimated pdf
for £ = b5 along with the positions of weight coef-
ficients obtained by our sparsity enforcing approach.
Note that most of the weights obtained concentrate
around the true means, fully exploiting our prior in-
formation about the ingredients of u(x)—this happens
with rather high frequency in the experiments we con-
ducted. Figure 4 illustrates further estimated pdf’s
using our approach for various k. Surprisingly, the re-
sulting solutions are still approximately 5-sparse even
if kK > b, as the over-estimated coefficients are ex-
tremely small, and hence the sparse estimator is rea-
sonably robust to inaccurate estimates of k.

8. Application: Portfolio optimization

Problem: Given a sample covariance matrix ¥ and
expected mean u, the return-adjusted Markowitz
mean-variance (MV) framework selects a portfolio 3*

such that 8* ¢ argminﬁeAT {,BTEB - TuTﬁ} , where
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AT encodes the normalized capital constraint, and
7 trades off risk and return (Brodie et al., 2009;
DeMiguel et al., 2009). The solution 3* € A is the
distribution of investments over the p available assets.

While such solutions construct portfolios from scratch,
a more realistic scenario is to incrementally adjust an
existing portfolio as the market changes. Due to costs
per transaction, we can naturally introduce cardinality
constraints. In mathematical terms, let 3 € RP be the
current portfolio selection. Given 3, we seek to adjust
the current selection 3 = 3+ 8 such that [|6g]|o < k.
This leads to the following optimization problem:

65 € argmin (B+385) (B +dp) — i’ (B + dp),
5ﬁ€EkﬂA,\

where ) is the level of update, and k controls the trans-
actions costs. During an update, A = 0 would keep the
portfolio value constant while A > 0 would increase it.

Numerical experiments: To clearly highlight the
impact of the non-convex projector, we create a syn-
thetic portfolio update problem, where we know the
solution. As in (Brodie et al., 2009), we cast this prob-
lem as a regression problem and synthetically generate
y = X3* where p = 1000 such that 8* € Ay () is cho-
sen randomly), and ||3*||p = k for k& = 100.

Since in general we do not expect RIP assumptions to
hold in portfolio optimization, our goal here is to refine
the sparse solution of a state-of-the-art convex solver
via (3) in order to accommodate the strict sparsity and
budget constraints. Hence, we first consider the basis
pursuit criterion and solve it using SPGL1 (van den
Berg & Friedlander, 2008):

minimize ||8]); s.t. {13/(\@} 8= L\/}:/j)] . (19)

The normalization by 1/,/p in the last equality gives
the constraint matrix a better condition number, since
otherwise it is too ill-conditioned for a first-order
solver.

Almost none of the solutions to (19) return a k-sparse
solution. Hence, we initialize (3) with the SPGL1 so-
lution to meet the constraints. The update step in (3)
uses the GSHP algorithm.

Figure 5 shows the resulting relative errors HB —
B*1l2/118%]|2. We see that not only does (3) return a
k-sparse solution, but that this solution is also closer
to B*, particularly when the sample size is small. As
the sample size increases, the knowledge that B* is
k-sparse makes up a smaller percentage of what we
know about the signal, so the gap between (19) and
(3) diminishes.
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Figure 5. Relative error |8 — B*||2/||8*||2 comparison as
a function of m: Approach 1 is the non-convex approach
(3), and approach 2 is (19). Each point corresponds to the
median value of 30 Monte-Carlo realizations.

9. Conclusions

While non-convexity in learning algorithms is unde-
sirable according to conventional wisdom, avoiding it
might be difficult in many problems. In this setting, we
show how to efficiently obtain exact sparse projections
onto the positive simplex and its hyperplane exten-
sion. We empirically demonstrate that our projectors
provide substantial accuracy benefits in quantum to-
mography from fewer measurements and enable us to
exploit prior non-convex knowledge in density learn-
ing. Moreover, we also illustrate that we can refine
the solution of well-established state-of-the-art convex
sparse recovery algorithms to enforce non-convex con-
straints in sparse portfolio updates. The quantum to-
mography example in particular illustrates that the
non-convex solutions can be extremely useful; here, the
non-convexity appears milder, since a fixed-rank ma-
trix still has extra degrees of freedom from the choice
of its eigenvectors.
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