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Abstract— Just as their discrete counterparts, periodic or
rhythmic dynamic motion primitives allow easily modulated
and robust motion generation, but for periodic tasks. In this
paper we present an approach for modulating periodic dynamic
movement primitives based on force feedback, allowing for
rich motor behavior and skills. We propose and evaluate the
combination of feedback and learned feed-forward terms to
fully adapt the motions of a robot in order to achieve a desired
force interaction with the environment. For the learning we
employ the notion of repetitive control, which can effectively
minimize the error of behavior towards a given reference.
To demonstrate the approach, we show results of simulated
and real world experiments on a compliant humanoid robot
COMAN. We show the initial results of utilizing the approach
to control a pedal-racer, a demanding balance toy best described
as a hybrid between a skateboard and a bicycle.

I. INTRODUCTION

Periodic motions, often termed also as rhythmic motions,
appear in many biological systems and range from manip-
ulatory tasks to locomotion. As they are periodic, specific
control approaches can be applied. The latter is not only
observable in engineering approaches, but also in biological
systems. The term central pattern generator (CPG) describes
neural circuits found in both invertebrate and vertebrate
animals that can produce rhythmic patterns of neural activity
without receiving rhythmic inputs [1]. CPGs represent fun-
damental building blocks for the locomotor neural circuits in
animals.

The difference of controlling periodic or discrete motions
was also investigated in humans. Schaal et. al. [2] compared
fMRI measurements during discrete and rhythmic tasks,
which showed that higher cortical centers are used for
discrete motions and much less for rhythmic tasks, indicating
that rhythmic tasks require separate theoretical treatment.
Computational models for rhythmic and discrete models
motions were also investigated by Ronsse et al. [3] and
Degallier & Ijspeert [4].

Many researchers propose that motor control is based
on the combination of motor primitives, i.e., that complex
movements are generated by combining a finite set of simpler
elementary movements [1], applicable also to locomotion [5].
This notion has been extensively applied to control of robotic
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tasks; notably with dynamic movement primitives (DMPs),
first introduced by Ijspeert et al. [6]. DMPs represent one
of the approaches for encoding and generating trajectories;
other approaches include, for example, Gaussian Mixture
Regression [7] and Mixture Models [8], splines and wavelets
[9], etc.

While DMPs were originally designed for discrete, finite
tasks, they can be effectively applied to periodic tasks [9]–
[12]. Just as their discrete counterparts, they use a set of
differential equations to compactly represent control poli-
cies and at the same time allow adaptation by modifying
only a few parameters [12]. The latter can be exploited in
several ways, for example for temporal modulation, where
the frequency of motion, which determines the behavior
of the whole system, is modulated by a single parameter.
The frequency of motion can either be set in advance, or
can be modified online to autonomously adapt to external,
driven systems, for example by the use of adaptive frequency
oscillators [13]. Gams et al. [9] have shown how periodic
DMPs can be combined with a pool of adaptive oscillators
to facilitate a system with combined frequency and waveform
learning. On the other hand, Petrič et al. [11] have shown
how a single adaptive frequency oscillator and an adaptive
Fourier series can be used in combination with periodic
DMPs for complex synchronization tasks. Periodic DMPs
allow also spatial modulation and generalization from a
library of recorded motions [14].

Any kind of periodic interaction task, even simply main-
taining contact with a (periodically) moving object, for
example the end of a two-person cross-cut saw [15], requires
either extremely precise predefined trajectories, or adaptation
to specific tasks. Similar applies also to rotating bicycle
pedals or periodically applying force on an a surface. If
that task is to be executed in an unstructured environment
of human daily life, predefining the correct trajectories is
practically impossible. Generalization, as one of the possibil-
ities of adapting to the environment, can provide reasonable
solutions [14].

The problem we are tackling in this paper is in adapting
such periodic trajectories to achieve desired force behavior
and rich motors skills, i. e., in the sense of adaptability to dif-
ferent conditions. The novelty of the approach is in enabling
online spatial modulation of periodic DMPs by coupling
them to the environment using force feedback. Similarly to
external limit modulation [9], our approach utilizes coupling
at the velocity level of a DMP, but with actual, measured
force instead of a virtual one. In order to achieve desired
interaction with either the environment or another robot we



combine feedback with a feed-forward term, which we learn
in a few periods of the motion. The learning is based on
repetitive control (RC), which can be used to achieve near
perfect tracking of a given periodic reference [16], [17]. Our
proposed approach allows adaptation of periodic trajectories
to the state of the environment in order to achieve desired
interaction. We apply the approach to the task of operating
the pedal racer, a demanding balance toy best described as a
hybrid between a skateboard and a bicycle, with a humanoid
robot. The robot and the device are presented in Fig. 8. We
test our approach both for operating the device with arms and
for riding it. Riding the pedal racer is very complex from the
balance point of view. We applied a center of mass controller
to maintain the balance and used our proposed approach to
modulate the trajectories of motion.

Force feedback was previously used with periodic DMPs
in a table wiping task, where complete trajectories were
learned using regression techniques [18]. On the other hand,
discrete DMPs were previously modulated based on force
feedback using iterative learning control (ILC) [19]. While
ILC requires initial conditions reset after every repetition, RC
can handle the change in the initial conditions – at the start
of every period. Furthermore, the approach of learning the
correct motion comes more naturally for periodic motions,
where the motion is by itself repeated over periods.

Other DMP coupling approaches used acceleration level
feedback on discrete DMPs in combination with learning
[20], or a feedback controller [21]. A combination of feed-
back and learned feed-forward terms in rhythmic DMPs to
stabilize a two-link robotic arm was presented in [22].

In the rest of this paper we first give a summary on
periodic DMPs and present the modulation approach in
Section II. We argument and present the Repetitive Learning
algorithm applied for the learning in Section III. We evaluate
the approach with both simulations and real world experi-
ments in Section IV. In Section V we show how the approach
can be used for controlling a pedal-racer. Conclusions and a
brief discussion follow in Section VI.

II. MODULATING PERIODIC MOVEMENT
PRIMITIVES

In the following we provide the basic motion representa-
tions and the proposed approach to solving the problem of
adapting periodic motions with force feedback.

A. Periodic Motion Primitives

Periodic DMPs have been studied for various tasks [12].
We provide only the basic information, based on the formu-
lation in [14]. For a single degree of freedom (DOF), in our
case one of the external task-space coordinates and denoted
by y, a periodic DMP is defined by the following system of
nonlinear differential equations

ż = Ω (αz (βz (g − y) − z) + f(φ)) , (1)
ẏ = Ωz. (2)

f(φ) is defined as a linear combination of periodic radial
basis functions Γi(φ)

f(φ) =

∑N
i=1 wiΓi(φ)∑N
i=1 Γi(φ)

r, (3)

Γi(φ) = exp (hi (cos (φ−ci)−1)) , (4)

where r is the amplitude control paramter, hi > 0 are their
widths and ci are equally spaced between 0 and 2π in N
steps. The phase variable φ is introduced to avoid explicit
dependency on time. The phase is assumed to increase with
constant rate

φ̇ = Ω. (5)

The parameter Ω denotes the frequency. If parameters
αz, βz, > 0 and αz = 4βz , the system (1) – (2) converges
in a critically damped manner to the goal g.

The weights wi, i = 1, ..., N and N the number of kernel
functions, given in the vector w, define the shape of the
encoded trajectory. [6] and [14] describe the learning of the
weight vector. Multiple DOFs are realized by maintaining
separate sets of eqs. (1) – (2), while a single canonical system
given by (5) is used to synchronize them by providing a
common phase variable.

B. Coupling of periodic DMPs

An example of coupling to achieve spatial modulation of
DMPs is to include a simple virtual repulsive force to avoid
moving beyond a given limit [9]. In this paper we propose a
similar approach, but by including the real, measured force.
This is implemented by modifying (2) into

ẏ = Ω (z + C) . (6)

Here C represents a coupling term, composed of feedback
(cfb) and feed-forward (cff ) terms

C = cfb + cff . (7)

The feedback term is defined by

cfb = k (Fdes − Fact) , (8)

where k is a positive constant, Fdes is the desired force
trajectory and Fact is the real, measured force. The desired
force can be any force trajectory. For the case of riding the
pedal racer (in simulation) we used a measured force profile
(also obtained in simulation), as the reference.

A virtual force can also be used, defined for example by
a virtual spring between the position of the robot yr1 and an
arbitrary object o

Fact,v = kenv(o− yr1). (9)

with kenv defining the stiffness of the virtual spring. The
position of another robot can be used for an object, coupling
two robots. The virtual force between the positions of two
robots (yr1 and yr2), with d the desired distance is then

Fact,v = kenv(d− (yr1 − yr2)). (10)



The feedback term acts as a P-controller, with the gain kenv

defining the behavior. If it is high, the robot essentially
bounces of on impact, while a low k results in slow adapta-
tion of the robot trajectory.

Using the feedback coupling term alone resembles the
approach in [21]. It is important to note that we couple the
DMP at the velocity level in (2), and not at the acceleration
level, i. e., not with providing a coupling term to (1) after
f(φ). This has several advantages. First, this makes feedback
modulation highly reactive to the actual force, and low gains
can be used. The most important feature of velocity level
coupling is in producing lower oscillations in the direction of
the force. For details on advantages of velocity-level coupling
and stability of coupled DMPs see [19].

If the conditions of the periodic task do not change during
the execution, the error of using only a feedback term will
not change through the periods of motion, but will continue
to repeat. We propose adding a feed-forward term to cancel
the error (e = Fdes − Fact) of tracking the predefined force
trajectory. The feed-forward term has to adapt to the specific
task by a learning method. We propose using repetitive
control (RC), which can achieve near perfect tracking of a
given reference if the conditions of the task remain relatively
the same [16], [17]. The approach is described in the next
section.

To make cff also a function of the phase, we encode the
feed-forward term in the form of weighted kernel functions
Γi, similar to f(φ) in (4)

cff(φ) =

∑N
i=1 viΓi(φ)∑N
i=1 Γi(φ)

. (11)

The target for fitting is the output of the repetitive control
(see Fig. 1). We use iterative locally weighted regression
(ILWR) with a forgetting factor λ = 0.99 to learn the
weights vi. See [9] for details on ILWR. The encoding
acts as a filter, canceling out some of the noise of the
measurements. Additionally, once we stop learning, the same
phase drives both the DMP and the coupling, allowing for
temporal modulations.

III. REPETITIVE CONTROL

Repetitive control is a control method that uses previous
experience to design a new control signal and is thus
categorized as learning-type control [16]. It is mainly used
in continuous processes for tracking or rejecting periodic
exogenous signals and in most cases, the period of the exoge-
nous signal is known. In this paper we use what is known as a
plug-in type repetitive control, which incorporates both feed-
forward and feedback terms. The structure of such controllers
is presented in the top left part of Fig. 1, denoted by the solid
border. Figure 1 also shows how RC is combined with a
DMP, and how a virtual force can be utilized, shown bottom
right and denoted by the dashed border.

Note that the schematic is written for a discrete-time
system, where z−1 represents a delay of one time sample
and z−T of one period. In this paper we also only tackle
constant frequencies.
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Fig. 1. Schematic of the RC in combination with the DMP and the robot
(R1). Contact with the environment provides the force Fact. The force can
be the real, measured force, or a virtual force calculated with (9).

The feed-forward term is composed of two parts, known
as the Q and the L filter, which are defined as [16]

L(z−1) = kRC , (12)
Q(z−1) = ε(α1z + α0 + α1z

−1), (13)
2α1 + α0 = 1. (14)

Here αi > 0, 1 ≥ ε > 0 and kRC > 0. Effectively, the feed-
forward term uses the error signal from the previous period
(see z−T in Fig. 1) and applies it to the control signal. The
values of kRC , just as the value of k in the feedback term,
has to be determined before hand. In our experiments we
determined the values empirically.

The robustness of the system is determined through the
gain of the Q-filter. Stability of RC is a wide and complex
topic. As discussed in a survey by Cuiyan et al. [17], different
types of RC control require different design and synthesis
methods. In general, the selection of control parameters
involves a tradeoff between steady state accuracy, robustness
and transient response of the system [17]. Furthermore, there
is also the phenomenon of apparent convergence, where the
system apparently converges, but after some time diverges
[23]. Multiplying the output of the Q filter with ε < 1 will
increase the robustness of the system, but also the steady-
state error. In our simulated experiments we used ε = 0.95
and in our real-word experiments we used ε = 0.7.

The contribution of this paper is in showing how we
can combine DMPs with their modulation and disturbance
rejection properties, and a learning framework of RC. While
RC alone could be applied to the problems at hand, the
combination with DMPs allows more robust and adaptive
behavior and modifications with a small set of parameters.

IV. EVALUATION

We evaluated the algorithm in both simulation and in
real-world experiments. In the first experiment we simulated
a task where the robot has to maintain contact with a
periodically moving object (under external actuation) while
applying a constant, predefined referential force. The scheme
in Fig. 1 was used for simulated experiments and perfect
tracking of the robot was assumed (R1 = 1, see Fig. 1). We
used (9) to simulate the forces.
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Fig. 2. Simulated results of using the proposed RC learning to reduce the
error of force tracking for the task of maintaining contact with a periodically
moving object. The trajectory of the object (black), the trajectory with
coupling (dashed blue) and the original DMP trajectory (green dashed) in the
top plot. The error of force tracking when using the feedback coupling only
(red dashed) and when using both feedback and feed-forward couplings
(blue). Using both couplings reduces the error about 25 times. The final
second of the plot is zoomed in.

Figure 2 shows the results for the task of maintaining
desired contact with an object performing a simple sinusoidal
trajectory. In the top plot we can see the original, uncoupled
DMP trajectory (green dashed), which starts at a randomly
chosen position close to the goal (g = 0.5) and close to the
trajectory of the periodically moving object (black). Also
shown is the trajectory of the DMP with both feedback and
feed-forward coupling (dashed blue). The initial guess for the
motion (green dashed), which was here predefined, but could
have been acquired autonomously through generalization,
has the correct frequency but too small amplitude. The
bottom plot of Fig. 2 shows the error of the desired force
for two scenarios: using only the feedback coupling C = cfb
(red dotted); and both feedback and feed-forward coupling
C = cfb+cff (blue solid). We can see that the error is reduced
approximately 25 times when also the feed-forward term is
used.

The steady-state error depends on the value of ε in (13).
A higher ε, i. e., ε ≈ 1, reduces the steady state error, but
also reduces the robustness of the system. To demonstrate
the effect of varying ε, Fig. 3 shows the results for the
same experiment of maintaining constant contact with a
periodically moving object, but with a considerably more
complex waveform of object motion. Additionally, the signal
of the position of the robot is noisy, with a maximal noise
amplitude of 1 cm. Such noise is unrealistically high for the
estimation of position through forward kinematics, but could
be present if a vision system is used to estimate the position
of the object. The top plot of Fig. 3 shows the waveform of
the object motion (blue solid), while the bottom plot shows
the effect of ε on steady-state error. Steady-state error is
lowest when there is no noise (black dash-dot) and ε = 1.
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Fig. 3. Simulated results of the effect of ε and noise on using the proposed
RC learning to reduce the error of force tracking for the task of maintaining
contact with a periodically moving object. The trajectory of the object
(black), the trajectory with coupling and ε = 0.9 (dashed red) and the
original DMP trajectory (green dashed) in the top plot. The error of force
tracking with different ε values in the bottom plot. Steady-state error is
lowest when there is no noise and highest ε = 1, shown in black dash-dot
line. The final second of the plot is zoomed in.

The results overlap considerably in the transient part, i. e.,
from the beginning.

Increasing ε decreases the robustness of the learning
algorithm, which might cause it to diverge, even after appar-
ent convergence. This is not uncommon [23] and different
methods of canceling out this phenomena exist; the easiest
in reducing ε, reducing the gain of the L filter, see (13), or
by cutting the learning after some time. The latter involves
some heuristics in determining the time to cut the learning;
observing that the error remains below a threshold for more
than one period can be used as a criterion. Figure 4 shows
the occurrence of apparent convergence, where the system
still diverges after some time.

A. Bimanual Coupling

We tested the approach in a real-world scenario where we
used the arms of a humanoid robot to rotate a pedal racer
fixed to a solid structure by its axes. Real measured force
was used to modulate the trajectories of motion.

We used the 4 DOF arms of the compliant humanoid robot
named COMAN [24]. COMAN approximates the size of a 4
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Fig. 4. The phenomena of apparent convergence appears when ε = 1 was
used, but not for ε = 0.85.



Fig. 5. Image sequence showing approximately one period of rotating the
vertically mounted pedal racer with the arms of the COMAN robot after the
learning, when the contact with the pedals is constantly kept. The attached
video shows the complete experiment. The tape on the wheels simulates
contact with the ground and keeps them at the same velocity, preventing
the device from locking up, which happens if the front and the back wheels
do not rotate together.
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Fig. 6. Results of modifying the arm trajectories for a cooperative bimanual
task of rotating the pedal racer with arms. The top plot gives the trajectory
of the arm with x denoting the distance from the body to the tip of the arm.
The bottom plot gives the estimate of the measured force (blue), filtered
force (green) and desired force (red dashed).

year old child, having 945mm from the foot to the center of
the neck, and 312mm between the centers of the shoulders. It
weights 31.2kg, out of which the legs and the waist module
weigh 18.5kg. The complete robot has 23 DOF; each leg has
6: 3 at the hip, 1 at the knee and 2 at the ankle. The trunk is
composed of a 3 DOF waist and the body, while each arm
has currently 4 DOF, i.e. 3 in the shoulder and 1 in the elbow.
Passive compliance based on series elastic actuation (SEA)
is added to 14 of the 23 DOF including all flexion/extension
DOF of the legs, the flexion/extension of the shoulders and
elbows and the shoulder abduction/adduction. The robot is
presented in Fig. 8.

The task of the algorithm was to maintain sinusoidal force
trajectories on a vertically fixed pedal racer, as presented in
Fig. 5. The experiment served to show the applicability of
the approach in a real-world cooperative scenario, where the
cooperation was between the two robot arms. It also served
as a preparation for the task of actually operating the pedal
racer by standing on it.

The initial trajectories of motion, encoded by DMPs were
accurate for the up-down (z) direction, because the arms
could not brace against any part of the pedal racer in

the z direction. Therefore only friction could be used to
produce up-down force on the device. The forward-backward
(x) motion was a sinusoidal with an estimated amplitude,
deliberately set not to maintain contact with the device at all
times. The robot was standing straight in front of the pedal
racer with no balance control. Therefore, a person had to
hold the robot (by the neck) so that it produced forces on
the pedal racer and did not tip over when the arms made
contact. Joint-torque sensors were used to estimate the force
on the end effector. Forces were first estimated for pedaling
in the air. These forces were deducted from the estimates
during the experiment to estimate the force of contact. The
measurements were extremely noisy.

Figure 6 shows the results for the left arm of the robot. The
results for the right arm were similar, but in counter-phase.
The experiment is presented also in the attached video. The
learning was started after 20 s. We can see from the top
plot that the arm trajectory changed. In fact, it maintained
constant contact with the pedal racer when the learning was
stopped. On the bottom plot we see that the measured force
curve did change its shape, but not completely to the desired
one. This is a direct consequence of three major reasons.
The first is that the force measurement was only an estimate,
valid for static conditions only. The second is that the robot
was held by a person and therefore the periods were not
completely repeatable. The third is in setting learning for
greater robustness with ε = 0.7 in order to cope with the
first two reasons. The results show that the trajectories were
modified to maintain constant contact with the device and
that while not achieving perfect tracking, a general shape of
the force profile was still observed.

V. PEDAL RACER

We tested the proposed approach on the task of operating a
pedal racer by standing on it. The task is harder than it seems
even for people, and that is also how the device is marketed.
The pedal racer moves forward if the pedals are moved in
a circular fashion. Contact has to be maintained with both
pedals, which imposes kinematical constraints. In one period
of motion, the operator has to twice pass through singular
configurations of the device by applying forces forward-
backward using only friction to brace against the device.
The experimental scenario demanded the robot to optimize
the initial estimated trajectory of motion over several periods
of learning in order to achieve the desired force profile.

We evaluated our approach in simulation using the We-
bots dynamic simulator [25], and we conducted preliminary
experiments on the real robot.

A. Balance Control

In order to have the robot maintain balance, we imple-
mented a hierarchial control structure with several tasks.
We used iterative inverse kinematics algorithms to con-
trol the center-of-mass (COM) of the robot and the posi-
tion/orientation of the two feet. Both were implemented as
primary tasks by stacking the COM Jacobian and the Jaco-
bian of one foot with respect to the other in an augmented



Fig. 8. In the top row an image sequence of one period of virtual COMAN steady-state pedaling on a virtual pedal racer in Webots dynamic simulator,
after learning. The bottom row shows the real COMAN robot pedaling on the device. Note that the robot was helped to maintain balance at least once per
period.

0 5 10 15 20 25 30 35
−0.1

−0.05

0

0.05

0.1

t [s]

z
[m

]

0 5 10 15 20 25 30 35
−150

−100

−50

0

50

100

F
d
e
s
−
F
a
ct
N

C = 0 C = cfb C = cfb + cff

Fig. 7. Simulated results of operating the pedal racer with the robot
standing on it. In the top plot the error of the desired force: no coupling
(blue), feedback coupling (red), feedback and feed-forward coupling (green).
We can see that the error of the force is considerably reduced when
both feedback and feed-forward couplings are used. In the bottom plot
the relative distance between the feet: first approximation (blue), feedback
coupling (red), feedback and feed-forward couplings (green). Ideal trajectory
is dashed black.

Jacobian. The control sets the COM to remain in the center
between the feet. For details on the implementation of the
controller refer to [26].

B. Results

We conducted several experiments in simulation. The task
was designed to maintain a desired periodic force profile on
the feet of the robot. Each foot of the robot is equipped with
a 6-DOF force-torque sensor.

In the manner of the approach in [21], we used the
measured forces of a successful execution as the reference,
obtained in simulation by maintaining the balance using a
COM controller and providing the exact kinematical motion
to the feet of the robot, which was perfectly aligned to the
device. Our task was designed to adapt the vertical motion of

the robots feet, starting from a reasonable first approximation
(off by 4 cm). The approximation alone results in the robot
tipping over. The phase relation between the horizontal and
vertical movements was preset.

The plots in Fig. 7 show errors of force tracking for three
scenarios: using no coupling (blue); using only feedback
coupling (red) and; using both feedback and feed-forward
coupling (green). The bottom plot shows the relative po-
sition of the feet for the same three scenarios and in the
same colors. No coupling results in the robot tipping over.
Feedback-only coupling results in higher errors and different
trajectories than both feedback and feed-forward coupling.
The bottom plot shows also the trajectory of referential, i. e.,
predefined pedaling (black-dotted).

Fig. 8 shows in the top row an image sequence of steady-
state simulated pedaling after learning, executed in Webots
dynamic simulator. The bottom plot shows the results on
a real robot. The robot was pedaling on a treadmill; the
frequency of the pedaling was calculated to keep the robot
and the pedal racer in place. Both experiments are presented
also in the accompanying video. Note that the robot had to
be helped to maintain balance at certain times, at least once
per period. The reason is in the discrepancy between the
real robot and the model used to estimate the position of the
center of mass, and in the compliance of the pedal racer,
which would visibly bend under load.

C. Discussion of the results

It is important to note that we designed the task to show the
applicability of the proposed approach for a demanding task.
While we show the potential of the proposed approach, other,
possibly fundamentally different approaches approach might
prove equally effective, perhaps more. The issue at hand is in
the referential forces. Since the task of riding the pedal racer
is demanding – the robot has to be stable, only friction is used
to produce forces forward-backward, singular configurations
have to be overcome when the feet are the most apart
in the up-down direction – we mimicked the approach by
Pastor et al. [21] and used a successful execution to acquire



the referential force trajectory. A successful execution is
relatively easy to come by in simulation, but achieving the
same on the real robot is complex in maintaining the balance
of the robot. The latter is crucial for force measurements. It
is evident in Fig. 8 that we had to intervene by hand to
maintain balance at certain points of the period of motion.

Since the robot is standing on the pedal racer, any in-
stability or perturbation will directly affect the forces. The
robot boasts SEAs and is therefore slightly wobbly even
when standing on solid ground. Any oscillation of the springs
introduces forces which have an effect on the trajectory
and also learning, adding to the acceleration of the robot,
which results in additional forces, possibly leading to self-
excitement of the trajectories. Some of this is evident also
in Fig. 7.

VI. CONCLUSIONS AND FUTURE WORK

While thus far mostly restricted to the kinematic domain,
coupling the DMPs with force feedback extends their do-
main to include dynamic tasks. The combination of periodic
DMPs, force-feedback and learned feed-forward coupling al-
lows for generation and execution of previously unattainable
motions, resulting in rich and adaptable periodic motor skills
of a robot.

We used repetitive control, which can cope with the
change of initial conditions of the start of a period, making
it suitable for periodic tasks. The plug-in type RC with a
feedback term can also cope with noisy and less-than-perfect
repetitions through periods of motion. In the paper we only
briefly touched the issue of the stability of the algorithm,
relying on empirically set values to achieve and present initial
results. In the future we will derive explicit stability criteria,
just as was derived for discrete tasks in [19].

The complex real-world task of operating the pedal racer
shows the potential of the proposed approach. In our scenario
the trajectory of required motion to pedal on the device
was only estimated and then optimized for the task through
several periods of learning. Even though the final, learned
trajectory resulted in operating the device, showing that a
learning/adaptation approach is needed, it still leaves room
for improvement of robotic pedal-racing in future work.
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