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Abstract 
Pressure on freshwater resources is increasingly covered by methodological developments addressing 

freshwater use in the field of Life Cycle Assessment (LCA). These developments ultimately lead to the publi-

cation of the ISO 14046 standard to define the principles, requirement and guidelines for a “water foot-

print” in August 2014. The objective of this thesis is to foster the application of water footprint by identify-

ing good practices and developing operational approaches to assess and improve its discriminatory power. 

Indeed, academic development and LCA application by practitioners often evolve within distinct communi-

ties and with various practical constraints. For instance, newly developed methods are spatially differenti-

ated to reduce model uncertainty, improve accuracy, precision and confidence in LCA results. However, 

models officially recommended by the European commission for product water footprints are generic (i.e., 

results do not depend on location), such as USEtox for the modelling of the human toxic and ecotoxic im-

pacts. Furthermore, the practitioner knowledge of the location of emissions is often reduced to direct or 

first tier supplier emissions when information on emission location is available. The trade-off between the-

oretical variability reduction and decrease of uncertainty in practice considering the level of geographical 

information available to the practitioner requires solutions meeting the needs of both LCA actors. This the-

sis answers the need to bridge methodological development and water footprint application through three 

main specific objectives:  

- Review existing and applicable inventory and impact assessment methods that address quantitative 

freshwater use in a life cycle perspective and provide preliminary application recommendations for 

practitioners  

- Analyse spatial differentiation of toxic emissions to water applied to USEtox at the inter-continental 

and intra-continental level and explore simplified spatial differentiation approaches such as spatial 

archetypes 

- Develop a fate and exposure characterization model and factors for toxic emissions into water with 

global coverage and fine resolution and test practical solutions to apply spatial characterization fac-

tors on a case study 

The first part of this thesis (Chapter 2) focuses on quantitative aspects of water use by providing a compre-

hensive review of existing and applicable inventory and impact assessment methods that address freshwa-

ter use. It develops a detailed framework of cause-effect chains leading from water use inventory to impact 

on human health, ecosystem quality and resources, based on which a set of qualitative evaluation criteria 

were developed aligned with those used in the ILCD handbook. Methods and databases are evaluated 

against these criteria leading to recommendations of model components to be included in new methodo-
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logical developments. This analysis proves that a water footprint is already applicable for experienced prac-

titioners relying on the current state-of-the-art methods. It provides a basis to reference the state-of-the-

art of methods addressing water use in LCA already used and cited by several authors in the field of water 

management and specific water footprint case studies. 

Practical solutions to operationalize spatial differentiation are tested in Chapter 3 and 4, focusing on impact 

pathways generated by toxic emissions into water. This thesis validates the use of a nested spatially differ-

entiated model and a sector-specific aggregation of characterization factors into a global average and dis-

criminate the archetype approach for the evaluation of toxic emissions to water. Spatially differentiated 

landscapes and models are first developed as a reference to test simplified approaches: (1) landscape pa-

rameters are created for USEtox to develop continent and sub-continent specific boxes nested within the 

world and (2) a fate and exposure characterization model and factors are developed to assess toxic emis-

sions into water with global coverage at 0.5°*0.5° resolution. The analysis of inter-continental and intra-

continental variation in Chapter 3 leads to the conclusion that a sub-continental nested model such as USE-

tox, with continent-specific parameterization complemented with freshwater archetypes, can represent 

spatial variations whilst minimizing model complexity. However, when going one step further into spatial 

differentiation, i.e. at the 0.5*0.5° scale in chapter 4, the developed archetypes do not represent anymore 

an implementable and simplified approach of spatial differentiation as they do not follow a systematic geo-

graphical pattern (such as rural and urban). A characterization factors aggregation into a global average is 

shown to be relevant in the case of sector-specific emissions and aggregation for the case study of arsenic 

and chromium(VI) emissions from red mud disposal during alumina production. The results of this work 

prove that using a generic model is acceptable in the latter case study to cover a low resolution such a con-

tinent, country, or sector (when the detailed emission location is unknown) while a finer resolution is es-

sential for a regional impact score at the watershed, grid cell or point source level. In any case, an uncer-

tainty analysis is useful at a low resolution in order to consider the result variability during the interpreta-

tion of impact results. 

The limitations and constraints related to water footprint practice are then discussed based on published 

case studies and personal consulting experience. As an outlook of this work, it is recommended to develop 

a detailed practitioner-oriented spatial differentiation implementation framework for a pragmatic and easi-

ly interpretable application of spatial differentiation in LCA. 

Keywords 
Life cycle assessment – Water footprint – Spatial differentiation – Human toxicity - Ecotoxicity 
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Résumé 
La pression sur les ressources d’eau douce est traitée par de récents développements méthodologiques 
dans le domaine de l’analyse de cycle de vie (ACV). Ces développements ont mené à la publication du stan-
dard ISO 14046 pour définir les principes, exigences et règles pour l’évaluation d’une « empreinte eau » en 
août 2014. L’objectif de cette thèse est de favoriser l’application de l’empreinte eau en identifiant les 
bonnes pratiques et en développant des approches opérationnelles pour évaluer et améliorer son pouvoir 
discriminatoire. En effet, les développements académiques et l’application de l’ACV par les praticiens évo-
luent souvent dans des communautés distinctes avec des contraintes pratiques différentes. Par exemple, 
les méthodes récemment développées sont spatialement différentiées pour réduire les incertitudes du 
modèle, améliorer son exactitude, sa précision et la confiance dans les résultats de l’ACV. D’autre part, les 
modèles officiellement recommandés par la commission européenne pour l’empreinte eau d’un produit 
sont génériques (les résultats ne sont pas différentiés selon la localisation), tel que USEtox pour la modéli-
sation des impacts liés à la toxicité humaine et l’écotoxicité.  De plus, les connaissances du praticien sur la 
localisation des émissions se limitent souvent aux émissions directes ou au premier niveau de fournisseur 
lorsque l’information est disponible. Le compromis entre la réduction de variabilité théorique et la réduc-
tion d’incertitude en pratique considérant la disponibilité d’informations géographiques sur les différents 
lieux d’émission nécessite des solutions qui satisfassent les besoins de ces deux acteurs de l’ACV. Cette 
thèse répond au besoin de créer une passerelle entre développements méthodologiques et application de 
l’empreinte eau à travers les trois objectifs spécifiques suivants : 

- Passer en revue les méthodes d’inventaire et d’impact existantes et applicables qui traitent de 
l’usage quantitatif de l’eau dans une perspective de cycle de vie et proposer des recommandations 
préliminaires pour les praticiens 

- Analyser la différentiation spatiale des émissions toxiques dans l’eau appliquée à USEtox au niveau 
intercontinental et intracontinental et explorer des approches simplifiées pour la différentiation 
spatiale telles que les archétypes  

- Développer un modèle de devenir et exposition ainsi que des facteurs de caractérisation pour les 
émissions toxiques dans l’eau avec une couverture globale et fine résolution ainsi que tester des 
solutions pratiques pour appliquer des facteurs de caractérisations spatiaux dans un cas d’étude 

La première partie de cette thèse (chapitre 2) se focalise sur les aspects quantitatifs de l’usage de l’eau 
douce en réalisant une revue des méthodes d’inventaire et d’impact existantes et applicables. Un cadre de 
réflexion pour décrire la chaîne cause-à-effet menant de l’inventaire d’usage de l’eau à l’impact sur la santé 
humaine, la qualité des écosystèmes et les ressources est proposé, et sert ensuite comme base pour établir 
des critères d’évaluation qualitatifs alignés avec ceux du « ILCD handbook ». A partir de ces critères, les 
méthodes et bases de données sont évaluées, menant à des recommandations sur les éléments clé du mo-



Résumé 

5 

dèle à inclure dans les nouveaux développements méthodologiques. Cette analyse prouve qu’une em-
preinte eau est déjà applicable pour des praticiens expérimentés en se basant sur l’état de l’art actuel. 
Cette étude fournit une base pour référencer l’état de l’art de méthodes qui traite de l’usage de l’eau en 
ACV, déjà utilisée et citée par différents auteurs dans le domaine de la gestion de l’eau et dans des cas 
d’étude effectuant une empreinte eau. 

Des solutions pratiques pour opérationnaliser la différentiation spatiale sont testées dans les chapitres 3 et 
4, se focalisant sur les chaînes cause-à-effet générées par des émissions toxiques dans l’eau. Cette thèse a 
validé l’utilisation d’un modèle imbriqué et d’une agrégation de facteurs de caractérisation en une 
moyenne pondérée spécifique à un secteur industriel et a discriminé l’approche des archétypes pour 
l’évaluation des émissions toxiques dans l’eau. Des paysages et modèles avec une différentiation spatiale 
sont créés comme référence pour tester les approches simplifiés: (1) des paramètres de paysage sont créés 
pour USEtox pour développer des boîtes continentales et sous-continentales imbriquées dans une boîte 
globale et (2) un modèle et facteurs de caractérisation sur le devenir et l’exposition des émissions toxiques 
dans l’eau sont développés avec une couverture globale et une résolution de 0.5*0.5°. L’analyse de varia-
tion intercontinentale et intracontinentale dans le chapitre 3 mène à la conclusion qu’un modèle imbriqué 
à l’échelle sous-continentale tel que USEtox, avec une paramétrisation propre à chaque contient complé-
mentée d’archétypes basés sur le temps de résidence de l’eau jusqu’à la mer, peut représenter les varia-
tions spatiales tout en minimisant la complexité du modèle. Toutefois, lorsque l’on va plus loin dans la dif-
férentiation spatiale, tel qu’à la résolution de 0.5*0.5° dans le chapitre 4, les archétypes développés ne 
représentent plus une approche simplifiée et facilement applicable car ils ne suivent pas une disposition 
géographique systématique (tel qu’urbain et rural). L’agrégation des facteurs de caractérisation en une 
moyenne globale est néanmoins pertinente dans le cas d’émission et agrégation spécifique à un secteur 
industriel dans le cas d’étude d’émissions de chrome(VI) et arsenic percolant de la mise en décharge de 
boues rouges issues de la production d’alumine. Les résultats de ce travail démontrent que l’utilisation d’un 
modèle générique est acceptable pour couvrir une faible résolution telle qu’au niveau d’un continent, d’un 
pays ou d’un secteur industriel, tandis qu’un modèle à la résolution spatiale fine est essentiel pour une 
évaluation régionale au niveau du bassin versant, de la cellule ou d’un site particulier. 

Les limites et contraintes à la pratique de l’empreinte eau sont finalement discutées sur la base de cas 
d’études publiés et de mon expérience personnelle de travail dans une entreprise de conseil. En perspec-
tive de ce travail, il est recommandé de développer une approche pragmatique et facilement interprétable 
pour l’application de la différentiation spatiale en ACV du point de vue du praticien. 

Mots-clés 
Analyse de cycle de vie – Empreinte eau – Différentiation spatiale – Toxicité humaine - Ecotoxicité 
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1.1 Context 
Human influence on the hydrological cycle has been increasing over the last decades and brings alterations 

to the water resources and their availability (Shiklomanov and Rodda 2003). These alterations in turn affect 

human well-being and ecosystem health (United Nations Environment Programme 2007).  

Today, it has been recognized by the international community that potential impacts of water use involved 

in the production, consumption and end-of-life of manufactured goods and services (both being qualified 

as products) can be quantified through the tool Life Cycle Assessment (LCA) (ISO 2014).  Impact from water 

use is one among several environmental problem accounted in LCA. Water use is defined according to ISO 

14046 2014 as including “any water withdrawal, water release or other human activities within the drain-

age basin impacting water flows and/or quality, including in-stream uses such as fishing, recreation, trans-

portation”. 

Nevertheless, the assessment of freshwater quantitative use has received a very limited attention in LCA 

(Koehler 2008) until the last five years, where it was recognized that there was a need to define a concep-

tual and normative framework to streamline the implementation of methods assessing freshwater quanti-

tative use, especially based on a review of the developments in that field, and recommend a consensus 

method to cover this specific cause-effect chain. Two majors initiatives were launched at the end of the last 

decade to fulfill these needs and aiming at fostering application of water assessment in LCA (also called 

“water footprint”): the United Nations Environment Programme (UNEP)/Society of Environmental Toxicol-

ogy and Chemistry (SETAC) Life Cycle Initiative’s working group on the assessment of freshwater use and 

consumption in life cycle assessment (LCA) called “WULCA”, and the International Organization for Stand-

ardization (ISO) water footprint working group (ISO/TC207/SC5/WG8) with the mission to draft the new ISO 

14046 standard (ISO 2014). 

Impacts related to water pollution have been traditionally fairly well covered by LCA, using impact catego-

ries such as aquatic eutrophication, aquatic acidification, aquatic ecotoxicity (sometimes considering ioniz-

ing radiations from decay of radioactive material) and human toxicity. Aquatic eutrophication can be de-

fined as a nutrient enrichment of surface water generating increasing algal growth and changing species 

abundance and diversity (Smith 2003). Unlike eutrophication, aquatic acidification results from airborne 

emissions of acidifying substances and their subsequent direct or indirect deposition on aquatic environ-

ment. Acidity ultimately creates a number of consequences such as decreased availability of nutrients or an 

increased concentration of soluble toxic metallic substances that affect fish, aquatic plants and insects in 

addition to the deviation from their optimum pH living conditions (Roy et al. 2014). The human toxicity and 

aquatic ecotoxicity impact categories refer to an adverse change in the structure, or function of respective-



Introduction 

 

17 

ly humans and aquatic species as a result of exposure to a chemical (Pennington et al. 2004). These chemi-

cals encompass both organic and inorganic substances emitted to air, soil or water. Both human toxicity 

and aquatic ecototoxicity categories are covered through models depicting the entire impact pathway from 

the emission to the effect on aquatic species or humans. The last decade saw the emergence of two differ-

ent and complementary model development trends: while some models are sophisticated to increase their 

environmental relevance and reduce their uncertainty, an effort is provided in parallel by the scientific 

community to develop scientific consensus models with reduced components to enhance their implemen-

tation among all stakeholders. An example of sophistication is made through spatial differentiation, i.e. the 

discrimination of impacts in relation to the place of emission (Potting and Hauschild 2006; Manneh et al. 

2010; Wegener Sleeswijk and Heijungs 2010). Recently developed impact assessment methods are covered 

by models spatially differentiated at different scales, e.g., from a continental (Lundie et al. 2007; Shaked 

2011) to a grid cells resolution (Pistocchi et al. 2010; Roy et al. 2012) for the most refined ones. An example 

of scientific consensus model is USEtox (Rosenbaum et al. 2008), which aims at combining existing models 

into a unique one and integrating consensual modelling element by applying the principles of parsimony 

and mimetism. This consensual model aims at fulfilling the need expressed by LCA practitioners for recom-

mended methods that increase LCA results comparability. These two parallel trends of model development 

both contribute to the LCA field following sometimes divergent directions by respectively (1) improving its 

results reliability, which is explored in this work by and (2) fostering and systematizing LCA application.  

This thesis focuses on the impact of quantitative water use and qualitative water use. This research work 

has been performed through the participation in two international projects: the UNEP-SETAC project on 

water use in LCA (WULCA) and the Life Cycle Impact assessment Methods for imProved sustAinabil-

ity Characterisation of Technologies (LC-IMPACT), a European Commission founded project under the Sev-

enth Framework Programme. The papers of this PhD are direct contributions to the deliverables of the two 

projects. I performed this research whilst working as a LCA consultant at the company Quantis. Quantis 

performs and implements LCA to inform companies and public organisations on the environmental impact 

of their activities or their products and help them in their impact reduction strategies.  

The first chapter of this thesis describes the context and defines the objectives of this thesis. The second 

chapter provides a systematic review of recently published methods addressing quantitative impacts of 

water use in LCA. The third and fourth chapters analyze different approaches for assessing spatial differen-

tiation of toxic emissions into water (a specific case of degradative water use) at global scale, develop a set 

of relevant model landscape archetypes and provide recommendations on how to address spatial differen-

tiation in LCA. The fifth chapter provides a critical appraisal of the thesis where the achievements are put in 
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perspective as a contribution to LCA science and practice and concludes regarding the achievement of de-

fined objectives. 1.2 Literature review 1.2.1 Pressure on water resources 
Freshwater in all its states represents only 2.53% of the total hydrosphere of which 1.74% is in the ice 

sheets of the Antarctic, the Arctic and in mountain glaciers (Shiklomanov and Rodda 2003). However, this 

situation is not static, as water continuously moves from liquid, solid and gaseous forms as the hydrological 

cycle progresses under the effects of solar radiation, the energy released from the Earth’s interior and grav-

itational forces (Shiklomanov and Rodda 2003). This cycle is more and more influenced by human freshwa-

ter withdrawal, which increased by more than 6 times between 1900 and 2010 (from 500 km3 yr−1 to 3300 

km3 yr−1) (Wada et al. 2014) to sustain growing population and food demand as well as increasing standard 

of living. Climate changes may also threaten water availability, bringing a warmer climate that decreases 

water availability, increases the chances of disastrous events, changes the level of water use and its quality, 

and creates changes in the food supply production through the need for more irrigation, increased produc-

tivity or dependence on other countries (Kulshreshtha 1993). Röckström et al. (2009) estimated that hu-

manity’s total surface and groundwater consumptive freshwater use is currently within a safe operating 

limit with an estimation of the current use of 2600 km3 yr−1  and a proposed planetary boundary of 4000 

km3 yr−1. However, when considering the regional nature of freshwater scarcity, the majority of global 

freshwater withdrawals currently takes place in watersheds already experiencing high water scarcity 

(Ridoutt and Pfister 2010a). Seckler et al. (1999) from the International Water Management Institute 

(IWMI) estimated that nearly 1.4 billion people live in regions that will experience severe water scarcity 

within the first quarter of the twenty-first century. 

Water degradation arises from different types of sources and varies depending on a country level of devel-

opment. Meybeck and Helmer (1989) sequenced chronologically water quality issues in industrialised coun-

tries as faecal pollution, organic pollution, salinization, metal pollution, eutrophication, radioactive waste, 

nitrate organic pollutants and acid rain. Thermal pollution was more recently studied and proved to signifi-

cantly influence aquatic environments and their biota (Verones et al. 2010). Water quality degradation is 

proved to harm human and ecosystem health (United Nations Environment Programme 2007). It is esti-

mated that three million people die each year from water-borne diseases mainly related to microbial path-

ogens and excessive nutrient load in developing countries (United Nations Environment Programme 2007). 

The impact related to the emission of toxic substances such as pesticides, pharmaceutical products or in-

dustrial waste is dramatically known through mass accidental or voluntary release, such as in the case of 
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the Minamata disease, where methylmercury was released in the industrial wastewater, then ingested by 

population through fish and shellfish (Ui 1992). While human health effects of long term exposure from 

continuous diffuse emissions to water are unknown (Margot et al. 2013), toxic substances released to wa-

ter can affect sensitive aquatic organisms even at very low concentrations (Santos et al. 2010). When sub-

stances are emitted to surface freshwater, the receiving body hydrology (e.g., freshwater residence time 

until the sea) plays an important role in the impact magnitude (Pennington et al. 2005; Henderson et al. 

2011). 

Awareness of humanitarian, social, environmental and economic stakes around water also grows in the 

private sector. Several initiatives were recently set up to provide tools to measure water use, assist compa-

nies in developing water sustainable management or certification programs, such as respectively Global 

Water Tool by the World Business Council for Sustainable Development (WBCSD 2010), the CEO water 

mandate (UN Global Compact Office 2011), and the Alliance for Water Stewardship (AWS) (Abdel Al et al. 

2014). 

A first step towards an integrated water management at the company, sector, community or political 

boundary level is to gain an adequate understanding of the extent of the inventory and impacts generated 

by all water uses related to the considered system. There is a need to develop rigorous and evaluated 

models to measure and compare the “water footprint” of a system, defined as “the metric(s) that 

quantifies the potential environmental impacts related to water” (ISO 2014).   1.2.2 Life cycle assessment 
Life cycle assessment (LCA) is an approach to understand the relationships between human activities and 

their impact on the environment over the entire life cycle of a system, i.e., from raw material acquisition, 

via production and use phases, to waste management. Product LCAs are usually conducted to support 

corporate decision-making, such as for eco-design of products, process optimizations, supply-chain 

management, and marketing and strategic decisions (Hellweg and Milà i Canals 2014). It quantifies all 

relevant consumed resources, emissions and waste produced during products (goods or services) life cycle 

and relates them to associated environmental impacts (including health effects) as well as resource 

depletion issues. One of the powerful advantages of LCA is that it prevents “shifting” of the impacts from 

one life cycle stage to another or from one impact category to another. LCA is one of several existing envi-

ronmental management techniques (others being, e.g., risk assessment, environmental performance eval-

uation, environmental auditing, and environmental impact assessment). Following the standards ISO 14040 

and ISO 14044 (ISO 2006a; ISO 2006b), LCA is defined as “the compilation and evaluation of the inputs, 

outputs and the potential environmental impacts of a product system throughout its life cycle” and it does 
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not address the economic or social aspects of a product. The general structure of life cycle assessment con-

sists in four phases (ISO 2006a): goal and scope definition, life cycle inventory (LCI), life cycle impact as-

sessment (LCIA) and interpretation that are presented in Figure 1.1.  

 

Figure 1.1: Life cycle assessment methodology structure based on ISO 14044 (ISO 2006a) 

While the ISO normative framework details the requirements for conducting and reporting an LCA, it does 

not provide recommendations on LCIA methods that shall be applied (although some application examples 

are provided in ISO 14047 (2003)). Examples of existing LCIA methods are IMPACT 2002+ (Jolliet et al. 

2003), TRACI (Bare et al. 2003), EDIP 2003 (Hauschild and Potting 2005) and ReCiPe (Goedkoop et al. 2009). 

The ILCD handbook provides recommendations on models that should be used for each impact category 

covered by LCIA (JRC-IES 2011). Based on these recommendations, the European commission also pub-

lished a key reference document for LCA industrial actors: both a Product and an Organisation Environmen-

tal Footprint (PEF/OEF) guide with detailed recommendations that cover all LCA phases (European 

Commission 2013a), including a set of impact categories to be used by default in LCA that are PEF/OEF 

compatible. New methodologies, such as the recently developed IMPACT World+, provide regionalized 

characterization modeling approaches (Bulle et al. 2012; IMPACTWorld+ 2014). An example of structure of 

LCIA methodology is presented in Figure 1.2 (Jolliet et al. 2003). LCI results with similar cause-effect chains 

(e.g., all elementary flows influencing stratospheric ozone concentrations) are grouped into midpoint cate-

gories, which ultimately lead to an endpoint (damage) category. An impact indicator is a class representing 

environmental issues of concern to which life cycle inventory analysis results may be assigned. A category 

endpoint corresponds to an attribute or aspect of natural environment, human health, or resources, identi-

fying an environmental issue giving cause for concern. The term “midpoint' expresses the fact that this 

point is located somewhere on an intermediate position between the LCI results and the damage (or end-

point) on the impact pathway. 
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Figure 1.2: Overall LCIA scheme linking LCI results via the category midpoint and category endpoint when using the 
LCIA method IMPACT 2002+ (Jolliet et al. 2003) 

LCIA is then done using a weighted summation of the releases of the substances related to a product sys-

tem with the help of characterization factors, as illustrated in Equation 1.1: 

ܵܫ = ෍ ෍ .௫,௜ܨܥ ௫,௜௫௜ܯ  

Equation 1.1: Impact score calculation 

Where ܵܫ is the impact score (e.g., in kg CO2-eq for the category global warming), ܨܥ௫,௜ is the characteriza-

tion of the substance ݔ released to compartment ݅ (e.g., in kg CO2-eq/kg) and ܯ௫,௜ is the emission of ݔ to 

compartment ݅ (e.g., in kg). 1.2.3 Water use in LCA 
Quantitative water use is historically a poorly covered impact category in LCA (Koehler 2008). The ILCD 

handbook (JRC-IES 2011) classifies water use as a sub-category of resource depletion. It recommends the 

midpoint method of Frischknecht et al. (2006) but “to be used with caution” and considers that evaluated 

endpoint methods (as of 2008, the time of evaluation) are too immature to be recommended. However, in 

recent years, new midpoint and endpoint methods have been developed that propose different water use 

inventory schemes and impact assessment characterization models considering various cause-effect chain 

relationships (Pfister et al. 2009; Boulay et al. 2011b; Berger et al. 2014). Spatial differentiation is a key 

cross-cutting issue of these methods given the regional nature of water resource availability and quality.  

Midpoint Endpoint 
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The initiative WULCA launched by the UNEP/SETAC Life Cycle Initiative’s working group on the assessment 

of water is a platform where the efforts on the development of methodologies related to water use in LCA 

are coordinated with the aim to build consensus and harmonize water accounting schemes and impact 

assessment methods. The first achievement of WULCA was the development of a general framework to 

assess freshwater resources within LCA (Bayart et al. 2010). This work provided recommendations on 

freshwater use modeling and relevant impact categories to be considered. The second chapter of my thesis 

represents a direct contribution to the second achievement of WULCA: a review of existing methods, in-

cluding inventory, impact assessment methods and indices focused on water scarcity. The third achieve-

ment of WULCA consisted in broadening the understanding of existing water use impact assessment meth-

ods and their applicability within a water footprint study on a laundry product (Boulay et al. 2014a; Boulay 

et al. 2014b). In May 2013, WULCA received the mandate from the UNEP/SETAC Life Cycle Initiative to lead 

the harmonization and consensus building for the water use impact category in the context of the Project 

on Global Guidance on Environmental life cycle impact assessment indicators (Frischknecht and Jolliet 

2014), involving key method developers and stakeholders through an international collaborative effort 

(UNEP SETAC Life Cycle Initiative 2014). 

Parallel to this initiative, an ISO technical committee initiated a draft standard on water footprint in 2009. 

After a 5 year process, the final draft international standard ISO 14046 (ISO 2014) was accepted in May 

2014 and published on August 1, 2014. Following the ISO 14040 and 14044 series (ISO 2006a; ISO 2006b), 

this new standard defines the principles, requirements and guidelines related to water footprint of prod-

ucts, processes and organizations based on LCA. It defines the scope, normative references, specific terms 

and definitions related to water, principles, methodological framework, reporting rules and critical review 

guidelines. The methodological framework distinguishes a “water footprint inventory assessment” from “a 

water footprint” that follows the four phases of LCA presented in Figure 1.1. According to this standard, a 

water footprint inventory assessment alone shall not be reported as a water footprint. The representation 

of a water footprint shall rather be one or more parameters which quantify the potential environmental 

impact(s) related to water, i.e. a water footprint unique indicator result related to one single impact cate-

gory or the water footprint profile which comprises several indicator results. These indicator results can be 

related to three different types of assessments: (1) a water availability footprint (2) a water scarcity foot-

print, which corresponds to a water availability footprint considering only water quantity and (3) a water 

degradation footprint that corresponds to a water footprint that addresses water degradation. Two differ-

ent impact pathways related to water quality degradation are considered in a water availability footprint 

and a water footprint addressing water degradation. The water availability footprint reflects the fact that 

water quality issues can be related to water quantity through the concept of functionality, introduced by 
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Boulay et al.’s (2011a). Boulay et al. (2011a) defined water as functional “if it can meet users' needs with-

out generating adverse effects or a change in activities”. A functionality loss can thus make water non-

suitable for a defined type of user. On the other hand, a water footprint addressing water degradation co-

vers environmental degradation associated with eutrophying, acidifying, and toxic emissions or thermal 

pollution but excludes the functionality loss.  

Similarly to ISO 14040 and ISO 14044, ISO 14046 does not provide recommendations on which LCIA meth-

ods should be used for water assessment. The need to review and evaluate existing methods was fulfilled 

by the WULCA project, which succeeded to provide scientific arguments aiming at a future harmonization 

of the implementation of methods addressing water use in LCA. The work presented in chapter 2 of this 

thesis represents a direct contribution to the WULCA project, where the lack of comprehensive review and 

evaluation of existing state-of-the-art was addressed at the time of the study, from 2009 to 2013. 1.2.4 Water degradation through toxic emissions to water in LCA 
Quality issues related to water degradation as mentioned in chapter 1.2.3 have been classified and stream-

lined in LCA through impact categories such as aquatic acidification, aquatic eutrophication, human toxicity 

and aquatic ecotoxicity (Jolliet et al. 2003). An overview of human toxicity and aquatic ecotoxicity is provid-

ed in the following paragraph. 

As mentioned previously, the human toxicity and aquatic ecotoxicity impact categories refer to an adverse 

change in the structure, or function of respectively humans and aquatic species as a result of exposure to a 

chemical (Pennington et al. 2004). This impact is initiated by a natural or anthropogenic emission to air, 

water or soil of an organic or inorganic toxic substance. An emission inventory for the life cycle of a product 

can easily contain several hundred different substances, many of which have the potential to cause toxicity 

to humans or ecosystems when released to the environment (Henderson et al. 2011). The cause-effect 

chain following the emission was assessed alternatively by policy-based safe threshold data such as critical 

dilution volume (CDV) (Ecolabel EU 1995) and later by mechanistic model-based approaches such as the 

scientific consensus multimedia model USEtox (Rosenbaum et al. 2008). Policy-based approaches were 

developed to provide a conservative estimate of the impact to insure the safety of a receiving body and 

exposed population or ecosystem. Inversely, best estimate approach was adopted in LCA to compute more 

robust and stable metrics to perform product-based relative assessments. Figure 1.3 describes the 3-step 

assessment followed by both approaches to model the impact of toxic emissions. This model includes 

chemical fate, exposure and effect modeling steps (adapted from Rosenbaum (2008)). Multi-media models 

are traditionally used to simulate the fate of the chemical, i.e. the behavior of chemicals released from the 

technosphere, e.g., from a manufacturing facility or waste treatment plant, to the environment as the net 
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result of mass flows between a suite of well-mixed, homogeneous compartments (Henderson et al. 2011). 

Once the substance is partitioned among different compartments, the substance exposure is modeled 

through the bioavailability of the chemicals to aquatic organisms for aquatic ecotoxicity and the transport 

from environmental compartments to the human population via inhalation and ingestion. Finally, the effect 

modelling then relies on dose or concentration response (eco)toxic data and expresses respectively the 

ultimate change in the affected fraction of an ecosystem or the change in disease probability affecting hu-

man lifetime.  

 

Figure 1.3: Framework of the scientific consensus USEtox model from emission to impact on aquatic ecosystems 
and human health, adapted from Rosenbaum et al. (2008) 

The characterization factors for human toxicity and ecotoxicity encompass all steps of the cause-effect 

chain. It can be expressed in terms of metrics such as respectively Disability Ajusted Life Years (DALY) and 

the marginal change in potentially affected fraction (PAF) over a given area (m2 or volume (m3) and during a 

given period (day or year) per unit emission of a chemical (Goedkoop and Spriensma 2001; Huijbregts et al. 

2001). The DALY is a measure of overall disease burden, expressed as the number of years lost due to ill-

health, disability or early death. The DALY indicator was jointly developed by the World Bank, the World 

Health Organization (WHO) and the Harvard School of Public Health in the late 1980s (European Centre for 
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Disease Prevention and Control 2011) and is yet widely applied in the LCA field (Crettaz et al. 2002; 

Pennington et al. 2005; Goedkoop et al. 2009). On the other hand, the PAF indicator was developed within 

the LCA field as a measure of the toxic stress that substances put on ecosystems (Van De Meent 1999). 

Equation 1.2 presents the characterization factor calculation through the multiplication of the fate ܨܨ, 

exposure ܺܨ and effect ܨܧ factors: ܨܥ = .ܨܨ .ܨܺ  ܨܧ

Equation 1.2: Human toxicity and ecotoxicity characterization factor calculation 

Where: ܨܨ is the fate factor that links the quantity released into the environment to the chemical masses (or con-

centrations) in a given compartment (Rosenbaum et al. 2011) through multimedia mass balance modeling 

(Mackay 2002). It accounts for multimedia and spatial transport between the environmental media (e.g., 

air, water, soil, etc.). For toxicity related categories, pollutants fate can be evaluated by multimedia and 

multi-pathway fate models e.g., BETR (Macleod et al. 2004), multimedia and multi-pathways fate and expo-

sure models such as IMPACT Europe spatial and single zone (Pennington et al. 2005), USES-LCA (Huijbregts 

et al. 2000b) and GLOBOX (Wegener Sleeswijk and Heijungs 2010). A multimedia and multi-pathways expo-

sure pathway model is needed because many chemicals are multimedia in nature, being transported from 

the medium of emission into another medium that either directly, or indirectly, results in the dominant 

exposure pathway of a species (Margni 2003). Compartment and place of emission, pollutant decay rate in 

different media, partitioning coefficients and bioaccumulation factors are important parameters considered 

in these models (Rosenbaum et al. 2011).  ܺܨ is the exposure factor that links the amount of chemical in a given environmental compartment to the 

chemical intake by human or chemical exposure by ecosystems. For human toxicity, exposure can be dis-

tinguished between direct intake (e.g., by breathing air and drinking water, etc.), indirect intake through 

bioconcentration processes in animal tissues (e.g., meat, milk and fish) and intake by dermal contact. For 

aquatic ecotoxicity, it is equal to the fraction of substance in dissolved form (Rosenbaum et al. 2008), the 

underlying hypothesis being that the ecosystem is exposed to the dissolved part of the chemicals reaching 

the freshwater. Although pollutant fate modeling is similar for human toxicity and aquatic ecotoxicity, 

these two cause-effect chains are influenced by different exposure parameters. For inhalation, the popula-

tion density was identified as a key factor driving the intake, except for persistent and mobile chemicals 

that are taken in by the population independently from their place of emission (Rosenbaum et al. 2011). 

Inhalation, above-ground produce and fish were proved to be important exposure pathways for diffuse 
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emissions driven by the key parameters population density, bioaccumulation /bioconcentration and dietary 

habits. The first two impact characterization steps, i.e. fate and exposure, can be expressed as a combined 

factor: the intake fraction as per the concept introduced by Bennett et al (2002).  ܨܧ is the effect factor that relates the level of exposure of a population or ecosystem to the (ultimate) 

damage. For human toxicity, it corresponds to the link between the quantity taken in via a given exposure 

route by a population to the adverse effects (or potential risk) generated by the chemical and the severity 

of disabilities caused by a disease in terms of affected life years. Cancer and non-cancer effects are consid-

ered separately as the amount of DALY as well as the related uncertainty caused by both types of diseases 

is different. The human toxicity effect factor estimation relies on toxicity dose-response tests extrapolated 

to humans. The aquatic ecotoxicity effect factor refers to the mean response of aquatic species to a chemi-

cal concentration increase in freshwater. It builds on available aquatic ecotoxicity of species belonging to 

different (typically three) phyla. In current methods, space is often neglected when assessing the effect 

factor for human toxicity and aquatic ecotoxicity factor (Pennington et al. 2006). The implications of this 

assumption are yet poorly evaluated, given needed data to assess this variability are lacking. It is therefore 

commonly accepted to neglect effects of spatial variability for human toxicity and aquatic ecotoxicity effect 

factors. 

The USEtox model (Rosenbaum et al. 2008) is a scientific consensus and reference model for human toxicity 

and freshwater aquatic ecotoxicity. It is developed within the Life Cycle Initiative led by the UNEP/SETAC 

life cycle initiative, recognized as a state-of-the-art model by the European Commission (JRC-IES 2011)) and 

recommended in the Product/Organization Environmental Footprint guidelines (European Commission 

2013a). This parsimonious and transparent model can screen about 3000 chemicals included in a published 

database and provides a freely accessible tool to calculate or revise characterisation factors for chemicals 

of interest.  

However, the default version of USEtox is a generic model, i.e. there is no differentiation between various 

emission and impact locations. There is a need to evaluate the accuracy and precision of this consensus 

model while tackling the potential impact of emissions taking place in various locations with different hy-

drological properties. The next paragraph presents the state-of-the-art on spatial differentiation in LCA and 

more specifically of toxic impact modelling.  1.2.5 Spatial differentiation 
In the present era of global trade and economy, product and organization life cycles usually include pro-

cesses from all over the world. In LCI, spatial differentiation is relevant for most processes as habits and 

technologies are different around the world. In LCIA, spatial differentiation is relevant for all non-global 
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impact categories, i.e., all categories for which the magnitude of impact depends on the location of the 

emission. Global warming and ozone depletion are global impact categories because their consequences 

are independent of the emission location. Other impact categories such as human and eco-toxicity, respira-

tory effects caused by inorganics, ionizing radiations, photochemical oxidation, terrestrial and aquatic acidi-

fication, eutrophication, land use, water use and noise often occur as regional or local impact (Potting and 

Hauschild 2006; Sedlbauer et al. 2007). Evaluating impacts in relation to the place of emission is important 

to reduce model uncertainty, improve accuracy, precision and confidence in LCA results. Spatial differentia-

tion is recognized as a key step to improve its discriminatory power for comparative assessments (Potting 

and Hauschild 2006) and hot spot analysis. 

Three levels of spatial differentiation were defined by Potting and Hauschild (2006): site-generic (generic 

receiving environment), site-dependent (distinguishing between classes of sources and determining their 

subsequent receiving environment) and site-specific (very detailed spatial differentiation is performed by 

considering sources at specific locations). Based on the same approach, Margni et al. (2008) added the dis-

tinction between archetype differentiation, geographic differentiation, and combined archetype-

geographic approach. Humbert et al (2009) refined geographic differentiation based on distance from 

emission to location: “local” means within a few ten kilometers (e.g., the urban area), “regional” means 

within a few hundred kilometers (e.g., California, the Central valley), “continental” means within the conti-

nent (e.g., North America), and global means worldwide. 

More recently developed impact assessment methods address the consequences of regional emissions for 

several impact categories. For example, regional characterization factors were developed to evaluate ter-

restrial acidification and eutrophication (Potting et al. 1998; Huijbregts et al. 2000a; Norris 2002; Seppälä et 

al. 2006; Posch et al. 2008; Roy et al. 2012), human toxicity (Macleod et al. 2004; Pennington et al. 2005; 

Shaked 2011), respiratory effects caused by primary and secondary particles (Humbert 2009; Humbert et al. 

2011; Gronlund et al. 2014), and photochemical smog formation (Hauschild et al. 2006) as well as re-

sources-related impact categories such as water use (Milà i Canals et al. 2008; Pfister et al. 2009; Motoshita 

et al. 2010; Boulay et al. 2011b; Berger et al. 2014). Depending on the impact category, the impact indicator 

variability ranges from two orders of magnitude when assessing generic emission inventories from different 

continents (Sedlbauer et al. 2007) up to 8 orders of magnitude at 2*2.5° (Humbert et al. 2009) or 10 orders 

of magnitude at the subwatershed resolution for emissions in water (Manneh et al. 2010). The project LC-

IMPACT funded by the European Commission under the Seventh Framework Programme provided an im-

portant milestone regarding the coverage of spatially differentiated characterization factors for resources- 

and emission- related impact categories (Huijbregts 2010). IMPACT World+ is a new methodology released 

in 2014 that systematically integrates spatial differentiation for all covered impact categories (Bulle et al. 
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2012; IMPACTWorld+ 2014). The choice of resolution should consider both required differentiation from a 

scientific relevance standpoints as well as constraints from a practical standpoint (Sedlbauer et al. 2007). 

Indeed, the latter can be an issue given that (1) a large amount of geographical data is required e.g., mete-

orological, soil sensitivity, water scarcity, human development level data, etc. (2) storage of data and gen-

eration of characterization factors (CF) can create storage capacity issues (3) inventory databases and col-

lected data need to offer the required level of details to make the methods applicable. Mutel and Hellweg 

(2009) address the latter point by proposing spatial methods to couple regionalized characterization factors 

with generic life cycle inventory databases in existing softwares. Currently, spatial differentiation starts to 

be implemented in commercial softwares, where the available geographical information of the Life Cycle 

Inventory (LCI) determines the required level of aggregation of characterization factors, e.g., the grid cell, 

country, continent of generic level. For instance, Pfister et al’s (2009) water scarcity assessment method 

has been integrated in Simapro 8 (PRé consultants 2013). For the impact related to water use, the resolu-

tion of existing models can be down to the watershed scale (Hanafiah et al. 2011) or the 0.5°*0.5° grid cell 

scale (Pfister et al. 2009). 

To assess human toxicity and aquatic ecotoxicity, multimedia and multi-pathway fate models are regional-

ized at different scales, from continental (Shaked 2011) to grid cells resolution, e.g., of 1*1° resolution 

(Pistocchi et al. 2010) with European coverage for the most refined ones. Several publications have quanti-

fied the variability linked to spatial inhomogeneity in multimedia modeling at national or regional scale. 

Impact indicators can vary by a factor of 5 to 10 between large geographical regions such as continents 

(Rochat et al. 2006) or up to 3 orders of magnitude for a higher spatial resolution e.g., ecological zones us-

ing a spatially-differentiated model at a continental level (Macleod et al. 2004) or 10 orders of magnitude at 

the subwatershed resolution for emissions to water (Manneh et al. 2010). Some publications recognized 

the necessity of including an archetype approach through an urban environment (Rosenbaum et al. 2008; 

Humbert et al. 2009) and indoor emissions (Hellweg et al. 2009) to better account for spatial fate and expo-

sure inhomogeneities.  

Although several approaches have been explored to model the (eco)toxicity cause-effect chain, there exists 

so far no model with global coverage and lower resolution than the sub-continental scale. Furthermore, 

simplified spatial differentiation approaches such as regional archetypes have not yet been explored for 

emissions to freshwater compartments with various hydrological key characteristics. Indeed, a simplified 

approach could prevent from shifting modeling uncertainty into inaccuracy in case regionalized methods 

are applied while geographical information is lacking. 
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1.3 Scope of work of this dissertation 1.3.1 Problem statement 
During the last five years, the field of water use in LCA has experienced important development, both in 

terms of method (Pfister et al. 2009; Boulay et al. 2011b; Berger et al. 2014) and normative framework (ISO 

2014). In light of these developments, the recommendations of the European Commission to evaluate the 

impact related to “water resource depletion” are outdated (European Commission 2013a) since they date 

from the state-of-the-art of 2008. For instance, the impact from water use is addressed through the impact 

category “resource depletion” that does not consider potential impact on human health and ecosystems. 

Furthermore, it provides impact scores in ecopoints, a unit developed specifically for the Swiss context giv-

en that it is normalized based on Swiss emissions, resource use and emission targets (Frischknecht et al. 

2006) and was not dimensioned to be applied on a global scale. Existing case studies (Van Hoof et al. 2013; 

Boulay et al. 2014a) showed that different impact assessment methods could lead to results with opposite 

trends, leading to the need of a harmonized framework to evaluate the impact of water use in a consistent 

way. At the corporate level, several initiatives were recently set up to provide tools to measure water use, 

assist companies in developing water sustainable management or certification programs, such as respec-

tively Global Water Tool by the World Business Council for Sustainable Development (WBCSD 2010), the 

CEO water mandate (UN Global Compact Office 2011), and the Alliance for Water Stewardship (AWS) 

(Abdel Al et al. 2014). Their scope is often reduced to inventory level reporting, while a wider fostering of 

impact assessment practices outside of the academic sphere would enhance the outreach of this type of 

assessment. There is a need to review, evaluate and organize the knowledge generated by existing meth-

ods in order to bridge recent academic developments and their implementation. Recommendations from 

the academic field on consensual methods for a water footprint are needed to support a sound normative 

framework and method harmonization relying on scientific arguments. 

The methodological development of toxic emissions into water in a LCA context has been addressed since 

twenty years. The academic effort of the last decade focused on creating a scientific consensus model as a 

mimetic, parsimonious, transparent and evaluated combination of existing models. The outcome of this 

work was published in 2008 as the USEtox model (Rosenbaum et al. 2008), that is publically available and 

increasingly recommended (European Commission 2013a). Nevertheless, there is yet a need to improve the 

accuracy, precision and confidence in LCA result by addressing spatial differentiation, i.e. the differentiation 

of the impact magnitude for different locations. The latter practice increases model sophistication and thus 

raises several new questions and constraints regarding the implementation of spatially differentiated 

methods in LCA practice. Indeed, two key actors of the LCA field have stakes in new methodological devel-

opment: method developers and practitioners, both following diverging objectives and constraints. On one 
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hand, model developers aim to provide environmentally relevant models to depict a specific impact path-

way from emission or resource extraction to the impact on human health, ecosystems or resources. This 

modeling is constrained by the availability of data of involved environmental, political and geographical 

parameters and results in a characterization factor that can be applied in a LCA study. On the other hand, 

practitioners use characterization factors that are implemented in commercial softwares where they are 

combined with generic inventory data as well as potential specific processes. The practitioner thus requires 

characterization factors that are compatible with existing and available inventory data, and that holds lim-

ited complexity to be able to interpret, explain and justify LCA results in the light of his knowledge of the 

inventory and impact characterization factor modeling. These two complementary roles meet on the fine 

line and trade-off between the model sophistication required for scientific relevance, the improvement of 

LCA discriminatory power if scientific relevance is increased, the applicability of developed characterization 

factors and the interpretability of LCA results. In the case of spatial differentiation, there is a need to test 

the relevance of the resolutions recommended by USEtox (urban, continent and global level) to evaluate 

emissions from global supply chains. Furthermore, exploring the likelihood to develop simplified approach-

es such as regional archetypes could prevent from complexifying LCA practice through the implementation 

of fully regionalized life cycle inventories and impact assessment without reducing the overall uncertainty 

originating from the handling of complex globalized product supply chains. A fully connected model with 

global coverage and higher resolution needs to be developed as a reference to test the validity of simplified 

approaches.  1.3.2 Research hypothesis 
This thesis analyses the following research hypothesis: 

The water footprint practice can be operationalized through (1) the definition of robust recommendations 

based on a scientific analysis of the current water use state-of-the-art methods that support a consensual 

normative framework and method harmonization and (2) the evaluation of the importance of spatial dif-

ferentiation in state-of-the-art water degradation methods (USEtox in our case). The first point is addressed 

by performing a systematic review of the existing literature and the search for a consensus building. This 

second point is addressed by analyzing the performance of the scientific consensus USEtox model (using a 

generic or spatially differentiated continental landscape) compared to highly differentiated models as-

sessing the impact of water degradation through toxic emissions to freshwater and integrating spatial dif-

ferentiation. 
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1.3.3 Objective 
The main objective of this work is to foster the application of water footprint by identifying good practices 

and improve its discriminatory power by developing spatially differentiated operational approaches. This 

research work focuses on the impact of quantitative water use as well as degradative water use of toxic 

emissions into water. 

Specific objectives of this thesis are to: 

1. Review existing and applicable inventory and impact assessment methods that address quantitative 

freshwater use in a life cycle perspective and provide preliminary recommendations for practition-

ers and for method harmonization: 

● Provide a comprehensive overview of existing and applicable inventory and impact assess-

ment methods that address freshwater use in a life cycle perspective,  

● Analyse each method with a set of pre-defined criteria in order to highlight and understand 

similarities and differences,  

● Analyse key parameters to be considered in a consensus-based operational characteriza-

tion method encompassing the WULCA framework (Bayart et al. 2010), 

● Formulate preliminary application recommendations for method developers and practi-

tioners given current state-of-the-art, and 

● Discuss the implementation of spatial differentiation in methods addressing the impact of 

water use 

2. Evaluate an appropriate model architecture (nested vs. spatially differentiated) and spatial resolu-

tion for the freshwater eco-toxicity and human toxicity impact categories in order to maintain envi-

ronmental relevance while limiting model sophistication in terms of landscape data requirements: 

● Develop landscape parameters for USEtox to develop continent-specific boxes nested with-

in the world, 

● Analyse the inter-continental variation of chemical fate and intake fractions among conti-

nents and examine the influence of the region(s) surrounding the considered sub-continent 

(for this, results from a nested USEtox model with continent-specific parameterization are 

compared to a fully connected model), and 

● Study intra-continental variation and develop archetypes for freshwater eco-toxicity and 

human toxicity exposure to ingestion of fresh water and fish, as a parsimonious surrogate 

to higher spatial resolution; 
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3. Explore further the importance and applicability of spatial resolution for toxic emissions into water 

by analysing and comparing the variability of characterization factors at the highly resolved grid cell 

level and different aggregation methods: 

● Develop a spatially resolved fate and exposure characterization model and factors for toxic 

emissions into water with global coverage at 0.5°*0.5° resolution, 

● Analyse the variation of fate and exposure factors for water ingestion as well as the main 

factors of influence on ecosystems and human exposure by focusing on five selected sub-

stances, 

● Develop archetypes based on the developed characterization model and identified key pa-

rameters, and 

● Compare practical solutions to apply spatial characterization factors aggregated at different 

scales in LCA for two emission patterns: population related emissions and sector-specific 

emissions into water related to global aluminium production. 1.3.4 Outline 
Each of the following chapter of this thesis answers a specific objective in chronological order.  

Chapter 2 presents the review of existing and applicable inventory and impact assessment methods that 

address freshwater use in a life cycle perspective performed as a deliverable for the WULCA project. Each 

method is analysed with a set of predefined criteria in order to highlight and understand similarities and 

differences. Key parameters to be considered in a consensus-based operational characterization method 

are identified to orient future LCA developments.  

Chapter 3 investigates the spatial differentiation of toxic emissions to freshwater at the inter-continental 

and intra-continental scale. Landscape parameters for USEtox are developed at the continental and sub-

continental level as specific boxes nested within the world. Inter-continental variation of chemical fate and 

intake fractions are then analysed among continents and the influence of the region(s) surrounding the 

considered sub-continent are examined. For this, results from a nested USEtox model with continent-

specific parameterization are compared to a fully connected model. Moving to the watershed scale, intra-

continental variation is analysed with a European coverage. As a parsimonious surrogate to higher spatial 

resolution, an archetype model is developed to discriminate between intra-continental emissions at the 

watershed level in Europe and evaluate freshwater eco-toxicity and human toxicity exposure by ingestion 

of freshwater and fish. Regionalized landscapes and characterization factors at the continental scale devel-

oped in this chapter will be integrated in the next release of the USEtox model as well as in the spatially 

differentiated methodology IMPACT World+. 
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Based on the outlook of this study, chapter 4 explores the spatial differentiation at a higher resolution 

through the development of a model at the 0.5°*0.5° resolution and global coverage. The variations of fate 

and exposure factors for water ingestion as well as the main factors of influence on ecosystems and human 

exposure are analysed. Archetypes are developed based on identified key parameters for fate and intake 

fraction. Practical solutions to apply spatial characterization factors are tested in a case study related to 

global aluminium production to discuss advantages and limitation of pushing further spatial differentiation 

in LCA: population-based and sector-specific emissions are evaluated and compared. 

Chapter 5 concludes this thesis through a critical appraisal where the achievements are put in perspective 

as a contribution to LCA science and practitioners. In particular, limitations and constraints related to water 

footprint practice are discussed based on published case studies and personal experience. The outcome of 

chapters 3 and 4 are highlighted and examined compared to the current spatial differentiation implementa-

tion state-of-the-art. A summary of achieved results is then provided. 
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Abstract 
In recent years several methods have been developed that propose different freshwater use inventory 

schemes and impact assessment characterization models considering various cause-effect chain relation-

ships.  

This work reviewed a multitude of methods and indicators for freshwater use potentially applicable in life 

cycle assessment (LCA). This review is used as a basis to identify the key elements to build a scientific con-

sensus for operational characterization methods for LCA. This evaluation builds on the criteria and proce-

dure developed within the International Reference Life Cycle Data System Handbook and has been adapted 

for the purpose of this project. It therefore includes: (1) description of relevant cause-effect chains, (2) def-

inition of criteria to evaluate the existing methods, (3) development of sub- criteria specific to freshwater 

use, and (4) description and review of existing methods addressing freshwater in LCA.  

No single method is available that comprehensively describes all potential impacts derived from freshwater 

use. However, this review highlights several key findings to design a characterization method encompassing 

all the impact pathways of the “WULCA” framework: 

● In most of databases and methods, consistent freshwater balances are not reported, either be-

cause output is not considered, or because polluted freshwater is recalculated based on a critical 

dilution approach.  

● At the midpoint level, most methods are related to water scarcity index, and correspond to the 

methodological choice of an indicator simplified in terms of number of parameters (scarcity) and 

freshwater uses (freshwater consumption or freshwater withdrawal) considered. More compre-

hensive scarcity indices distinguish different freshwater types and functionalities.  

● At the endpoint level, several methods already exist that report results in units compatible with 

traditional human health and ecosystem quality damage, and cover various cause-effect chains, 

e.g., the decrease of terrestrial biodiversity due to freshwater consumption.  

● Midpoint and endpoint indicators have various levels of spatial differentiation, i.e., generic factors 

with no differentiation at all, or country, watershed and grid cell differentiation.  

Existing databases should be (1) completed with input and output freshwater flow differentiated according 

to water types based on its origin (surface water, groundwater and precipitation water stored as soil mois-

ture), (2) regionalized and (3) if possible characterized with a set of quality parameters. The assessment of 

impacts related to freshwater use is possible by assembling methods in a comprehensive methodology to 

characterize each use adequately. 
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Keywords 
Life cycle assessment - freshwater use – method review – human health – ecosystem quality – resources 2.1 Introduction 
Water is a vital natural resource for all ecosystems, human wellbeing and many economic activities. Be-

cause of the combination of population growth and economic development leading to increasing human 

freshwater use (Vörösmarty et al. 2000b) and enhanced climate change effects on the global water cycle, 

water scarcity is becoming an increasing environmental concern. Although freshwater is a local resource, 

water scarcity is leading to the threat of a global water crisis, with a large share of global population being 

affected (World Water Assessment Programme UN 2009). Given actual estimates of global freshwater con-

sumption around 2600 km3/y and a proposed planetary boundary of 4000 km3/y consumptive surface and 

groundwater use (Rockström et al. 2009), it appears that humanity’s freshwater use is currently within the 

safe operating limit (Alcamo et al. 2007; Shen et al. 2008). Other sources estimate the actual water with-

drawal as less than 10% of the maximum available renewable freshwater resource (Oki and Kanae 2006). 

However, when considering the regional nature of freshwater scarcity, the majority of global freshwater 

withdrawals currently takes place in watersheds already experiencing high water scarcity (Ridoutt and 

Pfister 2010a). According to Ridoutt and Pfister (2010a), humanity’s water footprint (referred as the sum of 

withdrawals multiplied by local water stress indices) must be globally reduced by approximately 50% to 

achieve a sustainable water use. The strong bond between water use and other global environmental and 

societal systems at various spatial scales such as land use, climate change and demographic developments 

justifies both global and regional perspectives for water management to tackle water related problems 

(Hoff 2009; Hoekstra 2010). 

To tackle this major environmental concern, various initiatives were recently launched in order to develop 

and standardize analytical tools to measure and assess freshwater use at regional and global scale and to 

improve the overall management of freshwater resources as well as the overall environmental perfor-

mance of products and operations. Among these initiatives are the Water Footprint Network (WFN) 

(Hoekstra et al. 2011), the International Organization for Standardization (ISO) water footprint working 

group (ISO 2014), and the World Business Council for Sustainable Development (WBCSD 2010) who 

launched the Global Water Tool and the UNEP/SETAC Life Cycle Initiative’s working group on the assess-

ment of freshwater use and consumption in life cycle assessment (LCA) called “WULCA” (Koehler and 

Aoustin 2008). These initiatives also aim to set up public-private partnerships to assist companies in the 

implementation of water sustainability policies (UN Global Compact Office 2011) and to develop certifica-

tion programs (Abdel Al et al. 2014). 
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The authors of this article are part of the UNEP/SETAC Life Cycle Initiative’s WULCA working group (Koehler 

and Aoustin 2008), which involves academic and industrial partners from around the globe that cooperate 

on the development of methodologies related to freshwater use from a life-cycle perspective, including 

both appropriate freshwater accounting schemes and impact assessment methods. Guidance is provided as 

scientific consensus regarding the consideration of freshwater in life cycle inventory (LCI) and the choice of 

life cycle impact assessment (LCIA) methods. Quantitative comparison of LCIA methods will be provided as 

next step of this work. The working group’s deliverables are also used as methodological input to the ISO 

14046 water footprint standardization process. A prominent achievement of WULCA was a general frame-

work for the consideration of freshwater resources within LCA (Bayart et al. 2010). This work provided rec-

ommendations on freshwater use modeling and relevant impact categories building on the achievements 

of Phase 1 of the UNEP/SETAC Life Cycle Initiative (Bauer et al. 2007) and the conceptual framework includ-

ing first indicators introduced by Owens (2002).  

In the past, most LCA studies did not consider freshwater use and LCI databases reported freshwater use 

inventory by determining the total freshwater input from nature or respective technical systems (e.g., 

drinking water networks) while generally neglecting the water outputs from the LCA system under study 

(Koehler 2008). LCIA methods applied the amount of freshwater used without characterization factor to 

address the impacts. Recently, new methodologies were developed that propose freshwater use inventory 

schemes (WBCSD 2010; Peters et al. 2010; Boulay et al. 2011a) and assess the potential environmental 

impacts of freshwater use considering various cause-effect relationships (Milà i Canals et al. 2008; Pfister et 

al. 2009; Motoshita et al. 2010).  

A selection of scientific methods for freshwater use assessment in LCA was evaluated by Berger and Fink-

beiner (2010) regarding the methods’ scope, input data requirements, and the ISO compliance summarizing 

the methodological differences. Considering the latter study, the WULCA working group has performed an 

extensive analysis of a broader variety of freshwater use assessment schemes and metrics applied both in 

the field of life cycle assessment and water management. In contrast to Berger and Finkbeiner (2010), this 

work employs a detailed and systematic analysis to understand differences and similarities in modeling 

choices using a comprehensive set of evaluation criteria including scientific robustness, transparency and 

reproducibility, applicability, the level of documentation, and stakeholder acceptance. It is based on the 

International Reference Life Cycle Data System (ILCD) (JRC-IES 2011). 

The goal of the current method review is to provide:  

1. A comprehensive overview of existing and applicable inventory and impact assessment methods 

that address freshwater use in a life cycle perspective 
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2. An analysis of each method with a set of pre-defined criteria in order to highlight and understand 

similarities and differences 

3. An analysis of key parameters to be considered in a consensus-based operational characterization 

method encompassing the WULCA framework (Bayart et al. 2010) and  

4. Preliminary application recommendations for practitioners given current state-of-the-art.  

This study comprises methods for inventorying the use of different freshwater resources as well as for as-

sessing the associated impacts. Methods assessing specific impact of pollutants, i.e., aquatic ecotoxicity, 

human toxicity, aquatic eutrophication and aquatic acidification, as well as the recent method dealing with 

impacts of changed freshwater temperatures due to cooling freshwater discharges (Verones et al. 2010) 

are not included in this work as they are generally assessed in conventional impact categories of LCA or 

oriented towards quality related impact.  2.2 Method 
The review scheme adopted relies on the approach taken by the European Commission within the Interna-

tional Reference Life Cycle Data System (ILCD) defining the “Framework and requirements for LCIA models 

and indicators” (JRC-IES 2011). The following procedure was followed for the methods review: (1) descrip-

tion of relevant cause-effect chains, (2) definition of criteria to evaluate the existing methods, (3) develop-

ment of sub-criteria specific to freshwater use, and (4) description and review of existing freshwater use 

assessment methods. 2.2.1 Description of relevant cause-effect chains 
Figure 2.1 depicts the cause-effect chains that link freshwater type and use to potential impacts at the mid-

point and endpoint level and ultimately to the related area of protection human health, ecosystem quality, 

and resources (Jolliet et al. 2003). The identified cause-effect chains serve as basis for the development of 

specific criteria linked to freshwater use. In nature, precipitation water (liquid or solid) is differentiated in 

three types of water that are interconnected: (1) surface water (river, lake and sea) (2) groundwater (re-

newable, shallow and deep) that is only reached through surface water and soil moisture and (3) precipita-

tion water stored as soil moisture (also called “green water”) (Falkenmark and Rockström 2006). Fossil 

groundwater compartment is not connected to other freshwater compartments. Freshwater is character-

ized by less than 1,000 milligrams per liter of dissolved solids (United Stated Geological Survey (USGS) 2012) 

and encompasses all previously mentioned three types. The impact of freshwater use is related to (1) con-

sumption of one of these water types and (2) withdrawal of one of these water types and release of surface 

water. Impact of degradative use is considered, as withdrawal of surface or groundwater at given quality 

followed by release at another quality. However, impact of direct pollutant release in freshwater and re-
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sulting cause-effect chains are excluded from the scope of this study, in which there is no value judgment 

regarding the inclusion of degradative use in considered methods. Related impact assessment approaches 

are assessed in the ILCD handbook (JRC-IES 2011). Land occupation and transformation, as well as rainwa-

ter harvesting is a driver for change in surface water and precipitation water stored as soil moisture. The 

availability of the latter water type leads to debated potential impacts that are not considered in this work. 

However, the modification of the hydrological balance following land transformation or occupation is ac-

counted for in the present framework as it corresponds to a modification of the amount of water that 

reaches groundwater and surface water (equivalent to a consumption of the corresponding water). 

 
Figure 2.1: Cause-effect chains leading from the inventory to the areas of protection human health, ecosystem qual-

ity and resources (adapted from Bayart et al.(2010)) 

The use of freshwater can generate potential impacts to humans, ecosystems and resources. These impacts 

can be related to water scarcity, water functionality, water ecological value and water renewability rate 

and are influenced by the possibility to develop compensation mechanisms. Water scarcity is defined in this 

work being the water use approaching or exceeding the natural regeneration of water in a given area, e.g., 

a drainage basin. In this article, water scarcity is considered as a parameter leading to freshwater depriva-

tion by limiting freshwater availability. Freshwater quality is defined as a set of parameters considered to 
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characterize the chemical, physical and biological properties of freshwater. It is related to a functionality 

approach, which assesses to which users the freshwater withdrawn and released is functional (Bayart et al. 

2010) and can also lead to water deprivation when water of a given quality is not available anymore for 

specific users. Water ecological value describes the physical relation to and dependency of ecosystems on 

freshwater (Bayart et al. 2010). Water renewability rate is the natural rate at which the resource is re-

charged. Compensation mechanisms refer to the use of backup technologies by human users deprived of 

“functional” freshwater to meet their needs (Boulay et al. 2011b).  

Human health: The way human health is affected by freshwater use depends on the level of economic de-

velopment and welfare (Bayart 2008; Boulay et al. 2011b). If this is sufficient, the lack of freshwater will be 

compensated by the development of back-up technologies (such as desalination or the import of water-

intensive goods as virtual water (Allan 1996)). These compensation activities need to be assessed with a 

new inventory and can in turn lead to environmental impacts via other interventions involved in the com-

pensation activities (e.g., climate change impacts caused by energy consumption for desalination). If the 

level of economic development is not sufficient to cover these costs, freshwater use will lead to water dep-

rivation for primarily three functions which fulfill essential human needs depending on local conditions: 

domestic use (hygiene and ingestion), agriculture and aquaculture/fisheries. Industrial functions of fresh-

water close to human essential needs (e.g., house building, provision of pharmaceuticals) are not consid-

ered in this framework, because they are more likely to consider compensation strategies rather than suf-

fering from freshwater deprivation (Boulay et al. 2011b). Water quality degradation leads to water depriva-

tion when it creates a loss of functionality for users who need water at a higher quality level than the re-

leased one. Users that are able to use freshwater at that or a lower quality level won’t be deprived. The 

extent of water quality degradation depends on the amount and intensity of chemical, biological and ther-

mal pollution withdrawn and is related to the sanitation capacity. The withdrawn freshwater represents an 

adverse impact depriving users from a given amount of water at ambient water quality; the released 

freshwater (negative LCI flow) results in a burden reduction by making available the same amount of water 

for users capable to use water at that quality. Current models agree that the way human health is affected 

by water use depends on the level of economic development and welfare. They acknowledge that under 

given conditions, water use can lead to deprivation for essential human needs such as agriculture, fisheries 

and domestic use and ultimately to malnutrition and spread of diseases. However, there is currently not 

sufficient information to determine whether freshwater use in a low-income water-stressed region would 

lower water availability for domestic users or rather only affect other users (e.g., agricultural, fisheries or 

industries (Boulay et al. 2011b). 
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Malnutrition and spread of diseases are interconnected, i.e., malnutrition could for example make a person 

more vulnerable to the spread of diseases, and reciprocally, some enteric diseases could affect the ability 

to absorb nutrients and thus contribute to malnutrition. Freshwater use ultimately leads to an aggregated 

impact on human health, generally expressed in disability-adjusted life years (DALY) (Pfister et al. 2009; 

Motoshita et al. 2010; Motoshita et al. 2011; Boulay et al. 2011b).   

Ecosystem quality: Water use can also affect the ecosystem, for instance by changes in the river, lake or 

wetland flow quantity (e.g., due to surface water withdrawals), changes in the level of the groundwater 

table (e.g., due to groundwater withdrawal), changes in flow regimes (e.g., due to turbined water use) and 

loss of freshwater quality. Similarly to human health, degradation corresponds to the consumption of 

freshwater of a higher quality (with a higher ecological value, or ecological functionality) and the release of 

freshwater of lower quality (with a lower ecological value, thus affecting all the ecological users needing a 

better water quality but not the users able to deal with a lower quality).   

It should be noted that the latter cause-effect chain is related to the deprivation of freshwater of a given 

quality and not to the aquatic ecotoxicity, aquatic eutrophication and aquatic acidification impact of this 

degradation. The midpoint impacts related to freshwater deprivation, which depend on water scarcity and 

water quality, eventually lead to species diversity change in aquatic and terrestrial ecosystems. The extent 

of these changes depends on the ecological value of water in the considered ecosystem. Ultimate impacts 

on ecosystem quality are commonly expressed in potentially disappeared fraction of species (PDF) on given 

surface or volume during a given time (PDF·m2·y or PDF·m3·y) (van Zelm et al. 2011; Hanafiah et al. 2011). 

Milà i Canals et al. (2008) suggest that changes caused by production systems on the amount of rainwater 

available to other users (ecosystems) through changes in the fractions of rainwater that follow infiltration, 

evapotranspiration and runoff should be included as impacts on ecosystem quality. This is closely linked to 

the impact of land occupation and transformation on green water availability through the variation of stock 

of water stored as soil moisture available for plant uptake (“green water”). 

Resources: Consumption of all freshwater types as well as withdrawal and release of fossil groundwater 

can respectively lead to overuse of renewable water bodies or exhaustion of non-renewable fossil ground-

water. Overuse of renewable water bodies depends on the water renewability rate. These midpoint im-

pacts affect water flows and funds and ultimately have an effect on the resources stock. This reduction of 

available water affects other cause-effect chains by increasing local water scarcity. Different approaches 

exist to characterize the impact on resources encompassing the abiotic depletion potential given in anti-

mony equivalents (Sb-eq) (Milà i Canals et al. 2008) at the midpoint level, and the backup-technology con-
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cept expressing the resource damage in megajoules (MJ) surplus energy (Pfister et al. 2009) or exergy-

based methods given in megajoules of exergy (MJex) (Bösch et al. 2007) at the endpoint level. 2.2.2 Definition of criteria to evaluate the existing methods 
Five scientific (1-5) criteria and one potential stakeholder acceptance (6) criterion based on the ILCD Hand-

book (JRC-IES 2011) were adopted within this review: (1) completeness of scope, (2) environmental rele-

vance, (3) scientific robustness and certainty, (4) documentation, transparency and reproducibility, (5) ap-

plicability and (6) degree of potential stakeholder acceptance and suitability for communication in business 

and policy contexts. They are further described in Table A.5 in the appendix. 2.2.3 Development of sub-criteria specific to freshwater 
Additionally to the six criteria mentioned above, sub-criteria specific to freshwater use were added in the 

criteria “completeness of scope” and ”environmental relevance” as described in Table 2.1. For the former, 

sub-criteria were needed to identify which areas of protection are considered by the existing methods and 

which midpoints and endpoints are modeled. For the latter, sub-criteria were needed to evaluate the cov-

erage of relevant freshwater-specific cause-effect chains as depicted in Figure 2.1. The level of coverage 

was assessed without weighting the relative importance of different cause-effect chains and related pa-

rameters, but rather by exploring how far and with which method this coverage has been performed. 
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Table 2.1: Specific sub-criteria used to characterize inventory, midpoint and endpoint modeling 

 

  

Criteria Sub-criteria Relevant modelling aspect 

Completeness of scope 

Midpoint: which impact mechanisms are covered by the impact 
indicators for the midpoint affecting the area of protection human 
health? 

Water deprivation for: 
- Domestic use 
- Irrigation in agriculture (agricultural use) 
- Fisheries / aquaculture 

Midpoint: which impact mechanisms are covered by the impact 
indicator for the midpoint affecting the area of protection ecosys-
tem quality? 

- Changes in flow quantity (river, lake, wet-
land) 
- Changes in groundwater table level 
- Change in flow regimes 
- Loss of water quality 

Midpoint: which impact mechanisms are covered by the impact 
indicator for the midpoint affecting the area of protection re-
sources? 

- Overuse of renewable water bodies 
- Fossil groundwater exhaustion 

Endpoint: which impact mechanisms are covered by the endpoint 
indicator affecting the area of protection human health? 

- Spread of diseases due to midpoint impact 
on domestic use 
- Malnutrition due to midpoint impact on 
irrigation and fisheries /aquaculture 

Endpoint: which impact mechanisms are covered by the endpoint 
indicator affecting the area of protection ecosystem quality? 

-  Terrestrial species loss 
-  Aquatic species loss 

Endpoint: is the endpoint indicator affecting the area of protection 
resources covered?  

Environmental 
relevance 

Water type in 
nature 

What types of water are considered? 

- Surface water (river, lake, sea) 
- Groundwater (renewable, fossil, shallow, 
deep) 
- Precipitation water stored as soil moisture 

Are consumption and water release considered?  

Inventory: is intake and released water quality considered?  

Cause-effect 
chain 

Midpoint/endpoint cause-effect chain affecting area of protection 
human health: is water scarcity taken in account?  

Midpoint/endpoint cause-effect chain affecting area of protection 
human health: are water functionalities of the water resource 
taken in account? 

 

Midpoint/endpoint cause-effect chain affecting area of protection 
human health: are economic development level and compensation 
mechanisms taken in account? 

 

Midpoint/endpoint cause-effect chain affecting area of protection 
ecosystem quality: is water ecological value taken in account?  

Midpoint/endpoint cause-effect chain affecting area of protection  
resources: is water scarcity taken in account?  

Midpoint/endpoint cause-effect chain affecting area of protection 
resources: is water renewability rate taken in account?  
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2.2.4 Description and review of existing freshwater use assessment methods 
Various methods have been developed to evaluate freshwater use in LCA. Many of them were already pub-

lished or in the process of being published. All methods addressing freshwater use supported by sufficient 

documentation to be analyzed, i.e., a draft article, a report, etc. were considered in this paper. Unpublished 

methods were assessed regarding the latest information available in June 2012. Figure 2.2 summarizes the 

reviewed methods and classifies them at the inventory level, at the water index level, or at the impact as-

sessment level, distinguishing between midpoint and endpoint assessments. It identifies those specifically 

addressing one area of protection or more comprehensive methods that address more than one area of 

protection. Databases are called according to the database name and methods according to the name of 

the developer for academic work, e.g., Boulay et al. (Boulay et al. 2011b) or the industry for methodology 

developed within a company e.g., Veolia (Bayart et al. 2014). 

 

Figure 2.2: Scope of and relationship between the available freshwater use inventory, and impact assessment 
methods with classification for the three areas of protection 



Review of methods addressing freshwater use in life cycle inventory and impact assessment 

 

46 

A short description of assessed methods is provided in the appendix A.2. 

Inventory databases: The inventory section contains both inventory databases and inventory methods. The 

ecoinvent database (Frischknecht et al. 2005) and GaBi database (PE 2011) are widely used databases and 

contain elementary flows for freshwater withdrawal and turbined water. The WFN database (Water 

Footprint Network 2011) assesses the inventory consumptive and degradative flows of crops and derived 

crop products, farm animals and animal products, biofuels, national consumption and production as well as 

trade in crop, animal and industrial products according to the WFN method (Hoekstra et al. 2011). Pfister et 

al.’s database (Pfister et al. 2011) assesses the freshwater consumption for the production of 160 crops. An 

additional source of data for consumptive and evapo-transpirative use can be found for five crops and 

three livestock products (Hanasaki et al. 2010). The Quantis water Database (Quantis 2012) is a database of 

water uses based on ecoinvent 2.2 developed in the aim of providing industrial stakeholders with datasets 

required to apply all existing impact assessment methods. 

Inventory methods: Inventory methods generally suggest concepts for a systematic classification of fresh-

water elementary flows according to their type (surface water, groundwater, precipitation water stored as 

soil moisture, whether intake water quality is considered, etc.) without providing respective data. Inventory 

methods also describe technical water flows such as cooling water and irrigation water. The reviewed in-

ventory methods differ widely in their objective and level of detail. Some focus on defining water catego-

ries to allow quality to be considered (Vince 2007; Bayart 2008; Boulay et al. 2011a)), others on providing 

inventory tools for organizations (WBCSD 2010; Hoekstra et al. 2011), integrating the effects of direct water 

use and of land occupation and transformation on water availability in a comprehensive methodology (Milà 

i Canals et al. 2008) or providing detailed hydrological modeling and classification of freshwater use data in 

specific sectors (e.g., Australian red meat sector) (Peters et al. 2010). Boulay et al. (2011a) is built on Vince’s 

(2007) and Bayart’s (2008) method.  

Midpoint assessment methods: Midpoint impact assessment methods give either an indicator common to 

all areas of protection or an indicator specific to a defined area of protection. Methods covering all area of 

protections giving a single index related to water scarcity include the Swiss ecological scarcity (Frischknecht 

et al. 2006), Pfister et al. (2009), Ridoutt and Pfister (2010b), Water Impact Index of Veolia (Bayart et al. 

2014), Boulay et al. (2011b) methods and Water Footprint impact indices (Hoekstra et al. 2011). Area of 

protection specific midpoint indicators describe the impact pathway leading to a decrease in freshwater 

availability for contemporary human users (Bayart 2008), as well as changes in freshwater availability for 

ecosystems leading to freshwater ecosystem impacts (Milà i Canals et al. 2008) and changes in groundwa-

ter availability causing freshwater depletion (Milà i Canals et al. 2008). Milà i Canals et al. (2008) suggest to 
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use different types of water indices (Falkenmark et al. 1989; Raskin et al. 1997; Smakhtin et al. 2004) to 

assess freshwater ecosystem impacts. Falkenmark et al.’s (1989) index focuses on human use by evaluating 

the fraction of the total annual runoff available for human use. Raskin et al. (1997) use a water use per re-

source refined by Smakhtin et al. (2004) by subtracting environmental freshwater requirements from the 

available resources to derive a water index focused on  freshwater resources available for human use.  

The overall “blue-green-grey water” footprint concept of Hoekstra et al. (2011) was generally classified as 

an inventory metric given that precipitation water stored as soil moisture evapotranspirated by plants 

(“green water footprint”) and consumptive use of surface and groundwater (“blue water footprint”) repre-

sent physical metrics and are not further characterized. However, the “grey water footprint” can also be 

evaluated as a midpoint approach as grey water footprint denotes degradative freshwater use by charac-

terizing the chemical pollution in water similar to "the critical dilution volumes approach" , i.e., an equiva-

lent amount of water needed to dilute an emission below an acceptable threshold. This method thus juxta-

poses measurable inventory results of “blue” and “green water footprint” with a theoretical volume of 

“grey water” which corresponds to a characterized inventory results. Using the term “grey water” also cre-

ates the problem of having two competing definitions of this term circulating in the water industry 

(Henriques and Louis 2011). 

Endpoint assessment methods: Endpoint impact assessment methods provide specific indicators for po-

tential damages on the areas of protection human health (Pfister et al. 2009; Motoshita et al. 2010; 

Motoshita et al. 2011; Boulay et al. 2011b), ecosystem quality (Maendly and Humbert 2009; Pfister et al. 

2009; van Zelm et al. 2011; Hanafiah et al. 2011) and resources (Bösch et al. 2007; Pfister et al. 2009).  

Other approaches exist to estimate impact on resources that attempt to account for the emergy flows put 

into place by natural processes to make available a given resource at a given state (Zhang et al. 2010; 

Rugani et al. 2011) but are not evaluated in this review because they are not specific to the characteristics 

of freshwater resource. Emergy is defined as the measure of both the work of nature and that of humans in 

generating products and services, i.e., a record of previously used-up available energy that is a property of 

the smaller amount of available energy in a transformed product (Odum 1996). 

Water indices: Water indices are originally non LCA-based indicators that express a measure of human and 

environmental water needs or of the fraction of resource available to meet these needs. Water indices can 

be used as characterization factors for midpoint (Falkenmark et al. 1989; Raskin et al. 1997; Smakhtin et al. 

2004) and endpoint (Sullivan 2002; Döll 2009) impact assessment methods when applied to freshwater 

consumptive or degradative use. Such indices can be considered as human use oriented (Falkenmark et al. 

1989; Gleick 1996; Seckler et al. 1999; Ohlsson 2000; Sullivan 2002; Döll 2009), ecosystem use oriented 
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(Smakhtin et al. 2004), or cover all three areas of protection (Raskin et al. 1997; Frischknecht et al. 2006; 

Alcamo et al. 2007; Pfister et al. 2009; Hoekstra et al. 2011; Boulay et al. 2011b; Bayart et al. 2014). In this 

work, the terminology “water scarcity index” is related solely to withdrawal-to-availability ratio (Raskin et 

al. 1997; Seckler et al. 1999; Smakhtin et al. 2004; Frischknecht et al. 2006; Alcamo et al. 2007; Pfister et al. 

2009; Bayart et al. 2014) or consumption-to-availability ratio (Hoekstra et al. 2011; Boulay et al. 2011b). 

Water scarcity indices can be based solely on a measure of water scarcity or include additionally a measure 

of water quality (Boulay et al. 2011b; Bayart et al. 2014). The details of the implementation of water indices 

in an LCA context, i.e., the water type to be considered in the inventory phase, needs to be specified in 

order to make water indices applicable in a method. 

Uncertainty: Uncertainties are generally large in life cycle impact assessment, especially on the endpoint 

level and are yet generally not quantified in most of methods. Only a few authors, i.e., Pfister and Hellweg 

(2011) reported uncertainties for human health and WSI indicators on watershed and country level. 2.3 Results and discussion on method evaluation and cross comparison 
The methods were evaluated and compared according to the selected criteria and sub-criteria displayed in 

Table 2.1 and Table A.5 at the inventory, midpoint, and endpoint level and key differences were identified. 

Table A.1, Table A.2 and Table A.3 in the appendix provide a summary of the review for each method.  

Inventory databases  

While the ecoinvent (Frischknecht et al. 2005), GaBi (PE 2011) and Quantis (Quantis 2012) databases give 

the opportunity to distinguish freshwater input as water withdrawal according to its natural source (surface 

water (river, lake) or groundwater (renewable, fossil)), in the WFN database (Water Footprint Network 

2011) and Pfister et al.’s data sets (Pfister et al. 2011), water input is restricted to consumption of precipita-

tion water stored as soil moisture evapotranspirated by plants (so-called “green water footprint”) as well as 

consumption of surface and groundwater combined (so-called “blue water footprint”). All datasets consider 

water outputs and global water balances in a different manner. The ecoinvent datasets in their current 

version 2.2 do not allow the determination of water balances because water releases are not reported, 

water consumption being thus an unknown part of the withdrawal. In contrast, GaBi and Quantis databases 

contain water inputs and outputs for all foreground and background processes. The WFN database (Water 

Footprint Network 2011) considers volumetric estimations of water consumption through “blue” and 

“green” water footprint, while degradative use is expressed through the “grey water” concept, where pol-

lutant persistence, inter-compartment transfer and bioaccumulation properties are only implicitly included 

in water quality standard definitions which exist for a reduced set of substances. Only the Quantis water 
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Database considers water evaporated from reservoirs. The WFN database, the GaBi database, the Quantis 

water Database, and Pfister et al.’s datasets provide regionalized data per country where appropriate in 

regards to the product (global commodities or region-specific products). 

Inventory methods 

The water flow classification of Boulay et al. (2011a), the Global Water Tool of the WBCSD (2010) distin-

guish water according to its origin (e.g., surface, groundwater) and account for water balances by using  

input-output inventories. Milà i Canals et al. (2008), Peters et al.’s (2010), and the WFN method (2011) ac-

count only for consumptive water use of soil moisture lost by evapotranspiration (“green water”) as well as 

evaporated surface and groundwater flows. Boulay et al.’s method, which is an upgraded version of Vince’s 

(2007) and Bayart’s (2008) method is more comprehensive, as it enables to classify 11 input and output 

water inventory flows by using corresponding water quality classes based on 137 parameters.  

Midpoint assessment methods 

Water indices used in midpoint methods are based on a withdrawal-to-availability ratio (Frischknecht et al. 

2006; Milà i Canals et al. 2008; Pfister et al. 2009; Ridoutt and Pfister 2010b; Bayart et al. 2014) or a con-

sumption-to-availability ratio (Hoekstra et al. 2011; Boulay et al. 2011b). They are used as a characteriza-

tion factor (CF) for freshwater use in life cycle impact assessment to assess the impact of water consump-

tion (Frischknecht et al. 2006; Milà i Canals et al. 2008; Pfister et al. 2009; Ridoutt and Pfister 2010b; 

Hoekstra et al. 2011; Boulay et al. 2011b; Bayart et al. 2014) and water degradation (Ridoutt and Pfister 

2010b; Hoekstra et al. 2011; Boulay et al. 2011b; Bayart et al. 2014). Ridoutt and Pfister’s (2010b) index is 

an extended version of Pfister et al.’s approach (2009) given that degradative water use (“grey water”) is 

included additionally to consumptive use (“blue water consumption”). The Water Footprint Network’s im-

pact indices (“green”, “blue” and “grey water” footprint impact index) (Hoekstra et al. 2011) follow the 

same concept by applying  “blue”, “grey” and “green” water scarcity indices to corresponding water cate-

gories. The Water Impact Index (Bayart et al. 2014) and Boulay et al.’s (2011b) index both include water 

quality as a parameter additionally to water scarcity considering that water quality parameters could re-

strict its use by humans and the natural environment as defined in Figure 1. Storage capacity has been con-

sidered in Pfister et al. (2009) as it is strongly related to water deprivation (deprivation occurs only if stor-

age capacity is insufficient or if much of the stored water is evaporated).  

Most of the methods provide characterization factors differentiated by country (Frischknecht et al. 2006; 

Bayart 2008; Milà i Canals et al. 2008; Pfister et al. 2009; Ridoutt and Pfister 2010b; Boulay et al. 2011b), 

watershed (Frischknecht et al. 2006; Pfister et al. 2009; Hoekstra et al. 2011; Boulay et al. 2011b) or grid 
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cell (Pfister et al. 2009; Ridoutt and Pfister 2010b). The Water Footprint Network blue water footprint im-

pact indices provide characterization factors with monthly temporal differentiation (Hoekstra et al. 2011) 

and thus offer more temporal precision for impact evaluation. However, storage of water is not included. 

Bayart et al.’s (2014) and Mila I Canals et al.’s (2008) methods on freshwater depletion do not provide re-

gionalized characterization factors.  

Endpoint assessment methods 

Human health: The impact pathways covered by current methods regarding human health include the lack 

of freshwater for hygiene and ingestion resulting in the spread of communicable diseases (Motoshita et al. 

2010; Boulay et al. 2011b), water deprivation for irrigation causing in malnutrition (Pfister et al. 2009; 

Motoshita et al. 2011; Boulay et al. 2011b) and water deprivation for freshwater aquaculture and fisheries 

resulting in loss of productivity and food supply (Boulay et al. 2011b). Indirect impact of freshwater use, i.e., 

impact on human health and conflict creation is not covered by existing methods. The cause-effect chain 

modeling is based on hydrological and socio-economical data (Pfister et al. 2009; Motoshita et al. 2010; 

Motoshita et al. 2011; Boulay et al. 2011b). Some of them consider the water scarcity index used at the 

midpoint level (Pfister et al. 2009; Boulay et al. 2011b). The level of economic development is considered in 

studied methods through parameters such as Human Development Index (HDI) (Pfister et al. 2009), house 

connection to water supply (Motoshita et al. 2010) or adaptation capacity based on gross national income 

(Boulay et al. 2011b). All methods consider the reduction of human health impacts in case the level of eco-

nomic development is sufficient to cover compensation mechanism costs, but none of them includes the 

impact of the development and functioning of compensation mechanisms. Not expanding the system 

boundary is a common approach in attributional LCA. Some of the cause-effect chains relationships have 

been calculated based on empirical data, e.g., malnutrition rate and human development index (Pfister et 

al. 2009), water scarcity and accessibility to safe water (Motoshita et al. 2010). Other cause-effect chains 

rely on the multiplication of key parameters (Boulay et al. 2011b). Both approaches are relevant, but need 

to be further characterized by a measure of uncertainty to assess the deviation of potential impacts estima-

tion.  

Endpoint indicators are generally regionalized on a country (Pfister et al. 2009; Motoshita et al. 2010; 

Boulay et al. 2011b) or watershed level (Pfister et al. 2009; Boulay et al. 2011b). 

Ecosystem quality: Methods addressing ecosystem quality cover different parts of the cause-effect chains 

relevant to ecosystem services and biodiversity. The cause-effect chains that current methods cover regard-

ing damages to ecosystem quality are the decrease of terrestrial biodiversity due to freshwater consump-

tion (Pfister et al. 2009), decrease of aquatic biodiversity due to turbined water use (Maendly and Humbert 
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2009), disappearance of terrestrial plant species due to groundwater withdrawal and related lowering of 

the water table (van Zelm et al. 2011), and the effects of freshwater consumption on freshwater fish spe-

cies (Hanafiah et al. 2011). These endpoint methods do not use water scarcity indices as elements of the 

modeling equations. Rather, they are applied to different water types and uses, and should be used com-

plementarily. Most methods consider the ecological value of freshwater resources through an empirical 

observation of decreased biodiversity or of other proxy data such as net primary production (Maendly and 

Humbert 2009; Pfister et al. 2009; van Zelm et al. 2011) and from a mechanistic perspective, e.g., by relat-

ing fish species richness to river discharge (Hanafiah et al. 2011). 

Some cause-effect chains e.g., the impact due to water deprivation related to water quality degradation on 

aquatic ecosystems still need to be covered by additional methods.  

Endpoint methods addressing ecosystem quality have different levels of spatial differentiation: no differen-

tiation, generic or for a specific region (van Zelm et al. 2011), archetype (e.g., alpine and non-alpine dam 

(Maendly and Humbert 2009), country (Pfister et al. 2009), or watershed (Pfister et al. 2009; Hanafiah et al. 

2011). This variability of the differentiation level reflects the diversity of the parameters considered in the 

cause-effect chain.  

Resources: Methods addressing the area of protection resources quantify the impact on future freshwater 

availability through a backup-technology approach to evaluate the impact of freshwater consumption 

above their renewability rate (Pfister et al. 2009) or through the exergy content of the freshwater resource 

(Bösch et al. 2007). In contrast to the Pfister et al.’s method (2009), Bösch et al. (2007) is not specific to 

water resources and does not consider water scarcity.  

None of the evaluated endpoint methods covers the cause-effect chain comprehensively: the pathway ad-

dressing impact due to fossil groundwater depletion is poorly known and is not covered by available meth-

ods. Furthermore, estimation of impact of consumption over the renewability rates lacks differentiation 

between different water types and change in green water availability is not covered. 

Pfister et al.’ (2009) is a spatially differentiated method on a watershed and a country level whereas Bösch 

et al.’s (2007) method is not differentiated. 2.4 Recommendations 2.4.1 Description and review of existing freshwater use assessment methods 
The previously described findings can guide future consideration of freshwater use in LCA.  
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Inventory databases 

From a business and industry perspective, data availability on freshwater use as well as harmonized report-

ing formats are limiting factors for establishing meaningful water footprints of products, processes and 

organizations (Koehler 2008). A balanced approach between LCIA methods and business data requirements 

is therefore needed to make characterization methods broadly applicable and meaningful. In order to link 

up with emerging LCI and LCIA methods, inventory databases should preserve the maximum freedom to 

provide necessary flows for application of different impact methods. The following recommendations for 

inventory database developments were drawn based on existing LCI and LCIA methods and are evaluated 

as necessary:  

● Differentiate consumptive freshwater use from withdrawal (abstraction) through consistent water 

balances for foreground and background processes and do not mix physical flows with assessment 

units such as m3-equivalents of polluted water. 

● Distinguish between different water types based on origin (surface freshwater, including river, lake 

and sea, groundwater, including renewable, shallow and deep and precipitation freshwater stored 

as soil moisture and fossil groundwater) and freshwater quality (and thus functionality). This can be 

done by applying the systematic classification proposed by Boulay and colleagues (2011a) accord-

ing to quality data that could be collected, e.g., data on general parameters (which include microbi-

al parameters), inorganic compounds and organic compounds.  

● Include freshwater evaporation from water reservoirs as consumptive use, as it makes freshwater 

locally/regionally no more available. 

Additional optional guidelines could be integrated: 

● For the assessment of groundwater withdrawals and associated impacts differentiate shallow (<2.3 

meters) and deep water tables (van Zelm et al. 2011) or estimate regional average fractions of are-

as of each type. 

● Differentiate withdrawal of fossil groundwater from renewable groundwater based on regionally 

available resources as far as possible. 

Inventory methods 

General recommendations for inventory methods are: 

●  Include only measurable  freshwater types, e.g., surface water and groundwater, or a method to 

estimate those flows shall be provided, water stored as soil moisture evapo-transpirated by plants, 
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so called “green water”, which can be estimated with a crop model suitable, based on input data on 

climate, soil and crop characteristics (Hanasaki et al. 2010; Hoekstra et al. 2011).   

● Use water quality parameters to characterize freshwater flows that are available in existing data-

bases. 

Impact assessment methods 

In order to ease their applicability, LCIA shall in general show robust examples linking the inventory of 

freshwater types with all needed calculation steps to apply characterization factors and aggregate results 

for obtaining related midpoint or endpoint indicator. 

Midpoint assessment methods 

The water consumption or withdrawal to availability ratio has been recognized as a representative proxy 

for scarcity, in comparison to other indices, e.g., water use per capita, which reflects rather a socio-

economic situation. Midpoint methods addressing water scarcity shall:  

● Include water storage capacity in the modelling of total water availability within a geographical 

unit. 

● Be quantitatively compared to evaluate the trade-off between easiness of application and cause-

effect chain coverage and related uncertainty between indicators based solely on water scarcity 

(Frischknecht et al. 2006; Milà i Canals et al. 2008; Pfister et al. 2009; Ridoutt and Pfister 2010b) 

and more comprehensive midpoint indicators (Boulay et al. 2011b; Bayart et al. 2014). 

● Provide further empirical evidence of the link between water scarcity, water deprivation, and im-

pact on different areas of protection to evaluate the relevance of midpoint versus endpoint indica-

tors. In an LCA perspective, water scarcity indicator does not refer to any potential impact. This 

does not necessarily mean that an endpoint is ultimately affected. Water stress index is for exam-

ple involved in Pfister et al.’s and Boulay et al.’s endpoint models for human health, but human 

health is not affected if the economic development level is sufficient. Clear evidence of the link be-

tween water scarcity, water deprivation, and impact on different areas of protection would be 

needed to evaluate the relevance of midpoint versus endpoint indicators.  

Endpoint assessment methods 

Next steps towards a consistent framework for application of endpoint methods are as follows. 

For the area of protection human health: 
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● Provide a quantitative comparison of existing methods as well as an evaluation against empirical 

figures. 

● Assess the relevance and uncertainty of modelling indirect impacts related to water deprivation, 

e.g., human health impact due to conflict creation, population displacement. 

● Develop new approaches for modelling of compensation mechanisms to prevent water loss in func-

tionality throughout impact categories, knowing that technical means can also be used to cope with 

other impacts such as climate change.  

For the area of protection ecosystem quality: 

● Identify extensively missing cause-effect chain. 

● Provide global coverage and appropriate spatial resolution (e.g., watershed scale) for methods de-

veloped for a single country (van Zelm et al. 2010) or with partial basin coverage (Hanafiah et al. 

2011). 

For the area of protection resources: 

● Cover the cause-effect chain leading to impact of fossil groundwater exhaustion, as well as include 

it in the inventory. 

● Distinguish impact related to different freshwater types consumption, given they have different re-

newability rates and functionalities. 

● Quantifying the link between green water use and resources. Although Heuvelmans et al. (2005) 

developed a method to quantify impact of land use concerned with changes in hydrological re-

sponse of the land, no characterization factors yet exist to quantify this relationship. 

For all midpoint and endpoint methods, uncertainties of input data as well as model uncertainty still need 

to be evaluated and documented. Midpoint and endpoint methods covering human health and ecosystem 

quality impact shall provide characterization factors with monthly differentiation to reflect variability relat-

ed to meteorological conditions and associated ecosystem changes. 2.4.2 Application recommendations for practitioners given current state-of-the-art 
The evaluation of freshwater use is possible by assembling methods in a comprehensive methodology to 

characterize each use adequately. Current state-of-the-art can already provide a preliminary understanding 

of water uses and associated impacts, especially on human health and ecosystem quality. 

In this respect, a detailed inventory including freshwater withdrawal and release, water consumption, and 

turbined water constitutes a first step towards understanding the various flows related to the system. In-
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ventory results can be used as an indicator as such (WBCSD 2010; Hoekstra et al. 2011) but the interrela-

tion between inventory results and impact linked to freshwater use is not yet proven and can be in some 

cases misleading (Ridoutt et al. 2010; Ridoutt 2011). Clarity of LCI scope demands clear communication 

regarding whether an attributional or consequential LCI approach has been taken. 

For midpoint level assessment, it is not yet possible to draw conclusions on method preference given that 

case studies to test the significance of each method are under development. It is recommended to use the 

existing midpoint methods most relevant for the study under elaboration to ensure an extensive sensitivity 

analysis on the methodological choice, keeping in mind their cause-effect chain overlaps. If possible, the 

information given by scarcity indices should be interpreted in parallel with damage oriented impact as-

sessment indicators to provide a comprehensive picture of impacts related to freshwater use. 

For endpoint level assessment it is recommended to combine indicators of all cause-effect chains, i.e., mal-

nutrition or infectious diseases related to water deprivation of a defined quality class for agriculture, fisher-

ies and domestic use for human health. For ecosystem quality, the scopes of methods developed could so 

far be considered as complementary. All ecosystem quality indicators could therefore be used simultane-

ously and summed up into a single metric. However results should be interpreted with caution as not all 

the indicators are addressing the same endpoints. The resource area of protection is considered not being 

sufficiently developed to provide significant results. 

This assessment needs to be completed by emission to all compartments ultimately affecting water (e.g., 

aquatic acidification, eutrophication, human toxicity, ecotoxicity as well as heat release to water) to pro-

vide a complete picture of water related impacts. 2.5 Conclusion 
This is the first state-of-the-art assessment of freshwater use related methods. This review assesses rele-

vant tools to make an assessment from a product or site perspective, extending the analysis beyond the 

water flow inventory and encompassing impact from indirect water use in the system limits. Although some 

cause-effect chains still needs to be covered, spatial differentiation refined and uncertainty assessed, the 

set of methods presented can already help to grasp water-related challenges and risks which humans face 

and serve as a first base for strategic decisions. Water assessment is a fast progressing field, and this review 

will need to be regularly updated to include new developments. 2.6 Acknowledgement 
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Abstract 
This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different 

model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater 

pathways.  

Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-

continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized 

with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected 

sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among 

the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of 

magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spa-

tially differentiated model, with the exception of very persistent volatile pollutants that can be transported 

to polar regions.  

Intra-continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial 

(one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. 

Results show that the one box model might overestimate chemical fate and characterization factors for 

freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emis-

sions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes 

water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, 

bringing them within a factor five compared to the spatial model. 

 We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameter-

ization complemented with freshwater archetypes, can thus represent inter and intra-continental spatial 

variation, while minimizing model complexity. Keywords 
Spatial differentiation; USEtox; life cycle assessment; ecotoxicity; human toxicity; archetypes 3.1 Introduction 
Decision-making in green chemistry and chemical screening needs adapted tools to assess fate, exposure 

and risks of chemicals on human health and ecosystems. In a global economy, where products are manu-

factured and used in various continents over their life cycle, we specifically need tools able to assess and 

differentiate pollutants emitted on different continents and in meaningful geographical units within a con-

tinent and related potential impacts. Life Cycle Assessment (LCA) is a useful approach for such decisions, 

with its multimedia and multi-pathway exposure models recognized as particularly well-suited to assess 
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eco-toxicity and human toxicity impacts (Udo de Haes et al. 2002; Pennington et al. 2004; Finnveden et al. 

2009). 

USEtox is a consensus model developed within the Life Cycle Initiative led by the United Nations Environ-

mental Program and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) (Hauschild et al. 

2008; Rosenbaum et al. 2008; Rosenbaum et al. 2011; Henderson et al. 2011). This parsimonious and 

transparent model can screen thousands of chemicals and is widely used, but only provides continent-

generic characterization factors and impact scores for a generic unknown continent. Since human and eco-

toxicity occur as regional or local impacts (Potting and Hauschild 2006; Sedlbauer et al. 2007), recently de-

veloped multimedia and multi-pathway models are spatially differentiated in order to provide different 

impact scores for each regional zone. Spatial differentiation reduces model uncertainty and improves accu-

racy, precision and confidence in LCA results (Potting and Hauschild 2006; Manneh et al. 2010; Wegener 

Sleeswijk and Heijungs 2010). There is therefore a need to customize USEtox for different specific regions of 

the world in addition to the existing generic continent. 

Inter-continental variation has been investigated using a nested parameterization of the IMPACT 2002 

model (Rochat et al. 2006), with continent-specific boxes nested within the world. The Australian adapta-

tion of the USES-LCA 2.0 model has been similarly investigated by Lundie et al. (2007). Rochat et al. (2006) 

found a factor 1.7 to 25 variation in human health impacts among  continents. The variation is especially 

high for short-lived pollutants, e.g., the ingestion intake fraction of aldrin varies by a factor 25 between 

emissions in Europe and Oceania. These studies, however, do not address whether region-specific nested 

models accurately capture results obtained by spatially resolved models that include advection between 

continents for a set of chemicals covering a wide set of physico-chemical properties. There is a need to 

evaluate how far this full advection modifies the assessment of fate and exposure and whether a nested 

individual sub-continental model is sufficient for chemical screening. 

Intra-continental variation has been investigated at several resolutions, including 1*1 km grid cells for the 

MAPPE Europe model (Pistocchi et al. 2010; Vizcaíno and Pistocchi 2010), ecological zones with a continen-

tal coverage for the BETR North America model (Macleod et al. 2004), and watershed or sub-watershed 

resolution for freshwater emissions in various parameterizations of the IMPACT 2002 model (Humbert et al. 

2009; Manneh et al. 2010). Depending on the emission location within a given continent, intake fractions 

vary by 2 to 3 orders of magnitude for emissions to air (Macleod et al. 2004) and up to 10 orders of magni-

tude for emissions to water (Manneh et al. 2010), highlighting the necessity of high resolution to reduce 

intake fraction variability.  
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Assuming continent-level homogeneity may therefore lead to systematic errors, spatial differentiation is 

necessary. The choice of spatial resolution should account for scientific needs, as well as more practical 

data and computational constraints (Sedlbauer et al. 2007). Dividing a region into sub-regions with specific 

characteristics provides one way of limiting the geographical data requirements (e.g., meteorological, 

population, and agricultural zones) while maintaining sufficient accuracy. Humbert et al. (2011) showed 

that intake fractions from inhalation of primary particulate matter can be modelled based on emission re-

lease height and “archetypal” environment (indoor versus outdoor; urban, rural, or remote locations) and 

vary by orders of magnitude among conditions considered. Several other authors have used the archetype 

approach to estimate human toxicity impacts from air emissions, including Hellweg et al. (2009) and 

Wenger et al. (2012) for indoor air and  Rosenbaum et al. (2011) for urban emissions by continent. Howev-

er, a similar archetypal approach has not yet been developed for related fate and exposure for water emis-

sions. There is a need to explore the relevance of the archetype approach for emissions to freshwater com-

partments with various hydrological key characteristics.  

This work aims to evaluate an appropriate model architecture (nested vs. spatially differentiated) and spa-

tial resolution for the freshwater eco-toxicity and human toxicity impact categories in order to maintain 

environmental relevance while limiting model sophistication in terms of landscape data requirements. This 

paper primarily focuses on freshwater related pathways affecting human health and ecosystem quality by 

analysing pollutant fate in fresh water, as well as ecosystem and human exposure, aiming to: 

1. Develop landscape parameters for USEtox to develop continent-specific boxes nested within the 

world. 

2. Analyse the inter-continental variation of chemical fate and intake fractions among continents and 

examine the influence of the region(s) surrounding the considered sub-continent. For this, results 

from a nested USEtox model with continent-specific parameterization are compared to a fully con-

nected model. 

3. Study intra-continental variation and develop archetypes for freshwater eco-toxicity and human tox-

icity exposure to ingestion of fresh water and fish, as a parsimonious surrogate to higher spatial res-

olution. 3.2 Materials and methods 
We selected IMPACTWorld (Shaked 2011) to create and parameterize USEtox continents nested within a 

global box and analyse intra-continental variation on the sub-continental level. IMPACTWorld is the only 

global interconnected model of pollutant fate and exposure modelling atmospheric air transport, while the 

only other interconnected global model GLOBOX (Wegener Sleeswijk and Heijungs 2010) is based on aver-
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age measured wind speeds at ground level (independent of direction) in capital cities. It models media-

specific concentrations and intake fractions in 17 sub-continental regions fully interconnected by advective 

air and freshwater flows, which offers an interesting element of comparison with nested model, but results 

in an increased level of complexity. The concentrations of PCB-118 in the environment and food were com-

pared to measured empirical concentrations (Shaked 2011). The comparison showed that the accuracy of 

IMPACTWorld in predicting environmental concentrations is generally within an order of magnitude, com-

pared to 12 orders of magnitude of variability among impact characterization factors among different sub-

stances (Rosenbaum et al. 2008). 

We selected the IMPACT 2002 model on the watershed scale for a European resolution to analyse inter-

continental variation. This model was compared and evaluated against monitored data (except for the 

freshwater fish ingestion pathway) (Margni et al. 2004; Pennington et al. 2005; Humbert et al. 2009). The 

advantage of this model is that it is resolved on a watershed scale, which corresponds to an adequate defi-

nition of flow patterns at the regional scale to study intra-continental variation for freshwater eco-toxicity 

and human toxicity exposure to ingestion of fresh water and fish. The water runoff data has been compiled 

in this model based on empirical data from the Global Run Off Data Centre (2002). Hydrological datasets 

are recently available at a higher resolution at 0.5° (Vörösmarty et al. 2000a; Jolliet et al. 2012) and 15’ 

(Lehner et al. 2006) but are not yet implemented in multimedia models. 3.2.1 Parameterization of USEtox landscape data  
IMPACTWorld is a spatially differentiated multimedia model that divides the world into 17 sub-continental 

regions, 9 ocean regions, and 33 coastal regions (Figure 3.1). The regions of the IMPACTWorld model are 

similar to those chosen for the Input-Output model (Peters and Hertwich 2007; Friot and Antille 2009; 

Miller and Blair 2009) with some key differences to (1) put less emphasis on geographical boundaries and 

(2) represent the best trade-off between continental or sub-continental resolution and the representation 

of population densities and meteorological conditions (Shaked 2011). As in previous IMPACT versions 

(Pennington et al. 2005), each continental region consists of an air zone (containing an air compartment) 

and a terrestrial zone (containing water, soil, above-ground leaf crops, roots, and sediment), and each 

ocean region consists of an air zone and an ocean zone (containing surface ocean, deep ocean, and ocean 

sediment). Each region is characterized by environmental and demographic parameters, such as rainfall 

rate, vegetation fraction, and, most importantly for estimating population intake, vegetable and animal 

production intensity and population density. 

In a first step, we developed parameterized sub-continental and continental specific landscapes in USEtox 

based on the 17 zones of the IMPACTWorld model (Shaked 2011). To achieve this, we successively consider 
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the IMPACTWorld parameterization of each sub-continent, grouping the rest of the world into the USEtox 

global box. Special care was taken to define advection rates between each sub-continent and the surround-

ing global box, based on average wind speed over the height of the continental air box (for example, the US 

region has an average wind speed of 7.0 m/s over the lowest 1000 m of air). This advective wind speed over 

1000 m is typically higher than the 3 m/s used in USEtox, which is the default wind speed at 10 m height 

used to determine exchange rates between air, soil and water surface compartments. In a second step, we 

grouped these 17 zones into 8 continental zones delimited by Humbert et al. (2011) to reduce data collec-

tion needs for LCA practitioners while still meeting the need of continent-specific characterization factors 

for LCA studies. 

 

Figure 3.1: Depiction of how the IMPACTWorld model (Shaked 2011) is used to parameterize the Europe box of 
USEtox, nested within the global box 

Table 3.1 shows selected key landscape parameters of the USEtox parameterization for each of the 17 

zones. The full set of parameters is provided for these sub-continental zones and for the 8 continental 

zones in Table B.1, Table B.2, Table B.3 and Table B.4 in the appendix. The key physical parameters which 

influence exposure through the aquatic environment are the mean freshwater depth, which varies by a 

factor 15 across continents, and the freshwater residence time of water to the sea (Pennington et al. 2005; 

Henderson et al. 2011), which varies by a factor 83. Freshwater residence time of water to the sea  ߬ୱୣୟ ௜ 
[day] is calculated by summing the residence time in sub-continental zone ݅ with the transfer fraction to all 

sub-continental zones ݆ downstream of ݅ ௝݂ ୢ୭୵୬ୱ୲୰ୣୟ୫ [-] multiplied by their freshwater residence times ௝߬ 

[day] as follows: 
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߬ୱୣୟ ௜ = ߬௜ + ෍ ௝߬௙ೕ ౚ౥౭౤౩౪౨౛౗ౣ  

Equation 3.1: Residence time to the sea calculation 

Exposure data are based on regional populations and food production statistics from FAO (2001), and they 

vary by up to a factor 1850 for marine fish production per capita.  

Table 3.1: Key parameters for each of the 17 sub-continental zones in the USEtox parameterization 

ID # Name Land 
area 

Sea 
area 

Freshwater 
fraction of 
land area 

Precipi-
tation 
rate 

Mean 
fresh-
water 
depth 

Conti-
nental 
human 
popu-
lation 

Urban 
human 
popul-
ation 

Exposed 
produce 

Unexposed 
produce Meat Dairy 

products 
Fresh-

water fish 

Marine 
coastal  

fish 

Water 
residence 

time to the 
sea 

  km2 km2 [-] mm-y-1 M [-] [-] kg/(day- 
capita) 

kg/(day-
capita) 

kg/(day-
capita) 

kg/(day-
capita) 

kg/(day-
capita) 

kg/(day-
capita) day 

W1 West Asia 1.7E+07 7.4E+05 1.7E-02 2.2E+02 1.3E+01 2.35E+08 1.47E+06 1.71 0.33 0.08 0.26 0.011 0.05 1300 
W2 Indochina 3.3E+06 2.2E+06 3.6E-02 2.4E+03 1.3E+01 4.65E+08 1.30E+06 2.57 0.22 0.05 0.01 0.008 0.06 260 
W3 N. Australia 6.6E+06 1.6E+06 9.9E-03 1.5E+03 3.0E+00 3.20E+06 8.24E+05 10.45 0.18 0.51 1.39 0.006 6.65 28 
W4 S. Australia+ 1.5E+06 6.4E+05 1.2E-02 5.1E+02 3.0E+00 2.12E+07 1.03E+06 9.02 0.21 0.60 2.84 0.004 0.61 98 
W5 S. Africa 1.0E+07 6.2E+05 2.2E-02 1.0E+03 4.6E+01 3.24E+08 1.25E+06 1.03 0.44 0.03 0.06 0.006 0.03 1400 
W6 N. Africa 2.4E+07 9.7E+05 1.9E-02 5.1E+02 4.6E+01 7.89E+08 2.30E+06 0.98 0.46 0.04 0.10 0.006 0.01 2400 
W7 Argentina+ 4.2E+06 1.1E+06 1.5E-02 7.0E+02 8.0E+00 6.67E+07 2.89E+06 4.92 0.46 0.23 0.57 0.002 0.31 240 
W8 Brazil+ 1.1E+07 5.8E+05 8.3E-03 1.8E+03 8.0E+00 2.42E+08 2.62E+06 6.08 0.36 0.20 0.28 0.004 0.05 54 

W9 Central 
America 5.9E+06 1.3E+06 3.6E-02 2.0E+03 2.0E+01 3.05E+08 2.76E+06 2.62 0.10 0.09 0.20 0.003 0.04 480 

W10 US+ 1.4E+07 1.8E+06 3.4E-02 7.1E+02 2.0E+01 3.28E+08 1.32E+06 4.82 0.42 0.35 0.69 0.003 0.04 1300 

W12 N. Eur. + N. 
Canada 1.8E+07 5.6E+06 4.9E-02 4.9E+02 1.7E+01 1.67E+07 6.56E+05 1.74 0.47 0.15 0.75 0.008 1.43 2100 

W13 Europe+ 8.6E+06 1.7E+06 1.6E-02 5.5E+02 1.5E+01 7.59E+08 1.41E+06 2.57 1.12 0.19 0.80 0.003 0.02 610 
W14 East Indies 2.0E+06 1.4E+06 3.0E-02 1.5E+03 3.0E+00 2.07E+08 1.30E+06 1.21 0.16 0.02 0.01 0.013 0.13 80 
IND India 4.6E+06 4.6E+05 4.2E-02 1.2E+03 1.3E+01 1.57E+09 1.76E+06 1.52 0.07 0.01 0.20 0.008 0.003 580 
CHI China 6.4E+06 8.4E+05 4.6E-02 1.2E+03 1.3E+01 1.33E+09 1.47E+06 1.90 0.38 0.12 0.03 0.029 0.01 620 
JAP Japan 6.0E+05 4.2E+05 4.4E-02 2.4E+03 1.3E+01 1.51E+08 4.56E+06 1.16 0.21 0.09 0.19 0.027 0.06 310 

Source Based on GIS computation 
GEOS-
Chem 
model 

UNEP 
freshwa-
ter depth 
(http://w
ww.unep.
org/vital

wa-
ter/fresh

wa-
ter.htm) 

GIS 
analysis of 

2010 
UNEP 

GEO 1ox1o 
popula-

tion data 
(http://ge

oda-
ta.grid.un

ep.ch/) 

Regional 
calculation 
based on 
city data 

FAO production data from 2001 FAO FishSTAT 

Recalculat-
ed based 
on model 
algorithm 

 3.2.2 Inter-continental variation and influence of surrounding regions  
Landscape parameters such as sub-continental land area, mean freshwater depth, freshwater residence 

time to sea, and population density influence chemical fate in environment and human intake. We will first 

analyse the variation of fate and human exposure within each of the 17 sub-continents and thus the rele-

vance of using a specific sub-continent rather than generic continental parameters. The analysis is per-

formed for a set of 36 non-dissociating and non-amphiphilic organic chemicals selected from the OMNIITOX 

project (Margni et al. 2002; Margni 2003). It represents well the variability of physicochemical properties of 

organic substances as reported in Table B5 and Table B6  in the appendix. This set covers all relevant com-

binations in terms of environmental partitioning and exposure routes, overall persistence, long-range 

transport and feedback fraction. 
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In parallel, we use this chemical set to examine the influence of surrounding region(s) on the fate and expo-

sure of emissions within the considered sub-continent. For this, results from the nested USEtox model with 

continent-specific parameterization are compared to the fully connected IMPACTWorld model. The 17 

zones of the nested USEtox model have the same resolution and landscape parameters as those in the in-

terconnected IMPACTWorld model. Beyond this commonality, the two models calculate fate and intake 

fraction differently in two key ways: (1) USEtox embeds the sub-continent in a single global box, whereas 

IMPACTWorld explicitly connects the sub-continental zone to specific adjacent zones, and (2) the model 

algorithms for exposure and particularly fate are somewhat different. The latter difference can be illustrat-

ed by the modelling of advective outflow from a sub-continental zone.  It is based on river discharges out of 

sub-continental zones taken from external references in IMPACTWorld and on a mass balance based on 

precipitation, evaporation and advection in USEtox. Between these two models, we compared the fate and 

inhalation intake fractions, as well as ingestion intake fractions through drinking fresh water and eating 

fish, exposed produce (above-ground leaf crops, including fruit and cereals), unexposed produce (below-

ground root crops), dairy and meat products. 3.2.3 Intra-continental variation and identification of key spatial variation parameters  
Intra-continental variation was analysed on a finer resolution by comparing USEtox for Europe to the fol-

lowing versions of the IMPACT Europe model: the IMPACT Europe single zone model without spatial dis-

tinction (i.e., with one homogeneous compartment per environmental medium), and the IMPACT Europe 

spatial model accounting for spatial differentiation of 135 watersheds and land zones and 156 air zones on 

a 2*2.5 degree grid. Both spatial and a-spatial versions are nested into an a-spatial global zone. 

This comparison was carried out first assuming uniformly distributed emissions (i.e., emissions distributed 

in each watershed proportionally to its land surface area). We then compared results for emissions occur-

ring entirely in one of three selected watersheds being representative of three very different landscape 

characteristics: a near coast emission in Brittany, an emission into a long river (Danube) and an emission 

upstream of a large lake (Lake Geneva). We then analysed the interaction between chemical properties and 

spatially differentiated landscape properties of each watershed to identify the key parameters influencing 

the fate factors.  

Previous observations (Pennington et al. 2005) show that within an open system (1) the spatial differentia-

tion for aquatic eco-toxicity is only relevant for persistent pollutants (i.e., pollutants with a degradation rate 

higher than the advection rate); and (2) for these persistent pollutants, one important factor affecting fate 

is the freshwater residence time until reaching the landscape boundary (i.e., until the sea or any other ad-

vection into the global system). The mean freshwater depth also affects elimination rates by volatilization 
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and sedimentation and might also play a role. Exposure factors such as the fraction of freshwater volume 

ingested by the population as drinking water or indirectly through fish ingestion may also influence the 

freshwater-mediated intake fraction. We therefore analyse the influence of water residence time, water 

depth and population intake rates and their auto-correlation across the 135 watersheds. 3.2.4 Development of freshwater archetypes based on freshwater residence time 
Based on the identified key parameters, we ultimately developed a method to create a limited number of 

watershed archetypes and test how well these archetypes reflect major variations in fate and exposure 

across watersheds. 

Due to the importance of freshwater residence time until reaching the sea (or the model boundary) found 

in previous work (Pennington et al. 2005), this parameter could be used in a first step as the main variable 

to define these archetypes. To keep the number of archetypes manageable for common practice in Life 

Cycle Inventory, we define three freshwater residence time archetypes, corresponding to A1) coastal zones 

with short freshwater residence times, A2) zones with medium freshwater residence times and A3) zones 

with high freshwater residence times. We define the mean residence times in each zone as ߬ୱୣୟ ஺ଵ , ߬ୱୣୟ ஺ଶ 

and ߬ୱୣୟ ஺ଷ and the upper threshold residence times for zones A1 and A2 as ߬ଵଶ and ߬ଶଷ (upper threshold is 

infinite for A3). These upper thresholds were defined by minimizing the standard deviation variation be-

tween the log of the freshwater residence time for each watershed i in the spatial model and the log of the 

mean residence time for that watershed’s archetype using the Excel solver tool. The total standard devia-

tion ܵܦ௧௢௧, is the sum of the standard deviations for each of the three residence time archetypes: 

௧௢௧ܦܵ = {1݊ ∗  ෍ ሾ(log(߬ୱୣୟ ௜) − log (߬ୱୣୟ ஺ଵ)ሿଶఛభమ
ఛ౩౛౗ ೔ୀ଴ + ෍ ሾlog (߬ୱୣୟ ௜) − log (߬ୱୣୟ ஺ଶ)ሿଶఛమయ

ఛ౩౛౗ ೔ୀఛభమ+ ෍ ሾlog(߬ୱୣୟ ௜) − log(߬ୱୣୟ ஺ଷ)ሿଶஶ
ఛ౩౛౗ ೔సఛమయ }ଵ/ଶ 

Equation 3.2: Residence time to the sea calculation 

where 

߬௜ = ௏೔ொ೔ [d] is the water residence time in watershed i (1≤i<135 for the spatial IMPACT Europe model), calcu-

lated as the watershed volume ௜ܸ [m3] divided by the advection flow out of the watershed ܳ௜  [m3/d]; ߬ୱୣୟ ௜ = ߬௜ + ∑ ௝߬௙ೕ ౚ౥౭౤౩౪౨౛౗ౣ  [d] is the water residence time until reaching the sea, calculated by summing 

the residence time in watershed ݅ with the transfer fraction to all watersheds ݆ downstream of ݅ multiplied 

by their freshwater residence times; 
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߬ୱୣୟ ஺ଵ, ߬ୱୣୟ ஺ଶ and ߬ୱୣୟ ஺ଷ are the residence times for each archetype, calculated based on the total volume 

of all watersheds corresponding to this archetype and the total advective flow out of all watershed flows 

corresponding to this archetype. 

The mean freshwater residence time to sea is calculated as a surface weighted average of the water resi-

dence times of each watershed classified in one of the three archetypes. The calculated mean freshwater 

residence time of each watershed is presented in section 3.3.3. We test the relevance of these archetypes 

by determining the variability in fate and intake fraction across emissions in each of the 135 watersheds 

described by these three archetypes.  

The practitioner may choose the archetype based on the emission location by finding the archetype corre-

sponding to the place of emission according to Figure B.6 in appendix. 3.3 Results and discussion 3.3.1 Inter-continental variation: comparison between spatially differentiated IMPACT-World and nested USEtox model 
Residence times: Figure 3.2a presents the range of freshwater residence times to sea, comparing the nest-

ed continent-specific USEtox model to the fully connected IMPACTWorld model. These residence times 

vary by up to two orders of magnitude among sub-continental zones, with North Australia having one of 

the shortest times and North Africa having the longest. Values in the two models are similar for all sub-

continental zones, with the highest difference being a factor 4 for the East Indies (W14). These differences 

in freshwater residence times to sea are due to different ways of calculating total water advection. IM-

PACTWorld outflows are advective flows based on river discharges out of the sub-continental zone (Global 

Runoff Data Centre 2002), whereas USEtox uses a water balance approach based on rainfall, evapotranspi-

ration, infiltration and runoff.  

Fate factors: Figure 3.2b compares the fate factors in fresh water for chemical emissions to fresh water for 

each sub-continental zone in each of the two models. These fate factors represent the chemical mass in the 

freshwater environment per unit flow emission (units of kg per kg/d), which corresponds to the residence 

time of each substance in fresh water (in days). For persistent pollutants that have a long degradation half-

life in water (t1/2water), such as gamma-HCH (lindane) (t1/2water = 1.9 y) or aldrin (t1/2water = 2.0 y), their 

fate is more sensitive to the zone’s freshwater residence time to sea. The fate factors of these persistent 

pollutants can thus vary by more than one order of magnitude among sub-continental zones, with aldrin 

ranging from 10 days in North Australia to 199 days in North Africa in the USEtox parameterization (Figure 

B.1 in appendix). For non-persistent substances, the emission location has little influence, and the fate fac-
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tor is identical for all regions. N-nitrosodiethylamine has t1/2water = 6 hours, and thus has a fate factor of 

0.36 days in all continents (Figure B.1).  

Discrepancies in fate factors between the two models are limited but observable, particularly for the sub-

continental zones that have different freshwater residence times, such as W14 East Indies in Figure 3.2.a. 

W14 has a freshwater residence time of 19 days in IMPACTWorld and 80 days in USEtox. Thus persistent 

pollutants whose disappearance is not driven by degradation, evaporation or sedimentation (e.g., metho-

myl) have fate factors limited to 19 days in IMPACTWorld (and 80 days in USEtox). Yet Figure 3.2b shows 

one outlier that exceeds this maximum fate factor of 19 days – hexachlorobenzene. This is due to a dynam-

ic that can only be captured by an interconnected spatial model like IMPACTWorld, in which a pollutant can 

be transferred from one sub-continental zone into an adjacent zone with a higher freshwater residence 

time to sea. The fate factor also depends on the product of the inter-continental transfer fraction from 

water to air (Figure B.2 in appendix) with the water residence time in the receiving compartment. The fate 

factor can therefore exceed the water residence time to sea of the emission compartment if it is trans-

ferred to the freshwater compartment of another sub-continental zone with higher freshwater residence 

time. In our case, the fate factor of hexachlorobenzene emitted in W14 (42 days) is driven by the fraction of 

the pollutant transferred through air to Antarctica (W11) (1.2%). Hexachlorobenzene is highly volatile 

(KH=170 Pa.m3.mol-1) and persistent (t1/2 air=0.84 y and t1/2 water=6.3 y), and the IMPACTWorld model fresh-

water residence time in Antarctica (W11) is much higher than the hexachlorobenzene half-life. The fate of 

hexachlorobenzene in W11 is thus not limited by the freshwater residence time of the emitting compart-

ment.  

Intake fractions: Figure 3.2c and 3.2d display the range of human intake fractions through freshwater in-

gestion and fish ingestion, respectively, due to freshwater emissions of various substances. In addition to 

variation of water residence time in each sub-continental zone (influenced by water surface and depth), 

inter-continental variation also depends on landscape parameters related to exposure, such as population 

density and various food products intake rates. These parameters lead to variation in intake fractions for 

the same substance in different sub-continental zones of more than three orders of magnitude, not only for 

persistent substances, but also for some easily degradable chemicals. Given the many parameters that in-

fluence intake fraction, neither difference in spatialization nor in model algorithms causes substantial devi-

ation of intake fractions between the two models, which generally remain within two orders of magnitude. 

Intake fraction results for other pathways from freshwater emissions, as well as intake fraction for all 

pathways from air emissions, are presented in Figure B.3 and Figure B.4 the appendix. 
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The previous results show that considered zones cover a wide range of landscape parameters correspond-

ing to a comprehensive overview of sub-continental fate and intake fraction variability. 

 
a) Freshwater residence time to sea b) Fate factors 

  
c) Intake fraction through water ingestion d) Intake fraction through fish ingestion 

 

Figure 3.2 Comparison between nested USEtox model and the spatially differentiated IMPACTWorld model regard-
ing: a) Freshwater residence time to sea in each sub-continent, b) Residence time in fresh water of 36 representa-
tive chemicals emitted in each sub-continent c) Intake fraction through freshwater ingestion and d) Intake fraction 

through fish ingestion 3.3.2 Intra-continental variation and importance of spatialization: Europe a-spatial and Eu-rope spatial IMPACT model 
This section analyses the intra-continental variation of fate and intake fractions in Europe on a watershed 

scale. Figure 3.3 uses a red symbol to compare the fate factors (a,b) and intake fractions (c-f) of the a-

spatial with those of the spatial IMPACT model, for both uniform and point-source emissions (i.e., respec-
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tively for surface weighted emissions and emissions in specific European watersheds). Results for the three 

watershed archetypes are displayed in blue and discussed in section 3.3.3. 

Fate factors: For a uniform emission (when a substance is uniformly emitted on the surface covered by the 

model), Figure 3.3a shows that fate factors smaller than 3 days (lower left portion of the graph) are similar 

for the spatial and a-spatial versions of the model. For more persistent pollutants and regions with higher 

freshwater residence times to sea, the a-spatial single box model overestimates the fate factor by up to a 

factor 5 when compared to the spatially differentiated model due to the high freshwater residence time to 

sea in the a-spatial model (4.1 y).  

For point-source emissions (when a substance is emitted in a defined single geographical location covered 

by the model) in locations with increasing freshwater residence time to sea (Brittany is 0.81 days (corre-

sponds to archetype A1), Danube is 1.4 y (corresponds to archetype A3) and Lake Geneva is 13.6 y to the 

sea (corresponds to archetype A3)), Figure 3.3b shows that the a-spatial model accuracy depends on the 

watershed in which the pollutant is emitted and on the pollutant persistence in fresh water. For highly de-

gradable pollutants with degradation half-lives less than 3 days, such as n-nitrosodiethylamine and captan, 

a-spatial fate factors are aligned with the spatial ones for all watersheds. This is not the case for more per-

sistent pollutants for which the freshwater residence time to sea of the emitting compartment is a key fac-

tor. For an emission to Lake Geneva, the a-spatial single box model only slightly underestimates the resi-

dence time, since the a-spatial freshwater residence time to sea (4.1 y) is three times higher than Lake Ge-

neva’s freshwater residence time to sea (13.6 y in the spatial model). For the same reason, fate factors for 

an emission into the Danube are slightly overestimated in the a-spatial model (freshwater residence time in 

the Danube watershed is 1.4 y). Brittany a-spatial fate factors are overestimated by about 3 orders of mag-

nitude because of the short freshwater residence time to sea in this coastal region (0.81 day = 0.002 year). 

When an emission location is known, a spatially differentiated model can thus improve the model accuracy 

by up to 2- to 3 orders of magnitude. 

Intake fractions: Human intake fractions for freshwater and fish ingestion are represented in Figure 3.3c to 

f. For a uniform emission, the a-spatial model underestimates both these intake fractions by up to 2 orders 

of magnitude (Figure 3.3c and Figure 3.3e). This trend is different from that observed for fate prediction 

due to differences in exposure estimation between these two models. Despite the low freshwater resi-

dence time in coastal zones, exposure factors tend to be higher in these zones, compared to inland water-

sheds with high freshwater residence times. These variations in exposure also influence the intake fraction 

for a point source emission into fresh water (Figure 3.3d and Figure 3.3f), such that the a-spatial model 

underestimates the intake fraction for an emission in Brittany. The model overestimates intake for emis-

sions into a large body of water such as the Lake Geneva watershed. 



Spatial analysis of toxic emissions in LCA: A sub-continental nested USEtox model with freshwater archetypes 

 

70 

a) Fate factor for a uniform emission b) Fate factor for a point source emission 
 

 

 

c) Intake fraction through freshwater 
ingestion for a uniform emission 

d) Intake fraction through freshwater ingestion for a point 
source 

 
e) Intake fraction through freshwater fish 

ingestion for a uniform emission 
f) Intake fraction through freshwater fish ingestion for a 

point source 
 

Figure 3.3: Fate factors and ingestion intake fractions of 36 organic chemicals through freshwater and fish, calculat-
ed for the spatial IMPACT Europe model, and compared to the a-spatial single zone IMPACT Europe model (red) and 
for the three watershed archetypes A1 and A3 (blue). a) Fate, c) intake by water ingestion and e) intake by fish in-
gestion for a uniform emission. b) Fate, d) intake by water ingestion and f) intake by fish ingestion for point source 
emissions in Lake Geneva (□), Brittany (∆), and Danube (○) 
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Key parameters affecting fate: To further analyse the main parameters responsible for the spatial variation 

of fate factors, Figure 3.4a presents the variability in chemical fate for emissions in different European wa-

tersheds, as calculated by the spatially differentiated European IMPACT model. For easily degraded pollu-

tants with a half-life lower than a day, such as n-nitrosodiethylamine (t1/2=6 h in freshwater), fate factors 

vary by less than one order of magnitude across European watersheds. Such highly degradable or volatile 

chemicals disappear before being advected out of the watershed and their residence times do not vary 

much across watersheds. On the contrary, fate can vary up to four orders of magnitude for persistent pollu-

tants with half-lives larger than 100 days, such as methomyl (t1/2=230 days in fresh water).  

By displaying the fate factor as a function of the freshwater residence time for four pollutants with differ-

ent levels of persistence in fresh water (n-nitrosodiethylamine has t1/2=0.25 d, captan has t1/2=0.71 d, hexa-

bromobenzene has t1/2=73 d, and methomyl has t1/2=230 d), Figure 3.4b shows that the variability across 

watersheds is mostly explained by the freshwater residence time to sea. While the fate factor of the short-

lived n-nitrosodiethylamine is not influenced by freshwater residence time, fate factors for methomyl show 

a strong linear dependence on freshwater residence time. The distinction between emissions of hexabro-

mobenzene in watersheds with a water depth below and above 1 m shows that outliers (watersheds for 

which fate factors are not limited by freshwater residence time) depend on the mean depth in the consid-

ered geographical unit that influences other loss processes, such as volatilization or deposition rates. The 

higher the freshwater depth, the lower is the volatilization and deposition rates and the greater the fate 

factor. Figure B.5a and b show the same analysis applied to intake fractions through water ingestion. 

 

 
 
 
 

a) b) 
Figure 3.4: Main factors affecting fate. a) Fate factors of all test substances as a function of their degradation half-

life in water for each of the 136 watersheds of the European spatial model and b) Fate factors of n-
nitrosodiethylamine, captan, hexabromobenzene (for emissions to watersheds with water depth below and above 

1m) and methomyl as a function of water residence time to sea for each of the 136 watersheds of the European 
spatial model 
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Key parameters affecting exposure: To understand the main factors affecting the variability of the exposure 

factors ܺ ௜ܲ  [1/day] across Europe, we calculate for each watershed i an equivalent exposure factor through 

freshwater ingestion and fish ingestion by dividing the intake fraction ܨܫ௜ by its fate factor ܨܨ௜:  
ܺ ௜ܲ =  ௜ܨܨ௜ܨܫ

Equation 3.3: Exposure factor calculation 

The resulting exposure factor can be interpreted as the equivalent fraction of the overall volume of water 

available that is taken in every day by the population. 

Figure 3.5 presents the exposure factors by freshwater ingestion as a function of the freshwater residence 

time to sea for all watersheds of the spatial model, for the three archetypes and for the a-spatial model. 

We observe a clear inverse relationship between the exposure factor and the freshwater residence time to 

sea; for watersheds with a short residence time to sea, such as Brittany, the available volume of water is 

limited and thus the equivalent fraction of the water volume taken in every day by the population is high. 

As the freshwater residence time to sea increases, the fraction of water taken in is reduced by more than 

two (Danube) to three (Lake Geneva) orders of magnitude. 

 

Figure 3.5:  Variation in methomyl exposure factor from freshwater ingestion for the spatial, archetype and a-
spatial models, where XPi is the exposure factor for an emission in watershed, archetype or a-spatial zone i 
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3.3.3 Freshwater archetype 
Development of the archetype watersheds: The previous section has shown that the freshwater residence 

time to sea is a major determinant of both fate and exposure. This residence time to sea (or the model 

boundary) has thus been used to define three water archetypes by minimizing the variation between the 

log of freshwater residence times of the spatial model and the log of the mean value of the archetype wa-

tershed, as described in section 3.2.4. The resulting three archetypes have the following key characteristics. 

Archetype A1 covers coastal zones with short freshwater residence times, reaching the sea in less than 2 

days, with an average value of 1.7 days, and a total volume of water of 0.073 m3 per m2 land area (also 

equal to the mean depth). Archetype A2 covers watersheds of medium freshwater residence times be-

tween 2 and 60 days, with an average of 8.6 days and a water volume of 0.27 m3 per m2 land area. Arche-

type A3 covers watersheds with freshwater residence times longer than 60 days, with an average residence 

time of 1600 days and a volume of water of 39 m3 per m2 land area. 

Figure B.6 in the appendix presents the archetype classification of each of the 136 watersheds of the IM-

PACT Europe spatial model, as well as the geographical delimitation of the three newly developed arche-

types. 

Evaluation of the archetype model: We evaluated the performance of this watershed archetype model by 

comparing the resulting fate and intake fraction of each test pollutant in each archetype to the IMPACT 

Europe spatial model results for uniform and point source emissions (blue markers in Figure 3.3). 

For a uniform emission, chemical fate factors of the archetype model are aligned with those of the Europe 

spatial model (Figure 3.3.a). For intake fractions through freshwater and freshwater fish ingestion, the ar-

chetype model also improves upon the a-spatial model estimation by substantially reducing the difference 

in results to within a factor two (Figure 3.3c and e). This reflects the improvement in both fate and expo-

sure modelling related to population density compared to the a-spatial model, given that the archetype A1 

is composed of coastal areas and thus mimics more adequately the intake fraction related to coastal zones 

modelled with the Europe spatial model.  

For a point source emission, the archetype model represents a substantial improvement over the a-spatial 

model, with fate factors generally within a factor five of the spatial model (Figure 3.3b). This improvement 

is particularly stark for Brittany, because its freshwater residence time of 0.81 day is well approximated by 

the average residence time of 1.7 day in the archetype model.  

Figure 3.3d and f show that the intake fractions are also improved in the archetype model, especially for a 

source emission in Brittany due to the modelling of higher exposure in coastal zones. 
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3.4 Conclusions 
This paper develops continent-specific factors for the USEtox model and provides a first evaluation of the 

variability of fate and exposure induced by simplified approaches addressing spatial differentiation of toxic 

impacts such as: (1) region-specific nested models with a global surrounding box and (2) spatial archetypes 

based on key landscape parameters. It shows that simplifying models to either a nested model of conti-

nent-specific landscapes or to a model with a limited number of watershed archetypes still captures the 

main variability in impacts and may represent an efficient solution to account for spatial variations while 

limiting the complexity of the analysis. 

Inter-continental variations in water residence time, fate and intake fraction are greater than one order of 

magnitude among the 17 zones assessed with the IMPACTWorld and USEtox models, due to differences in 

continent-specific landscape and population parameters. However, the model architecture of the surround-

ing box(es) (i.e., the single global box of USEtox or the interconnected continents of IMPACT) generally does 

not have a significant influence on results, with the exception of volatile and persistent pollutants in both 

air and water. A nested model, such as USEtox with a specific sub-continental parameterization, is thus well 

suited to model inter-continental variations in fate and exposure for most substances.  

For intra-continental variation, an a-spatial model might substantially overestimate the chemical fate and 

characterization factors for freshwater eco-toxicity, by up to 3 orders of magnitude when compared to a 

spatially regionalized multimedia model representing the variations in hydrology and water use between 

watersheds. We identified freshwater residence time to sea as a key parameter affecting the variation in 

fate and exposure of persistent chemicals in water, and thus developed a set of three watershed arche-

types based on this residence time as an alternative to a spatially differentiated model. This archetype 

model predicts aquatic fate and intake fractions within a factor 5 of those predicted by a detailed spatial 

model, while decreasing model complexity.  

This work is an important step towards a regionalized assessment of toxic impact in the context of LCA and 

chemical screening. Further research work should be pursued to evaluate the robustness and the accuracy 

of the proposed archetypes applying a model with finer spatial resolution capabilities, whilst maintaining 

global coverage and multimedia modelling capacities. Models running on recently available hydrological 

datasets at 0.5° and 15’ should provide better basis to determine the optimal number of archetypes and 

further explore landscape key characteristics influencing fate and exposure across continents. 
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Abstract 
There is an increasing interest to discriminate the impacts in relation to the place of emission in 

chemical fate and exposure models depicting the toxic emissions impact pathway. This work aims at 

exploring the operationalization of spatially differentiated models addressing toxic emissions into 

freshwater by analysing and comparing the variability of characterization factors at high resolution 

with aggregated factors at different levels of lower resolution.   

We developed models to analyse the variation of fate and exposure factors for water ingestion as 

well as the main factors of influence: (1) a reference spatially resolved characterization model cover-

ing the freshwater media with global coverage at 0.5°*0.5° resolution and (2) two archetype models 

based on the main landscape key influential parameters addressing respectively impact on ecosys-

tems and human health. We tested the validity of the latter models as well as different aggregation 

approaches on a case study of emissions from red mud disposal as a waste from alumina production. 

The freshwater residence time to the sea was the  most influential parameter with the equivalent 

depth, defined for a specific emission as the freshwater depth cumulative over all downstream cells, 

in particular for substances that sediment or complex with suspended solids or sediments. Results 

show that there are up to 3 orders of magnitude variation for fate and intake fraction across all 

0.5°*0.5° grid cells in the case study of chromiumVI and arsenic emissions from alumina production. 

We propose four landscape archetypes defined as a function of their water residence time to the sea 

and their cumulative equivalent depth. These archetypes reflect well variation in fate, but are not 

able to reflect variation in exposure and in intake fraction. A population and sector-specific ap-

proaches were also tested to aggregate characterization factors from their native resolution to a 

coarser scale such as country, continent or global average. In practice, population weighted and sec-

tor-specific average characterization factors may represent the most operational way to account for 

specific distribution patterns of emissions.  

Operationalization approaches exist that simplify the implementation of spatially differentiated 

methods addressing the impact of toxic emissions to water. Unlike air emissions that affect their 

direct surrounding, the influence of downstream cells prevents the efficient use of urban and rural 

archetypes. The alumina production case study shows that the determination of industry-specific 

weighted average represents a pragmatic way to account for sector specific location of emissions for 

goods that are traded at continental or global level. Population weighted approach is applicable to 

e.g. household emissions that are directly related to population density. This work also enables to 

evaluate the representativeness of the USEtox default generic characterization factor, where the 
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USEtox fate and intake fraction default values are found within one order of magnitude compared to 

the global value calculated by our sophisticated model, showing the relevance of this generic model 

for average situations.  Keywords 
Life cycle assessment – human toxicity – ecotoxicity – spatial differentiation - freshwater 4.1 Introduction 
Emissions of toxic substances can impact environment to various extents depending on their geo-

graphical location in addition to their intrinsic physico-chemical properties. When substances are 

emitted to surface freshwater, such as pharmaceutical substances released from wastewater treat-

ment plants, or pesticides and fertilizers leaching from agricultural operations, the receiving body 

hydrology plays an important role in determining the magnitude of the impact (Pennington et al. 

2005; Henderson et al. 2011). Substances removed from freshwater by advection to the sea are, for 

example, influenced by freshwater residence time to the sea (Kounina et al. 2014). When substances 

are adsorbed on sediments and settle at the bottom of the freshwater body, sedimentation occurs at 

various rates in lakes and rivers (Alexander et al. 2004). Evaporation depends on the exchange pro-

cesses at the air-water interface area (Schwarzenbach et al. 2003). Furthermore, human exposure 

through water ingestion depends on the availability and type of wastewater treatment technology, 

as well as human population density, which varies substantially from coastal zones to desert areas.  

Models predicting chemical fate and exposure are traditionally used in Life Cycle Assessment (LCA) to 

assess toxic impacts, with an increasing interest in including spatial differentiation in these models. 

The SimpleBox 3.0 (Den Hollander et al. 2004) and BETR North America models (Macleod et al. 2004) 

are multimedia and multi-pathway models that cover emissions to freshwater at a 50 km resolution 

on a European scale, and ecological zones on a North American scale (24 ecological zones cover the 

North American continent). The model GREAT-ER (Koormann et al. 2006) simulates the fate of sub-

stances in a single media, i.e. surface water, emitted to sewer systems and lakes or rivers for several 

watersheds in Europe. Models on finer resolutions provide precision up to 1*1 km grid cells in Eu-

rope for the MAPPE Europe model (Pistocchi et al. 2010) and sub-watershed resolution for freshwa-

ter emissions in Canada (Manneh et al. 2010). The latter model shows up to 10 orders of magnitude 

variability in human intake fraction (Manneh et al. 2010). A recent work focusing on the assessment 

of terrestrial ecotoxicity of copper and nickel differentiates among 760 noncalcareous soils from 

around the world spanning a wide range of properties, based on the scientific consensus model USE-
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tox (Owsianiak et al. 2013). Kounina et al. (2014) analyzed the physico-chemical properties of sub-

stances emitted to water influencing regionalization and demonstrated that only persistent sub-

stances are influenced by regional parameters. Fate and exposure models developed so far for the 

assessment of toxic potential impacts from emissions to freshwater in LCA (1) lack differentiating 

between lake and river dynamics, where sedimentation and evaporation transfer processes signifi-

cantly differ (the GREAT-ER model does not include lake dynamics) and (2) lack a global coverage as 

they traditionally are restricted to a continental scope. There is therefore a need to evaluate the 

variability of impact results from models with higher resolution, global coverage and distinguishing 

between river and lake. Hydrological datasets with global coverage exist at 0.5° x 0.5°(Vörösmarty et 

al. 2000a; Jolliet et al. 2012) and 15’ resolution (Lehner et al. 2006), but are not yet implemented in 

LCA multimedia models. 

The implementation of regionalized impact assessment methods for LCA practitioners raises several 

new constraints and dilemmas compared to a generic impact assessment. From the perspective of 

the modeller, model sophistication supporting higher spatial resolution allows quantification and 

minimization of the uncertainty related to spatial variability. However, this sophistication involves 

large computation times (Sedlbauer et al. 2007), higher model uncertainty and, for inclusion in LCA 

work, the knowledge about the geographical location of life cycle inventory flows. The following di-

lemmas are thus raised: (1) How can modellers apply detailed spatialized models to then provide 

approaches easily applicable for LCA practitioners? (2) How can the geographical resolution of impact 

assessment be adapted to the practitioner level of information for process location? 

Two alternative approaches have been proposed so far to address several degrees of model sophisti-

cation: a) a top down approach proposing a set of simplified archetypes for different emission situa-

tions versus b) a bottom up approach proposing spatially resolved CFs and aggregation schemes to 

e.g. country or continental levels, based on emission weighting.  

a) The top down archetype-based approaches that differentiate urban, rural, or remote emission 

locations, emission height, and indoor environment has previously been explored to estimate im-

pacts of particulate matter inhalation (Humbert et al. 2011) and toxic substances inhalation (Hellweg 

et al. 2009).  Kounina et al. (2014) developed watershed archetypes based on freshwater residence 

time to the sea to analyse intra-continental variation for emissions to freshwater at the watershed 

level in Europe. Although the watershed archetypes model captures the main variability within a 

factor 5, the authors recommend to evaluate the robustness and the accuracy of these findings with 

a model with finer spatial resolution and a global coverage.  
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b) The bottom-up approach can be illustrated by the IMPACT World+ methodology  (Bulle et al. 

2012), which represents a first attempt to consistently implement regionalized methods within a full 

LCIA framework operationalized in LCA software. CFs are aggregated from their native spatial resolu-

tion up to a global generic factor through national and continental resolution levels. Different aggre-

gation schemes might be adopted. Emission weighting aggregates actual point source emissions 

within a given spatial unit when geographical location is known. Alternatively, an emission proxy can 

be adopted based on a default aggregation scheme, such as population (Bulle et al. 2012). Bourgault 

(2014) evaluated the variability of characterization factors at different levels of aggregation such as 

the country and  archetype. He also evaluated the relevance of developing sector-specific aggrega-

tion schemes and argued in favour of the creation of industry-specific CFs to reduce the spatial varia-

bility. To consider specific geographic location of technosphere processes without aggregating char-

acterization factors at a lower resolution, Mutel and Hellweg (2009) propose spatial methods to cou-

ple regionalized characterization factors with spatial life cycle inventory databases at the country 

level in existing software. In this approach, the available geographical information of the Life Cycle 

Inventory (LCI) determines the required level of aggregation of characterization factors, e.g., the grid 

cell, country, continent of generic level. There is now a need to develop and compare such ap-

proaches for toxic emitted to surface water and to test their applicability and operationalization at 

global scale on a case study. 

This paper therefore aims at exploring further the importance and applicability of spatial resolution 

for toxic emissions into freshwater, by analysing and comparing the variability of CFs at the highly 

resolved grid cell level with different methods and levels of aggregation.  The specific objectives are 

the following:  

1. Develop a spatially resolved fate and exposure characterization model and factors for toxic 

emissions into water with global coverage at 0.5°*0.5° resolution;  

2. Analyse the variation of fate and exposure factors for water ingestion as well as the main fac-

tors of influence on ecosystems and human exposure by focusing on five selected substances; 

3. Develop archetypes based on the developed characterization model and identified key pa-

rameters; 

4. Compare practical solutions to apply spatial characterization factors aggregated at different 

resolution scales in LCA and apply the different approaches to a case study of global alumini-

um production 
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4.2 Material and methods 4.2.1 Development of a fate and exposure model for toxic emissions with global cover-age and at 0.5°*0.5° resolution 
A human toxicity and ecotoxicity ܨܥ௜ for a substance emitted in location i is calculated by multiplying 

the fate factor ܨܨ௜ [year], with the exposure factor ܺܨ௝ [year-1] that varies depending on the receiv-

ing location j and the effect factor ܨܧ [cases.kgintake
-1] independent from the emission location 

(Rosenbaum et al. 2008): 

௜ܨܥ = ∑ ௜,௝ܨܨ) ∗ ௝)௝ܨܺ ∗ ௜ܨ݅ = ܨܧ ∗  ܨܧ

Equation 4.1: Calculation of the characterisation factor in an emission cell i 

In current methods, the influence of location on population sensitivity to toxicants (including genet-

ics, age and gender) is often neglected when assessing the effect factor for human toxicity and aquat-

ic ecotoxicity factor (Pennington et al. 2006), we thus consider ܨܧ without geographical differentia-

tion. The largest spatial variation stems thus from ܨܨ௜ and ܺܨ௝. ݅ܨ௜ [kgintake.kgemitted
-1] is the human 

intake fraction through inhalation and ingestion and is calculated as the product between ܨܨ௜ and ܺܨ௝. 

Fate factor ܨܨ௜ is the multiplication of the substance persistence ܨܨ௝ [year] in freshwater in a receptor cell j and 

the substance fraction transferred from the source grid cell i to receptor grid cell j, ௜݂,௝ [-]: 

௜ܨܨ = ෍ ௜݂,௝ ∗ ௝௝ܨܨ  

Equation 4.2: Calculation of the fate factor in an emission cell i 

Vörösmarty et al. (2000a) provide a 0.5*0.5° global hydrological model that was used by Helmes et 

al. (2012) to assess freshwater eutrophication by phosphorus emissions. Helmes et al. (2012) provid-

ed worldwide fate factors for phosphorus emissions to freshwater from point sources to the ocean 

on the same resolution. Their model includes substance advection from grid cell upstream to down-

stream cells, as well as differentiation between phosphorus removal rates (by sedimentation and 

biological uptake) between lakes and rivers. We adapted and extended the approach of Helmes et al. 

(2012) to develop a toxicity model using the 0.5°*0.5° gridded river network from Vörösmarty et al. 

(2000a). We modelled the chemical fate for toxic emissions based on the freshwater advection and 
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particle settling rates in rivers modelled by Helmes et al. (2012), and we introduced the removal pro-

cesses relevant for toxics, namely chemical and biological degradation and volatilization. We calcu-

lated the overall persistence ܨܨ௝ [year] of a substance in freshwater in a receptor cell j as the inverse 

sum of the removal rates by advection ݇௔ௗ௩,௝ [year-1], sedimentation  ݇௦௘ௗ,௝ [year-1], evaporation ݇௘௩௔௣,௝ [year-1] and degradation ݇ௗ௘௚,௝  [year-1]: 

௝ܨܨ = 1݇௔ௗ௩,௝ + ݇௦௘ௗ,௝ + ݇௘௩௔௣,௝ + ݇ௗ௘௚ 

Equation 4.3: Calculation of the substance persistence in a receptor cell j 

 ௜݂,௝  is calculated as per the original model as the product of all substance fractions transported from 

the emission grid cell ݅ to the receptor cell ݆ (Helmes et al. 2012). 

Table 4.1 presents the model characteristics and assumptions used to calculate each removal rate 

used in Equation 4.3. 
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Table 4.1: Description of fate parameters: advection rate, sedimentation rate, evaporation rate and degradation model, assumptions and references 
Removal 
rate 

Advection rate Sedimentation rate Evaporation rate Degradation 
rate 

Variable 
name 

݇௔ௗ௩,௝ [year-1] ݇௦௘ௗ,௝  [year-1] ݇௘௩௔௣,௝ [year-1] ݇ௗ௘௚ [year-1] 

General 
equation 

݇௔ௗ௩,௝ = ொ೒ೝ೔೏,ೕ௏೒ೝ೔೏,ೕ           
Equation T4.1.1 

݇௦௘ௗ,௝ = ௏ೝ೔ೡ,ೕ∗௞ೞ೐೏ ೝ೔ೡ,ೕା஺೗ೌೖ,ೕ∗௩ೞ೐೏ ೗ೌೖ೐௏೒ೝ೔೏,ೕ                 

Equation T4.1.2 

݇௘௩௔௣,௝ = ஺೒ೝ೔೏,ೕ∗௩೐ೡೌ೛௏೒ೝ೔೏,ೕ    

Equation T4.1.4 

݇ௗ௘௚ = ௟௡ଶ௧భ/మ   

Equation T4.1.5 
Variables 
used in the 
equation 

ܳ௚௥௜ௗ,௝: Total fresh-
water discharge from 
grid cell ݆ [km3.year-1] ௚ܸ௥௜ௗ,௝: Total freshwa-
ter volume in grid cell ݆ [km3] 

௥ܸ௜௩,௝: river volume in grid cell ݆ [km3] ݇௦௘ௗ ௥௜௩,௝: sedimentation rate in rivers [year-1]   ܣ௟௔௞,௝: lake area in grid cell ݆ [km2] ݒ௦௘ௗ ௟௔௞௘: sedimentation speed in lakes [km.year-1]  

 ௚௥௜ௗ,௝: freshwaterܣ
area in grid cell ݆ 
[km3] ݒ௘௩௔௣: evaporation 
speed in freshwater 
[km.year-1]  

݇ௗ௘௚: degrada-
tion constant 
[year-1]  
 

Details ܳ௚௥௜ௗ,௝  and ௚ܸ௥௜ௗ,௝ are 
based on the hydro-
logical model of 
Vörösmarty et al. 
(2000a) integrated in 
Helmes et al’s (2012) 
eutrophication mod-
el. 

Following Helmes et al.’s (2012) model, we differentiate sedimentation in lakes and rivers by using specif-
ic sedimentation rates in rivers ݇௦௘ௗ ௥௜௩,௝ [year-1] and sedimentation speed in lakes ݒ௦௘ௗ ௟௔௞௘. While sedi-
mentation in lakes can be described as completely mixed boxes, transport processes in rivers and 
streams are dominated by the unidirectional flow of the water which creates resuspension and desorp-
tion (Schwarzenbach et al. 2003).  
Rivers  ݇௦௘ௗ ௥௜௩,௝ = ݇௦௘ௗ ௥௜௩ ௣௛௢௦,௝ ∗ ଵି௙೏೔ೞೞ ೞೠ್ೞଵି௙೏೔ೞೞ ೛೓೚ೞ         
Equation T4.1.3 
 ݇௦௘ௗ ௥௜௩ ௣௛௢௦,௝: sedimentation rates for phosphorus in rivers based on Alexander et al. (2004) and calcu-
lated by the SPARROW model. It includes both loss from biological uptake and from sedimentation and 
vary from 71.2 [year-1] for small streams (flow < 2.8 m3s–1) to 4.38 [year-1] for large streams (flow > 14.2 
m3s–1). We use ݇௦௘ௗ ௥௜௩ ௣௛௢௦,௝ as a reference for the removal rate of all substances, applied to the particu-
late fraction of the substance according to Schwarzenbach (2003) .   (1 − ௗ݂௜௦௦ ௣௛௢௦): fraction of phosphorus sorbed on the sediment surface . ௗ݂௜௦௦ ௣௛௢௦ is the fraction of 
phosphorus dissolved in water, i.e. 0.19 based on the average of free PO4

2- compared to dissolved organic 
matter bound and particulate bound phosphorus sampled  in the Vansjø catchment, Norway (Parekh 
2012). Details of the raw data and calculation to get the average of phosphorus dissolved in water 0.19 
are detailed in appendix C.1. 1 − ௗ݂௜௦௦ ௦௨௕௦: fraction of substance sorbed on the sediment surface  ( ௗ݂௜௦௦ ௦௨௕௦ being the fraction of the 
assessed substance dissolved in water based on the USEtox database (Rosenbaum et al. 2008))  
Lakes ݒ௦௘ௗ ௟௔௞௘ is based on the substance specific sedimentation speed calculated in USEtox (Rosenbaum et al. 
2008), taken for most substances from the SimpleBox model (Den Hollander et al. 2004) 

 ௘௩௔௣ is based on theݒ
substance specific 
evaporation speed 
calculated in the 
USEtox model 
(Rosenbaum et al. 
2008), taken for most 
substances from the 
SimpleBox model 
(Den Hollander et al. 
2004) 

݇ௗ௘௚ is based on 
substance specif-
ic degradation 
rate calculated in 
the USEtox mod-
el (Rosenbaum 
et al. 2008), 
taken for most 
substances from 
EPIsuite (U.S. 
Environmental 
Protection 
Agency 2012) 
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Exposure factor and intake fraction 

The intake fraction ݅ܨ௜ [kgintake.kgemitted
-1] is calculated for water ingestion by the multiplication of the fresh-

water fate factor ܨܨ௜ (i.e. by substance persistence ܨܨ௝ [year]) in a receptor cell j multiplied by the sub-

stance fraction transferred from the source grid cell i to receptor grid cell j, ௜݂,௝, by the exposure factor ܺ ௝ܲ 

[year-1] in receptor cell j as follows: 

௜ܨ݅ = ෍( ௜݂,௝ ∗ ௝௝ܨܨ ∗ ܺ ௝ܲ) 

Equation 4.4: Calculation of the intake fraction in an emission cell i 

Focusing on the drinking water ingestion pathway, ܺ ௝ܲ [year-1] represents the yearly equivalent fraction 

of the chemical mass in water media ingested by the population. It is calculated based on the fraction of 

substance dissolved in freshwater ௗ݂௜௦௦ ௦௨௕௦ [-] (tap water is assumed to be treated to remove the particu-

late fraction), the volume of water ingestion per person ௜ܸ௡௚ ௪௔௧ equal to 511 [l/(person*year)], the popula-

tion in the receptor cell j ௣ܰ௢௣,௝  [person], the ratio of surface water over the total water withdrawal ݎ௦௨௥௙, 

the water density (equal to 1000 [kg/m3]), and the volume of the freshwater compartment ௚ܸ௥௜ௗ,௝ [m3)] 

(Rosenbaum et al. 2008) as: 

ܺ ௝ܲ = ௗ݂௜௦௦ ௦௨௕௦ ∗ ௜ܸ௡௚ ௪௔௧ ∗ ௣ܰ௢௣,௝ ∗ ௦݂௨௥௙,௝ߩ௪௔௧ ∗ ௚ܸ௥௜ௗ,௝  

Equation 4.5: Calculation of the exposure factor in a receptor cell j 

The population data ௣ܰ௢௣,௝ per 0.5°*0.5° grid cell is based on a population density grid provided by the 

Center for International Earth Science Information Network (CIESIN 2005). The fraction of surface water 

over the total water withdrawal ௦݂௨௥௙,௝  per country is based on the Quantis water database (Quantis 2012) 

compiling Aquastat data with the most recent data available between 1975 and 2010 (FAO 2014).  

The exposure factor through drinking water ܺ ௝ܲ is thus calculated based on the water requirement of the 

receptor cell, disregarding local water exploitability. In case of a water scarce area, the amount of water 

consumed for drinking water can exceed the amount of water available in a given grid cell j, and ܨܫ௝ could 

thus potentially reach or exceed 1. In reality, drinking water will be supplied by a neighboring grid cell or 

from a more distant location through bottled water. To avoid the model artefact of artificially high iF val-

ues, we introduced a threshold value that cannot be exceeded within a single grid cell ݆ (ܨܫ௠௔௫,௝) to ac-

count for water-scarce grid cells. ܨܫ௠௔௫,௝ is determined by considering the fate factor ܨܨ௝,௠௢ௗ௜௙௜௘ௗ in a re-

ceptor cell j that includes freshwater removal rate ݇௪௜௧௛ௗ௥௔௪௡,௝ [year-1] in addition to other removal pro-

cesses defined in Equation 4.3  ݇௔ௗ௩,௝, ݇௦௘ௗ,௝, ݇௘௩௔௣,௝ and ݇ௗ௘௚ [year-1]. This addition reflects the fact that 
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drinking water withdrawn is not available in the same grid cell, while it can be reused in grid cells down-

stream (drinking water is withdrawn in a centralized system for large cities). ܺ ௝ܲ,௠௔௫ [year] is the maximum 

exposure factor calculated using modelled industrial, domestic and agricultural withdrawal. ܨܫ௠௔௫,௝  is de-

fined as: 

௠௔௫,௝ܨܫ = ௝,௠௢ௗ௜௙௜௘ௗܨܨ ∗ ܺ ௝ܲ,௠௔௫ = ௝ܨܨ11 ∗ ݇௪௜௧௛ௗ௥௔௪௡,௝ + 1 ∗ ௗ݂௜௦௦ ௦௨௕௦ ∗ ௗ݂௥௜௡௞_ௗ௢௠,௝ ∗ ௗ݂௢௠_௧௢௧,௝ 

Equation 4.6: Calculation of the maximum intake fraction in a receptor cell j 

The derivation of Equation 4.6 is explained in appendix C.2. 4.2.2 Variation of fate and exposure factors and main factors of influence on ecosystems and human exposure 
Substance selection: We selected five organic and inorganic substances to represent the following types of 

substances: a) highly degradable substances - represented by the pharmaceutical substances mannitol, b) 

persistent substances that have low evaporation and low sedimentation rates - the fungicide captafol and 

c) persistent substances with higher sedimentation removal rates - the detergent tinopal. We additionally 

selected chromiumVI and arsenic as they are the most important contributors to toxicity impact of alumini-

um production of the case study presented in section 4.2.4. Table 4.2 shows the selected substances as well 

as their degradation, sedimentation, evaporation rates and their dissolved fraction. Figure C.2 in appendix 

C.3 shows the distribution of degradation, sedimentation and evaporation rates of all organic and inorganic 

substances covered by the USEtox organic and inorganic database (Rosenbaum et al. 2008). Since there can 

be significant variations of metal mobility and solid/liquid partitioning over very small geographic scales 

depending on pH, dissolved organic carbon, water hardness and dissolved mineral concentration (Gandhi et 

al. 2010), we tested the influence of the variability of the partitioning coefficients that may vary substantial-

ly, namely the partition coefficient between dissolved organic carbon and water ܭ஽ை஼ and between sus-

pended solids and water ܭ௉ೄೄ  on the sedimentation rate (Allison and Allison 2005). Indeed, the more a 

metal will combine with organic carbon or suspended solids, the more it will tend to sediment.  
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Table 4.2: Physico-chemical properties of the five selected substances in USEtox 

CAS Chemical substance 
 values below) (year-1) ࢍࢋࢊ࢑

1E-10 were considered as 0) 
  ࢐,ࢋ࢑ࢇ࢒ ࢊࢋ࢙࢑
(year-1)1 

 1 (year-1) ࢐,࢖ࢇ࢜ࢋ࢑
(values below 1E-
10 were consid-

ered as 0)  

Dissolved 
fraction (-) 

69-65-8 Mannitol 108 (less than 3 [days] for the 
chemical half-life) 0.26 3.7E-10 1.0 

242-50-61 Captafol 1.4 0.16 4.3E-3 0.99 
13863-31-5 Tinopal 1.4 60 0 1.1E-3  
18540-29-9 Chromium(IV) 0 1.4 0 0.81 
7440-38-2 Arsenic 0 2.0 0 0.89 

 

Analysis of fate factors, exposure factors and intake fractions: Based on influential spatial parameters 

identified in previous work (Pennington et al. 2005; Kounina et al. 2014), we analysed the variation of fate 

factors ܨܨ௜ and intake fractions ܨܫ௜ through water ingestion for the five selected substances depending on 

water residence time to sea, water depth and cumulative exposure factor. We introduce the cumulative 

exposure factor ܺ ௜ܲ  for an emission cell i (summing over the downstream j cells). ܺ ௜ܲ  is specifically devel-

oped to analyse the relative contribution of exposure factors to the ܨܫ௜ and is calculated as: 

ܺ ௜ܲ = ∑௜ܨܫ ௜௝ܨܨ  

Equation 4.7: Calculation of the cumulative exposure factor in an emission cell i 

With ܨܨ௜ and ܨܫ௜ defined in Equation 4.2 and Equation 4.4. ܺ ௜ܲ  strongly depends on the substance persis-

tence and sedimentation, as it considers all the ܺ ௝ܲ values for the cells through which the substance passes. 

Development of the cumulative equivalent depth parameter: Given the importance of the cells’ water 

depth grid cell to substance fate, demonstrated in section 4.3.2, we defined a new parameter ݀௜ ௘௤௨ [m] 

being the cumulative equivalent depth for an emission in cell i for a given substance. 

The overall cumulative residence time of a substance for an emission in cell i can be approximated as: 

௜ܨܨ = 1݇௔ௗ௩,௜  + ݇ௗ௘௚ + ݇௦௘ௗ,௟௔௞௘,௜ + ݇௘௩௔௣,௜ = 1݇௔ௗ௩,௜ + ݇ௗ௘௚ + ௦௘ௗ,௟௔௞௘ݒ + ௘௩௔௣݀௜ ௘௤௨ݒ  

Equation 4.8: Approximation to calculate the substance residence time in an emission cell i 

  

                                                                        

 

1 This value is cell dependent and calculated here for a water depth of 2.5m. 
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The inversion of this equation solved for ݀௜ ௘௤௨ gives: 

݀௜ ௘௤௨ = ௦௘ௗ,௟௔௞௘ݒ + ௘௩௔௣݇௧௢௧ݒ − ݇௔ௗ௩,௜ − ݇ௗ௘௚ = ௦௘ௗ,௟௔௞௘ݒ + ௜ܨܨ௘௩௔௣1ݒ − 1߬௔ௗ௩,௜ − ݇ௗ௘௚ 

Equation 4.9: Cumulative equivalent depth in an emission cell i ݀௜ ௘௤௨ is determined to grasp emissions cells i with an important sedimentation speed, ݒ௦௘ௗ ௟௔௞௘ [m.year-1] 

is thus used as a constant proxy that does not depend on landscape parameters to determine the overall 

sedimentation speed. Using Equation 4.9 and having already determined the cumulative substance resi-

dence time for an emission in cell ݅ ܨܨ௜ [year] and the water residence time to the sea ߬௔ௗ௩,௜ [year] by run-

ning the model, it becomes possible to calculate for each emission cell ݅ its cumulative equivalent depth for 

a given substance as a function of its degradation rate ݇ௗ௘௚, the sedimentation speed ݒ௦௘ௗ,௟௔௞௘ and the 

evaporation speed ݒ௘௩௔௣. 

4.2.3 Development of grid cell based archetype landscapes 
Four archetypes are defined based on the identified influential parameters for chemical fate and two for 

human exposure. An archetype specific box model is parameterized for each archetype. To do so, each 

0.5*0.5° grid cell of the characterization model has been attributed to its corresponding fate of exposure 

archetype. The freshwater volume, area, depth and freshwater residence time to sea of each archetype box 

are then calculated based on the sum or average of the characteristics of 0.5*0.5° grid cells included in a 

defined archetype. Advective flows between two archetype boxes were calculated by summing the advec-

tions between 0.5*0.5° grid cells classified in respective boxes.  4.2.4 Case study on aluminium production and aggregation approaches 
Aluminium is the most widely used non-ferrous metal, with over 40 million tons of pure aluminium metal 

produced annually for the transport, construction, packaging and electrical sectors (Tabereaux and 

Peterson 2014). It is produced through two main processes: the Bayer process for alumina production 

(used for over 90% of the world alumina production (Tabereaux and Peterson 2014)) and the Hall-Héroult 

electrochemical process to produce pure aluminium.  The dominant toxic impacts of primary aluminium 

production stem from heavy metals leaching during red mud disposal to residual material landfill from 

bauxite digestion in the Bayer process. Analyzing the process “Aluminium, primary at plant” for Europe 

from the ecoinvent v2.2 database (Frischknecht et al. 2005) with the USEtox v.1.01 method (Rosenbaum et 

al. 2008) shows that 64% of the total (cancer and non-cancer) human health impact cancer and 77% of the 

ecotoxic impact are due to chromiumVI and arsenic ion emissions to water during red mud disposal. The 

complete results of the contribution to toxicity are detailed in appendix C.4. This disposal takes place close 
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to alumina refineries, whose coordinates were identified based on global data from the International Alu-

minium Institute (IAI 2012) and (Alcor Technology 2013). The coordinates and annual alumina production 

(up to 6’300 kt/year) are presented in Figure 4.1.a and detailed in appendix C.5.  

We determined fate factors and intake fractions at different levels of resolution: (1) 0.5°*0.5° grid cell 

(when the location is known), (2) fate or exposure archetype, (3) country (when only the country is known), 

(4) continental level (when only the continent is known) and (5) global level (when the location is un-

known). For these various resolutions, we explored two approaches to aggregate CFs from their native res-

olution to a coarser lever: a production and population based approach. The production based approach 

relies on point source emissions and relies on the assumption that chromiumVI and arsenic emissions from 

the red mud disposal is proportional to alumina production (assuming similar technologies across the world 

for the Bayer process) and takes place in the same location as the alumina refinery. The population-based 

approach as per the regionalized method IMPACTWorld+ (Bulle et al. 2012) is based on the assumption that 

emissions occur where humans live and are proportional to human population.  

We aggregated the ܨܨ௜ and ݅ܨ௜ results for each 0.5°*0.5° grid cell on different geographical units ܺ of each 

resolution level: country, archetype and continental level as follows: 

௜,௑ܨܨ = ∑ ௜,଴.ହܨܨ) ∗ ௣ܰ௥௢ௗ ௢௥ ௣௢௣ ,௜,଴.ହ)௡௜ ఢ ௑∑ ௣ܰ௥௢ௗ ௢௥ ௣௢௣,௜,଴.ହ௡௜ ఢ ௑  

Equation 4.10: Aggregation of the fate factors on a higher resolution 

Where ܨܨ௜,଴.ହ represent the grid cell fate factor within a defined geographical unit X and ௣ܰ௥௢ௗ ௢௥ ௣௢௣,௜,଴.ହ 

corresponds to the alumina production or the population within this grid cell. ∑ ௣ܰ௥௢ௗ ௢௥ ௣௢௣,௜,଴.ହ௡௜ ఢ ௑  repre-

sents thus the total production or population within the defined geographical unit ܺ. 4.3 Results and discussion 4.3.1 Fate and exposure of toxic emissions to water with global coverage at 0.5°*0.5° resolu-tion 
Fate: Figure 4.1.c characterizes the world water hydrology at the 0.5°*0.5° resolution, presenting for each 

cell its freshwater residence time until it reaches the sea, with arid zone in grey for which yearly potential 

evaporation exceeds rainfall.  As expected low water residence time to the sea are found in coastal areas. 

Regions with high residence times (>500 days) cover 17% of overall none-arid cells and correspond to re-

gions with lakes and large river water basins. We also calculated the equivalent depth for all chemicals. 

Figure 4.1.d shows the equivalent depth of tinopal on a 0.5°*0.5° resolution. It shows that a large part of 
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the non-arid territory has an equivalent depth greater than 3 m. Equivalent depths superior to 100 m occur 

in grid cells with large lakes where fate values are superior to 100 days. 

Fate factors, i.e. the substance residence time in the freshwater compartment are determined for the five 

selected substances. Figure 4.1.a maps the fate factors of arsenic for an emission into water in each of the 

0.5°*0.5° cell worldwide. Fate values less than 3 days occur in coastal areas throughout the world. The re-

gional patterns of the fate factors mostly reflect the freshwater residence time map (Figure 4.1.c). As a 

rather persistent substance with high sedimentation removal rates, tinopal tends to have shorter residence 

time than arsenic, due to its substantially higher sedimentation rate (Table 4.1). Fate values larger than 100 

days take place in large and deep lakes such as the large North American and African lakes, European lakes 

in the vicinity of the Alps and the Baikal lake, suggesting that not only advection but also water depth plays 

an important role. Indeed the map for tinopal is very similar to the map of equivalent depth provided in 

Figure 4.1.d. Results for mannitol, captafol and chromiumVI are presented in appendix C.6, showing that 

the fate values of quickly degradable mannitol do not exceed 4 days, while about 30% of the fate values of 

captafol and chromiumVI are higher than 100 days.  

 
a) Fate of arsenic and location of alumina refineries 
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b) Fate of tinopal 

 
c) Water residence time to the sea 

 
d)  Equivalent depth of tinopal 
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e) Fate archetype classification 

Figure 4.1: Maps of fate factor in freshwater, i.e. substance residence time, and of main parameters of influence for 
(a) arsenic with location of alumina refineries sites and their production weight  (b) for tinopal, (c) for the water 

residence time the sea, (d) for tinopal equivalent depth and (e) for freshwater fate archetype classification 

Intake fractions: Figure 4.2.a and b present the intake fraction of arsenic and tinopal respectively. Given 

that the dissolved fraction of tinopal is as low as 0.001 (see Table 4.2) and that its fate is limited by sedi-

mentation, the intake fraction calculated according to Equation 4.4 and Equation 4.6 rarely exceed 1E-6 

[kgingested/kgemitted] and never exceeds 1E-5. The intake fraction of arsenic is substantially higher and go up to 

0.01 (as well as mannitol, captafol and chromiunVI), limited by ܨܫ௠௔௫,௝ defined in Equation 4.6 based on the 

figures in appendix C.6. 
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a) Arsenic intake fraction 

 
b) Tinopal intake fraction 

 

Figure 4.2: Arsenic intake fraction by water ingestion (a) and tinopal intake fraction by water ingestion (dimension-
less) (b), in each 0.5°*0.5° grid cell modeled on a global resolution 
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4.3.2 Analysis of the variation of fate and exposure factors as well as the main factors of in-fluence on ecosystems and human exposure 
Fate: We analyzed the wide variation in fate of the reference substances observed in the maps of the pre-

vious section in plotting them as a function of the freshwater residence time to the sea, for equivalent wa-

ter depths higher and lower than 10 m (Figure 4.3.a and b). 

Figure 4.3.a shows that the fate of mannitol is limited to 0.01 [year] due to its high degradability. The fate 

of captafol linearly increases with the water residence time to the sea (which can be interpreted as a limita-

tion by the advection rate) until it reaches 1 [year] where it becomes constant, limited by the degradation 

rate. This value of 1 [year] is due to its high persistence (k=1.41 year-1, that corresponds to a degradation 

half-life of t1/2=0.49 [year]) and to low sedimentation and evaporation rate. The fate of tinopal and chromi-

umVI are also limited by advection to the sea as show the upper values linearly dependent on the freshwa-

ter residence time. Chemical fate values are lower in some grid cells due to the removal though other 

mechanisms than advection such as complexation with suspended solids, organic matter or sediments and 

ultimately sedimentation. Low fate factors are associated with cells with a water depth less than 10 m. We 

performed a complementary analysis of the variation of fate depending on freshwater depth in appendix 

C.7. 

We tested the sensitivity of the model to a range of partitioning coefficients between dissolved organic 

carbon as well as water suspended solids and water, ܭ஽ை஼ and ܭ௉ೄೄ  , that directly affect the sedimentation 

rates of chromiumVI and arsenic. ܭ஽ை஼ values available in the literature vary between 1 and 1’000 L.kg-1  

with a mean value of 100 and ܭ௉ೄೄ  from 100 to 1’000’000 with a mean value of 7’940 L.kg-1 for arsenic 

(Allison and Allison 2005). These means correspond to the  reference values used in the USEtox inorganic 

database (Huijbregts et al. 2010). On the one hand, ܭ஽ை஼ variability is responsible for less than 0.01% 

change in the reference sedimentation rate of 1.99 year-1, only leading to minor changes lower than 0.1% in 

the fate factor. On the other hand, ܭ௉ೄೄ  strongly influences the sedimentation rate, more than a factor of 

200, with sedimentation rates ranging from 0.077 to 17 year-1. This variation in sedimentation rate also 

affects the fate factor by up to a factor 100, a high ܭ௉ೄೄ  corresponding to a high sedimentation rate and 

thus to a lower fate factor down to 1% of its reference value. 

Intake fraction: The intake fraction is plotted as a function of the cumulative exposure factor ܺ ௜ܲ  (Figure 

4.3.c and d) of each substance. For each of the considered substance, ܨܫ௜ via drinking water varies by more 

than 20 orders of magnitude, primarily due to the high variations of the exposure factor and in a lesser 

extent related to the fate.  
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a)  b) 

 
 

c) d) 

Figure 4.3: Fate (a and b) and intake fraction (c and d) of five selected chemicals (mannitol, chromiumVI, captafol, 
arsenic and tinopal, vs. water residence time until the sea (a and b) and reference exposure factor (c and d) in each 

0.5°*0.5° grid cell 

In appendix C.8, we also analyse the variation of fate versus equivalent water depth of tinopal for tinopal, 

captafol, mannitol, arsenic and chromiumVI. Tinopal was selected as a reference substance to estimate 

equivalent depth for the representativeness of its physico-chemical properties: a low degradation and high 

sedimentation rate according to Table 4.2. We recalculate the fate of selected substances based on the 

equivalent depth of tinopal and conclude that this substance-specific parameter can be used as a generic 

proxy for fate estimation. 4.3.3 Grid cell based archetypes 
Fate: Based on the previous analysis, water residence time and equivalent depth were found to be influen-

tial parameters for fate. We used these parameters to develop a model with four archetypes: A1 from 0 to 
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10 days of freshwater residence time, A2 from 10 to 80 days of freshwater residence time and A3 and A4 

with more than 80 days of freshwater residence time and respectively less and more than 10 m equivalent 

depth of tinopal. Four archetypes were selected as a trade-off between precision and applicability, accord-

ing to the following considerations. Coastal grid cells classified in A1 are dominated by advection and are 

thus grouped according to their freshwater residence time to the sea, inferior to 10 days. A2 was delimited 

based on the geometric mean of freshwater residence time to the sea in all grid cells, equal to 81.8 m and 

approximated to a threshold of 80 m. A3 and A4 with a water residence time superior to 80 days cover fate 

values that vary up to 3 orders of magnitude depending on the equivalent depth. The threshold to delimit 

A3 and A4 based on the equivalent depth of tinopal was set to 10 m as a rounding of tinopal equivalent 

depth geometric mean over all 0.5*0.5° grid cells equal to 11.3 m. 

We recalculated the fate and intake fraction for selected substances in these two archetype models. Fate 

results are based on Equation 4.8 applying the equivalent depth of tinopal and substance specific evapora-

tion, sedimentation and degradation rates. Intake fraction results were generated based on Equation 4.4 

and Equation 4.5. 

Table 4.3 shows hydrological parameters for the six developed archetypes: freshwater volume, surface, 

depth and residence time to the sea. Water depth for A1, A2 and A3 is between 4.8 and 5.6 m while it 

reaches 77.3 m for A4. A large set of water residence time to the sea are also represented: between 7.5 

days for A1 and almost 20 years for A4.  

Table 4.3 : Fate and intake fraction archetype models hydrological and exposure parameters 
 

 
Freshwater vol-

ume 
Freshwater sur-

face Freshwater depth Freshwater resi-
dence time 

 ࢙࢈࢛࢙ ࢙࢙࢏ࢊࢌ࢏ࡼࢄ

Unit km3 km2 m day day-1 

A1 7.24E+02 1.29E+05 5.6 7.5 Not calculated 
A2 2.24E+03 4.68E+05 4.8 29.3 Not calculated 
A3 3.74E+03 7.55E+05 5.0 292.3 Not calculated 
A4 9.09E+04 1.18E+06 77.3 7.27E+03 Not calculated 

Rural 9.64E+04 2.47E+06 39.0 760.4 4.30E-08 
Urban 1.16E+03 5.51E+04 21.0 29.0 2.63E-06 

 
 
Figure 4.1.e maps the geographic location of each of these fate archetypes. A1 is located on coastal areas, 

and A3 and A4 correspond to the locations with high fate factors. 

The performance of these archetypes is tested and compared to the spatial model in appendix C.9. These 

fate archetype results succeed in reducing fate variability to 2 orders of magnitude compared to 5 orders of 

magnitude of variability among all spatial results. They are however not easier to link to a life cycle invento-



Spatial analysis of toxic emissions to freshwater in LCA: operationalization at global scale 

 

97 
 

ry than the high resolution 0.5°*0.5° model , since in both case the location of emission needs to be accu-

rately known.  

Intake fraction: We also generated archetypes for influential parameters on the intake fraction. We proved 

in part 4.3.2 that ܺ ௜ܲ  is a key cause-effect chain modeling driver of ݅ܨ௜, that depends on regional parame-

ters ௣ܰ௢௣,௝  and ௚ܸ௥௜ௗ as shown in Equation 4.5. Humbert et al. (2011) set up archetypes to distinguish rural 

and urban landscapes for particulate matter emissions based on the threshold of 390 people.km-1, defined 

by the US Census Bureau (U.S. Census Bureau 2014). We use the same reference to create a simplified two 

urban and rural archetype landscapes following the same modelling principles as for the fate archetypes. 

The ௑௉೔௙೏೔ೞೞ ೞೠ್ೞ score varies by 2 orders of magnitude for the rural and urban landscapes, i.e. respectively 

4.30E-08 day and 2.63E-06 day and the archetype map is provided in Figure C.5 of the appendix. 

We recalculated the intake fraction for selected substances in these two archetype models. The distinction 

between rural and urban intake fraction poorly represents the variation of the exposure factor, leading to a 

difference of up to 10 orders of magnitude compared to the spatial model results. These differences are 

due to the strong hydrological connection between urban and rural cells, with 91% of freshwater advected 

from rural to urban landscapes and 60% in the other direction. Persistent substances can thus pass through 

both compartments if their fate exceeds the compartment residence time, i.e. 760 days for the rural box 

and 29 days for the urban one. These observations support the conclusion that the relevance of the urban 

and rural archetypes is limited and not applicable in practice. 4.3.4 Operationalization at global scale: Evaluating practical solutions to apply characteriza-tion factors in LCA  
The developed toxicity model on a 0.5*°0.5° grid cell and the archetype delimitation are explored through 

the application to the case study of arsenic emissions from alumina production, comparing different meth-

ods and level of aggregation.  

Figure 4.4.a and b compare respectively ܨܨ௜ and ݅ܨ௜ on the global, continent, archetype and country level 

aggregated through a production (left hand side, specific to alumina refineries) vs. population based  ap-

proach (right hand side, valid for population related emissions such as soap ingredients). The default USE-

tox value is also represented. The plots show weighted average values and 5th and 95th weighted centiles 

represented by whiskers. The weighted centiles represent the total percentage regarding production or 

population instead of the number of values. 23% of arid and sea cells for the production weighted average 

were not included in the representation of the 0.5°*0.5° weighted percentile as they do not have advection 

data according to Vorosmarty et al. (2000a) and thus result in null fate and intake fraction results. Accord-
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ing to Figure 4.1.a, the majority of existing alumina refineries are located in Asia (58%), followed by Europe 

(18%). All other continents represent less than 10% of the amount of existing refineries.  

Figure 4.4.a and b show no variability for Africa, where the weighted average actually represents the score 

of the single refinery on the continent. 

Figure 4.4.a shows that the global value based on the population weighted approach is 3.7 times higher 

than the production weighted one, reflecting the fact that large fate values take place in more densely 

populated areas. Archetype fate values spread over 3 orders of magnitude from the lower to the higher 

mean value, with a variability that does not exceed 1 order of magnitude compared to the mean value ex-

cept for the A4 archetype in the population-based approach. The latter trend supports their relevance to 

represent the variability of fate results at the global scale. The intra-continental variability is up to 3 orders 

of magnitude, while inter-continental variability of average values barely exceeds 1 order of magnitude. A 

similar trend is visible on the country scale showing that the continental and country scales do not repre-

sent relevant solutions to reduce variability compared to the global scale.  ݅ܨ௜  results in Figure 4.4.b show that on a 0.5°*0.5° grid cell level ݅ܨ௜   spread over 3 orders of magnitude, up 

to nearly 1E-3 [kgingested/kgemitted] in the case of a population weighted aggregation. The global value for the 

population based average is 3.3 times higher than the production based average which represents a prag-

matic way to account for sector specific location of emissions for goods that are traded at continental or 

global level. The population weighted approach provides a clear emphasis on high ݅ܨ௜ values, and is valid 

for substances used in human daily activities such as pharmaceutical substances, detergents and health 

care products. In practice, this assumption is not appropriate in the case of chromiumVI and arsenic emis-

sions to water from alumina production given that these emissions do not take place in a domestic context 

or during daily human related activities. Appendix C.10 provides additional information on the intake frac-

tion repartition, showing ݅ܨ௜ of arsenic versus alumina refineries emissions. Appendix C.11 shows a case 

study where aggregation of fate and intake fraction results are tested for different resolutions on two spe-

cific alumina refinery sites. 

 The continental, country, or urban and rural archetype aggregation do not show a substantial reduction in 

variability compared to the global value. The urban ݅ܨ௜ production weighted average is surprisingly only 

22% higher than the rural one. This is due to the presence of high ݅ܨ௜ values among alumina refineries lo-

cated in rural cells. For instance, the site of Achinsk has the highest intake fraction value, 0.0014 [kgingest-

ed/kgemitted], while it is classified in the rural archetype due to low population density in the grid cell of emis-

sion, although there is a high population density in downstream grid cells.  
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The USEtox default fate and intake fraction values are both within one order of magnitude compared to the 

global value calculated with our model, showing the relevance of this generic model for this specific case 

study with emissions occurring all around the globe.  

 
a) 

 

 
b) 

 

Figure 4.4: Distribution of arsenic FFi (a) and arsenic iFi (b) at the global, continent, archetype and country using a 
production-based and a population-based emission and aggregation. The whiskers represent the 5th and 95th pop-

ulation weighted centiles. 
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4.4 Conclusion 
This work explores the importance of spatial resolution and its applicability to assess toxic emissions to 

freshwater within LCA. Operationalization approaches exist that simplify the implementation of spatially 

differentiated methods addressing the impact of toxic emissions to water.  

Fate archetypes provide consistent fate estimations. However they do not follow a systematic geographical 

pattern (such as rural and urban) that an LCA practitioner can deduce without the support of detailed geo-

graphical information. 

Unlike air emissions that affect their direct surrounding, e.g., in urban zones within 49 km resolution 

(Humbert et al. 2011), the influence of downstream cells prevents from obtaining easily applicable expo-

sure archetype classifications based on the landscape characteristics of the emission cell. This means that 

the urban and rural human exposure archetypes do not show a significant and systematic improvement for 

the intake fraction estimation, nor do they have a common basis with the fate assessment.  This finding 

indicates the difficulty of devising a common archetype encompassing both ecotoxicity and human toxicity 

impact categories.  

We evaluated approaches to aggregate characterization factors from their native resolution to a coarser 

scale such as country, continent or global average. Calculating sector-specific weighted averages represents 

a pragmatic and easily applicable approach to account for sector-specific distribution of emissions. We rec-

ommend the production weighted approach in applications where the distribution of production location 

and related emissions is known. The results of this study therefore need to be applied in a systematic way 

to a wide range of relevant industry sectors. The population-based weighting should be reserved to cases 

for which higher emissions occur in densely populated areas. 

The USEtox fate and intake fraction default values are found within one order of magnitude compared to 

the global value calculated by our sophisticated model, showing the relevance and adequate representa-

tiveness of this generic model. These conclusions need to be extended to a wider set of substances by 

comparing the averaged results of the fully regionalized model to generic results for other industry sectors. 

An alternative option than aggregation to operationalize spatial differentiation in LCA would be to  use a 

spatialized life cycle inventory and apply site-dependent impact assessment factors to assess emissions 

where they take place before calculating the aggregated results (as proposed by Mutel and Hellweg 

(2009)). When point source emission are known, e.g. for power plant or aluminum production sites, an 

impact score can be calculated by summing the impact scores generated by each characterized point 

source emission. This approach, which prevents from losing information on impact variability through LCIA 
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aggregation, would need to be further explored and tested in parallel with the development of systemati-

cally regionalized inventory datasets.  
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5.1 Discussion on water footprint practice 
Chapter 2 provides a comprehensive review of existing methods that cover various impact pathways gener-

ated by quantitative water use. This review leads to recommendations for method developers on key mod-

el components to build a scientific consensus. Preliminary application recommendations are also formulat-

ed for practitioners to perform a water footprint using the current state-of-the-art methods and databases. 

The outreach of these recommendations published in 2013 in the academic field, public institutions and 

private companies was ensured by the participation of the panel of LCA experts in the WULCA working 

group as the publication co-authors. These recommendations are thus presented as consensual findings 

from the LCA community and have, to date (September 2014), been applied and cited in scientific reviews 

(Hoekstra and Wiedmann 2014; Laurent et al. 2014), methodological developments (Ridoutt and Pfister 

2014; Pfister and Bayer 2014) and in several water case footprint studies (Van Hoof et al. 2013; Boulay et al. 

2014a; Feng et al. 2014). One of the latter case studies resulted from a collaborative work where I per-

fomed the water footprint analysis and the environmental experts from the contracting company wrote the 

scientific publication (Van Hoof et al. 2013). This work presents a water footprint of a hand dishwashing 

product. Other case studies were published on agro-food products (Milà i Canals et al. 2010), complex in-

dustrial product systems (Berger et al. 2012) or house care products (Boulay et al. 2014a) in parallel to the 

development of the ISO 14046 standard (ISO 2014). The outcome of these studies varies depending on 

sectors and geographical locations: while the water footprint of broccolis produced in scarce areas such as 

Spain is dominated by the consumption of irrigation water (Milà i Canals et al. 2010), the study on hand 

dish washing product highlighted the importance of the consumer use stage contribution, which can be up 

to >90% (Van Hoof et al. 2013). In the latter case study, the impact is driven by both direct water use (used 

in the dishwashing process) as well as indirect water use (used to generate the electricity to heat the water) 

(Van Hoof et al. 2013). The following paragraphs aim at discussing the application recommendations formu-

lated in chapter 2 for practitioners in the light of my personal experience as life cycle analyst and of availa-

ble published case studies. 5.1.1 Databases and specific inventory data 
There are two main requirements for LCA inventory databases to be used in a water footprint: (1) cover all 

water flows addressed by LCIA methods in a consistent balance between input and output water flows and 

(2) provide regionalized inventories, especially for agricultural processes with a potentially large variation in 

irrigation (Stoessel et al. 2012). Chapter 2 emphasized the current limitations regarding the water use cov-

erage in existing databases, e.g., the need to differentiate consumptive freshwater use from withdrawal, 

the need to distinguish between different water types based on origin as well as to include freshwater 

evaporation from water reservoirs as consumptive use. Some of the latter recommendations were inte-
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grated in the new version of existing inventory databases. For instance, only ecoinvent v2.2 was available at 

the time of the publication of the article presented in chapter 2, while the updated version ecoinvent v3 

released in May 2013 includes both input and output water flows. As explained by Pfister (2014), ecoinvent 

v3 provides balanced water uses integrating the processes from the Quantis Water database (Quantis 

2012), developed for the purpose of bridging the gap in water use coverage in ecoinvent v2.2. The GaBi 

database was also updated in 2013 (PE International 2013) with new water modelling principles. However, 

although water quality parameters as pollution flows are well covered in ecoinvent v2.2, v3 or GaBi, the 

water quality classes to implement water availability footprint methods as defined by Boulay et al. (2011a) 

are not covered in these databases. Furthermore, practitioners complemented the recommendations for-

mulated in chapter 2 by highlighting the lack of detailed inventory data with spatially differentiated water 

use information (Berger et al. 2012; Van Hoof et al. 2013). Given the large influence of climatic and hydro-

logical conditions on the amount of water withdrawn for an agricultural or industrial process in a given 

location (also depending on the irrigation or industrial technology), the field of a water scarcity and availa-

bility footprint raises high expectations in term of inventory data requirements to perform a meaningful 

assessment. These requirements could be fulfilled through a wide cooperation among LCA communities 

throughout the world to determine data requirements for globalized goods as well as national initiatives to 

gather LCI data. A successful example of development of a national database compatible with other data-

bases such as ecoinvent v3 is AusLCI, that gathers more than 150 datasets (AusLCI Committee 2014). 

Additionally to the use of generic databases, practitioners stress the need to identify and collect primary 

data for foreground processes and whenever possible also for sensitive generic background processes for a 

more accurate assessment (Boulay et al. 2014a). The systematization of on-site specific industrial water use 

data collection is not an easy task since industrial water flows are not necessarily collected comprehensive-

ly regarding LCIA needs. For instance, the Global Reporting Initiative (GRI) requires the reporting of three 

indicators related to water: the total water withdrawal (EN8), water sources significantly affected by with-

drawal of water (EN9) and percentage and total volume of water recycled and reuse (EN10) (Global 

Reporting Initiative 2011).  5.1.2 Representativeness of characterization models 
Some impact methods provide a characterization factor for a single local application. Chapter 2 highlights 

this limitation especially for endpoint methods addressing impact on ecosystem quality. Existing case stud-

ies confirm that in case a single characterization factor is applied generically for any locations, additional 

uncertainty in the method interpretation and applicability is created (Van Hoof et al. 2013) given that no 

testing of parameters sensitivities to other areas has been performed. For example, characterization factors 

for groundwater extraction impacts (van Zelm et al. 2011) and effects of thermal release to water (Verones 
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et al. 2010) are only available respectively for specific cases in the Netherlands and Switzerland. Global 

coverage is a key requirement for LCIA method applicability. 5.1.3 Spatial differentiation 
Chapter 2 concludes that spatial differentiation of LCIA methods could be refined for generic or with low 

resolution models in order to increase LCA results discriminating power. This recommendation is applied 

with increasing systematism in recently published methods (Berger et al. 2014; Pfister and Bayer 2014). 

However, the implementation of finely regionalized methods in existing case studies raises several con-

straints regarding their applicability when using available generic life cycle inventory databases. Case study 

authors highlight the difficulty of implementing spatial differentiation for background processes due to the 

lack of inventory information (Van Hoof et al. 2013; Boulay et al. 2014a). Indeed, global brands and retailers 

rely on complex supply-and-demand networks that span the globe, extend five or six tiers deep, and can 

reconfigure overnight in response to changes in consumer demands, commodity prices, currency fluctua-

tions and political risks (O’Rourke 2014). The origin of materials is thus not always well identified by com-

panies performing a LCA, given that the most important water flows do not necessary take place at the 

company site or at the first-tier supplier location, which are the level where the location information is po-

tentially accessible. For example, a company will probably know the location of its chemical supplier, but 

although the chemical may have been blended and packed on-site, it may have been formulated, by a sup-

plier, somewhere else in a region with different water scarcity (Boulay et al. 2014a). The characterization 

factor can vary for instance from 0.092 m3 deprived per m3 consumed in Switzerland to 0.97 in Egypt for 

the method of Pfister et al. (2009), which also provides scarcity indexes at the 0.5*0.5° level. Van Hoof et al. 

(2013) also emphasized the challenge in communicating the results for a product used under exactly the 

same consumer use conditions in various locations generating very different impact scores. Exploring solu-

tions to operationalize spatial differentiation in a water availability or a water scarcity footprint would be 

useful, based on the conclusions of chapters 2 and 3 on water degradation through toxic emissions. 5.1.4 Software implementation 
Chapter 2 does not mention purely practical constraints related to the implementation of available LCIA 

methods in commercial softwares. However, the application literature stresses that broad application of 

water footprint requires further development and integration in commercial life cycle assessment software 

in a user friendly way (Van Hoof et al. 2013). The integration in a commercial software of a comprehensive 

framework covering all existing impact pathways expressing an LCA profile as the sum of different foot-

prints would be a welcome step to answer the practitioner need to perform comprehensive and easily ap-

plicable LCA. The latter framework shall make sure to avoid any double counting, as proposed by the IM-

PACT World+ methodology (Bulle et al. 2012). 
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5.1.5 Proposed outlooks 
The analysis of recommendations formulated in chapter 2 in the light of performed case studies provided a 

snapshot of current practical constraints and limitations to perform a water footprint. The following out-

looks aim at proposing broad perspectives and food for thought for practitioners and method developers 

for future developments in the water footprint field. 

From a practitioner perspective:  

From midpoint to endpoint assessment: My personal experience as a consultant for companies in the 

agro-food and home-, personal- and health-care products showed me that the novelty and complexity of 

impact pathways leading to endpoint assessment tend to refrain companies from communicating the re-

sults of comprehensive water footprints outside of scientific publications. On the other hand, water scarcity 

footprint indicators are widely used as a communication tool, for instance in the French environmental 

labeling experiment which aims at providing environmental labels for all consumer goods commercialized 

in France and was in the experimental phase until 2013 (AFNOR 2014). Many recent methodological devel-

opments attempt to fulfill the need for a simple and environmentally relevant scarcity indicator (Ridoutt 

and Pfister 2010b; UNEP SETAC Life Cycle Initiative 2014; Berger et al. 2014). The field of risk assessment 

also relies on water-consumption-to-availability or water-withdrawal-to-availability ratios to map risks re-

lated to water (Gassert et al. 2013). The ISO 14046 (ISO 2014) standard provides the possibility to perform 

water footprints with different scopes and levels of complexity. This flexible framework thus leaves the 

possibility for industries to move, once they are ready to do so, from inventory and water scarcity foot-

prints to more comprehensive evaluations including water availability and degradation. The current and 

coming development of water footprint related methods, databases and softwares is expected to enhance 

and build confidence in water footprint practice in the coming decade.  

Sector-specific approach: The rise of initiatives such as Environmental Product Declaration (EPD) or Single 

Market for Green Products Initiative (European Commission 2013b) aims at streamlining the application of 

LCA by respectively following ISO 14025 and product- / sector-specific rules at the European level. For in-

stance, the Single Market for Green Products initiative (European Commission 2013b) was launched by the 

European commission in 2013 to establish product- and sector-specific rules to measure the environmental 

performance at the product (PEF) and organization (OEF) level. However, theses attempts to fulfill the har-

monization gap through a normative framework are not focused on water use and do not provide state-of-

the-art recommendations in this respect. Such a sector-specific approach could thus be followed to estab-

lish more specifically water footprint profiles for defined product categories. So far, a few specific case 

studies were covered and published in scientific articles to evaluate a product water footprint (Milà i Canals 
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et al. 2010; Berger et al. 2012; Van Hoof et al. 2013; Boulay et al. 2014a). There is a need to further test and 

apply the current state-of-the-art methods to gain a deeper understanding of the dominant impact path-

ways for a specific product at different life cycle stages. By fostering a quantitative comparison of endpoint 

impact scores, the relevance of the information conveyed by widely used scarcity indexes could be verified. 

A review of dominant impact pathways specific to water related to specific product categories would be 

key information to provide guidance to practitioners for efficient and relevant inventory modeling.   

From a method developer perspective:  

Exploring spatial differentiation operationalization approaches: The modeling of the impacts related to 

water use and degradation rely on some common parameters such as hydrological data on water availabil-

ity in a given geographical unit. However other parameters might differ, such as the human development 

index, used in the impact pathway leading to impact on human health (Boulay et al. 2011b). The explora-

tion of spatial differentiation approaches specific to methods addressing water use would be useful to ex-

plore, based on the findings of chapters 3 and 4. 

Product-oriented approach: All methods reviewed in chapter 2 are dimensioned to evaluate environmental 

impacts related to water use from a LCA perspective following a product-oriented approach, where water is 

just one area of attention among other impact categories such as global warming. On the other hand, wa-

ter management is typically territorial-based and focused on increasing water-use efficiency. It is not relat-

ed to absolute thresholds for the total volume of consumption per unit area (Hoekstra 2013). While water 

efficiency might increase on a product-based assessment, demand for water intensive commodities such as 

meat and biofuels is rapidly rising (Hoekstra and Wiedmann 2014), leading to a potential overall increase in 

the global water footprint and exceedance of water consumption threshold in sensitive areas. Combining 

product and territorial-based approaches is thus a priority for integrated water management measures and 

policies. 

Assessment of the water “carrying capacity”: As mentioned in chapter 2, most water scarcity indexes are 

based on consumption-to-availability or withdrawal-to-availability ratios. This approach is not related to 

absolute thresholds for the total volume of consumption per unit area (Hoekstra 2013) to guarantee human 

and ecosystem well-being.  It thus does not account for the dependence on freshwater of a certain geo-

graphical area, given that water consumption in a water scarce area induces an impact if the water use is in 

competition with other users. In the case of a desert without human occupation and with reduced ecosys-

tems with low net production, although water availability is low, water consumption might have less impact 

than in a scarce and densely populated area or in a sensitive ecosystem. Although newly developed models 

attempt to account for water “vulnerability” (Berger et al. 2014) through the consideration of the effective 
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water consumption within a river basin, this indicator follows a user-oriented approach and does not con-

sider local water needs for humans and ecosystems. The concept of  “carrying capacity” is defined as the 

environment's maximal load in the ecological field (Hui 2006). This concept could be explored for an appli-

cation in the field of water footprint, in order to create a locally-grounded water scarcity or availability indi-

cator. 

Explore the complementarity with the field of risk assessment: A complementary approach to water foot-

print is the field of risk assessment, where the physical (related to water quantity or quality), regulatory and 

reputational risks (related to political aspects such as media coverage) are quantified and mapped with a 

global coverage. Strategic risks can be defined as the threats or opportunities that materially affect the 

ability of an organization to survive (Allan and Beer 2006). The scope of this kind of assessment strongly 

differs from a water footprint, where the potential impacts on environment are quantified rather than the 

influence of environmental and political conditions on an organisation’s activity. Furthermore, the visualiza-

tion of key parameters influencing risks related to water, such as proposed in the Aqueduct tool (Gassert et 

al. 2013), do not include impact modeling but only a snapshot of the value of a given parameter. A water 

risk assessment could nevertheless provide a complementary insight that prevents from using implicit 

modelling value choices. Complexity shall indeed be introduced gradually within organizations that do not 

yet have a confirmed practice in the environmental field. For instance, carbon footprint is still commonly 

used as a global proxy for overall impact although it was proved to be a poor representative (Laurent et al. 

2010).  5.2 Discussion on operationalization of spatial differentiation  
While one of the conclusions of chapter 2 is the recommendation to explore further spatial differentiation 

for methods addressing water use, chapters 3 and 4 take one step back from model sophistications by test-

ing the acceptability of using a generic model and exploring various approaches for the operationalization 

of spatially differentiated approaches, applied to potential impacts of toxic emissions into water. Several 

operationalization approaches were explored to fulfill two method developers- and practitioner- oriented 

goals: (1) decrease computation time and data requirements from a modeling perspective and (2) ease the 

application of spatially differentiated characterization factors for practitioners when detailed geographical 

information is partially available or unknown (particularly in case of background processes). The following 

paragraphs discuss the findings on operationalization technics analysed in chapter 3 and 4. 5.2.1 Addressing spatial differentiation through a nested model  
We found in Chapter 3 that a nested approach, such as the USEtox model parameterized with sub-

continental landscapes, succeeded in mimicking the results of a spatially differentiated model with inter-
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connected compartment on the same resolution, with the exception of very persistent volatile pollutants 

that can be transported to Polar Regions. Landscape parameters at the continental or sub-continental level 

developed in chapter 3 can thus be easily implemented in USEtox without changing its inherent structure of 

a single continental box nested in a global one. While emissions into water of non-volatile substances re-

main in the hydrological network of the sub-continental zones of emission, emissions to other media do not 

necessarily follow the same trend. Persistent substances such as PCBs emitted to air were proven to be 

very mobile and remain as low as 3% of the emitted quantity in the region of emission (Shaked 2011). A 

nested model is thus relevant in a media where the residence time before advection to another zone is 

higher than the fate of the substance. In the opposite case, a substance will be quickly advected to sur-

rounding zones where it will spend the largest part of its residence time. The geographical properties of the 

emission zone will thus not have a large influence on its fate in the latter case. The relevance of a nested 

model has been validated for emissions to water but needs to be studied and tested for emissions to air.  5.2.2 Aggregation of characterization factors on lower resolution 
Chapters 3 and 4 explore different aggregation methods to provide characterization factors on lower reso-

lution to relate them to existing generic inventory databases or to the level of knowledge of practitioners 

for specific processes. Additionally to these implementation constraints related to water footprint impact 

assessment, impact score interpretation by the practitioner is also influenced by the inventory and charac-

terization factors resolution. Indeed, the practitioner needs to know characterization factors values or or-

der of magnitude in order to justify a specific impact score. The finer the LCIA method resolution, the more 

data the practitioner will have to process to interpret and justify the impact results. Furthermore, the prac-

titioner would require to be informed of the parameters used for the aggregation weighting in order to 

interpret results correctly. The following paragraphs discuss two aggregation solutions: surface-weighted 

aggregation into landscape archetypes and production- or population- weighted aggregation into political 

or geographical units.  

Surface-weighted aggregation into landscape archetypes: Simplified models based on regional archetypes 

were created in chapters 3 and 4. An archetype model based on water residence time to the sea was de-

veloped in chapter 3. It improved the prediction of fate and intake fractions for point source emissions, 

within a factor five compared to the spatial model at the watershed resolution (e.g., the Rhine watershed 

covers more than 160’000 km2 (Pennington et al. 2005)). As a comparison, the one-box model is off by a 

factor of 30 for coastal watersheds such as Brittany. By pushing further spatial resolution to a fine grid of 

0.5*0.5° (about 2’000 km2 at temperate latitudes), chapter 4 shows that an additional parameter influences 

the substance fate: the cumulated equivalent depth of the grid cells in the path of a specific substance. This 

parameter is defined as the mean depth of the rivers and lakes across which a substance travels until it is 
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removed by sedimentation, evaporation or degradation, in a given hydrological network. Although cumu-

lated equivalent depth depends on substance-specific removal rates from water, we proved that a refer-

ence substance could be used as an acceptable proxy to re-calculate the fate of other substances based on 

its equivalent depth. The developed fate archetypes that consider cumulated equivalent depth reduce fate 

variability to 2 orders of magnitude difference compared to 5 orders of magnitude of variability among all 

spatial results for persistent substances such as chromium(VI) or arsenic. However, the archetype model 

does not represent an implementable and simplified approach of spatial differentiation. Indeed, archetypes 

do not follow a systematic geographical pattern (such as rural and urban, or coastal and non-coastal) that 

an LCA practitioner can readily deduce without having to gather detailed geographical information. Devel-

oped intake fraction archetypes based on population density did not show a significant and systematic im-

provement in the intake fraction estimation. These analysis lead to the conclusion that the archetype ap-

proach to assess degradative water use of toxic emissions into water does not provide anymore clear bene-

fits (regarding the two goals mentioned above) when the sophistication of spatially differentiated models is 

further increased.  

Production- or population-weighted aggregation into political / geographical units: Population- and pro-

duction based emissions approaches can be used to characterize emissions of a process occurring at differ-

ent locations across the globe. For instance, the IMPACT World+ method currently uses population as a 

proxy for all emission categories (Bulle et al. 2012). A case study on degradative water use from toxic emis-

sions of global aluminium production was evaluated in chapter 4 applying a highly spatially resolved charac-

terization model. Overall, intake fraction from emissions of chromium(VI) and arsenic from the aluminium 

production process obtained by the population-based emission approach over-estimates the intake fraction 

calculated with the production-based emission approach, due to the unappropriate artefact of considering 

high emissions occurrence in densely populated areas. Chapter 4 also showed that generic fate and intake 

fraction of the scientific consensus model USEtox are within one order of magnitude compared to the pro-

duction-based emission approach calculated from the spatially differentiated model. Current USEtox results 

can thus be considered as validated and appropriate in the case of chromium(VI) emissions from alumina 

production. However, results from other industrial or agricultural applications that require a specific hydro-

logical setting, e.g., emissions from a desalination plant that is located on the sea shore, or a specific demo-

graphic setting, e.g., pharmaceutical substance emissions that are proportional to human density, could 

provide a different trend. Indeed, if a specific pattern influences fate or intake fraction, the production- or 

population- based emission average could for instance result in a reduced fate in the case of the desalina-

tion plant or increased intake fraction in case of substances used in daily activities. Nonetheless, substances 

are often manufactured for several uses. For instance, the optical brightener for detergents and cleaners 

tinopal, studied in chapter 4, is used in home and personal care products such as detergents, plastic prod-
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uct manufacturing such as bottle as well as the pulp and paper industry (BASF 2014). Differentiation of 

characterization factors for a single substance according to the associated applications would bring addi-

tional important complexity and is thus not advisable from a practical point of view. Furthermore, the field 

of chemical production and type of application follows a fast evolution pace and would require constant 

updates and adjustments in case application-specific characterization factors are developed. The precision 

of the USEtox generic results for the case study performed in chapter 4 thus suggests further exploring the 

validity of the consensus model results before moving to the complexity of aggregation in daily LCA prac-

tice.  5.2.3 Proposed outlooks 
Two options of operationalization were explored in chapter 3 and 4: the development of a nested model 

and the aggregation of characterization factors at a lower resolution. The following outlooks suggest addi-

tional operationalization options that could be explored in the future: 

Life cycle inventory disaggregation: There are alternative options to aggregation in order to operationalize 

spatial differentiation in LCA. The option of life cycle inventory disaggregation relies on using a sophisticat-

ed and highly (spatially) resolved model to assess emissions where they take place by applying site-

dependent impact assessment factors before calculating the aggregated results (as proposed by Mutel and 

Hellweg (2009)). When point source emissions are known, e.g. for power plant or aluminum production 

sites, an impact score can be calculated by summing the impact scores generated by each characterized 

point source emission (so called “production-based emission” approach). When this is unknown, the emis-

sion occurring in a given continent, country or region (such as the information available in currently existing 

LCI databases) could be allocated into each grid cell of the spatially differentiated model using an emission 

proxy such as population (so called “population emission” approach). In other words, one could disaggre-

gate the LCI to adapt to the resolution of the LCIA method rather than aggregating the LCIA method on the 

available LCI resolution. This approach prevents from losing information on impact variability through LCIA 

aggregation. However, the choice of proxy to disaggregate the LCI as well as its sensitivity needs to be ana-

lysed. 

Partial spatial differentiation: Another pragmatic and practitioner-oriented approach would be to perform 

a “partial spatial differentiation” by implementing the principle of parsimony, summarized by the following 

quote attributed to A. Einstein: “Everything should be made as simple as possible, but not simpler”. This 

principle can be applied to spatial differentiation in LCA: model complexity should be considered if it reduc-

es the impact scores variability, defined as stemming from inherent variations in the real world (Huijbregts 

1998), without increasing its uncertainty, defined as coming from inaccurate measurements, lack of data or 
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model assumption that “convert” the real world into LCA outcomes (Huijbregts 1998). A complementary 

approach could thus be to establish key principles for spatial differentiation from a practitioner perspective 

given the current methodological state-of-the-art. Rather than applying spatial differentiation systematical-

ly to an entire system, it can be operationalized through the following suggested iterative process for each 

impact category: (1) identifying if main impact contributions take place in the foreground or at the level of 

the first tier-supplier (2) if this is the case, gathering location specific information for these processes and 

regionalizing the inventory database and impact on a fine resolution (3) for all other process, using mean-

ingful global aggregated averages. For instance, the process of cotton production in the United States in 

ecoinvent v3 called “Cotton fiber {US}| cotton production | Alloc Def, U” has a water scarcity footprint of 

3.23 m3 according to the method of Pfister et al. (2009). Dominant processes are the production of hydro-

electricity involved in the irrigation that contributes to 34% of the water scarcity footprint and the direct 

water use for irrigation that contributes to 25% of the impact score. The impact from hydro-electricity pro-

duction is due to water evaporated from reservoirs in the United States, which is captured as a water scar-

city index of 0.5 m3 deprived per m3 turbined as a national average. For this process, a simplified regionali-

zation approach would be to provide a finely regionalized characterization factor, i.e. at the 0.5*0.5° grid 

cell for the irrigation water at the cotton production location. Then a national characterization factor could 

be applied for the hydro-electricity production given that electrical grid mixes are determined at the coun-

try level. It would be useful to provide a weighted average of the scarcity factor of hydro-electric power 

plants in the US or to disaggregate the inventory suggested previously. The same approach could be fol-

lowed for other contributions from imported hydro-electricity that contributes in total to 32% of the total 

impact score. The remaining processes contribute to 9% of the water scarcity impact score and could be 

rely on a global water scarcity index given the potential difficulty to track their location.  

In order to operationalize this approach, a large sectorial analysis would be needed to provide consistent 

global aggregated characterization factors for substances that are not emitted in human daily activities or 

to disaggregate the inventory data as suggested previously to tackle the lack of spatial differentiation in 

existing inventory databases. As mentioned in part 5.2.2, a sector-specific average is valid in case a sub-

stance is emitted mainly during a single industrial activity. In substances with various uses, we recommend 

to use more complex models to estimate overall cross-sectorial emissions. As a first tier approach, charac-

terization factors from generic models such as USEtox can be used until meaningful aggregated averages 

are developed.  

This integrated approach could be operationalized in commercial softwares, where the user would rely on 

default population- and sector-based global or generic characterization factors that could be changed for 

specific geographical location and related characterization factors for relevant processes. 
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Operationization of a fully spatially differentiated multimedia model: The 0.5*0.5° model developed in 

chapter 4 including hydrological data shall be integrated in a multimedia model integrating fate, exposure 

and effect in all media through trans-boundary transport and multi-pathway exposure. The latter model 

could be used as a reference to validate or discriminate the relevance of suggested operationalization ap-

proaches on a sound basis for emissions to all media. The water module developed within this thesis could 

be directly integrated in such a model. 5.3 Achieved results 
This thesis explores good practices and operational approaches to assess a water footprint and improve its 

discriminatory power. In addition to the release of the ISO 14046 standard, the review of existing methods 

evaluating a water footprint performed in this thesis is shown to improve the dissemination of water foot-

print practice, based on the recent scientific publications citing this work. The recommendations formulat-

ed from the analysis of the current state-of-the-art are already integrated in the new release of existing 

inventory databases.  

For the impact of water degradative use from (eco)toxic emissions to water, the acceptability of using a 

generic model, for example USEtox, to evaluate point source emissions was tested at different resolutions 

and for different type of emissions (point source, uniform and sectorial). Uniform and sectorial emissions 

respectively at the watershed and grid cell resolution miss less than one order of magnitude variability. On 

the other hand, more than three orders of magnitude of fate and intake fraction variability are covered by a 

single number for point source emissions at the watershed and grid cell resolution. Using a generic model is 

thus acceptable to cover a low resolution such a continent, country, or sector while a finer resolution is 

essential for a regional impact score at the watershed, grid cell or point source level.  

Practical solutions to operationalize spatial differentiation were tested and some of them validated to de-

complexify the implementation of regionalized assessments for both method developers and practitioners. 

These operationalization approaches aim at minimizing the trade-off between theoretical variability reduc-

tion and decrease of uncertainty in practice considering the level of geographical information known by the 

practitioner. This thesis demonstrated that implementable pragmatic solution meeting both LCA method 

developer and practitioner needs exist and vary depending on the spatial differentiation resolution. A nest-

ed approach such as proposed in the scientific consensus USEtox model was proved to be valid at the con-

tinental scale for the evaluation of toxic emissions to water. Characterization factors aggregation tech-

niques were explored and the relevance of a production-weighted geographical average could be acknowl-

edged for the case study of alumina production. However, most of substances have several industrial appli-

cations and require a more complex model to determine a production weighted result representative of 
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the substance overall emissions. The archetype approach to evaluate toxic emissions to water was proved 

to be useful at the watershed scale, while it was discriminated at the grid cell scale because of its complexi-

ty and lack of applicability. Indeed, despite fate archetypes providing consistent fate estimations, they do 

not follow a systematic geographical pattern (such as rural and urban) that a LCA practitioner can deduce 

without the support of detailed geographical information. Unlike air emissions that affect their direct sur-

rounding, e.g., in urban zones within 49 km resolution (Humbert et al. 2011), the influence of downstream 

cells prevents from validating simplified archetype classifications based on the landscape characteristics of 

the emission cell.  

Based on these findings, I can formulate four recommendations for the implementation of a spatially dif-

ferentiated water footprint based on currently available methods, databases and softwares (as in Septem-

ber 2014): 

● Apply spatially differentiated methods in addition to generic ones: Practitioners yet acquired a 

high level of knowledge of generic available methodologies such as IMPACT2002+ (Jolliet et al. 

2003), EDIP (Hauschild and Potting 2005) and ReCiPe (Goedkoop et al. 2009). This knowledge could 

be used as bridge to explore the new field of spatially differentiated results interpretation. 

● Test the interpretability of the disaggregated spatial differentiation approach: As mentioned in 

part 5.2.3, Mutel and Hellweg (2009) propose an interesting approach to prevent loosing infor-

mation by aggregating impact characterization factors. When a point source emission location is 

unknown, the allocation of the spatially differentiated model into each grid cell using an emission 

proxy such as population could be explored. The choice of allocation proxy should however be fur-

ther studied.  

● Further evaluate the representativeness of generic USEtox results: This work supported the repre-

sentativeness of the USEtox generic characterization factor at the sector level. These conclusions 

need to be extended to a wider set of substances by the comparison of the results of a fully region-

alized model compared to generic results in other case studies. 

● Explore semi-systematized tiered spatial differentiation approach: As suggested in part 5.2.3, the 

operationalization of spatial differentiation could further rely on the LCA practitioner expertise 

through a semi-systematized approach where spatial differentiation can be performed for direct 

and first tier dominant processes. Indeed, the practitioner needs to be able to track and interpret 

LCA results by having a deep understanding of inventory data and LCIA modeling. Increased model-

ling complexity in LCIA methods might refrain interpretation capacity and thus discredit confidence 

in LCA results.  
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Appendix A  Review of methods addressing freshwa-ter availability in life cycle inventory and impact assessment 
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A.1 Method evaluation 
Table A.1, A.2 and A.3 summarize the evaluation against all criteria for all databases and methods. 

Table A.1: Results of overall evaluations for inventory methods 

Inventory databases 

Criteria 
Ecoinvent (Frischknecht et al. 
2005)   

GaBi  (PE 2011) 
WFN WaterStat (Water Footprint 
Network 2011) 

Pfister et al. (2011) Quantis Water Database  (2012) 

Complete-
ness of 
scope 
 

• Detailed inventory database 
in terms of number of process-
es presented 
• Spatial differentiation on a 
country scale where appropri-
ate in regards to the product 
(global commodities, e.g., in-
dustrial process, or region-
specific products, e.g., electrici-
ty mix). 

• Detailed inventory database 
focused on industrial and agricul-
tural water use 
• Spatial differentiation on a 
country scale for electricity mixes, 
but not for industrial or agricul-
tural technologies and climatic 
conditions 

• Inventory database focused on 
crops and derived crop products, 
farm animals and animal products 
biofuels, national consumption 
and production, trade in crop, 
animal and industrial products 
• Spatial differentiation for all 
countries for all products 

• Inventory of consumed water 
for 160 crops and crop groups 
• Spatial differentiation for all 
countries 

• Detailed inventory and impact data-
base based on ecoinvent 2.2 list of 
processes 
• Spatial differentiation of processes on 
a country level  
• Spatial differentiation of impact 
assessment methods on a country level 

Environ-
mental 
relevance 

• Surface water (river, lake, 
sea), groundwater (renewable, 
fossil), considered. Precipitation 
water stored as soil moisture 
water not considered 
• Consumptive use is an un-
known part of the withdrawal. 
Degradative use considered 
through emissions to water, but 
released water not considered 
• Intake and released water 
quality not considered 

• Surface water (river, lake, sea), 
groundwater (renewable, fossil), 
considered. Precipitation water 
stored as soil moisture water not 
considered 
• Consumptive use can be recal-
culated (difference between 
water withdrawal and release). 
Degradative use considered 
through emissions to water and 
released water considered 
• Intake and released water 
quality not considered 

• Surface water (river, lake) and 
groundwater (renewable, fossil) 
are not distinguished. Precipita-
tion water stored as soil moisture 
considered. Seawater not consid-
ered 
• Consumptive use considered.  
Degradative use considered 
through grey water 
• Intake water quality not consid-
ered. Released water quality 
indirectly considered through 
grey water 

• Surface water (river, lake) and 
groundwater (renewable, fossil) 
are not distinguished. Only 
irrigation and precipitation 
water consumed considered 
• Consumptive use considered.  
Degradative use not considered 
• Intake and released water 
quality not considered 

• Surface water (river, lake, sea), 
groundwater (shallow and deep re-
newable, fossil), precipitation water 
stored as soil moisture considered 
• Consumptive use and degradative use 
(released water) are distinguished as 
different types of outputs. Degradative 
use is also estimated according to WFN 
method for chemically polluted water  
• Intake water quality considered 
based on Boulay et al.’s classification 
(2011b). Released water quality indi-
rectly considered through grey water 
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Scientific 
robustness 
and cer-
tainty 

• Data uncertainty provided 
• Data uncertainty not provided 
(lack of a meaningful measure) 

• Data uncertainty not provided 
(lack of a meaningful measure) 

• For each crop and country, 
two estimates are provided 
which can be used to evaluate 
model robustness/uncertainty 
• For 17 crops and 27 countries 
the uncertainty due to aggrega-
tion on country level is quanti-
fied by the coefficient of varia-
tion  
• Overall data uncertainty not 
quantified 

• Data uncertainty provided based on 
various references used for the data-
base 

Documen-
tation, 
transpar-
ency and 
reproduct-
ibility 

• Data is generally disaggregat-
ed and therefore available 
• Accessible but not free 
• Method reviewed 
• Data reviewed  
• Data can be purchased 
• Published 

• Data available on an aggregated 
and disaggregated level; some 
data are available on request only 
(data warehouse concept) 
• Accessible but not free 
• Method reviewed 
• Data reviewed  
• Data can be purchased 
• Published 

• Data available on an aggregated 
level only  
• Accessible 
• Method reviewed 
• Data reviewed (compilation 
from various reviewed sources) 
• Published (open access) 

• Data available on an aggre-
gated level only  
• Accessible 
• Method reviewed 
• Data reviewed  
• Published (open access) 

• Data is generally disaggregated and 
therefore available 
• Accessible but not free 
• Method under review 
• Data under review 
• Data can be purchased 
• Not published 

Applicabil-
ity 
 

• Inventory data are straight-
forward to apply  
• Units are comparable with 
other inventory methods  
 

• Inventory data are straightfor-
ward to apply  
• Units are comparable with 
other inventory methods  
 

• Inventory data are straightfor-
ward to apply  
• Units (m3) are comparable with 
other inventory method for 
“blue” and “green water” but not 
“grey water” (critical dilution 
volume) 

• Inventory data are straight-
forward to apply  
• Units are comparable with 
other inventory methods  
 

• Inventory data are straightforward to 
apply  
• Units are comparable with other 
inventory methods  
 

Potential 
stakehold-
er ac-
ceptance  

• Database already extensively 
used 

• Database already extensively 
used 

• Database already extensively 
used for agricultural and breeding 
purposes 

• New database which ac-
ceptance still needs to be prov-
en among industrial stakehold-
ers due to the 'young age' of 
the method 

• New database supported by industri-
al partners 
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Inventory methods 

Criteria 
Water footprint (Hoekstra et 
al. 2011) 

WBCSD  (2010) Bayart  (2008) 
Boulay et al. (Boulay et al. 
2011a) 

Milà i Canals et al. 
(2008) 

Vince (2007) Peters et al. (2010) 

Com-
pleteness 
of scope 
 

• Inventory method which 
distinguishes three water 
types: “green”, “blue”, “grey” 
• Countries where water is 
consumed can be distin-
guished at three levels (glob-
al, regional, local) 
• Not developed specifically 
for LCA, but can be made 
compatible 

• Inventory method 
focused on industrial 
and agricultural water 
use 
• Output data can be 
linked to country and 
watershed water and 
sanitation availability 
information 
• Not developed specif-
ically for LCA, but can 
be made compatible 

• Inventory methodol 
integrating Vince's 
detailed description of 
water quality 
 

• Classification which defines 
water by its source, quality 
parameters and functionality 
for downstream users, with 
an emphasis on definition of 
water quality 
 

• Single method (be-
sides Water Footprint 
Network method) 
which considers effect 
of land occupation and 
transformation on 
water availability and 
distinguishes fossil and 
renewable under-
ground water 
 

• First lines of an inven-
tory method which 
brings a detailed descrip-
tion of water quality 
based on electricity 
required to achieve the 
upper quality level, 
through the distinction of 
9 water flux types 
• Not developed specifi-
cally for LCA, but can be 
made compatible  

• Inventory method 
developed to be applied 
to the meat production 
sector 
•  Specific climate file is 
used for each site 

Environ-
mental 
rele-
vance 

• Surface water (river, lake), 
groundwater (renewable, 
fossil), precipitation water 
stored as soil moisture con-
sidered. Seawater not con-
sidered 
• Consumptive use consid-
ered.  Degradative use con-
sidered through grey water 
• Intake and released water 
quality not considered 

• Surface water (river, 
lake, sea), groundwater 
(renewable), precipita-
tion water stored as 
soil moisture consid-
ered. Fossil groundwa-
ter not considered 
• Consumptive use 
considered. Degrada-
tive use not considered 
• Intake and released 
water quality not 
considered 

 
• Surface water (river, 
lake, sea), groundwater 
(renewable, fossil), 
precipitation water 
stored as soil moisture 
water considered 
• Consumptive use 
considered.  Degrada-
tive use considered 
through released water 
at a given quality 
• Intake and released 
water quality consid-
ered through eight 
water flux types 

• Surface water (river, lake, 
sea), groundwater (renewa-
ble, fossil), precipitation 
water stored as soil moisture 
considered. Fossil groundwa-
ter is considered indirectly as 
being groundwater with a 
maximal scarcity 
• Consumptive use consid-
ered. Degradative use con-
sidered through released 
water at a given quality 
• Intake and released water 
quality considered through 
137 quality parameters  

• Surface water (river, 
lake), groundwater 
(renewable, fossil), 
precipitation water 
stored as soil moisture 
considered. Seawater 
not considered 
• Consumptive use 
considered. Degrada-
tive not considered 
• Intake and released 
water quality not con-
sidered 

• Surface water (river, 
lake, sea), groundwater 
(renewable), considered. 
Precipitation water 
stored as soil moisture 
and fossil groundwater 
not considered 
• Consumptive use 
considered.  Degradative 
use considered through 
released water at a given  
quality 
• Intake and released 
water quality considered 
through nine water flux 
types 

• Surface water (river, 
lake), groundwater 
(renewable, fossil), pre-
cipitation water stored as 
soil moisture considered. 
Seawater not considered 
• Consumptive use con-
sidered.  Degradative use 
considered through 
water released 
• Intake and released 
water quality considered 
implicitly in source sus-
tainability characteriza-
tion  
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Scientific 
robust-
ness and 
certainty 

• No data • No data • No data  • No data • No data • No data 

• Underlying data for a 
unique application in 3 
regions of Australia 
• Climatic model for 
precipitation water 
stored as soil moisture 
estimation uncertainty 
provided 

Docu-
menta-
tion, 
trans-
parency 
and 
repro-
ductibil-
ity 

 
• Accessible 
• Reviewed through different 
scientific journal papers 
• Published 

• Accessible 
• Partly reviewed by 
the GRI and The Nature 
Conservancy 
• Published 

• Accessible online on 
databases such as 
Proques 
• Not reviewed 
• Published as a master 
thesis 

• Accessible 
• Reviewed  
• Published 

• Accessible 
• Reviewed  
• Published 

• Not accessible 
• Not reviewed  
• Not published 

• Accessible 
• Reviewed  
• Published 

Applica-
bility 
 

• Easy applicability in general, 
but not in the LCA context. 
Not adapted to LCA software 
tools 
• Units (m3) are not all com-
parable with other inventory 
methods as volume of “grey” 
water cannot be estimated as 
equivalent to volume of 
“green” and “blue” water 

• Easy applicability in 
general, but not in the 
LCA context. Ready-
made life cycle inven-
tory figures are directly 
available in the tool, 
but not adapted to LCA 
software tools 
• Units are comparable 
with other inventory 
methods  

• Units are comparable 
with other inventory 
methods  

• Units are comparable with 
other inventory methods  

• Units are comparable 
with other inventory 
methods  

• Units are comparable 
with other inventory 
methods  

• Units are comparable 
with other inventory 
methods  

Potential 
stake-
holder 
ac-
ceptance  

• Principles of the method 
easily understandable and 
widely used by companies 

• Principles of the 
method easily under-
standable and widely 
used by companies 

• The acceptance might 
be difficult as it is not 
reviewed 

• Acceptance still to be 
proven among industrial 
stakeholders due to the 
'young age' of the method 

• Acceptance still to be 
proven among industri-
al stakeholders due to 
the method 'young age' 

• Not published 

• Acceptance still to be 
proven among industrial 
stakeholders due to the 
method  'young age'  
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Table A.2: Results of overall evaluations for midpoint impact assessment methods 

Midpoint impact assessment methods 

Criteria 
Swiss ecological scarcity (Frischknecht et 
al. 2006) 

Water impact index (Bayart et al. 2014) Pfister et al. (2009) 
Water footprint impact indexes (Hoekstra et al. 
2011) 

Complete-
ness of 
scope 
 

• Single indicator which does not cover a 
specific AoP  
• Focus on water scarcity quantification 
through ways in which the availability of 
freshwater is impacted 
• Spatial differentiation at the country 
and watershed level 

• Single indicator which does not cover a 
specific AoP  
• Focus on modification of freshwater availa-
bility generated by a human activity. It allows 
evaluating how other water users (both 
humans and ecosystems) would potentially 
be deprived from this resource 
• Spatial differentiation based on scarcity 
index chosen by the practitioner (e.g., Pfister 
et al. (2009)) 

• Single indicator which does not cover a 
specific AoP 
• Focus on water scarcity quantification 
• Spatial differentiation at the country, 
watershed (11050 watersheds) or 0.5° 
grid cell level 

• Three indicators, which do not cover a specific 
AoP. “Green”, “blue” and “grey” water are charac-
terized respectively by “green”, “blue” and “grey” 
water scarcity index in three disaggregated results 
• Focus on water scarcity quantification through 
ways in which the availability of freshwater is im-
pacted 
• Spatial differentiation possible 
• Not developed specifically for LCA but compatible 

Environ-
mental 
relevance 

• Surface water (river, lake), groundwater 
(renewable, fossil), considered. Precipita-
tion water stored as soil moisture and 
seawater not considered 
• Application on consumptive use rec-
ommended • Intake and released water 
quality not considered  
• Water scarcity and water renewability 
rate (fossil water gets the same eco-
factor like water used in regions with 
"extreme water scarcity”) considered. 
Economic development level, water 
functionalities not considered 
• Compensation mechanisms not consid-
ered 

• Surface water (river, lake), groundwater 
(renewable, fossil), precipitation water stored 
as soil moisture considered. Seawater not 
considered. Additionally, precipitation water 
over cities considered 
• Degradative and consumptive use consid-
ered  
• Intake and released water quality consid-
ered  
• Water scarcity, water renewability rate and 
water quality are considered through the 
water scarcity index and water quality index. 
Water functionalities and economic devel-
opment level not considered 
• Compensation mechanisms not considered 

• Surface water (river, lake), groundwa-
ter (renewable, fossil), considered. Pre-
cipitation water stored as soil moisture 
and seawater not considered 
• Consumptive uses considered as water 
consumption can be characterized by the 
WSI. Degradative use not considered 
• Intake and released water quality not 
considered  
• Water scarcity and water renewability 
rate considered through the water scarci-
ty index. Water quality, economic devel-
opment level, water functionalities not 
considered 
• Compensation mechanisms not consid-
ered 

• Surface water (river, lake), groundwater (renewa-
ble, fossil), precipitation water stored as soil mois-
ture considered. Seawater not considered  
• Degradative and consumptive use considered 
through “blue”, “green” and “grey” water 
• Intake water quality not considered, released 
water quality indirectly considered through grey 
water  
• Water scarcity and water renewability rate consid-
ered through the water scarcity index. Water quali-
ty, economic development level, water functionali-
ties not considered. 
• Compensation mechanisms not considered 
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Scientific 
robustness 
and certain-
ty 

• Indicator uncertainty provided by a 
semi-quantitative indicator related to the 
eco-factors 
• Based on a scarcity indicator which 
does not reflect a particular cause-effect 
chain 
• Indicator cannot be verified against 
monitoring data (expressed in eco-point 
units)  

• Model uncertainty not provided 
• Based on a scarcity indicator which does 
not reflect a cause-effect chain 
• Indicators cannot be verified against moni-
toring data (expressed in m3 equivalent) 

• Model uncertainty not provided 
• Based on a scarcity indicator which 
does not reflect a cause-effect chain 
• Indicator cannot be verified against 
monitoring data  

• Model uncertainty not provided 
• Based on a scarcity indicator which does not re-
flect a cause-effect chain 
• Indicators cannot be verified against monitoring 
data (expressed in m3 equivalent) 

Documenta-
tion, trans-
parency and 
reproducti-
bility 

• Accessible 
• Reviewed by a panel of industry and 
governmental experts 
• Published 

• Not accessible 
• Under review 
• Not published 

• Accessible 
• Reviewed 
• Published 

• Accessible 
• Peer reviewed by different scientific journal papers 
• Published 

Applicability 

• CF available for all countries and water-
sheds 
• Units cannot be compared with other 
methods (eco-points), but within dis-
tance to target methods 

• CF not available 
• Units cannot be compared with other 
methods (m3eq) 

• CF available at the country and grid cell 
level on a Google Earth layer 
• Units cannot be compared with other 
methods (m3eq) 

• CF available only for blue water scarcity for major 
watersheds 
• Units cannot be compared with other methods 
(m3eq) 
• Grey water impact index leads to double counting 
of emissions to water already covered by other 
impact categories (such as eutrophication) 

Potential 
stakeholder 
acceptance 

•  Indicator easily understood as eco-
points have a long tradition in LCA  
• Endorsed at a national level by the 
Swiss FOEN  

• Not published 
• Acceptance still to be proven among 
industrial stakeholders due to the 'young 
age' of the method 

• These indicators derived from the water footprint 
concept give an opportunity to make a parallel with 
the LCA impact modeling concept. However, they do 
not aim at being applied as such as the author ex-
plicitly refrains from recommending these impact 
indices to be applied as characterization factors in 
LCA. 
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Midpoint impact assessment methods 
Criteria Ridoutt and Pfister (2010b) Boulay et al. (2011b) Bayart et al. (2008) Milà i Canals et al. (2008) 

Completeness of scope 
 

• Single indicator based on Pfister et al.’s 
(2009) midpoint method which does not 
cover a specific AoP 
• Focus on water scarcity quantification 
through ways in which the availability of 
freshwater is impacted 
• Spatial differentiation at the watershed 
and country level 

• Single indicator which does not cover a 
specific AoP 
• Focus on water scarcity and quality quanti-
fication 
• Spatial differentiation at the country, 
watershed or grid cell (808 grid cells) level 
• Not a specific midpoint oriented method 
 

• Covers midpoint for AoP human health 
• Focus on the quantification of impact of 
water quantity decrease on "sufficiency of 
freshwater resource for contemporary 
human users. Water deprivation for differ-
ent users (domestic use, irrigation, fisher-
ies and aquaculture) distinguished 
• Spatial differentiation at the country 
level (CF available for 17 countries) 

• Two indicators which cover the 
impact pathways: ecosystem quality 
(freshwater ecosystem impact (FEI)) 
and resources (freshwater deple-
tion(FD)).  
• Focus on the quantification of impact 
of water quantity decrease on ecosys-
tem quality and resources. Human 
health is not covered as the method 
only considers water quantity 
 • Spatial differentiation at watershed 
and country level for FEI and aquifer 
level for FD 

Environmental relevance 

• Surface water (river, lake), groundwater 
(renewable, fossil), considered. Precipita-
tion water stored as soil moisture and 
seawater not considered 
• Degradative and consumptive use con-
sidered through blue and grey water  
• Intake water quality not considered, 
released water quality indirectly consid-
ered through grey water  
• Water scarcity and water renewability 
rate considered through the water scarci-
ty index. Water quality, economic devel-
opment level, water functionalities not 
considered 
• Compensation mechanisms not consid-
ered 

• Surface water (river, lake, sea), groundwa-
ter (renewable, fossil), precipitation water 
stored as soil moisture considered. Fossil 
groundwater is considered indirectly as 
being groundwater with a maximal scarcity 
• Consumptive use and degradative use 
considered 
• Intake and released water quality consid-
ered 
• Water scarcity, water quality, water re-
newability rate considered through the 
water scarcity index. Economic develop-
ment level and water functionalities are not 
considered 
• Compensation mechanisms not consid-
ered 
 

• Surface water (river, lake), groundwater 
(renewable, fossil), considered. Precipita-
tion water stored as soil moisture and 
seawater not considered 
• Consumptive use considered. Degrada-
tive use considered through released 
water at a given quality 
• Intake and released water quality con-
sidered  
• Water scarcity, water quality, water 
functionalities and economic development 
level considered 
• Compensation mechanisms considered 

• Surface water (river, lake), ground-
water (renewable, fossil), net precipi-
tation water stored as soil moisture 
considered. Seawater not considered 
• Consumptive use considered. Degra-
dative use not considered as water 
quality not taken into account 
• Intake and released water quality 
not considered  
• FEI considers water scarcity but not 
water quality. FD takes into account 
renewability rate through the abiotic 
depletion potential (ADP)  
• Compensation mechanisms not 
considered 
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Scientific robustness and 
certainty 

• Model uncertainty not provided 
• Based on a scarcity indicator which does 
not reflect a cause-effect chain 
• Indicators cannot be verified against 
monitoring data (expressed in m3 equiva-
lent) 

• Model uncertainty not provided 
• Based on a scarcity indicator which does 
not reflect a cause-effect chain 
• Indicator cannot be verified against moni-
toring data 

• Model uncertainty not provided 
• The model reflects a part of the cause-
effect chain 
• Indicator cannot be verified against 
monitoring data 

• Model uncertainty not provided 
• The model reflects a part of the 
cause-effect chain 
• Indicators can only partially be veri-
fied against monitoring data 

Documentation, trans-
parency and reproducti-
bility 

• Accessible 
• Peer reviewed  
• Published 

• Accessible 
• Reviewed 
• Published 

• Accessible online on databases such as 
Proquest 
• Not reviewed in a scientific journal 
• Published as a master thesis 

• Accessible 
• Reviewed 
• Published 

Applicability 

• Pfister et al’s CF available at the 0.5° grid 
cell and country level 
• Units cannot be compared with other 
methods (m3eq) 

• CF available at the country and watershed 
level 
• Units cannot be compared with other 
methods (m3eq) 

• CF available for 17 countries 
• Units cannot be compared with other 
methods (not a common midpoint) 

• CF available for FEI for all countries 
and partially for watersheds (no global 
coverage), but not for FD 
• FEI units cannot be compared with 
other methods (m3 of "ecosystem 
equivalent" water). FD units can be 
compared (Sb-eq/kg, CML compatible) 

Potential stakeholder 
acceptance 

• Acceptance still to be proven among 
industrial stakeholders due to the 'young 
age' of the method 

• Acceptance still to be proven among 
industrial stakeholders due to the 'young 
age' of the method 

• Acceptance still to be proven among 
industrial stakeholders due to the 'young 
age' of the method. The acceptance might 
be difficult as it is not reviewed 

• Acceptance still to be proven among 
industrial stakeholders due to the 
'young age' of the method 
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Table A.3: Results of overall evaluations for endpoint impact assessment methods 

Endpoint impact assessment methods 

Criteria Pfister et al. (2009) 
Motoshita et al. (2010): infectious diseases 
arising from domestic water consumption 

Motoshita et al. (2011): health 
damages of undernourishment 
related to agricultural water scarcity 

Boulay et al. (2011b) 

Completeness 
of scope 
 

• Covers all AoPs 
• Spatial differentiation at the watershed 
and country level 

• Covers partially AoP human health  
• Focus on the relationship between the 
available quantity of domestic water and 
health damages of infectious diseases by 
conducting multiple regression analyses 
based on statistical data  
• Spatially differentiation at the country level 

• Covers partially AoP human health  
• Focus on the health damages of 
undernourishment related to agricul-
tural water scarcity (not domestic 
and fisheries) based on statistical 
analysis 
• Spatially differentiation at the 
country level 

• Covers AoP human health 
• Focus on the impact mechanism due 
to agriculture, domestic use and fisher-
ies 
• Spatial differentiation at the country 
and watershed level  

Environmental 
relevance 

• Surface water (river, lake), groundwater 
(renewable), precipitation water stored as 
soil moisture considered. Seawater and fossil 
groundwater not considered. Net precipita-
tion water stored as soil moisture can be 
considered through change in blue resulting 
of land occupation and transformation in-
ventory. 
• Consumptive use considered. Degradative 
use not considered 
• Intake and released water quality not 
considered  
• Covers AoP human health by considering 
impact mechanism due to agriculture use 
(not domestic water and fisheries), including 
scarcity and economic development level as 
parameters (not water functionalities). Com-
pensation mechanisms are not taken into 
account unless the system is expanded 

• Surface water (river, lake), groundwater 
(renewable), considered. Precipitation water 
stored as soil moisture, seawater and fossil 
groundwater not considered 
• Consumptive use considered. Degradative 
use not considered 
• Intake and released water quality not 
considered 
• Water functionality (only domestic) and 
economic development level (through acces-
sibility to safe water) considered (not water 
quality). Water scarcity is only considered 
through “domestic scarcity” which corre-
sponds to domestic water availability 
• Compensation mechanisms are partly 
taken in account through house connection 
rate to water supply and sanitation. The 
method does not include the impact of the 
compensation mechanisms 

• Surface water (river, lake), 
groundwater (renewable), consid-
ered. Precipitation water stored as 
soil moisture, seawater and fossil 
groundwater not considered 
• Consumptive use considered. 
Degradative use not considered 
• Intake and released water quality 
not considered 
• Water scarcity, water functionality 
(only agricultural) and economic 
development level (through dietary 
energy consumption and gross na-
tional income) considered. Water 
quality not considered 
• Compensation mechanisms are not 
taken into account 
 

• Surface water (river, lake, sea), 
groundwater (renewable, fossil), pre-
cipitation water stored as soil moisture 
considered. Fossil groundwater is 
considered indirectly as being ground-
water with a maximal scarcity 
• Consumptive and degradative use 
considered 
• Intake and released water quality 
considered 
• Water scarcity, water functionalities, 
economic development level and 
water quality considered 
• Compensation mechanisms are taken 
in account through the adaptation 
capacity  
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• Covers AoP ecosystem quality including 
water resource scarcity and water ecological 
value (through vegetation/net primary pro-
duction dependence on water) as parame-
ters (not water quality) 
• Covers AoP resources including water 
renewability rate through fraction of fresh-
water consumption that contributes to de-
pletion 

 

Scientific ro-
bustness and 
certainty 

• Model uncertainty not provided 
• The model reflects a part of the cause-
effect chain 
• The indicator for AoP human health (DALY) 
and AoP ecosystem quality (PDF•m2•y) can 
be verified against monitoring data whereas 
indicator for AoP resources cannot (MJ) 

• Model uncertainty not provided 
• The model reflects a part of the cause-
effect chain 
• Indicator (DALY) can be compared with 
monitoring data 
 

• Model uncertainties provided 
through R square and t-value of 
regression analysis 
• The model reflects a part of the 
cause-effect chain 
• Indicator (DALY) can be compared 
with monitoring data 
 

• Model uncertainties provided 
through the p-value and confidence 
interval 
• The model reflects a part of the 
cause-effect chain 
• Indicator (DALY) can be compared 
with monitoring data 

Documentation, 
transparency 
and reproducti-
bility 

• Accessible 
• Reviewed 
• Published 

• Accessible 
• Reviewed 
• Published 

• Partly accessible 
• Not reviewed yet 
• Not published  

• Accessible 
• Reviewed 
• Published 

Applicability 

• CF available at the country level and water-
shed level and can be integrated in Eco-
indicator-99 LCIA method 
• All endpoints are in commonly used units 
(DALY, PDF•m2•y, MJ) 

• CF available at the country level 
• Endpoint is in commonly used units (DALY) 

• CF not available 
• Endpoint is in commonly used units 
(DALY) 

• CF available at the country and wa-
tershed level 
• Endpoint is in commonly used units 
(DALY) 

Potential 
stakeholder 
acceptance 

• Acceptance still to be proven among indus-
trial stakeholders due to the 'young age' of 
the method 

• Acceptance still to be proven among indus-
trial stakeholders due to the 'young age' of 
the method 

• Not published 
• Acceptance still to be proven among 
industrial stakeholders due to the 
method 'young age'  
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Criteria Hanafiah et al. (2011) Van Zelm et al. (2011) 
Maendly and Humbert (Maendly and 
Humbert 2009) 

Bösch et al. (2007) 

Completeness of 
scope 
 

• Covers partially AoP ecosystem quality 
• Focus on impact of consumption on 
aquatic ecosystems 
• Spatial differentiation at the watershed 
level (214 watershed covered) 

• Covers partially AoP ecosystem quality 
• Focus on impact of groundwater extrac-
tion on occurence of soil plant species 
• No spatial differentiation (CF for Nether-
lands only) 

• Covers partially AoP ecosystem quality 
• Focus on the assessment of the impact of 
turbined water on aquatic biodiversity 
• Limited spatial differentiation through 
distinction between alpine and non-alpine 
dam 

• Covers partly AoP resources 
• Not specific to water, so it needs 
further development 
• No spatial differentiation 

Environmental 
relevance 

• Surface (river, lake) and groundwater 
(renewable) considered. Precipitation 
water stored as soil moisture, fossil 
groundwater and seawater not considered 
• Consumptive use considered. Degrada-
tive use not considered 
• Intake and released water quality not 
considered 
• Water ecological value considered 
through the global species-discharge 
model developed by Xenopoulos et al. 
(2005) for 214 global river basins. Water 
scarcity and intake water quality not con-
sidered 

• Only effects on renewable shallow (<3.5 
m depth) groundwater considered. Precipi-
tation water stored as soil moisture, sur-
face water (river, lake, sea), fossil ground-
water not considered 
• Consumptive use considered. Degrada-
tive use not considered 
• Intake and released water quality not 
considered 
• Water ecological value considered 
through empirical observation of de-
creased biodiversity (multiple regression 
equation). Water scarcity and water quali-
ty not considered 
 

• Only surface water (river, lake) consid-
ered. Precipitation water stored as soil 
moisture, groundwater (renewable, fossil) 
and seawater not considered 
• Degradative use (turbined water) con-
sidered. Consumptive use not considered 
• Intake and released water quality not 
considered 
• Water ecological value considered 
through empirical observation of de-
creased biodiversity (multiple regression 
equation) as parameter. Water scarcity 
and water quality not considered 

• Surface water (river, lake, sea), 
groundwater (renewable, fossil), 
considered. Precipitation water 
stored as soil moisture water not 
considered (same classification as 
ecoinvent, except seawater is taken 
as reference) 
• Consumptive use considered. Deg-
radative use not considered 
• Intake and released water quality 
not considered 
• Water renewability rate implicitly 
considered through notion of exergy 
 

Scientific robust-
ness and certain-
ty 

• Model uncertainty not provided 
• The model reflects a part of the cause-
effect chain (fate part by considering that 
change in water consumption is fully 
reflected in a change in water discharge, 
effect part with global species-discharge 
model). 
• Indicator (PDF) can be compared with 
monitoring data 

• Model uncertainties provided through R 
square value of regression analysis 
• The model reflects a part of the cause-
effect chain (fate part with the MODFLOW 
model, effect part with a statistical model) 
• Indicator (PNOF) can be compared with 
monitoring data 

• Indicator uncertainty provided through 
upper and lower threshold 
• The method simplifies the cause-effect 
chain by a simple statistical regression 
• Indicator (PDF•m2•y) can be verified 
against monitoring data 

• Model uncertainty provided 
through semi-quantitative infor-
mation 
• The method does not really reflect 
the cause effect chain 
• Indicator (exergy MJ) cannot be 
verified against monitoring data 

Documentation, 
transparency 

• Accessible 
• Reviewed 

• Accessible 
• Reviewed 

• Accessible 
• Under review 

• Accessible 
• Reviewed 
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and reproducti-
bility 

• Published • Published • Not published • Published 

Applicability 
• CF available 
• Endpoint is in commonly used units 
(PDF·m3·y) 

• CF available for the Netherlands 
• Endpoint is in commonly used units 
(PNOF•m2•y) 

• CF available 
• Endpoint is in commonly used units 
(PDF•m2•y). 

• CF available 
• Endpoint is not in commonly used 
unit (MJ exergy) 

Potential stake-
holder ac-
ceptance 

• Acceptance still to be proven among 
industrial stakeholders due to the 
'young age' of the method 

• Acceptance still to be proven among 
industrial stakeholders due to the 
'young age' of the method 

•  Not published 
•  As the method is not specific to 
water, its acceptance as a water 
indicator is fair 
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A.2 Short description of each method A.2.1 Inventory databases 
Ecoinvent (Frischknecht et al. 2007) 

The ecoinvent database contains elementary flows for water. These flows are for water withdrawal (some-

times referred as non-turbined water) as well as turbined water and salt water, all expressed in m3 of wa-

ter. The ecoinvent database distinguishes between water from lake; river; ground (well); unspecified natu-

ral origin; turbined water; and other non-elementary flows such as salt water from sole (e.g., produced 

water in oil and gas extraction); and salt water from ocean. It also has a flow referred as cooling water from 

unspecified natural origin. Because each unit process dataset contains standardized information about its 

location (extended list of ISO 3166 two letter codes), spatial differentiation is supported. Water outputs 

and input water quality are not considered. 

Gabi (PE 2011) 

The following flows are currently used in the GaBi software and database: feed, river, ground water, lake, 

sea water, well water, water salt sole, water (used in turbine), surface water (unspecified) and water. (Sven 

Lundie, personal communication, 21 December 2009, 8 January 2010). Water outputs are considered and 

input water quality is not considered. 

The WFN database (Water Footprint Network 2011) 

The WFN assesses the inventory flows of crops and derived crop products, biofuels, farm animals and ani-

mal products, national consumption and national production, virtual-water flows related to international 

trade in crop, animal and industrial products, as well as national and global water savings related to trade in 

agricultural and industrial products according to Hoekstra et al.’s method (Hoekstra et al. 2011). Databases 

considers “green” water, consumptive use of surface and groundwater (“blue water”) and degradative use 

of water (“grey water”) for all countries. Water outputs and input water quality are not considered. 

Pfister et al.’s database (2011) 

Pfister et al.’s database assesses the water consumption for the production of 160 crops covering most 

harvested mass on global cropland, including full-irrigation water consumption, deficit water consumption 

and expected water consumption. 
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The Quantis Water Database (2012) 

The Quantis Water Database is based on ecoinvent data and aims at filling the gap and providing practi-

tioners of water footprint the data and structure they need to apply the latest methodologies. The project 

is supported by industrial partners (Danone, Kraft, L’Oréal, Molson Coors, Natura, Steelcase and Veolia 

Environnement) and by ecoinvent. A.2.2 Inventory models  
WFN (Hoekstra et al. 2011) 

The water footprint method developed by Hoekstra et al. calculates the amount of water consumed or 

polluted during the production of a product. The method can also be applied to compute the water con-

sumed to generate the goods and services that are produced by a country (i.e., the water footprint of a 

nation - (Chapagain and Hoekstra 2004)), which is equivalent to the entire amount of water used per coun-

try. This method is closely linked to the virtual water concept. Virtual water is the amount of water that is 

required to produce a certain good, commodity or service (Allan 1996) and does not contain spatial and 

temporal information. It is termed virtual because the largest part of the water is not incorporated into the 

product itself.  

The water footprint method distinguishes among “green,” “blue” and “grey” water. The green water foot-

print refers to consumption of green water resources (rainwater stored in the soil as soil moisture) by 

evapotranspiration (Hoekstra et al. 2011). The blue water footprint refers to consumption of blue water 

resources (surface and ground water) along the supply chain of a product (Hoekstra et al. 2011). ‘Consump-

tion’ refers to loss of water from the available ground-surface water body in a catchment area, which hap-

pens when water evaporates, returns to another catchment area or the sea or is incorporated into a prod-

uct. The grey water footprint refers to pollution and is defined as the volume of freshwater that is required 

to assimilate the load of pollutants based on existing ambient water quality standards (Hoekstra et al. 

2011). Grey water can also contain the amount of water used for cooling and returned to the watershed 

with a temperature higher than the receiving body. However, cooling water is, at presents still rarely con-

sidered in grey water. Water withdrawal that is returned, unpolluted, to the watershed or turbined water 

(in-stream use) are not included in blue water.  The water footprint method in itself is an inventory (in kg, 

liters or m3 of water consumed). Spatial differentiation is possible for the inventory by indicating the loca-

tion of water consumption (for example, on a map). The water footprint method is developed and promot-

ed by the water footprint network.  

Although this method provides a simple and visual inventory indicator of consumptive water through blue 

and green water, and degradative use through grey water, other communication difficulties emerge with 
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the use of an increasingly large palette of water colors and the conflict between the well-established defini-

tion of grey water in the water industry (e.g., wastewater generated from activities such as laundry, dish-

washing, and bathing (Henriques and Louis 2011)). 

Note that the term “water footprint”, as used by Hoekstra et al. (2011) and the Water Footprint Network  is 

currently debated. For example, Ridoutt and Pfister (2010b) suggest that the term water footprint should 

be reserved for assessments which describe the impact of consumptive water use on freshwater availability 

and not solely for the amount of water consumed. 

WBCSD (2010) 

The global water tool is a free tool of the World Business Council for Sustainable Development (WBCSD) 

launched in 2009. It inventories the water use of companies and organizations, providing a map of water 

use and water consumption combined with a map of water scarcity at the watershed level. By mapping the 

water use on water scarcity maps, a visual and qualitative assessment of potential risks relative to their 

global operations and supply chains is possible.  The tool consists of an Excel work book and online mapping 

tool and addresses questions, like ‘How many of the sites lie in water scarce areas, and how many will in 

the future?’, or ‘How many employees live in countries that lack access to improved water and sanitation?’. 

The model also attempts to evaluate the number of the company’s suppliers that are located in water 

scarce areas and how many will be in the future. However, the tool does not provide any specific guidance 

on local situations; this would require more in-depth systematic analysis. The tool also allows companies to 

compare their water use with validated water and sanitation availability (Total Renewable Water Resources 

per person, Access to Improved Water, Access to Improved Sanitation) both on country and watershed 

levels. It allows the calculation of Global Reporting Initiative (GRI) indicators linked to water (EN8, EN10, 

EN21).  

Bayart (2008) 

Bayart developed an inventory method for assessing off-stream freshwater use in life cycle assessment. It 

distinguishes eight water flux types (elementary flows of underground water of drinkable, good and bad 

quality, surface water of drinkable, good and bad quality, wastewater of bad quality and saltwater). 

The inventory method deals only with off-stream water uses (e.g., water for irrigation, industrialized pro-

cesses, cooling water) (e.g., water for irrigation, industrialized processes, cooling water). It assesses the 

modification of water availability for further uses. This modification can be generated by: (1) freshwater 

consumptive use (a reduction of the net volume of water within the watershed) and (2) degradative use as 

it provokes a loss of water functionality. 
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Boulay et al. (2011a) 

This inventory method is an operational version of Bayart’s method. They suggest classifying water into 8 

different quality level, which can be from surface or ground, as well as one rain water category. They repre-

sent different combinations of low, medium or high for toxic and microbial contamination.  These classes 

were elaborated based on the quality required for a water to be functional for specific users. These thresh-

old values were determined based on international standards, national regulations and industry data. The 

final version is published. 

Milà I Canals et al. (2008) 

Milà I Canals et al. propose a method to assess impacts of freshwater use in LCA. It takes in account all off 

stream and in-stream uses (except aquaculture) and considers the land use occupation and transformation 

through the change in evapotranspiration and runoff. In this method, the word “evaporative” refers to con-

sumptive water use. The types of water use considered in the inventory are (i) surface and groundwater 

evaporative use, (ii) evaporative and non-evaporative uses of water stocks (groundwater—fossil water) and 

over extracted water funds (groundwater—aquifers), and differences in rainwater availability caused by 

land use and land use change.  

Vince (2007) 

The inventory framework proposed by Vince is a preliminary approach for an inventory method based on a 

detailed description of water quality and electricity required to achieve an upper quality level (e.g., from 

drinking to ultrapure water, or from average quality river water to high quality) through the distinction of 

nine types of water flux. The nine water flux types are as follows: ultrapure water/desalinated water, drink-

ing water, groundwater, high quality river water, low quality aquifer/average quality river water/treated 

wastewater, brackish water/low quality river water (in emerging countries), municipal wastewater, indus-

trial wastewater, and seawater. This method considers degradative, consumptive and borrowing uses but 

only for off-stream use.  This approach can contain spatial information. This inventory method is yet neither 

published nor reviewed. 

Peters et al. (2010) 

Peters et al focus on the link between LCI reporting and its use in public debate and propose that as an 

interim measure while international consensus on impact mechanisms is developed, water should be con-

sidered ‘used’ in the production of goods when it is delivered by unnatural means or it leaves the produc-

tion site at a lower quality.  They apply detailed local hydrological modeling with field data to calculate all 

natural and engineered water inputs and outputs.  Inputs of rain and outputs of water vapour are consid-

ered sustainable and high quality, and in some agricultural systems may not have changed significantly 
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since before the development of agricultural society.  These are therefore reported separately, while trans-

ferred flows and funds are grouped as water used from less sustainable water sources, and water which is 

excreted, drains, runs off, is discharged to sewer or alienated in a product is grouped as used by virtue of 

the quality change. A.2.3 Impact assessment, at midpoint level 
Swiss Ecological Scarcity (Frischknecht et al. 2006) 

The Swiss ecological scarcity method is a “distance-to-target” method. Indeed, the calculation of the eco-

factor is determined by setting the current flow (corresponding to the actual situation) into relation with 

the critical flow (deduced from legislative guidelines or political goal). The unit given by this method is eco-

points (EP, or UBP = Umweltbelastungspunkte, meaning eco-points in German) for various impacts on the 

environment: the fewer eco-points, the better. It only considers total freshwater withdrawal. First, the 

method performs a normalization step in which 1 eco-point is assigned to the total water use in the refer-

ence region. Then a the weighting step assigns Eco-points to Eco-factors calculated depending on total wa-

ter use and critical water use (i.e., the amount of water use at which scarcity starts to be experienced, set 

by default to 20 % of water renewable rate) of a water shed area, a country or region. Ecological water 

scarcity is defined for each individual watershed area. Six scarcity classes are proposed to simplify life cycle 

inventory modeling. The water scarcity value of each individual watershed area can be assigned to one of 

these six scarcity classes. A temporal or spatial differentiation can be performed with the version of 2006 

depending on available data.  

Veolia (Bayart et al. 2014) 

The Water Impact index is a simplified metric for assessing impacts on water use. This indicator aims to 

address the modification of freshwater resource availability due to human activities.  It allows evaluating 

how other water users (both humans and ecosystems) would potentially be deprived from this resource. It 

allows to cover implicitly all three midpoints areas of protection (human health, ecosystem quality and 

resources).  

Water flows abstracted from, or released into the environment are weighted by (1) a water scarcity index 

of the location where the water is used (e.g. Pfister’s Water Stress Index); and (2) by a quality index. The 

latter is calculated as a ratio between a reference concentration based on Environmental Quality Standards 

and the actual concentration in the flow, for a specific pollutant. In the case of multiple pollutants, the 

quality index is calculated according to the most penalizing pollutant. If, for all pollutants considered, the 

concentration is above the reference concentration, the Quality Index is set to 1 (water quality reaching 

environmental requirements). 
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Water withdrawal is accounted positively (increase of Water Impact Index: reduction of water availability). 

Water discharge is accounted negatively (decrease of Water Impact Index: increase of water availability). 

Pfister et al. (2009) 

The method by Pfister et al. assesses the impacts of freshwater consumptive use on human health, ecosys-

tem quality and resources. At the midpoint level, the characterization factor is the adapted water scarcity 

index (ܹܵܫ, see below). This index uses a modified withdrawal to hydrological availability factor (ܹܶܣ∗) 

(calculated as a criticality ratio), which differentiates watersheds with strongly regulated flows (SRF). ܹܶܣ∗ 

introduces a variation factor (ܸܨ) which takes into account insufficient water storage capacities or lack of 

stored water in case of increased water scarcity during specific periods due to both monthly and annual 

variability of precipitation. 

∗ܣܹܶ = ܨܸ√ × ∗ܣܹܶ for SRF ܣܹܶ = ܨܸ ×  for non-SRF ܣܹܶ

Equation A.1: Pfister et al.’s withdrawal to hydrological availability factor 

The formula proposed by Pfister et al. (2009) to evaluate the modified annual freshwater withdrawals to 

hydrological availability of a specific watershed (ܹܶܣ∗)) ) is presented in Equation A.1 (see Pfister et al. 

(2009). 

ܫܹܵ = 11 + ݁ି଺.ସ×ௐ்஺ × ( 10.01 − 1) 

Equation A.2: Pfister et al.’s water scarcity index 

The adapted water scarcity index calculated based on Equation A.2 can serve as a characterization factor 

for water consumption in life cycle impact assessment for, for example, screening assessments for human 

health and ecosystems but not for resources. The results can be expressed in scarcity-characterized water 

footprint (m3) (when the amount of water is multiplied by the ܹܵܫ) (Ridoutt and Pfister 2010b) or scarcity-

weighted water footprint for a certain region-equivalent (m3-eq) (when the scarcity-characterized water 

footprint is divided by the ܹܵܫ of a reference region) (2010b). The result is defined as water footprint by 

Pfister and Hellweg (Pfister and Hellweg 2009). 

See Pfister et al. (2009) or “Water_Methods_Flows&CF_RESULTS” for the list of country-based characteri-

zation factors. Watershed values can be downloaded as kmz-file (for use in Google Earth) at 

http://www.ifu.ethz.ch/staff/stpfiste. 
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Hoekstra (2011) 

Green, blue and grey water are characterised respectively by green, blue and grey water scarcity index in 

three disaggregated results. It allows to cover all three midpoints areas of protection (human health, eco-

system quality and resources) implicitly through each of these 3 indicators. The green and the blue water 

scarcity indexes focus respectively on green and blue water scarcity defined as the ratio of the total green 

water footprint in the catchment to the green water availability and the ratio of the total blue water foot-

print in the catchment to the blue water availability. The water pollution level index focuses on the fraction 

of the pollution assimilation capacity consumed, i.e. by taking the ratio of the total grey water footprint in a 

catchment (WFgrey) to the runoff from that catchment. 

Ridoutt and Pfister (2010b) 

Pfister et al.’s characterisation factors (Pfister et al. 2009) are applied on blue water consumption and gray 

water. 

Boulay et al. (2011b) 

The midpoint proposed by Boulay et al. is the scarcity parameter of their endpoint model for human health. 

This scarcity is distinct for different water categories, and is null for water of quality as low as seawater. For 

surface water, the parameter is based on the CUs/Q90 proposed by Döll (2009) where CUs is the surface 

water consumed and Q90 is a “statistical low flow” accounting for seasonal variation. For groundwater, it is 

similarly CUg/GWR, where CUg is the groundwater consumed and GWR is the availability of groundwater 

resource. These ratios are then adapted to include the local water quality availability based on available 

data from GEMStat database. This midpoint is calculated at the watershed scale and can be used for all 

three endpoint categories; human health, ecosystems and resources. 

Bayart (2008) 

Bayart, as part of his master thesis, developed a method to evaluate the impact of water deprivation for 

human use. He developed characterization factors which vary according to repartition of human use among 

possible functionalities, water scarcity and water quality. Compensation scenarios are also taken in account 

but their impact is not explicitly calculated. The modeling phase is implemented in two softwares: Excel and 

Analytica 

Milà I Canals et al. (2008) 

The method proposed by Milà I Canals et al. introduces two midpoint impact categories: the freshwater 

ecosystem impact (FEI) and the freshwater depletion (FD). It focuses on impact from surface and ground-
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water evaporative use and land use transformation. The water uses considered are all evaporative uses of 

freshwater (including evaporated irrigation water, cooling water, evaporated water from dams and reser-

voirs, etc.). Milà I Canals et al. (2008) acknowledge that it can lead to an underestimation of local effects, 

when non-evaporative uses are considered to have no impact on freshwater ecosystem impact. The FEI 

impact indicator is calculated with a water scarcity indicator, to be chosen between Falkenmark et al.’s 

water resources per capita (Falkenmark et al. 1989), Raskin et al.’s water use per resource (WUPR) (Raskin 

et al. 1997) or Smakhtin et al.’s environmental water scarcity (2004). The FD impact indicator accounts for 

the depletion of water stocks and funds. FD is calculated via an abiotic resource depletion potential (ADP) 

formula, suggested as a baseline method for abiotic resources depletion in the CML 2001 guide (Guinee 

2002). It is applied to evaporative and non-evaporative uses of groundwater from over-abstracted aquifers. A.2.4 Impact assessment, at damage level 
Pfister et al. (2009) 

At the damage level, the method by Pfister et al. assesses the impacts of freshwater consumptive use on 

human health, ecosystem quality and resources. It is an impact assessment for water use based on the Eco-

indicator 99 (Goedkoop and Spriensma 2001) impact assessment method and it can be added to the hier-

archist version of the Eco-indicator 99 method. Impact on human health are calculated based on Pfister et 

al.’s WSI which also serves as midpoint indicator. It models the cause-effect chain covering the water depri-

vation for agriculture use (lack of agriculture water) leading to malnutrition, translated as an impact in 

DALY. For ecosystem quality, net primary production (NPP) which is limited by water availability is modeled 

through the dependancy of vascular plant species biodiversity (VPBD) on water resource, as NPP and VPBD 

are assumed to be significantly correlated. Damages to resources are calculated based on WTA and evalu-

ate the amount of water withdrawned above water availability. The original method provides characteriza-

tion factors only for consumptive water use. Based on this type of water use, impacts on human health, 

ecosystem quality and resources are assessed. Spatial differentiation is possible at the watershed, country 

and supranational level. Pfister et al. (2009) provide characterization factors at the country level but also at 

the watershed level. The units with which the impacts are assessed are DALY, PDF·m2·y and MJ surplus en-

ergy for human health, ecosystem quality and resources respectively. The aggregated results are expressed 

in Eco-indicator 99 points per kg product or m3 water use.  

See Pfister et al. (2009) or “Water_Methods_Flows&CF_RESULTS” for the list of country-based characteri-

zation factors. Watershed values can be downloaded as kmz-file (for use in Google Earth) at 

http://www.ifu.ethz.ch/staff/stpfiste. 
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Motoshita et al. (2011) 

Motoshita et al. propose a damage assessment model for health damages of undernourishment related to 

agricultural water scarcity. The modeling uses the relationship between agricultural water use, crop 

productivity and the undernourishment damage related to the change of food consumption. The method 

provides country-based characterization factors, expressed in DALY per m3 of water consumed, with the 

consideration of the rate of agricultural water use in each country. 

Motoshita et al. (2010) 

Motoshita et al. propose a damage assessment model for infectious diseases arising from domestic water 

consumption. Health impacts are evaluated by correlating oral intake of unsafe water with water scarcity. 

Indeed, the method assumes that water resource scarcity caused by water consumption will lead to a loss 

of access to safe water, and subsequently drinking unsafe water will result in use of infectious sources and 

health impairment by diseases. The method provides country-based characterization factors, expressed in 

DALY per m3 of domestic water consumed. 

Boulay et al. (2011b) 

Boulay et al. evaluate impact from water consumption on human health. Direct and indirect impacts can be 

obtained from a system expansion based on the water to be compensated. Indeed, the main innovation 

introduced by this method regarding the LCA field is the consideration of the adaptation capacity and the 

partition of freshwater use impacts between the impact pathways leading to human health impacts, and 

the impact pathways leading to compensation. Human health impacts from water deprivation for agricul-

ture, aquaculture and for domestic uses are evaluated by the change in water availability leading to a loss 

of functionality for each water user. This loss of functionality is evaluated based on the quality of water 

used and released by a process, and to which extent the consumption and degradation of the resource will 

affect other users. Boulay et al. provide country and watershed-based characterization factors, expressed in 

DALY per m3 of water used for the impacts from malnutrition, aquaculture and domestic uses.  

Hanafiah et al. (2011) 

This method focuses on the effect of water consumption and global warming based on freshwater fish spe-

cies loss. Calculation of characterization factors for potential freshwater fish losses from water consump-

tion was estimated using a generic species-river discharge curve for 214 global river basins. Characteriza-

tion factors were also derived for potential freshwater fish species losses per unit of greenhouse gas emis-

sion. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were 

calculated. Depending on the river considered, characterization factors for water consumption can differ up 
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to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of 

magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse 

gas emissions. An emission of 1 ton of CO2 emission is expected to cause an equal impact on potential fish 

species disappearance compared to 10-1000 m3 of water consumption, depending on the river basin con-

sidered. This method gives the opportunity to compare the impact of water consumption with greenhouse 

gas emissions. 

Van Zelm et al. (2011) 

Van Zelm et al. propose a method to calculate the terrestrial biodiversity reduction due to lowering of the 

groundwater table caused by groundwater withdrawal (dQ). The cause-effect chain is based on the fact 

that groundwater withdrawal causes the lowering of groundwater tables, which implies ultimately the dis-

appearance of terrestrial plant species, expressed as potentially not occurring fraction (PNOF). The differ-

ent plant species are not differentiated. The model is based on a fate factor (Area*dASG/dQ, in m2drop in 

the soil * msoil per m3water/y, and therefore in years, with ASG being the average spring groundwater 

level), which expresses the amount of time that is needed in order to replenish the groundwater balance, 

multiplied by an effect factor (dPDF/dASG, in PNOF of terrestrial plant species per drop of ground water 

table).  This method focuses on total plant species occurrence, not differentiating between the species, i.e. 

whether one species is reduced, and another one gets a higher occurrence.  

The characterization factors express therefore the reduction of biodiversity (in PDF·m2·y) per m3 of ground 

water extracted. The results are not yet published. 

Maendly and Humbert (Maendly and Humbert 2009) 

The method developed by Maendly and Humbert assesses the impact of dams used for hydropower gener-

ation on aquatic biodiversity. It assesses the impact as the potentially disappeared fraction (PDF) of species 

of an aquatic ecosystem over a certain affected area per amount of water that passes the dam per year or 

per yearly-generated electricity (PDF·m2·y/m3 or PDF·m2·y/kWh). Using the approach ‘per m3’ is more in 

line with the traditional approach of life cycle assessment because water reported in life cycle inventories 

are quantified in m3. The use of ‘per kWh’ allows to be directly usable with electricity output when no in-

formation is known about the amount of water turbined to produce one kWh. The use of the unit PDF·m2·y 

is a commonly used unit in other impacts assessment methods, thus facilitating comparison with other 

ecosystem impact categories. At present, only characterization factors for hydropower dams exist. Results 

show that for hydroelectric dams, damage to aquatic biodiversity are of the order of 0.004 PDF·m2·y/m3 of 

water turbined or 0.03 PDF·m2·y/kWh produced for run-of-river and non-alpine dams, and of 0.001 

PDF·m2·y/m3 of water turbined or 0.0005 PDF·m2·y/kWh produced for alpine dams. The method can be 
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extended to other types of dams (e.g., for irrigation). The method submitted for publication contains only 

characterization factors for damage to aquatic ecosystems. However, the present report proposes an ap-

proach to also evaluate damage to human health from dams (see below). The proposed approach aims at 

quantifying the amount of DALY caused by social stress (e.g., increase in smoking, drinking or suicides) ex-

perienced by population that is displaced by a new reservoir. 

Cumulative exergy demand (Bösch et al. 2007) 

The cumulative exergy demand (CExD) method uses the principle of exergy, which is “the amount of work 

that can be obtained from a system when it is brought in equilibrium with the environmental state, the so-

called dead state” (Dewulf et al. 2005). 

As water represents an exergy stock in the natural environment, CExD quantifies the exergy of water that is 

taken away from natural ecosystems. It calculates the amount of exergy of all resources required to provide 

a process or product (transferred to a technical system). For water, only chemical exergy (for all material 

resources) and potential exergy (potential energy of water in hydropower generation) are of relevance. 

Water types considered are freshwater resources and turbined water. Cooling water is not mentioned. As 

the exergy approach requires a baseline, seawater is used as reference species for water and thus has no 

exergy. However, it does not consider further aspects of resource scarcity or quality. Spatial differentiation 

is theoretically possible. This method is not well suited for assessing water use as it does not allow for easy 

spatial differentiation as well as does not address impacts on human health and ecosystems. A.2.5 Water indexes 
Indexes are mostly developed and given at the country level. However, if the information are available, 

they can be adapted at the watershed level. 

Falkenmark et al. (1989): water resource per capita (WRPC) 

The Falkenmark et al’s (1989) water index measures per capita water availability and considers that a per 

capita water availability of between 1’000 and 1’600 m3 indicates water scarcity, a per capita water availa-

bility between 500 and 1’000 m3 indicates chronic water scarcity, while a per capita water availability below 

500 m3 indicates a country or region beyond the ‘water barrier’ of manageable capability. 

Ohlsson (2000): social water scarcity index (SWSI) 

The social water scarcity index is constructed by dividing the widely used first-generation water scarcity 

index of per capita availability of renewable fresh water (Falkenmark index) by the human development 

index (HDI) as shown in Equation A.3. It is useful to highlight the importance of a society’s social adaptive 

capacity facing the challenges of water scarcity. For example, according to the SWSI, Israel is “merely” wa-
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ter-scarce due to its high level of social adaptive capacity whereas it was classified as “beyond the barrier” 

according to Falkenmark index. 

ܫܹܵܵ = ܫܦܪܥܴܹܲ  

Equation A.3: Ohlsson’s SWSI 

Gleick (1996): basic water requirement (BWR) 

Gleick developed an indicator that shifted the focus from measuring water availability to measuring some 
aspects of water use. In this assessment, he quantifies a basic water requirement (BWR) for drinking, cook-
ing, bathing, and sanitation and hygiene at 50 liters per person per day and then presents estimates of the 
population by country, without access to this BWR. Limitations of this indicator include highly inadequate 
country data on domestic water use and an inability to distinguish regional water problems hidden by 
country-level aggregation. This measure, like most single-factor indicators, includes no information on wa-
ter quality issues. 

If BWR<50 L/person/d, large-scale human misery and suffering will continue and grow in the future, con-
tributing to the risk of social and military conflict. 

Smakhtin et al. (2004): environmental water requirements (EWR)   

Smakhtin makes a first attempt at estimating the environmental water requirements (EWR) for all world 
river basins. They then combine EWR with the water resources available and their use (i.e. water use per 
resource (WUPR) defined per river basin) by subtracting EWR from the available water resources (WR) to 
derive a water scarcity indicator as shown in Equation A.4.  

ܫܹܵ = ܹܷܹܴ −  ܴܹܧ

Equation A.4: Smakhin et al’s WSI 

Alcamo et al. (2003): criticality ratio 

The criticality ratio (CR) is the ratio of water use to water availability in a watershed or country calculated 

based on Equation A.5. Water availability refers to the renewable water resources generated inside the 

entity of interest (river discharge and the groundwater recharge). Values for this ratio range from near zero 

in sparsely-inhabited watersheds (where water use is small compared to water availability) to greater than 

one in arid watersheds (where water use is computed to exceed its availability). 

ܴ݅ܥ = ∑ ܹܷ௝ܹ ݅ܣ  

Equation A.5: Alcamo et al.’s criticality ratio 

CRi is the criticality ratio in watershed i and user groups j are industry, agriculture, and households. 
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Alcamo et al. (2003): criticality index (CI) 

The criticality index combines two factors – the criticality ratio and the water availability per capita – into a 

single indicator of water vulnerability in a watershed and country as shown in Table A.4.  

Table A.4: Alcamo et al.’s criticality index 

 criticality ratio (use/availability) 

Per capita water 

availability 

[m3/(cap.yr)] 

< 0.4 0.4 - 0.6 0.6 - 0.8 > 0.8 

< 2,000 2 3 4 4 

2,000-10,000 1 2 3 4 

> 10,000 1 1 2 4 
1: water surplus; 2: marginally vulnerable; 3: water scarcity; 4. severe water scarcity 

Raskin et al. (1997): water resources vulnerability index (WRVI) 

The water resources vulnerability index (WRVI) put forward by Raskin et al. is made up of three sub-indices 

as shown in Figure A.1: (i) a use-to-resource ratio sub-index, which measures the average water-related 

scarcity that both ecological and socioeconomic systems place on a country’s usable resources (similar to 

the criticality ratio); (ii) a coping capacity sub-index, which measures the economic and institutional ability 

of countries to endure water-related scarcity, and (iii) a reliability sub-index, composed of three factors that 

examine different aspects of uncertainty of water supply (storage-to-flow indicator, coefficient of variation 

of precipitation indicator and import dependence indicator). Each of these indicators and sub-indices is 

divided into four classes in which values denote a level of scarcity: no scarcity, low scarcity, scarcity, and 

high scarcity. Indicator scores are then averaged to produce the WRVI. A variant of the WRVI relies not on 

averages but on the highest value of any of the three sub-indices. This produces a stronger signal of vulner-

ability, reasoning that if a country is vulnerable in any one of these areas, it is considered “vulnerable”.  

 

Figure A.1: Water Resources Vulnerability Index 
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Seckler et al. (1999): index of relative water scarcity (IRWS) 

The index of relative water scarcity (IRWS) is based on two criteria: (i) percentage increase in water “with-

drawals” over the 1990-2025 period; (ii) water withdrawals in 2025 as a percentage of the annual water 

resources (AWR) of the country (similar to criticality ratio). Thus, the IRWS measures both how fast a coun-

try’s water use is growing and how close it is to its total available water limit. The IRWS analysis takes into 

account the share of the renewable water resources available for human needs (accounting for existing 

water infrastructure) and the primary water supply. Its analysis of demands is based on consumptive use 

(evapotranspiration) and the remainder of water withdrawn is accounted for as return flows.  

Pfister et al. (2009) 

Same as Pfister et al.’s midpoint. 

Swiss Ecological Scarcity (Frischknecht et al. 2006) 

Same as Frischknecht et al.’s midpoint. 

Veolia (2014) 

Same as Bayart et al.’s midpoint. 

Hoekstra et al. (2011) 

Same as Hoekstra et al.’s midpoint. 

Boulay et al. (2011b) 

Same as Boulay et al.’s midpoint. 

Sullivan et al. (2002): water poverty index (WPI) 

The water poverty index (WPI) was developed by the Centre for Ecology and Hydrology in the United King-

dom and aims to reflect both the physical availability of water and the degree to which human populations 

are served by that water, subject to constraints imposed by the maintenance of ecological integrity. The 

WPI can be constrfucted in a number of ways. The two most comprehensive are either a conventional 

method, made up of relevant components that are weighted by importance. This is a relative method that 

would allow the comparison of the index from one year to the next, thereby measuring progress over time. 

The latter is an absolute method that would consider how much water provision and use in a given country 

or a region deviate from pre-determined standards (such as discussed in Gleick P., The World’s Water, The 

biennial report on freshwater resources 2002-2003) of ecosystem and human health, economic welfare, 
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and community well-being. However, one obstacle to formulate of such an absolute index is expert disa-

greement over where and how much standards should be set. 

The WPI can also be constructed as either a time-analysis function or as a part of a larger measure of gen-

eral environmental sustainability. 

Döll P (2009) 

The water scarcity indicator developed by Döll is the ratio of consumptive water use to statistical low flow 

Q90 in each grid cell in 0.5*0.5° grid cells on a monthly base. This index is then used in addition to an indi-

cator for dependence of water supply on groundwater and the Human Development Index to form a sensi-

tivity index. Global maps of vulnerability to the impact of decreased groundwater recharge in the 2050s are 

derived combining this sensitivity index with per cent groundwater recharge decrease. 

  



Appendix A 

160 

A.3 General criteria adapted from the ILCD handbook (JRC-IES 2011) 
Table A.5: General criteria adapted from the ILCD handbook and used in the review of methods addressing water 

Criteria Sub-Criteria 

Completeness of scope 

The characterization model is adaptable to spatial and temporal explicit evaluation 

Global geographical validity 

The method is compatible with, or developed specifically for, the comparative assessment scope of LCA (e.g., 
factors do not include security factors / precautionary principle) 

When empirical data is used, double counting is avoided 

 Overall evaluation 

Overall relevance Described in Table 2.1 

 Overall evaluation 

Scientific  
robustness and certainty 

The critical part of the model including the input data have been peer reviewed (journal, panel, book, etc.)  

The model reflects the latest knowledge for the cause-effect chain (the critical links are covered) 

The model including the underlying data have a good potential for being consistently improved and further devel-
oped including regarding geographical/emission situation and temporal differentiation 

Indicators can be confirmed and verified against monitoring data, if available 

Uncertainty estimates of the indicators are provided, motivated and reported in statistical terms 

Scenario and model uncertainty as well as substance data and parameter uncertainty are taken into account 

Overall evaluation: the category indicator and characterization models fulfill the requirements of being science based 

Documentation and  
Transparency and Repro-
ducibility 

The model documentation is published and accessible (incl. description of the mechanism, the model, temporal 
and spatial scale, etc.)? 

The set of characterization factors/models is published and accessible 

The input data are published and accessible 

The characterization model is published and accessible 

Ability for third parties to freely generate additional, consistent factors and to further develop models e.g. incorpo-
rating further geographical/emission situation, temporal and speciation differentiation 

Value choices are explicitly stated 

 Overall evaluation 

Applicability 

The characterisation factors are straightforward to apply for general LCA practitioners and in most market-relevant 
LCA software tools 

Life cycle inventory figures for the distinguished emission compartments or resource types can be made directly 
available by producing industry 

Unit comparable with other impact categories 

 Overall evaluation 

Overall evaluation of science based criteria 

Stakeholder 
 acceptance criteria 

The indicator is easily understood  

There is an authoritative body behind the general model principles like the IPCC model (consensus/international 
endorsement)  

The principles of the model are easily understood by non-LCIA experts and preferably also by the general public  

The covered elementary flows and impact models do not inappropriately favour or disfavour specific industries, 
processes, or products 

Overall evaluation of stakeholders acceptance criteria 

Final recommendation 
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Appendix B                                    Spatial analysis of toxic emissions in LCA: A sub-continental nested USEtox model with freshwater archetypes 
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B.1 Landscape data for USEtox parameterization 
Table B.1: USEtox landscape parameters for the 17 sub-continental and the 8 zone continental resolution (the title terminology is the same as in the USEtox tool) 

ID # Name Continental scale  

  
Land 
area 

Sea 
Area Areafrac Areafrac Areafrac Areafrac Temp Wind 

speed 
Rain 
rate Depth River-

Flow Fraction Frac-
tion 

Soil 
erosion 

Water 
resi-

dence 
time to 
the sea 

  land Sea fresh-
water nat soil agr soil other 

soil    
freshwa-

ter reg-cont run off infiltra-
tion  

conti-
nent 

km2 km2 [-] [-] [-] [-] oC m.s-1 mm.y-1 M [-] [-] [-] mm.y-1 day 

W1 West 
Asia 1.7E+07 7.4E+05 1.7E-02 0.88 1.0E-01 1.0E-20 1.2E+01 7.3E+00 2.2E+02 1.3E+01 0.0E+00 4.6E-01 2.7E-01 3.0E-02 1300 

W2 Indo-
china 3.3E+06 2.2E+06 3.6E-02 0.86 1.0E-01 1.0E-20 1.2E+01 4.9E+00 2.4E+03 1.3E+01 0.0E+00 2.7E-01 2.7E-01 3.0E-02 260 

W3 N. Aus-
tralia 6.6E+06 1.6E+06 9.9E-03 0.89 1.0E-01 1.0E-20 1.2E+01 4.4E+00 1.5E+03 3.0E+00 0.0E+00 2.0E-01 2.7E-01 3.0E-02 28 

W4 S. Aus-
tralia+ 1.5E+06 6.4E+05 1.2E-02 0.89 1.0E-01 1.0E-20 1.2E+01 1.0E+01 5.1E+02 3.0E+00 0.0E+00 1.0E-01 2.7E-01 3.0E-02 98 

W5 S. Africa 1.0E+07 6.2E+05 2.2E-02 0.88 1.0E-01 1.0E-20 1.2E+01 3.5E+00 1.0E+03 4.6E+01 0.0E+00 1.9E-01 2.7E-01 3.0E-02 1400 

W6 N. Afri-
ca 2.4E+07 9.7E+05 1.9E-02 0.88 1.0E-01 1.0E-20 1.2E+01 5.1E+00 5.1E+02 4.6E+01 0.0E+00 1.8E-01 2.7E-01 3.0E-02 2400 

W7 Argen-
tina+ 4.2E+06 1.1E+06 1.5E-02 0.89 1.0E-01 1.0E-20 1.2E+01 7.4E+00 7.0E+02 8.0E+00 0.0E+00 3.0E-01 2.7E-01 3.0E-02 240 

W8 Brazil+ 1.1E+07 5.8E+05 8.3E-03 0.89 1.0E-01 1.0E-20 1.2E+01 4.9E+00 1.8E+03 8.0E+00 0.0E+00 4.0E-01 2.7E-01 3.0E-02 54 

W9 Central 
America 5.9E+06 1.3E+06 3.6E-02 0.86 1.0E-01 1.0E-20 1.2E+01 7.3E+00 2.0E+03 2.0E+01 0.0E+00 3.8E-01 2.7E-01 3.0E-02 480 

W10 US+ 1.4E+07 1.8E+06 3.4E-02 0.87 1.0E-01 1.0E-20 1.2E+01 7.0E+00 7.1E+02 2.0E+01 0.0E+00 3.7E-01 2.7E-01 3.0E-02 1300 

W12 
N. Eur. + 
N. Can-
ada 

1.8E+07 5.6E+06 4.9E-02 0.85 1.0E-01 1.0E-20 1.2E+01 8.8E+00 4.9E+02 1.7E+01 0.0E+00 3.6E-01 2.7E-01 3.0E-02 2100 

W13 Europe+ 8.6E+06 1.7E+06 1.6E-02 0.88 1.0E-01 1.0E-20 1.2E+01 6.8E+00 5.5E+02 1.5E+01 0.0E+00 1.7E-01 2.7E-01 3.0E-02 610 

W14 East 
Indies 2.0E+06 1.4E+06 3.0E-02 0.87 1.0E-01 1.0E-20 1.2E+01 8.0E+00 1.5E+03 3.0E+00 0.0E+00 2.0E-01 2.7E-01 3.0E-02 80 

IND India 4.6E+06 4.6E+05 4.2E-02 0.86 1.0E-01 1.0E-20 1.2E+01 5.0E+00 1.2E+03 1.3E+01 0.0E+00 2.7E-01 2.7E-01 3.0E-02 580 
CHI China 6.4E+06 8.4E+05 4.6E-02 0.85 1.0E-01 1.0E-20 1.2E+01 6.1E+00 1.2E+03 1.3E+01 0.0E+00 2.7E-01 2.7E-01 3.0E-02 620 
JAP Japan 6.0E+05 4.2E+05 4.4E-02 0.86 1.0E-01 1.0E-20 1.2E+01 8.3E+00 2.4E+03 1.3E+01 0.0E+00 2.7E-01 2.7E-01 3.0E-02 310 
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North 
Ameri
ca 

North 
America 1.4E+07 1.8E+06 3.4E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 7.0E+00 7.1E+02 2.0E+01 0.0E+00 3.7E-01 2.7E-01 3.0E-02 1.3E+03 

Latin 
Ameri
ca 

Latin 
America 2.1E+07 3.0E+06 1.8E-02 8.8E-01 1.0E-01 1.0E-20 1.2E+01 6.5E+00 1.6E+03 1.5E+01 0.0E+00 3.8E-01 2.7E-01 3.0E-02 2.3E+02 

Eu-
rope Europe 8.6E+06 1.7E+06 1.6E-02 8.8E-01 1.0E-01 1.0E-20 1.2E+01 6.8E+00 5.5E+02 1.5E+01 0.0E+00 1.7E-01 2.7E-01 3.0E-02 6.1E+02 

Afri-
ca+Mi
ddle 
East 

Afri-
ca+Mid
dle East 

3.4E+07 1.6E+06 2.0E-02 8.8E-01 1.0E-01 1.0E-20 1.2E+01 4.3E+00 6.6E+02 4.6E+01 0.0E+00 1.8E-01 2.7E-01 3.0E-02 1.9E+03 

Cen-
tral 
Asia 

Central 
Asia 1.7E+07 7.4E+05 1.7E-02 8.8E-01 1.0E-01 1.0E-20 1.2E+01 7.3E+00 2.2E+02 1.3E+01 0.0E+00 4.6E-01 2.7E-01 3.0E-02 1.3E+03 

South
east 
Asia 

South-
east 
Asia 

1.7E+07 5.3E+06 4.1E-02 8.6E-01 1.0E-01 1.0E-20 1.2E+01 6.5E+00 1.5E+03 1.2E+01 0.0E+00 2.6E-01 2.7E-01 3.0E-02 4.3E+02 

North
ern 
re-
gions 

North-
ern 
regions 

1.8E+07 5.6E+06 4.9E-02 8.5E-01 1.0E-01 1.0E-20 1.2E+01 8.8E+00 4.9E+02 1.7E+01 0.0E+00 3.6E-01 2.7E-01 3.0E-02 2.1E+03 

Oce-
ania Oceania 8.1E+06 2.2E+06 1.0E-02 8.9E-01 1.0E-01 1.0E-20 1.2E+01 7.4E+00 1.3E+03 3.0E+00 0.0E+00 1.9E-01 2.7E-01 3.0E-02 3.4E+01 

Source Based on GIS computation 

Calcu-
lated 
based 

on 
freshwa-
ter, agr 
soil and 

other 
soil 

ratios 

Set at 
0.1 

Same as default 
USEtox landscape 

Based 
on GE-

OS-
Chem 
wind 

speeds 

Same as 
default 
USEtox 
land-
scape 

Same as 
default 
USEtox 

landscape 

Same as 
default 
USEtox 

landscape 

Based on GIS com-
putation 

Same 
as 

default 
USEtox 
land-
scape 

Recalcu-
lated 
based 

on 
model 
algo-
rithm 
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Table B.2: USEtox landscape parameters for the 17 sub-continental and the 8 zone continental resolution (the title terminology is the same as in the USEtox tool) (continued) 

ID # Name Global scale 

    Area Area Areafrac Areafrac Areafrac Areafrac Temp Wind 
speed 

Rain 
rate Depth River-

Flow Fraction Fraction Soil 
erosion 

    land sea freshwa-
ter nat soil agr soil other 

soil       freshwa-
ter cont-reg run off infiltration   

    km2 km2 [-] [-] [-] [-] oC m.s-1 mm.y-1 m [-] [-] [-] mm.y-1 
W1 West Asia 1.2E+08 3.6E+08 3.0E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W2 Indochina 1.4E+08 3.6E+08 2.7E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

W3 N. Australia 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W4 S. Australia+ 1.4E+08 3.6E+08 2.7E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W5 S. Africa 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W6 N. Africa 1.1E+08 3.6E+08 3.2E-02 8.7E-01 1.0E-01 1.2E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W7 Argentina+ 1.3E+08 3.6E+08 2.7E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W8 Brazil+ 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

W9 Central Ameri-
ca 1.3E+08 3.6E+08 2.7E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

W10 US+ 1.2E+08 3.6E+08 2.9E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

W12 N. Eur. + N. 
Canada 1.2E+08 3.6E+08 3.0E-02 8.8E-01 1.0E-01 1.2E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

W13 Europe+ 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
W14 East Indies 1.4E+08 3.6E+08 2.7E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
IND India 1.3E+08 3.6E+08 2.7E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
CHI China 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
JAP Japan 1.4E+08 3.6E+08 2.6E-02 8.7E-01 1.0E-01 1.0E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
North 
America North America 1.2E+08 3.6E+08 2.9E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

Latin 
America Latin America 1.2E+08 3.6E+08 3.1E-02 8.7E-01 1.0E-01 1.2E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

Europe Europe 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
Afri-
ca+Middl
e East 

Africa+Middle 
East 1.0E+08 3.6E+08 3.5E-02 8.7E-01 1.0E-01 1.3E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

Central Central Asia 1.2E+08 3.6E+08 3.0E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
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Asia 
Southeast 
Asia Southeast Asia 1.2E+08 3.6E+08 3.0E-02 8.8E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

Northern 
regions 

Northern 
regions 1.2E+08 3.6E+08 3.0E-02 8.8E-01 1.0E-01 1.2E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 

Oceania Oceania 1.3E+08 3.6E+08 2.8E-02 8.7E-01 1.0E-01 1.1E-20 1.2E+01 3.0E+00 7.0E+02 2.5E+00 0.0E+00 2.5E-01 2.5E-01 3.0E-02 
Source Recalculated based on continental data Same as default USEtox landscape 
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Table B.3: USEtox landscape parameters for the 17 sub-continental and the 8 zone continental resolution (the title terminology is the same as in the USEtox tool) (continued) 

ID # Name Urban scale Human Population Exposure 

    Area Areafrac Areafrac Human pop Human pop Human pop Human breathing rate Water ingestion 

    land nat soil other soil World Continent urban world + cont + urban world + cont 

    km2 [-] [-] [-] [-] [-] m3/(person*day) l/(person*day) 

W1 West Asia 240  0.67 0.33  6.58E+09 2.35E+08 1.47E+06 13  1.4  

W2 Indochina 240  0.67 0.33 6.35E+09 4.65E+08 1.30E+06 13  1.4  

W3 N. Australia 240  0.67 0.33 6.82E+09 3.20E+06 8.24E+05 13  1.4  

W4 S. Australia+ 240  0.67 0.33 6.80E+09 2.12E+07 1.03E+06 13  1.4  

W5 S. Africa 240  0.67 0.33 6.50E+09 3.24E+08 1.25E+06 13  1.4  

W6 N. Africa 240  0.67 0.33 6.03E+09 7.89E+08 2.30E+06 13  1.4  

W7 Argentina+ 240  0.67 0.33 6.75E+09 6.67E+07 2.89E+06 13  1.4  

W8 Brazil+ 240  0.67 0.33 6.58E+09 2.42E+08 2.62E+06 13  1.4  

W9 Central America 240  0.67 0.33 6.51E+09 3.05E+08 2.76E+06 13  1.4  

W10 US+ 240  0.67 0.33 6.49E+09 3.28E+08 1.32E+06 13  1.4  

W12 N. Eur. + N. Canada 240  0.67 0.33 6.80E+09 1.67E+07 6.56E+05 13  1.4  

W13 Europe+ 240  0.67 0.33 6.06E+09 7.59E+08 1.41E+06 13  1.4  

W14 East Indies 240  0.67 0.33 6.61E+09 2.07E+08 1.30E+06 13  1.4  

IND India 240  0.67 0.33 5.25E+09 1.57E+09 1.76E+06 13  1.4  

CHI China 240  0.67 0.33 5.49E+09 1.33E+09 1.47E+06 13  1.4  

JAP Japan 240  0.67 0.33 6.67E+09 1.51E+08 4.56E+06 13  1.4  

North America North America 240 0.67 0.33 6.5E+09 3.3E+08 1.3E+06 13 1.4 

Latin America Latin America 240 0.67 0.33 6.2E+09 6.1E+08 8.3E+06 13 1.4 

Europe Europe 240 0.67 0.33 6.1E+09 7.6E+08 1.4E+06 13 1.4 
Africa+Middle 
East Africa+Middle East 240 0.67 0.33 5.7E+09 1.1E+09 3.6E+06 13 1.4 

Central Asia Central Asia 240 0.67 0.33 6.6E+09 2.4E+08 1.5E+06 13 1.4 

Southeast Asia Southeast Asia 240 0.67 0.33 3.1E+09 3.7E+09 1.0E+07 13 1.4 
Northern re-
gions Northern regions 240 0.67 0.33 6.8E+09 1.7E+07 6.6E+05 13 1.4 

Oceania Oceania 240 0.67 0.33 6.8E+09 2.4E+07 1.9E+06 13 1.4 

Source Same as default USEtox landscape Recalculated based on continental data Same as default USEtox landscape 
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Table B.4: USEtox landscape parameters for the 17 sub-continental and the 8 zone continental resolution (the title terminology is the same as in the USEtox tool) (continued) 

ID # Name Production-based intake rates 

  
Exposed 
produce 

Exposed 
produce 

Unex-
posed 

produce 

Unex-
posed 

produce 
Meat Meat Dairy prod-

ucts 
Dairy 

products 

Fish 
freshwa-

ter 

Fish 
freshwa-

ter 

Fish 
coastal 
marine 

freshwater 

Fish coastal 
marine 

freshwater 

world continent world continent World continent World continent World continent world continent 

  
kg/(day*
capita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*cap
ita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*c
apita) 

kg/(day*ca
pita) 

W1 West Asia 2.13 1.71 0.37 0.33 0.10 0.08 0.24 0.26 0.01 0.011 0.04 0.05 
W2 Indochina 2.08 2.57 0.38 0.22 0.10 0.05 0.25 0.01 0.01 0.008 0.03 0.06 
W3 N. Australia 2.11 10.45 0.37 0.18 0.09 0.51 0.24 1.39 0.01 0.006 0.03 6.65 
W4 S. Australia+ 2.10 9.02 0.37 0.21 0.09 0.60 0.23 2.84 0.01 0.004 0.03 0.61 
W5 S. Africa 2.17 1.03 0.37 0.44 0.10 0.03 0.25 0.06 0.01 0.006 0.04 0.03 
W6 N. Africa 2.27 0.98 0.36 0.46 0.10 0.04 0.26 0.10 0.01 0.006 0.04 0.01 
W7 Argentina+ 2.09 4.92 0.37 0.46 0.09 0.23 0.23 0.57 0.01 0.002 0.03 0.31 
W8 Brazil+ 1.97 6.08 0.37 0.36 0.09 0.20 0.24 0.28 0.01 0.004 0.04 0.05 

W9 Central 
America 2.09 2.62 0.38 0.10 0.10 0.09 0.24 0.20 0.01 0.003 0.04 0.04 

W10 US+ 1.98 4.82 0.37 0.42 0.08 0.35 0.21 0.69 0.01 0.003 0.04 0.04 

W12 N. Eur. + N. 
Canada 2.12 1.74 0.37 0.47 0.09 0.15 0.24 0.75 0.01 0.008 0.03 1.43 

W13 Europe+ 2.06 2.57 0.27 1.12 0.08 0.19 0.17 0.80 0.01 0.003 0.04 0.02 
W14 East Indies 2.15 1.21 0.38 0.16 0.10 0.02 0.24 0.01 0.01 0.013 0.03 0.13 
IND India 2.30 1.52 0.46 0.07 0.12 0.01 0.25 0.20 0.01 0.008 0.05 0.00 
CHI China 2.17 1.90 0.37 0.38 0.09 0.12 0.29 0.03 0.01 0.029 0.04 0.01 
JAP Japan 2.14 1.16 0.37 0.21 0.10 0.09 0.24 0.19 0.01 0.027 0.04 0.06 
North 
America 

North Amer-
ica 1.98 4.82 0.37 0.42 0.08 0.35 0.21 0.69 0.012 0.003 0.04 0.04 

Latin Amer-
ica 

Latin Ameri-
ca 1.91 4.24 0.38 0.24 0.09 0.15 0.23 0.27 0.012 0.003 0.03 0.08 

Europe Europe 2.06 2.57 0.27 1.12 0.08 0.19 0.17 0.80 0.012 0.003 0.04 0.02 
Afri-
ca+Middle 

Afri-
ca+Middle 2.34 0.99 0.35 0.45 0.11 0.03 0.27 0.09 0.012 0.006 0.04 0.02 
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East East 
Central Asia Central Asia 2.13 1.71 0.37 0.33 0.10 0.08 0.24 0.26 0.011 0.011 0.04 0.05 
Southeast 
Asia 

Southeast 
Asia 2.56 1.76 0.56 0.21 0.14 0.06 0.40 0.10 0.005 0.017 0.05 0.02 

Northern 
regions 

Northern 
regions 2.12 1.74 0.37 0.47 0.09 0.15 0.24 0.75 0.011 0.008 0.03 1.43 

Oceania Oceania 2.09 9.21 0.37 0.21 0.09 0.59 0.23 2.65 0.011 0.005 0.03 1.40 

  

Recalcu-
lated 

based on 
conti-
nental 
data 

FAO pro-
duction 

data from 
2001 

Recalcu-
lated 

based on 
continen-
tal data 

FAO pro-
duction 

data from 
2001 

Recalcu-
lated 

based on 
continen-
tal data 

FAO pro-
duction 

data from 
2001 

Recalculated 
based on 

continental 
data 

FAO pro-
duction 

data from 
2001 

Recalcu-
lated 

based on 
continen-
tal data 

FAO 
FishSTAT 

Recalcu-
lated 

based on 
continen-
tal data 

FAO 
FishSTAT 
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B.2 Selected set of pollutants 
Table B.5: Chemical data of the set of 36 pollutants of the OMNIITOX set (Margni et al. 2002) 

Name CAS 

Degradable 
with H and 

Kow = 0; Non-
degradable or 
specification 

of partitioning 
coefficients = 

1 

Molecu-
lar Mass 
(g/mole) 

Henry's 
Constant 
(Pa m3 

mol-1) or 
Kaw 

Log 
Kow 

tropo-
spheric 

degrada-
tion half 

life 
(hours) 

water-
column 

degrada-
tion half 

life (hours) 

Soil surface 
layer degra-
dation half 
life (hours) 

Source 

sediment 
degrada-
tion half 

life (hours) 

vegetation 
degrada-
tion half 

life (hours) 

Soil root 
zone 

degrada-
tion half 

life (hours) 

Soil va-
dose layer 
degrada-
tion half 

life (hours) 

Source 

Tetrachloroethylene 127-18-4 0 166 1.77E+03 2.88 5.50E+02 1.75E+03 1.70E+03 OM-
NITOX 5.50E+03 1.70E+03 1.70E+03 1.70E+03 MACKAY 

Carbon tetrachloride 
(CCl4) 56-23-5 0 154 2.76E+03 2.64 1.70E+04 1.70E+03 6.04E+03 OM-

NITOX 1.70E+04 5.50E+03 5.50E+03 5.50E+03 MACKAY 

1,3-butadiene 106-99-0 0 54 7.36E+03 1.99 1.70E+04 1.70E+02 5.50E+02 OM-
NITOX 1.70E+03 5.50E+02 5.50E+02 5.50E+02 MACKAY 

Methomyl 16752-77-
5 0 162 1.84E-05 0.60 5.80E+01 5.52E+03 5.03E+02 OM-

NITOX 5.04E+02 5.04E+02 5.04E+02 5.04E+02 USES 

Acephate 30560-19-
1 0 183 5.01E-08 -0.85 3.44E+01 1.28E+03 5.29E+01 OM-

NITOX 5.28E+01 5.28E+01 5.28E+01 5.28E+01 USES 

Formaldehyde 50-00-0 0 30 3.37E-02 0.35 3.63E+00 9.58E+01 5.50E+01 OM-
NITOX 3.84E+02 9.60E+01 9.60E+01 9.60E+01 HOWARD 

PCBs 1336-36-3 0 292 4.15E+01 7.10 4.73E+02 3.38E+02 9.00E+02 OM-
NITOX 1.34E+03 3.36E+02 3.36E+02 3.36E+02 Estimate 

Di(n-octyl) phthalate 117-84-0 0 391 2.57E-01 8.10 1.87E+01 3.36E+02 3.37E+02 OM-
NITOX 6.54E+03 3.36E+02 3.36E+02 3.36E+02 USES 

Hexabromobenzene 87-82-1 0 551 2.81E+00 6.07 3.36E+04 1.44E+03 1.44E+03 OM-
NITOX 5.76E+03 1.44E+03 1.44E+03 1.44E+03 Estimate 

Cypermethrin 52315-07-
8 0 416 1.92E-02 6.60 1.80E+01 1.20E+02 1.25E+03 OM-

NITOX 1.25E+03 1.25E+03 1.25E+03 1.25E+03 USES 

Mirex 2385-85-5 0 546 8.11E+01 6.90 1.70E+02 1.70E+02 5.50E+04 OM-
NITOX 5.50E+04 5.50E+04 5.50E+04 5.50E+04 MACKAY 

Trifluralin 1582-09-8 0 336 1.03E+01 5.34 1.70E+02 1.70E+03 1.70E+03 OM-
NITOX 5.50E+03 1.70E+03 1.70E+03 1.70E+03 MACKAY 

Dicofol 115-32-2 0 370 2.42E-02 5.02 1.12E+02 9.00E+02 1.46E+03 OM-
NITOX 3.84E+02 1.46E+03 1.46E+03 1.46E+03 CALTOX 

1,4-dichlorobenzene 106-46-7 0 147 2.41E+02 3.40 5.50E+02 1.70E+03 5.50E+03 OM-
NITOX 1.70E+04 5.50E+03 5.50E+03 5.50E+03 MACKAY 

Aldrin 309-00-2 0 365 4.40E+00 3.01 4.99E+00 1.75E+04 1.70E+04 OM-
NITOX 5.50E+04 1.70E+04 1.70E+04 1.70E+04 MACKAY 
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Name CAS 

Degradable 
with H and 

Kow = 0; Non-
degradable or 
specification 

of partitioning 
coefficients = 

1 

Molecu-
lar Mass 
(g/mole) 

Henry's 
Constant 
(Pa m3 

mol-1) or 
Kaw 

Log 
Kow 

tropo-
spheric 

degrada-
tion half 

life 
(hours) 

water-
column 

degrada-
tion half 

life (hours) 

Soil surface 
layer degra-
dation half 
life (hours) 

Source 

sediment 
degrada-
tion half 

life (hours) 

vegetation 
degrada-
tion half 

life (hours) 

Soil root 
zone 

degrada-
tion half 

life (hours) 

Soil va-
dose layer 
degrada-
tion half 

life (hours) 

Source 

1,1,2,2-
Tetrachloroethane 79-34-5 0 168 3.67E+01 2.39 1.70E+04 1.70E+03 5.50E+03 OM-

NITOX 1.70E+04 5.50E+03 5.50E+03 5.50E+03 MACKAY 

Captan 133-06-2 0 301 6.48E-04 2.30 1.70E+01 1.70E+01 5.50E+02 OM-
NITOX 5.50E+02 5.50E+02 5.50E+02 5.50E+02 MACKAY 

Pronamide 23950-58-
5 0 256 9.77E-04 3.43 2.91E+01 9.77E+02 1.93E+03 OM-

NITOX 1.80E+02 1.93E+03 1.93E+03 1.93E+03 CALTOX 

Anthracene 120-12-7 0 178 5.56E+00 4.54 5.50E+01 5.50E+02 5.50E+03 OM-
NITOX 1.70E+04 5.50E+03 5.50E+03 5.50E+03 MACKAY 

Gamma-HCH (lin-
dane) 58-89-9 0 291 5.14E-01 3.70 1.04E+03 1.70E+04 1.70E+04 OM-

NITOX 5.50E+04 1.70E+04 1.70E+04 1.70E+04 MACKAY 

Dimethylphthalate 
(DMP) 131-11-3 0 194 1.05E-02 2.12 1.70E+02 1.70E+02 5.50E+02 OM-

NITOX 1.70E+03 5.50E+02 5.50E+02 5.50E+02 MACKAY 

Methanol 67-56-1 0 32 4.55E-01 -0.77 3.92E+02 5.50E+01 5.50E+01 OM-
NITOX 7.20E+01 9.60E+01 9.60E+01 9.60E+01 HOWARD 

1,2-Dichloroethane 107-06-2 0 99 1.18E+02 1.48 1.70E+03 1.70E+03 5.50E+03 OM-
NITOX 1.70E+04 5.50E+03 5.50E+03 5.50E+03 MACKAY 

Ethyl acetate 141-78-6 0 88 1.34E+01 0.73 1.94E+02 9.58E+01 1.70E+02 OM-
NITOX 3.84E+02 9.60E+01 9.60E+01 9.60E+01 HOWARD 

N-
Nitrosodiethylamine 55-18-5 0 102 3.63E-01 0.48 6.00E+00 6.00E+00 1.70E+03 OM-

NITOX 2.40E+01 2.40E+03 2.40E+03 2.40E+03 HOWARD 

Thiram 137-26-8 0 240 3.04E-02 1.73 1.70E+02 1.70E+02 5.50E+02 OM-
NITOX 1.70E+03 5.50E+02 5.50E+02 5.50E+02 MACKAY 

Propoxur 114-26-1 0 209 1.43E-04 1.50 5.00E+00 5.50E+02 5.50E+02 OM-
NITOX 1.70E+03 5.50E+02 5.50E+02 5.50E+02 MACKAY 

Folpet 133-07-3 0 297 7.66E-03 2.85 2.45E+01 1.38E+04 1.38E+04 OM-
NITOX 1.38E+04 1.38E+04 1.38E+04 1.38E+04 USES 

Benomyl 17804-35-
2 0 290 4.93E-07 2.30 4.99E+00 1.70E+02 1.70E+03 OM-

NITOX 5.50E+03 1.70E+03 1.70E+03 1.70E+03 MACKAY 

Hexachlorobutadiene 87-68-3 0 261 1.03E+03 4.78 1.28E+04 1.75E+03 1.70E+03 OM-
NITOX 1.70E+03 1.70E+03 1.70E+03 1.70E+03 USES 

Hexachlorocyclopen-
tadiene 77-47-4 0 273 2.70E+03 5.04 9.77E+02 8.63E+01 4.20E+02 OM-

NITOX 1.68E+03 4.20E+02 4.20E+02 4.20E+02 HOWARD 

Heptachlor epoxide 1024-57-3 0 389 2.10E+00 4.98 7.43E+01 7.03E+03 7.03E+03 OM-
NITOX 9.60E+01 7.02E+03 7.02E+03 7.02E+03 HOWARD 

Hexachlorobenzene 118-74-1 0 285 1.70E+02 5.50 7.35E+03 5.50E+04 5.50E+04 OM- 5.50E+04 5.50E+04 5.50E+04 5.50E+04 MACKAY 
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Name CAS 

Degradable 
with H and 

Kow = 0; Non-
degradable or 
specification 

of partitioning 
coefficients = 

1 

Molecu-
lar Mass 
(g/mole) 

Henry's 
Constant 
(Pa m3 

mol-1) or 
Kaw 

Log 
Kow 

tropo-
spheric 

degrada-
tion half 

life 
(hours) 

water-
column 

degrada-
tion half 

life (hours) 

Soil surface 
layer degra-
dation half 
life (hours) 

Source 

sediment 
degrada-
tion half 

life (hours) 

vegetation 
degrada-
tion half 

life (hours) 

Soil root 
zone 

degrada-
tion half 

life (hours) 

Soil va-
dose layer 
degrada-
tion half 

life (hours) 

Source 

NITOX 

Heptachlor 76-44-8 0 373 2.94E+01 5.27 5.50E+01 5.50E+02 1.70E+03 OM-
NITOX 5.50E+03 1.70E+03 1.70E+03 1.70E+03 MACKAY 

Nitrobenzene 98-95-3 0 123 2.4 1.85 4.94E+00 1.75E+03 1.23E+03 OM-
NITOX 5.50E+03 1.70E+03 1.70E+03 1.70E+03 MACKAY 

Endosulfan 115-29-7 0 407 6.5 3.83 3.85E+01 1.13E+02 2.11E+02 OM-
NITOX 7.68E+02 1.11E+02 1.11E+02 1.11E+02 HOWARD 
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Table B.6: Chemical data of the set of 36 pollutants of the OMNIITOX set (Margni et al. 2002) 

Name PKa 

BCF (kg-
wa-

ter/kg-
fish) 

Chemical 
Class (option-

al) 

water - 
top - 

surface 
layer 

degrada-
tion half 

life 
(hours) 

water - 
bottom - 
deep sea 
degrada-
tion half 

life 
(hours) 

sediment 
(anaero-

bic) 
degrada-
tion half 

life 
(hours) 

BCF (kg-
water/kg-

fish) 

ED10 - 
oral- non 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

ED10 - 
inhala-
tion - 
non 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

DALY/Inc
idence - 

oral- non 
cancer 

DALY/Inc
idence - 
inhala-
tion - 
non 

cancer 

ED10 - 
oral - 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

ED10 - 
inhalation 

- cancer 
(mg / kg 

body 
weight - 

day, 
median 

estimate) 
 

Aquatic 
Ecotoxicolog-

ical Effect 
Factor (PAF 
per kg/m3, 

median 
estimate) 

Tetrachloroeth-
ylene  8.28E+01 Non dissociat-

ing compound 5.50E+02 5.50E+03 5.50E+03 8.28E+01 5.26E-01 2.08E+00 1.30E+00 1.30E+00 4.00E+00  6.13E+02 

Carbon tetra-
chloride (CCl4)  3.01E+01 Non dissociat-

ing compound 1.70E+03 1.70E+04 1.70E+04 3.01E+01 5.38E-02 4.09E+00 1.30E+00 1.30E+00 1.19E+00 1.19E+00 6.73E+01 

1,3-butadiene  6.80E+00 Non dissociat-
ing compound 1.70E+02 1.70E+03 1.70E+03 6.80E+00 6.76E-01 6.76E-01 1.30E+00 1.30E+00  1.04E+01 2.01E+02 

Methomyl  3.16E+00 Non dissociat-
ing compound 5.52E+03 5.04E+02 5.04E+02 3.16E+00 2.50E+00  1.30E+00 1.30E+00   7.01E+03 

Acephate  3.16E+00 Non dissociat-
ing compound 1.26E+03 5.28E+01 5.28E+01 3.16E+00 2.04E-03  1.30E+00 1.30E+00 1.00E+01  7.26E+01 

Formaldehyde 1.33E+01 3.16E+00 Non dissociat-
ing compound 9.60E+01 3.84E+02 3.84E+02 3.16E+00 3.75E+00 2.52E-03 1.30E+00 1.30E+00  9.09E-02 7.42E+01 

PCBs  5.80E+04 

Mixture (of 
non dissociat-

ing com-
pounds) 

3.36E+02 1.34E+03 1.34E+03 5.80E+04   1.30E+00 1.30E+00   7.50E+05 

Di(n-octyl) 
phthalate  6.35E+01 Non dissociat-

ing compound 3.36E+02 6.54E+03 6.54E+03 6.35E+01 3.09E+00  1.30E+00 1.30E+00   1.50E+01 

Hexabromoben-
zene  9.42E+03 Non dissociat-

ing compound 1.44E+03 5.76E+03 5.76E+03 9.42E+03 1.61E-01  1.30E+00 1.30E+00   1.45E+06 

Cypermethrin  2.07E+02 Non dissociat-
ing compound 1.20E+02 1.25E+03 1.25E+03 2.07E+02 1.00E+00  1.30E+00 1.30E+00   6.47E+06 

Mirex  4.03E+04 Non dissociat-
ing compound 1.70E+02 5.50E+04 5.50E+04 4.03E+04 1.85E-02  1.30E+00 1.30E+00 7.14E-02  3.33E+03 

Trifluralin  2.58E+03 Non dissociat-
ing compound 1.70E+03 5.50E+03 5.50E+03 2.58E+03 7.69E-01  1.30E+00 1.30E+00 2.94E+01  1.13E+04 
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Name PKa 

BCF (kg-
wa-

ter/kg-
fish) 

Chemical 
Class (option-

al) 

water - 
top - 

surface 
layer 

degrada-
tion half 

life 
(hours) 

water - 
bottom - 
deep sea 
degrada-
tion half 

life 
(hours) 

sediment 
(anaero-

bic) 
degrada-
tion half 

life 
(hours) 

BCF (kg-
water/kg-

fish) 

ED10 - 
oral- non 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

ED10 - 
inhala-
tion - 
non 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

DALY/Inc
idence - 

oral- non 
cancer 

DALY/Inc
idence - 
inhala-
tion - 
non 

cancer 

ED10 - 
oral - 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

ED10 - 
inhalation 

- cancer 
(mg / kg 

body 
weight - 

day, 
median 

estimate) 
 

Aquatic 
Ecotoxicolog-

ical Effect 
Factor (PAF 
per kg/m3, 

median 
estimate) 

Dicofol  1.46E+03 
Hydrolyses 

app t1/2: 120 h 
(Bulle et al.) 

8.99E+02 3.84E+02 3.84E+02 1.46E+03   1.30E+00 1.30E+00 1.32E+00  1.03E+04 

1,4-
dichlorobenzene  8.89E+01 Non dissociat-

ing compound 1.70E+03 1.70E+04 1.70E+04 8.89E+01 2.03E+00 7.69E+01 1.30E+00 1.30E+00 2.56E+01  7.63E+02 

Aldrin  2.02E+04 Non dissociat-
ing compound 1.70E+04 5.50E+04 5.50E+04 2.02E+04 1.25E-03  1.30E+00 1.30E+00 1.18E-02 1.18E-02 8.27E+04 

1,1,2,2-
Tetrachloro-
ethane 

 1.38E+01 Non dissociat-
ing compound 1.70E+03 1.70E+04 1.70E+04 1.38E+01 2.15E+00 2.32E+01 1.30E+00 1.30E+00 1.54E+00 9.09E-01 2.83E+02 

Captan  2.86E+01 Non dissociat-
ing compound 1.70E+01 5.50E+02 5.50E+02 2.86E+01 3.33E+00  1.30E+00 1.30E+00   7.21E+03 

Pronamide  8.73E+01 Non dissociat-
ing compound 9.79E+02 1.80E+02 1.80E+02 8.73E+01 7.69E+00  1.30E+00 1.30E+00 4.76E+00  3.66E+02 

Anthracene  5.33E+02 Non dissociat-
ing compound 5.50E+02 1.70E+04 1.70E+04 5.33E+02 3.70E+01  1.30E+00 1.30E+00   3.92E+04 

Gamma-HCH 
(lindane)  3.08E+02 Non dissociat-

ing compound 1.70E+04 5.50E+04 5.50E+04 3.08E+02 2.63E-02 1.16E-01 1.30E+00 1.30E+00 1.23E+00  2.85E+04 

Dime-
thylphthalate 
(DMP) 

 3.40E+00 Non dissociat-
ing compound 1.70E+02 1.70E+03 1.70E+03 3.40E+00   1.30E+00 1.30E+00   4.14E+01 

Methanol 1.53E+01 3.16E+00  5.50E+01 7.20E+01 7.20E+01 3.16E+00 3.79E+01  1.30E+00 1.30E+00   1.50E+00 
1,2-
Dichloroethane  2.75E+00 Non dissociat-

ing compound 1.70E+03 1.70E+04 1.70E+04 2.75E+00 8.70E-01 8.67E+01 1.30E+00 1.30E+00 3.23E-01 2.17E+00 2.57E+01 

Ethyl acetate  3.16E+00 Non dissociat-
ing compound 9.60E+01 3.84E+02 3.84E+02 3.16E+00 7.14E+01  1.30E+00 1.30E+00   7.42E+00 

N-
Nitrosodiethyl-
amine 

3.89E+00 3.16E+00 Non dissociat-
ing compound 6.00E+00 2.40E+01 2.40E+01 3.16E+00   1.30E+00 1.30E+00 9.09E-04 1.33E-03 6.00E+00 
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Name PKa 

BCF (kg-
wa-

ter/kg-
fish) 

Chemical 
Class (option-

al) 

water - 
top - 

surface 
layer 

degrada-
tion half 

life 
(hours) 

water - 
bottom - 
deep sea 
degrada-
tion half 

life 
(hours) 

sediment 
(anaero-

bic) 
degrada-
tion half 

life 
(hours) 

BCF (kg-
water/kg-

fish) 

ED10 - 
oral- non 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

ED10 - 
inhala-
tion - 
non 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

DALY/Inc
idence - 

oral- non 
cancer 

DALY/Inc
idence - 
inhala-
tion - 
non 

cancer 

ED10 - 
oral - 

cancer 
(mg / kg 

body 
weight - 

day, 
median 

esti-
mate) 

ED10 - 
inhalation 

- cancer 
(mg / kg 

body 
weight - 

day, 
median 

estimate) 
 

Aquatic 
Ecotoxicolog-

ical Effect 
Factor (PAF 
per kg/m3, 

median 
estimate) 

Thiram 8.70E-01 4.29E+00  1.70E+02 1.70E+03 1.70E+03 4.29E+00 1.33E+00  1.30E+00 1.30E+00   4.00E+04 
Propoxur 1.19E+01 2.95E+00  5.50E+02 1.70E+03 1.70E+03 2.95E+00 3.23E-02  1.30E+00 1.30E+00   3.21E+03 

Folpet  3.12E+01 Non dissociat-
ing compound 1.38E+04 1.38E+04 1.38E+04 3.12E+01 1.00E+01  1.30E+00 1.30E+00 4.17E+01  8.07E+03 

Benomyl  8.56E+00 Significant 
hydrolysis 1.70E+02 5.50E+03 5.50E+03 8.56E+00 1.33E+00  1.30E+00 1.30E+00   1.31E+03 

Hexachlorobuta-
diene  9.56E+02 Non dissociat-

ing compound 1.70E+03 1.70E+03 1.70E+03 9.56E+02 1.40E-03 1.14E+00 1.30E+00 1.30E+00 2.94E+00 2.94E+00 5.82E+03 

Hexachlorocy-
clopentadiene  1.52E+03 

Hydrolyses 
app t1/2: 173 h 
(Bulle et al.) 

8.65E+01 1.68E+03 1.68E+03 1.52E+03 5.56E-01 1.80E-03 1.30E+00 1.30E+00   4.38E+04 

Heptachlor 
epoxide  1.36E+03 Non dissociat-

ing compound 7.02E+03 9.60E+01 9.60E+01 1.36E+03 2.33E-03  1.30E+00 1.30E+00 2.17E-02 2.17E-02 1.66E+05 

Hexachloroben-
zene  5.15E+03 Non dissociat-

ing compound 5.50E+04 5.50E+04 5.50E+04 5.15E+03 2.13E-02 1.50E-05 1.30E+00 1.30E+00 7.69E-02 7.69E-02 2.16E+04 

Heptachlor  9.93E+03 
Hydrolyses 

app t1/2: 23.1 
h (Bulle et al.) 

5.50E+02 5.50E+03 5.50E+03 9.93E+03 4.00E-02  1.30E+00 1.30E+00 4.76E-02 4.35E-02 1.02E+05 

Nitrobenzene  5.30E+00  1.70E+03 5.50E+03 5.50E+03 5.30E+00 3.23E-02  1.30E+00 1.30E+00    
Endosulfan  1.78E+02  1.11E+02 7.68E+02 7.68E+02 1.78E+02 1.59E-01  1.30E+00 1.30E+00   2.65E+05 
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B.3 Additional USEtox parameterization results 
Figure B.1 compares the freshwater residence times (fate factors) for 14 chemicals emitted in each 

sub-continent, in the a-spatial USEtox model and the spatially differentiated IMPACTWorld model. It 

is similar to Figure 3.2.b, but with results differentiated by substance and for a restricted number of 

substances. 

 

Figure B.1: Comparison between a-spatial USEtox model and the spatially differentiated IMPACTWorld mod-
el predictions of freshwater residence time (fate factor, FF) for 14 chemicals emitted in each sub-continent 

We calculated transfer fractions from air to freshwater (ܶܨ௔,௪, unitless) and from fresh water to air 

 :based on the following fate factors (௪,௔, unitlessܨܶ)

௔,௪ܨܶ =  ௪,௪ܨܨ௔,௪ܨܨ

 

௪,௔ܨܶ = ௔,௔ܨܨ௪,௔ܨܨ  

Equation B.1: Transfer fraction from air to freshwater 
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where all the fate factors (FF) are in units of days and equal to the steady state substance mass in the 

second subscript (in kg) for an emission flow of 1 kg/day to the compartment indicated by the first 

subscript. ܨܨ௔,௪ is the fate factor in fresh water for an emission to air ܨܨ௪,௔  is the fate factor in air 

for an emission to fresh water (days), ܨܨ௪,௪  is the fate for an emission to fresh water in fresh water 

(days), and ܨܨ௔,௔ is the fate factor in air for an emission to air (days). 

Figure B.2a shows that for many pollutants, IMPACTWorld overestimates the transfer factor from air 

to fresh water by about one order of magnitude compared to USEtox. The dominant disappearance 

pathway of pollutants with high KH (e.g., hexachlorobenzene KH =170 Pa.m3.mol-1, carbon tetrachlo-

ride KH =2760 Pa.m3.mol-1, and n-nitrosodiethylamine KH=0.362 Pa.m3.mol-1) emitted to continental 

air is transfer to global air.  

The transfer factor from air to fresh water is higher than 1.0 for hexachlorobenzene in IMPACTWorld 

for emission to Brazil (W8) and East Indies (W14). This result is in line with Figure 3.2.b results, where 

the fate of hexachlorobenzene in W14 is observed to exceed the freshwater residence time in this 

sub-continental zone due to a transfer to Antarctica (W11). In the same way, when hexachloroben-

zene is emitted to air in East Indies and Brazil, it is transported to Antarctica where the freshwater 

residence time is higher than in East Indies and Brazil (>8000 y compared to 19 days and 34 days). 

Hexachlorobenzene fate in water when emitted to air is thus higher than when emitted in water in 

W8 and W14, due to a transfer to Antarctica and important substance residence time there.  

Figure B.2.b shows that when emitted to fresh water, the thiram and n-nitrosodiethylamine transfer 

fractions to air are under-estimated by USEtox by six and three orders of magnitude, respectively. 

Based on these observations, deviations in fate results are more due to model algorithm differences 

(i.e., modelling of freshwater outflow and the volatilization algorithm) than to the influence of sur-

rounding global or continental zones. 
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a) b) 
Figure B.2: Comparison between a-spatial USEtox model and the spatially differentiated IMPACTWorld mod-

el regarding:  a) Transfer fraction from air to fresh water and b) Transfer fraction from freshwater to air 

Figure B.3 and Figure B.4 present respectively intake fractions for an emission to fresh water and for 

an emission to air. Figure B.3 a shows that results for both models are aligned except for thiram and 

n-nitrosodiethylamine. This difference is correlated with the discrepancies observed for transfer frac-

tion from fresh water to air (see Figure B.2.b), and thus due to a difference in fate factor ܨܨ௪,௔. 
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a) b)

c) d)
Figure B.3: Comparison between a-spatial USEtox model and the spatially differentiated IMPACTWorld mod-

el regarding the intake fraction for an emission to water:  a) by inhalation, b) by total ingestion, c) by ex-
posed produce ingestion, d) by unexposed produce ingestion 
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a) b) 

  
c) d) 

 
 

e) f) 
Figure B.4: Comparison between a-spatial USEtox model and the spatially differentiated IMPACTWorld mod-
el regarding the intake fraction for an emission to air:  a) by inhalation for an emission in an urban zone, b) 
by inhalation for an emission in an rural zone c) by total ingestion, d) by exposed produce ingestion, e) by 

unexposed produce ingestion, f) by freshwater ingestion 
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B.4 Additional intake fraction variation analysis 
Figure B5.a presents the variability in intake fraction through water ingestion across European water-

sheds, as calculated by the spatially differentiated European model for emissions in each of the Eu-

ropean watersheds, as a function of the chemical degradation half-life in fresh water. In contrast to 

the variation of fate, the intake fraction varies by up to five orders of magnitude for quickly degraded 

pollutants with half-lives shorter than a day, such as n-nitrosodiethylamine (t1/2=6 h in fresh water). 

On the contrary, the intake fraction through freshwater ingestion varies by three to four orders of 

magnitude for persistent pollutants with half-lives larger than 100 days, such as methomyl (t1/2=230 

days in fresh water).  

By displaying the intake fraction through water ingestion as a function of the freshwater residence 

time for four pollutants with different persistences in fresh water (n-nitrosodiethylamine t1/2=0.25 d, 

captan: t1/2=0.71 d, hexabromobenzene: t1/2=73 d, and methomyl: t1/2=230 d), Figure B.5b shows that 

the variability across watershed decreases as water residence time increases, more prominently for 

quickly degraded pollutants. In short-residence-time watersheds, all substances are equally ingested 

through drinking water independently of their persistence (persistent substances are removed from 

the system by advection). In long-residence-time watersheds, the intake fraction of n-

nitrosodiethylamine is up to 4 orders of magnitude lower than in short-residence-time watersheds. 

This is explained by the fact that low persistence substances are degraded in watersheds where they 

have been emitted, where the population is generally lower than for watersheds close to the coast 

(population is the only spatially differentiated parameter affecting exposure by water ingestion). This 

variability is reduced to three orders of magnitude for methomyl, given that this substance crosses 

watersheds with various population patterns due to its high persistence. 
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a) b) 
Figure B.5: Main factors affecting intake fraction through water ingestion. a) Intake fractions through water 
ingestion of all test substances as a function of their degradation half-life in water for each of the 136 water-

sheds of the European spatial model and b) Intake fractions through water ingestion of n-
nitrosodiethylamine, captan, hexabromobenzene and methomyl as a function of water residence time to sea 

for each of the 136 watershed of the European spatial model 



Appendix B 

 

182 

B.5 Classification of IMPACT Europe spatial model watersheds into arche-type categories 

 

Figure B.6:  Boundaries of the three archetypical watershed A1, A2 and A3 model based on IMPACT Europe 
spatial model (Pennington et al. 2005) 

  



Appendix B 

183 

Table B.7: Classification of IMPACT Europe spatial model watersheds into A1, A2 and A3 archetype categories 

Region 
No Volume (m3) 

Advection 
rate 

(m3/h) 

Is there a 
watershed 

after this one 

Retention in wa-
tershed (d) 

Retention after 
watershed (d) 

Retention time 
until the sea (d) 

Archetype water-
shed classification 

W0 4.00E+13 4.15E+09 4.01E+02 4.01E+02 A0 
W2 1.00E+08 1.24E+06 3.39E+00 3.39E+00 A2 

W3 1.04E+07 2.49E+05 1.74E+00 1.74E+00 A1 

W4 8.79E+09 8.15E+05 W4 4.50E+02 8.83E+02 1.33E+03 A3 

W5 7.46E+10 6.78E+06 W5 4.58E+02 4.24E+02 8.83E+02 A3 
W6 6.63E+07 9.28E+05 2.98E+00 2.98E+00 A2 
W7 9.76E+07 1.47E+06 W7 2.77E+00 3.15E+00 5.92E+00 A2 
W8 1.43E+08 1.88E+06 3.15E+00 3.15E+00 A2 
W9 2.80E+07 5.28E+05 2.21E+00 2.21E+00 A2 
W10 1.90E+08 2.04E+06 3.90E+00 3.90E+00 A2 
W11 8.89E+07 8.80E+05 4.21E+00 4.21E+00 A2 
W12 9.41E+07 5.88E+05 6.67E+00 6.67E+00 A2 
W13 5.66E+06 9.99E+04 2.36E+00 2.36E+00 A2 
W14 9.66E+07 1.23E+06 W14 3.28E+00 4.62E+00 7.90E+00 A2 
W15 3.49E+08 3.15E+06 4.62E+00 4.62E+00 A2 
W16 1.22E+08 1.04E+06 4.93E+00 4.93E+00 A2 
W17 7.92E+07 1.43E+06 2.31E+00 2.31E+00 A2 
W18 1.39E+11 1.60E+06 W18 3.62E+03 1.76E+03 5.38E+03 A3 
W19 2.09E+11 4.94E+06 1.76E+03 1.76E+03 A3 
W20 1.31E+11 3.71E+06 W20 1.48E+03 7.18E+00 1.48E+03 A3 
W21 5.23E+07 5.74E+05 W21 3.80E+00 7.18E+00 1.10E+01 A2 
W22 9.12E+08 7.72E+06 W22 4.93E+00 2.26E+00 7.18E+00 A2 
W23 4.71E+08 8.69E+06 2.26E+00 2.26E+00 A2 
W24 1.06E+11 9.15E+05 W24 4.83E+03 1.45E+02 4.97E+03 A3 
W25 1.39E+10 4.04E+06 W25 1.43E+02 2.57E+00 1.45E+02 A3 
W26 3.72E+08 6.05E+06 2.57E+00 2.57E+00 A2 
W27 1.90E+07 4.81E+05 1.64E+00 1.64E+00 A1 
W28 1.65E+07 4.59E+03 1.50E+02 1.50E+02 A3 
W29 4.60E+07 8.49E+05 W29 2.26E+00 3.08E+00 5.34E+00 A2 
W30 3.20E+07 5.53E+05 W30 2.41E+00 3.08E+00 5.49E+00 A2 
W31 1.20E+08 1.63E+06 3.08E+00 3.08E+00 A2 
W32 1.23E+07 2.08E+05 W32 2.46E+00 4.72E+00 7.18E+00 A2 
W33 1.96E+08 1.73E+06 4.72E+00 4.72E+00 A2 
W34 3.07E+06 2.08E+05 6.16E-01 6.16E-01 A1 
W35 1.95E+08 1.72E+06 4.72E+00 4.72E+00 A2 
W36 2.97E+06 1.34E+05 9.24E-01 9.24E-01 A1 
W37 4.01E+07 4.40E+05 W37 3.80E+00 3.18E+00 6.98E+00 A2 
W38 1.74E+08 2.28E+06 3.18E+00 3.18E+00 A2 
W39 7.71E+06 3.91E+05 8.21E-01 8.21E-01 A1 
W40 8.74E+07 3.18E+05 1.14E+01 1.14E+01 A2 
W41 1.28E+08 4.53E+05 1.17E+01 1.17E+01 A2 
W42 1.95E+10 2.30E+05 3.54E+03 3.54E+03 A3 
W43 6.52E+07 2.79E+03 9.75E+02 9.75E+02 A3 
W44 3.27E+07 1.18E+05 1.15E+01 1.15E+01 A2 
W45 7.70E+07 1.51E+05 2.12E+01 2.12E+01 A2 



Appendix B 

 

184 

W46 7.86E+07 2.09E+05 1.56E+01 1.56E+01 A2 
W47 1.24E+07 2.93E+04 1.76E+01 1.76E+01 A2 
W48 1.70E+06 1.15E+04 6.16E+00 6.16E+00 A2 
W49 3.31E+07 1.19E+05 1.16E+01 1.16E+01 A2 
W50 3.01E+07 9.79E+05 1.28E+00 1.28E+00 A1 
W51 1.58E+07 7.11E+05 9.24E-01 9.24E-01 A1 
W52 3.02E+07 1.06E+06 1.18E+00 1.18E+00 A1 
W53 2.19E+07 1.37E+06 6.67E-01 6.67E-01 A1 
W54 6.36E+06 7.38E+05 3.59E-01 3.59E-01 A1 
W55 4.86E+07 1.23E+06 1.64E+00 1.64E+00 A1 
W56 3.03E+07 1.60E+05 7.87E+00 7.87E+00 A2 
W57 3.45E+06 1.75E+05 8.21E-01 8.21E-01 A1 
W58 3.68E+07 1.11E+05 1.38E+01 1.38E+01 A2 
W59 6.32E+06 3.21E+05 8.21E-01 8.21E-01 A1 
W60 1.99E+07 9.87E+04 8.42E+00 8.42E+00 A2 
W61 2.04E+06 2.96E+05 2.87E-01 2.87E-01 A1 
W62 5.26E+06 2.67E+05 8.21E-01 8.21E-01 A1 
W63 1.07E+06 1.08E+05 4.10E-01 4.10E-01 A1 
W64 6.56E+06 2.22E+05 1.23E+00 1.23E+00 A1 
W65 1.00E+07 1.30E+05 3.21E+00 3.21E+00 A2 
W66 6.78E+07 2.10E+05 1.35E+01 1.35E+01 A2 
W67 8.96E+08 4.67E+05 7.99E+01 7.99E+01 A3 
W68 9.46E+06 1.51E+05 2.61E+00 2.61E+00 A2 
W69 4.90E+06 2.21E+05 9.24E-01 9.24E-01 A1 
W70 2.60E+06 1.51E+05 7.18E-01 7.18E-01 A1 
W71 5.53E+06 3.46E+05 6.67E-01 6.67E-01 A1 
W72 4.56E+07 3.50E+05 5.43E+00 5.43E+00 A2 
W73 8.58E+06 3.87E+05 9.24E-01 9.24E-01 A1 
W74 1.46E+08 4.50E+05 1.35E+01 1.35E+01 A2 
W75 7.17E+07 3.39E+05 8.83E+00 8.83E+00 A2 
W76 1.26E+08 1.66E+05 3.16E+01 3.16E+01 A2 
W77 9.29E+07 3.18E+05 1.22E+01 1.22E+01 A2 
W78 9.47E+07 2.58E+05 1.53E+01 1.53E+01 A2 
W79 7.64E+09 9.19E+05 W79 3.46E+02 4.59E+02 8.05E+02 A3 
W80 1.46E+08 2.20E+06 W80 2.77E+00 4.56E+02 4.59E+02 A3 
W81 2.23E+10 2.42E+06 W81 3.83E+02 7.31E+01 4.56E+02 A3 
W82 4.79E+09 2.73E+06 7.31E+01 7.31E+01 A3 
W83 4.73E+07 1.60E+06 1.23E+00 1.23E+00 A1 
W84 9.42E+06 3.19E+05 1.23E+00 1.23E+00 A1 
W85 3.49E+09 1.57E+06 9.27E+01 9.27E+01 A3 
W86 1.60E+07 7.23E+05 9.24E-01 9.24E-01 A1 
W87 4.68E+07 8.64E+05 2.26E+00 2.26E+00 A2 
W88 1.34E+07 4.96E+05 1.13E+00 1.13E+00 A1 
W89 2.40E+07 1.39E+06 7.18E-01 7.18E-01 A1 
W90 2.29E+07 1.55E+06 6.16E-01 6.16E-01 A1 
W91 1.24E+07 8.40E+05 6.16E-01 6.16E-01 A1 
W92 1.54E+08 6.08E+05 1.06E+01 1.06E+01 A2 
W93 1.08E+08 6.75E+05 6.66E+00 6.66E+00 A2 
W94 4.16E+07 5.83E+04 2.97E+01 2.97E+01 A2 
W95 3.00E+07 1.52E+06 8.21E-01 8.21E-01 A1 
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W96 2.42E+07 5.79E+05 1.74E+00 1.74E+00 A1 
W97 9.04E+06 7.34E+05 5.13E-01 5.13E-01 A1 
W98 4.02E+09 7.11E+05 2.35E+02 2.35E+02 A3 
W99 5.01E+07 1.85E+06 1.13E+00 1.13E+00 A1 
W100 5.48E+09 4.96E+05 4.61E+02 4.61E+02 A3 
W101 1.42E+07 9.59E+05 6.16E-01 6.16E-01 A1 
W102 4.12E+11 5.55E+06 3.09E+03 3.09E+03 A3 
W103 2.27E+07 1.03E+06 9.24E-01 9.24E-01 A1 
W104 1.45E+10 3.20E+06 1.89E+02 1.89E+02 A3 
W105 8.44E+09 1.04E+06 3.39E+02 3.39E+02 A3 
W106 1.85E+07 1.25E+06 6.16E-01 6.16E-01 A1 
W107 1.65E+07 4.47E+05 1.54E+00 1.54E+00 A1 
W108 2.01E+07 4.29E+05 1.95E+00 1.95E+00 A1 
W109 1.59E+07 4.04E+05 1.64E+00 1.64E+00 A1 
W110 1.19E+07 2.69E+05 1.85E+00 1.85E+00 A1 
W111 1.08E+08 3.01E+05 1.50E+01 1.50E+01 A2 
W112 1.27E+07 1.03E+06 5.13E-01 5.13E-01 A1 
W113 2.84E+08 6.94E+06 1.71E+00 1.71E+00 A1 
W114 1.36E+08 2.20E+06 2.57E+00 2.57E+00 A2 
W115 1.88E+11 6.18E+05 1.27E+04 1.27E+04 A3 
W116 2.88E+11 1.79E+06 6.71E+03 6.71E+03 A3 
W117 1.69E+11 8.55E+05 8.21E+03 8.21E+03 A3 
W118 1.64E+07 2.13E+05 3.20E+00 3.20E+00 A2 
W119 4.87E+09 7.42E+05 2.74E+02 2.74E+02 A3 
W120 1.44E+08 2.25E+05 2.66E+01 2.66E+01 A2 
W121 5.92E+10 7.79E+05 3.17E+03 3.17E+03 A3 
W122 3.23E+07 5.34E+05 2.52E+00 2.52E+00 A2 
W123 7.72E+06 5.63E+05 5.72E-01 5.72E-01 A1 
W124 3.43E+08 2.24E+06 6.37E+00 6.37E+00 A2 
W125 9.30E+06 2.52E+05 1.54E+00 1.54E+00 A1 
W126 4.62E+09 8.42E+06 W126 2.28E+01 4.01E+02 4.24E+02 A3 
W127 7.40E+09 2.50E+06 W127 1.23E+02 4.01E+02 5.24E+02 A3 
W128 7.37E+09 5.03E+06 W128 6.11E+01 4.01E+02 4.62E+02 A3 
W129 6.24E+07 5.03E+06 5.16E-01 5.16E-01 A1 
W130 1.77E+06 3.40E+05 2.17E-01 2.17E-01 A1 
W131 1.04E+07 1.56E+03 2.78E+02 2.78E+02 A3 
W132 1.16E+08 4.43E+05 1.10E+01 1.10E+01 A2 
W133 2.39E+07 2.36E+04 4.21E+01 4.21E+01 A2 
W134 1.81E+07 4.31E+05 1.74E+00 1.74E+00 A1 
W135 1.44E+07 3.39E+05 1.77E+00 1.77E+00 A1 
W136 4.46E+07 1.47E+06 1.26E+00 1.26E+00 A1 
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Appendix C  Spatial analysis of toxic emissions in LCA: A sub-continental nested USEtox model with freshwater archetypes   
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C.1 Determination of P dissolved ratio 
Table C.1: Total-P concentrations under high flow and low flow regimes in the Vansjø catchment, Norway 

Streams 

  Total-P concentrations under high- 
flow regimes in (μg/L)   Total- P concentrations un-

der low flow regime (µg/L)   

Sampling 
stream 

Number 
of sam-

ples 

P bound 
to dis-
solved 
organic 
matter 

(DOM-P) 

Free-
PO4

3- 

Particulate 
bound 

phosphorus 
(PP) 

Total 

P bound 
to dis-
solved 
organic 
matter 

(DOM-P) 

Free-
PO4

3- 

Particulate 
bound 

phosphorus 
(PP) 

  
STO1 Stoa1 7 14.79 104.6 154.8 274.19 2.39 3.81 16.5 22.7 
ORE Orejordet 1 3.1 1.12 10.3 14.52 2.55 1.16 5.5 9.21 
HUG Huggenes 17 8.6 11.4 91.6 111.6 6.56 2.9 20.52 29.98 
VAS Vaskeberget 4 6.1 26.17 41.7 73.97 13.7 13.2 18.83 45.73 
ARV Arvold 1 2 7.58 14.8 24.38 5.2 1.2 7.9 14.3 
SPE Sperrebotn 1 13.6 21.7 46 81.3 6.49 5.89 6.56 18.94 
AUG Augerod 4 4.2 2.7 13.8 20.7 3.99 2.98 7.06 14.03 
GUT Guthus 1 14.4 5.9 32.9 53.2 4.8 2.4 7.3 14.5 
DALEN Dalen 25 5.2 1 2.9 9.1 4.5 1.34 3.8 9.64 
 

Table C.2: Total-P fractions under high flow and low flow regimes in the Vansjø catchment, Norway 

Streams 

  Total-P fractions under high- flow regimes in 
(μg/L) 

Total- P fractions under low flow 
regime (µg/L) 

Sampling 
stream 

Number 
of sam-

ples 

P bound to 
dissolved 
organic 
matter 

(DOM-P) 

Free-
PO4

3- 

Particulate 
bound phos-
phorus (PP) 

P bound to 
dissolved 
organic 
matter 

(DOM-P) 

Free-
PO4

3- 

Particulate 
bound phos-
phorus (PP) 

STO1 Stoa1 7 5% 38% 56% 11% 17% 73% 
ORE Orejordet 1 21% 8% 71% 28% 13% 60% 
HUG Huggenes 17 8% 10% 82% 22% 10% 68% 
VAS Vaskeberget 4 8% 35% 56% 30% 29% 41% 
ARV Arvold 1 8% 31% 61% 36% 8% 55% 
SPE Sperrebotn 1 17% 27% 57% 34% 31% 35% 
AUG Augerod 4 20% 13% 67% 28% 21% 50% 
GUT Guthus 1 27% 11% 62% 33% 17% 50% 
DALEN Dalen 25 57% 11% 32% 47% 14% 39% 
Total free-PO4

3- average of all sites under high and low flow regimes 19% 
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C.2 Derivation of ܨܫ௠௔௫,௝ 
We introduced a threshold intake fraction value within a single grid cell ݆ ܨܫ௠௔௫,௝ to limit the ܨܫ௝ val-

ue for water-scarce grid cells. ܨܫ௠௔௫,௝ is determined by considering the fate factor ܨܨ௝,௠௢ௗ௜௙௜௘ௗ in a 

receptor cell j that includes freshwater removal rate ݇௪௜௧௛ௗ௥௔௪௡,௝ [year-1] in addition to other remov-

al processes ݇௔ௗ௩,௝, ݇௦௘ௗ,௝, ݇௘௩௔௣,௝ and ݇ௗ௘௚ [year-1]. This addition reflects the fact that drinking water 

withdrawn is not available in the same grid cell, while it can be reused in grid cells downstream 

(drinking water is withdrawn in a centralized system for large cities). ܺ ௝ܲ,௠௔௫ [year] is the maximum 

exposure factor calculated using modelled industrial, domestic and agricultural withdrawal, while ܺ ௝ܲ 

is calculated based on the water requirement of the receptor cell. ܨܫ௠௔௫,௝ is defined as: 

௠௔௫,௝ܨܫ = ௝,௠௢ௗ௜௙௜௘ௗܨܨ ∗ ܺ ௝ܲ,௠௔௫ = 1݇௔ௗ௩,௝ + ݇௦௘ௗ,௝ + ݇௘௩௔௣,௝ + ݇ௗ௘௚ + ݇௪௜௧௛ௗ௥௔௪௡,௝ ∗ ܺ ௝ܲ,௠௔௫
= ௝ܨܨ11 + ݇௪௜௧௛ௗ௥௔௪௡,௝ ∗ ܺ ௝ܲ,௠௔௫ 

Equation C.1: Definition of the maximal intake fraction in a receptor cell j 

The withdrawal rate ݇௪௜௧௛ௗ௥௔௪௡,௝ [year-1] is calculated based on the withdrawal values for domestic, 

industrial and agricultural use from the World Water Development Report II (Water systems analysis 

group 2014) respectively named ܳௗ௢௠,௝, ܳ௜௡ௗ,௝  and ܳ௔௚௥,௝ [km3.y-1], the volume of water ௚ܸ௥௜ௗ,௝  

[km3] in the receptor cell j defined in equation T4.1.1 and the fraction of surface water ௦݂௨௥௙,௝  [-] de-

fined in equation 5 . ݇௪௜௧௛ௗ௥௔௪௡,௝ is calculated as: 

݇௪௜௧௛ௗ௥௔௪௡,௝ = ௦݂௨௥௙,௝ ∗ (ܳௗ௢௠,௝ + ܳ௜௡ௗ,௝ + ܳ௔௚௥,௝)௚ܸ௥௜ௗ,௝  

Equation C.2: Definition of the withdrawal rate in a receptor cell j 

When ܳௗ௢௠,௝, ܳ௜௡ௗ,௝ and ܳ௔௚௥,௝  are null according to the World Water Development Report II mod-

el, we estimate ܳௗ௢௠,௝ based on the water requirement of the receptor cell as in equation A2.c. The 

parameters involved are ௜ܸ௡௚ ௪௔௧ [km3], ௣ܰ௢௣,௝ [-] and ௦݂௨௥௙,௝  [-] defined in equation 5 and the frac-

tion of domestic water used for a drinking purpose ௗ݂௥௜௡௞_ௗ௢௠,௝ [-].  ௗ݂௥௜௡௞_ௗ௢௠ is estimated as 1%, 

calculated as the ratio of drinking water 511 [l/(person*year)] over the population weighted average 

of drinking water withdrawal ܳௗ௢௠,௝ attributed per capita 50’000 [l/(person*year)]. 
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ܳௗ௢௠,௝ = ௜ܸ௡௚ ௪௔௧ ∗ ௣ܰ௢௣,௝ ∗ ௦݂௨௥௙,௝ ∗ 1ௗ݂௥௜௡௞_ௗ௢௠ 

Equation C.3: Calculation the domestic withdrawal in a receptor cell j in case modelled data is unavailable ܺ ௝ܲ,௠௔௫ [year] is the maximum exposure factor calculated involving ௗ݂௜௦௦ ௦௨௕௦, ௗ݂௥௜௡௞_ௗ௢௠, ௦݂௨௥௙,௝,  ܳௗ௢௠,௝, ܳ௜௡ௗ,௝, ܳ௔௚௥,௝ and ௚ܸ௥௜ௗ,௝ defined previously. The fraction of water withdrawn for a domestic 

purpose over total withdrawal ௗ݂௢௠_௧௢௧,௝ is calculated using previously introduced withdrawal data. ܺ ௝ܲ,௠௔௫ [year] is calculated as follows: 

ܺ ௝ܲ,௠௔௫ = ௙೏೔ೞೞ ೞೠ್ೞ∗௙೏ೝ೔೙ೖ_೏೚೘∗௙೏೚೘_೟೚೟,ೕ∗௙ೞೠೝ೑,ೕ∗(ொ೏೚೘,ೕାொ೔೙೏,ೕାொೌ೒ೝ,ೕ)௏೒ೝ೔೏,ೕ = ௗ݂௜௦௦ ௦௨௕௦ ∗ ௗ݂௥௜௡௞_ௗ௢௠ ∗
ௗ݂௢௠_௧௢௧,௝ ∗ ݇௪௜௧௛ௗ௥௔௪௡,௝ 

Equation C.4: Calculation of the maximum exposure factor in a receptor cell j 

By introducing both ܺ ௝ܲ,௠௔௫ and ݇௪௜௧௛ௗ௥௔௪௡,௝ values in ܨܫ௠௔௫,௝  calculation, one can obtain the fol-

lowing expression: 

௠௔௫,௝ܨܫ = ௝ܨܨ11 ∗ ݇௪௜௧௛ௗ௥௔௪௡,௝ + 1 ∗ ௗ݂௜௦௦ ௦௨௕௦ ∗ ௗ݂௥௜௡௞_ௗ௢௠,௝ ∗ ௗ݂௢௠_௧௢௧,௝ 

Equation C.5: Final resolution for the maximal intake fraction in a receptor cell j 

  



Appendix C 

190 

 

 

 

 

Figure C.1: Comparison between the intake fraction limited by the maximum threshold (defined in Equation 
4.6) versus the intake fraction (defined in Equation 4.4) 
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C.3 Choice of representative substances 
Figure C.2 shows the distribution of degradation, sedimentation and evaporation rates of respective-

ly all organic and inorganic substances covered by the USEtox database (Rosenbaum et al. 2008) in-

cluding recommended and interim characterization factors (3073 organics and 21 inorganics). The 

boxplots show the 5th centile, 1st quartile, mediane, 3rd quartile, 95th centile minimum for each pa-

rameter. For organic substances, the degradation rate varies by 1 order of magnitude while the sed-

imentation and evaporation vary by respectively 3 and 13 orders of magnitude between the 5th and 

the 95th value. For inorganic substances, the sedimentation rate varies by more than 1 order of mag-

nitude.  

 
 

Figure C.2: Variation of the sedimentation, degradation and evaporation rate of a. organic and  inorganic 
substances covered by the USEtox database (Rosenbaum et al. 2008) 
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C.4 Contribution to toxicity of the ecoinvent v2.2 process “Aluminium, primary, at plant/RER U” and “Disposal, red-mud from bauxite digestion, 0% water, to residual material landfill/CH U” 
Arsenic exists in two main oxidation states: arsenic(III) and arsenic(V) (Grafe et al. 2001), that are not specified in the ecoinvent v2.2 dataset where it is 

called “arsenic ion”. However, according to the USEtox database (Rosenbaum et al. 2008), the two oxidation states have the same physico-chemical data.  

Table C.3: Contribution to toxicity of primary aluminium production 

 Aluminium, primary, at plant/RER U Disposal, redmud from bauxite digestion, 0% water, to residual material land-
fill/CH U 

 Substance Compartment  Impact score Unit Substance Compartment  Impact score Unit 

Functional unit 1 kg 1 kg 

Toxicity cancer 

Total of all com-
partments   3.36088E-06 CTUh Total of all 

compartments   2.00115E-06 CTUh 

Remaining sub-
stances   4.03E-08 CTUh Remaining 

substances   1.07E-08 CTUh 

ChromiumVI Water groundwater, 
long-term 2.52E-06 CTUh ChromiumVI Water groundwater, 

long-term 1.51E-06 CTUh 

ChromiumVI Water river 6.96E-07 CTUh ChromiumVI Water river 4.79E-07 CTUh 
ChromiumVI Soil 1.00E-07 CTUh 

Toxicity non-
cancer 

Total of all com-
partments   2.64751E-06 CTUh Total of all 

compartments   7.96976E-07 CTUh 

Remaining sub-
stances   1.25E-07 CTUh Remaining 

substances   5.24E-09 CTUh 

Arsenic, ion Water river 1.15E-06 CTUh Arsenic, ion Water river 7.92E-07 CTUh 

Arsenic, ion Water groundwater, 
long-term 7.27E-07 CTUh      

Zinc Air high. pop. 1.76E-07 CTUh 
Mercury Air low. pop. 1.61E-07 CTUh 
Mercury Air high. pop. 6.97E-08 CTUh 
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Zinc Air low. pop. 6.30E-08 CTUh 
Arsenic, ion Water groundwater 5.30E-08 CTUh 

Lead Air low. pop. 4.83E-08 CTUh 
Mercury Air 4.45E-08 CTUh 
Arsenic Air low. pop. 2.98E-08 CTUh 

Ecotoxicity 

Total of all com-
partments   37.084368 CTUe Total of all 

compartments   20.562342 CTUe 

Remaining sub-
stances   2.2857781 CTUe Remaining 

substances   0.039480732 CTUe 

ChromiumVI Water groundwater, 
long-term 25.00202 CTUe ChromiumVI Water groundwater, 

long-term 14.97586 CTUe 

ChromiumVI Water river 6.895605 CTUe ChromiumVI Water river 4.7407686 CTUe 
Arsenic, ion Water river 1.1720861 CTUe Arsenic, ion Water river 0.80623207 CTUe 
ChromiumVI Soil 0.98889909 CTUe 

Arsenic, ion Water groundwater, 
long-term 0.73997987 CTUe      
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C.5 Coordinates and production of worldwide alumina production sites 
 

Table C.4: Alumina production sites location 

Name Country Latitude Longitude 
Alumina 

production in 
kt/year 

Reference 
1 

Reference 
2 

Additional reference for pro-
duction data Additional reference for coordinates 

Gladstone QAL Australia -23.866 151.290 3954 IAI - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries - 

Gladstone Yar-
wun Australia -23.826 151.154 1400 IAI - http://sales.riotintoaluminium.

com/freedom.aspx?pid=205 - 

Gove Australia -13.069 135.703 3000 IAI Alcor - - 

Kwinana Australia -31.825 116.017 2200 IAI Alcor - - 

Pinjarra Australia -32.629 115.875 4200 IAI Alcor - - 

Wagerup Australia -32.908 115.898 2600 IAI Alcor - - 

Worsley Australia -33.308 116.006 3600 IAI Alcor - - 

Ganja Azerbaijan 40.683 46.361 450 - Alcor - http://en.wikipedia.org/wiki/Ganja,_A
zerbaijan 

Zvornic Bosnia 44.419 19.110 600 - Alcor - http://wikimapia.org/12413536/Alumi
na-Factory-Bira%C4%8D 

Alumínio - SP Brazil -23.535 -47.261 920 IAI Alcor - - 

Barcarena Brazil -1.519 -48.617 6300 IAI Alcor - - 

Pocos de Caldas Brazil -21.788 -46.563 390 IAI Alcor - - 

Sao Luis Brazil -2.531 -44.307 3600 IAI Alcor - - 
Saramenha/Ouro 

Preto Brazil -20.386 -43.503 150 IAI - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries - 

Vaudreuil 
(Jonquiere) Canada 48.423 -71.243 1600 IAI Alcor - - 
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Binzhou China 38.088 117.727 1000 - Alcor - http://lubeilvye.alu.cn/ 

Chiping China 36.620 116.259 2000 - Alcor - http://club.kdnet.net/dispbbs.asp?id=
8995886&boardid=1 

Dengfeng China 34.386 113.186 400 - Alcor - https://plus.google.com/10068523218
9069422582/about?gl=us&hl=en 

Guiyang China 26.691 106.668 1200 IAI Alcor - http://www.chalco-gzfgs.com/ 

Hejin China 35.651 110.671 2200 IAI Alcor - http://www.sx.chalco.com.cn/sxweb/j
sp/listAndView.jsp?ColumnID=3 

Jiaokou China 36.896 111.473 800 - Alcor - https://plus.google.com/11457635477
3624279561/about?gl=us&hl=en 

Jingxi China 23.259 106.387 2400 - Alcor - https://plus.google.com/11311338338
0473566881/about?gl=us&hl=en 

Kaili China 26.574 108.037 50 - Alcor - https://plus.google.com/11700422996
0121443006/photos 

Liaocheng China 36.482 115.998 2400 IAI Alcor - https://plus.google.com/10113878120
0094429621/about?gl=us&hl=en 

Longkou China 37.709 120.448 2400 - Alcor - https://plus.google.com/10842179588
4736828549/about?hl=en 

Mayi / Baise China 23.388 106.599 1650 - Alcor - https://plus.google.com/10046205785
6818094035/about?gl=us&hl=en 

Nanchuan  - Bosai China 29.160 107.165 250 - Alcor - 
https://plus.google.com/11363711950
5693573705/about?hl=en&gl=us&revi

ew=1 
Nanchuan  - 

Chalco China 29.261 107.299 1600 - Alcor - http://huagong.dxddcx.com/19017.ht
m 

Pingdingshan China 33.820 112.923 400 - Alcor - 
http://www.1688.com/company/cjdn.
html?fromSite=company_site&tab=co

mpanyWeb_contact 

Pingguo China 23.337 107.503 2500 IAI Alcor - http://baike.baidu.com/view/20296.h
tm 

Pinglu China 34.826 111.276 800 - Alcor - https://plus.google.com/11081523755
9030537050/about?gl=us&hl=en 

Qingzhen China 26.624 106.361 800 - Alcor - https://plus.google.com/10767975135
2997882354/about?gl=us&hl=en 

Sanmenxia  - 
Easthope China 34.804 111.798 1260 - Alcor - https://plus.google.com/11273398136

1482672316/about?gl=us&hl=en 
Sanmenxia  - 

Kaiman - China 34.720 111.056 1200 - Alcor - https://plus.google.com/10581124807
6940074734/about?gl=us&hl=en 
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Sanmenxia  - 
Yixiang China 34.789 111.650 500 - Alcor - http://yxlygs.cnal.com/ 

Wenshan China 23.454 104.125 800 - Alcor - http://www.ynwsly.net/contact/ 

Wulong China 29.374 107.520 150 - Alcor - 
http://www.cnpre.com/web/search/p
re/index.php?modules=show&id=100

41 

Xiangjiang China 34.720 112.075 1200 - Alcor - http://www.heungkongwanji.com/wa
nji/qyjj/lxwm.html 

Xiaoyi Huaqing China 37.151 111.839 200 - Alcor - http://huagong.dxddcx.com/43647.ht
m 

Xiaoyi Xingan China 37.087 111.850 1000 - Alcor - https://plus.google.com/11128163166
4886368608/about?gl=us&hl=en 

Yangquan China 37.848 113.660 800 - Alcor - https://plus.google.com/10567329527
7861199828/about?hl=en 

Yuanping China 38.756 112.675 2600 - Alcor - http://www.mep.gov.cn/gkml/hbb/qt
/201012/t20101224_199108.htm 

Zhengzhou China 34.720 113.788 2490 IAI - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries 

https://plus.google.com/10454652525
7852725848/about?hl=en 

Zhengzhou  - 
Chalco China 34.720 113.788 2400 - Alcor - https://plus.google.com/10454652525

7852725848/about?hl=en 
Zhengzhou  - 

Longshenxiang China 34.720 113.788 100 - Alcor - - 

Zhongzhou China 35.375 113.445 2200 IAI Alcor - - 

Zibo China 36.755 118.050 1600 IAI Alcor - - 

Zouping China 36.905 117.768 6000 - Alcor - - 

Zunyi China 27.542 106.855 800 - Alcor - - 

Gardanne France 43.454 5.469 630 IAI Alcor - - 

Stade Germany 53.599 9.474 900 IAI Alcor - - 

Aghios Nikolaos Greece 35.183 25.717 775 - Alcor - 

http://www.mining-
at-

las.com/operation/Agios_Athanasios_
Bauxite_Mine.php 

Distomon (St-
Nicolas/Agios 

Nikolaos) 
Greece 38.333 22.833 830 IAI - http://en.wikipedia.org/wiki/Lis

t_of_alumina_refineries - 

Fria Guinea 12.050 -10.933 640 - Alcor - http://en.wikipedia.org/wiki/Fria 
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Ajka Hungary 47.107 17.564 320 IAI Alcor - - 
Visakhapatnam, 
Andhra Pradesh India 17.593 82.752 1500 - - http://en.wikipedia.org/wiki/Lis

t_of_alumina_refineries 
http://en.wikipedia.org/wiki/List_of_a

lumina_refineries 
Belgaum India 15.850 74.505 380 IAI Alcor - - 

Damanjodi India 21.032 82.837 2100 IAI Alcor - - 

Korba India 22.349 82.698 205 IAI - http://en.wikipedia.org/wiki/Fri
a - 

Lanjigarh India 19.708 83.368 1400 IAI Alcor - - 

Mettur India 11.783 77.801 100 IAI - http://en.wikipedia.org/wiki/Fri
a - 

Muri Bihar India 23.379 85.872 440 IAI Alcor - - 

Renukoot India 24.200 83.030 700 IAI Alcor - - 
Utkal Alumina 

Project, Kashipur, 
Orissa 

India 19.190 83.029 1500 - - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries 

http://en.wikipedia.org/wiki/List_of_a
lumina_refineries 

Jajarm Iran 36.95 56.38 280 - Alcor - 

http://tools.wmflabs.org/geohack/geo
hack.php?pagename=Jajarm&params
=36_57_00_N_56_22_48_E_type:city(

25205)_region:IR 
Aughinish Ireland 52.669 -8.623 1927 IAI Alcor - - 

Porto Vesme Italy 39.200 8.390 1000 IAI Alcor - - 
Claren-

don/Woodside Jamaica 17.971 -77.298 1420 IAI Alcor - - 

Ewarton Jamaica 18.177 -77.088 650 IAI Alcor - - 

Kirkvine Jamaica 18.081 -77.475 560 IAI Alcor - - 

Nain St Elizabeth Jamaica 17.967 -77.608 1600 IAI Alcor - - 

Kikumoto Japan 33.97206 133.28526 200 - Alcor - http://postalcodedb.com/792-
0801_Kikumoto_Japan.html 

Shimizu Japan 35.018 138.494 280 IAI Alcor - - 

Yokohama Japan 35.444 139.638 250 - Alcor - 

http://tools.wmflabs.org/geohack/geo
hack.php?pagename=Yokohama&para
ms=35_26_39_N_139_38_17_E_type:

city(3697894)_region:JP 
Pavlodar Kazakhstan 52.273 76.967 1600 IAI Alcor - - 
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Podgorica Montenegro 42.460 19.260 0 IAI - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries - 

Tulcea Romania 45.175 28.803 580 - Alcor - 

http://tools.wmflabs.org/geohack/geo
hack.php?language=fr&pagename=Tul
cea&params=45.175_N_28.802778_E
_type:city_region:ro_scale:100000_gl

obe:earth&title= 

Oradea Romania 47.072 21.921 400 - - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries 

http://tools.wmflabs.org/geohack/geo
hack.php?language=fr&pagename=Or
adea&params=47.07222_N_21.92111
_E_type:city_region:ro_scale:100000_

globe:earth&title= 

Kamensk-Uralsk Russia 56.400 61.933 730 - Alcor - 

http://tools.wmflabs.org/geohack/geo
hack.php?pagename=Kamensk-

Uralsky&params=56_24_N_61_56_E_r
egion:RU-SVE_type:city(174,689) 

Achinsk Russian Federa-
tion 56.282 90.517 1100 IAI Alcor - - 

Bogoslovsk Russian Federa-
tion 55.790 70.349 1100 IAI Alcor - - 

Boksitogorsk Russian Federa-
tion 59.469 33.860 120 IAI Alcor - - 

Pikalevo Russian Federa-
tion 59.513 34.177 268 IAI - http://en.wikipedia.org/wiki/Lis

t_of_alumina_refineries - 

Uralsky Russian Federa-
tion 56.426 61.908 750 IAI - http://en.wikipedia.org/wiki/Lis

t_of_alumina_refineries - 

Volkhovskiy Russian Federa-
tion 58.578 31.334 400 IAI - http://en.wikipedia.org/wiki/Lis

t_of_alumina_refineries - 

Mopko South Korea 34.767 126.350 180 - Alcor - 

http://tools.wmflabs.org/geohack/geo
hack.php?language=fr&pagename=M

ok-
po&params=34.767_N_126.35_E_type

:city_region:kr_globe:earth&title= 
San Ciprian Spain 42.852 -7.915 1500 IAI Alcor - - 

Slovalco Slovakia 48.563 18.848 180 - - http://en.wikipedia.org/wiki/Lis
t_of_alumina_refineries 

http://en.wikipedia.org/wiki/List_of_a
lumina_refineries 

Paranam Suriname 5.613 -55.099 2200 IAI Alcor - - 

Seydisehir Turkey 37.419 31.845 230 IAI Alcor - - 
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Nikolaev Ukraine 46.958 32.018 1600 IAI Alcor - - 

Zaporozhye Ukraine 47.227 35.592 230 IAI Alcor - - 

Burnside United States of 
America 30.139 -90.924 540 IAI Alcor - - 

Corpus Christi United States of 
America 27.802 -97.392 1600 IAI Alcor - - 

Gramercy United States of 
America 30.061 -90.698 1200 IAI Alcor - - 

Point Comfort United States of 
America 28.679 -96.558 2300 IAI Alcor - - 

Ciudad 
Guayana/Puerto 

Ordaz 

Venezuela 
(Bolivarian 

Republic of) 
8.210 -62.697 2000 IAI Alcor - - 

Ho Chi Minh City Vietnam 10.767 106.667 12 - Alcor - 

http://tools.wmflabs.org/geohack/geo
hack.php?language=fr&pagename=H

%C3%B4-Chi-Minh-
Ville&params=10.767_N_106.667_E_t
ype:city_region:vn_globe:earth&title= 

Tan Rai Vietnam 11.633 107.833 650 - Alcor - http://www.maplandia.com/vietnam/l
am-dong/bao-loc/xa-tan-rai/ 
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 C.6 Fate and intake fraction of selected substances in water in each 0.5°*0.5° grid cell modeled on a global resolution 

 

 

 

 

Figure C.3: Fate of selected substances in water in each 0.5°*0.5° grid cell modeled on a global resolution 
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Figure C.4: Intake fraction of selected substances in water in each 0.5°*0.5° grid cell modeled on a global resolution 
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Figure C.5: Intake fraction archetype classification in each 0.5°*0.5° grid cell modeled on a global resolution 
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C.7 Fate variability complementary analysis 
Figure C.6 shows the variation of chemical fate depending on water depth. Only chromiumVI, arsenic and 

tinopal show a correlation with water depth. The fate of tinopal follows the inverse of its evaporation and 

sedimentation rate in cells with depth greater than 1 m, i.e. cells that include or are dominated by lake 

sedimentation process. Captafol and mannitol are not influenced given that their disappearance pathways 

are respectively driven by advection and degradation rather than sedimentation. 

 

  
Figure C.6: Fate of five selected chemicals (mannitol, chromiumVI, captafol, arsenic and tinopal) vs. water depth in 

each 0.5°*0.5° grid cell of the model 
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C.8 Test of equivalent depth 
Figure C.7 shows the variation of fate versus equivalent water depth of tinopal for tinopal, captafol, manni-

tol, chromiumVI and arsenic. The fate of tinopal is proportional to its equivalent depth within two orders of 

magnitude. 

  
 

 

 

 

 

 

 
 

Figure C.7: Fate of 5 selected chemicals (Tinopal, Folpet, ZnII and PbII) not totally driven by water residence time vs. 
equivalent water depth for each specific pollutant in each  0.5°*0.5° grid cell 
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We recalculated the fate of all selected  substances based on equation 8 using ݀௜ ௘௤௨ of tinopal and ݇௔ௗ௩,   ௦௘௔ ௜ for each cell to analyse whether it is can be used as a generic proxy for fate estimation. 

Figure C.8 shows the fate of selected substances recalculated with ݀௜ ௘௤௨ of Tinopal. The variation with the 

fate modelled on a 0.5°*0.5° resolution is less than one order of magnitude for all substances. 

  

 
 

 

 

Figure C.8: Fate of 6 selected chemicals (tinopal, captafol, mannitol, chromiumVI) calculated with the model vs. fate 
recalculated based on equivalent depth of tinopal in each 0.5°*0.5° grid cell 
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C.9 Test of archetype performance 
Figure C.9.a shows the comparison between the archetype model fate and the spatial results on a 0.5°*0.5° 

resolution. Results are within 2 orders of magnitude between archetype and spatial fate. The fate of tinopal 

for archetypes A1, A2 and A3 varies between 6 and 20 days while in A4 it is 109 days. Given that these ar-

chetypes do not follow a systematic regional pattern such as urban or rural landscapes, the practitioner 

needs to know the geographical location of an emission to deduce to which archetype category it can be 

attributed. This approach thus does not bring an important simplification from a data collection point of 

view, while it keeps up to two additional orders of magnitude variability compared to a 0.5°*0.5° approach. 

Figure C.9.b presents an analysis of the correlation of the spatial model intake fraction with the rural and 

urban archetype two box model. It shows that there are up to 10 orders of magnitude difference between 

the two models for the rural area, while up to 3 for the urban landscape. The archetype model results are 

within the same order of magnitude for rural and urban landscapes for persistence substances such as 

chromiumVI and arsenic. This is due to the fact that urban and rural landscapes are hydrologically strongly 

connected, with 91% of freshwater advected from rural to urban landscapes  and 60% in the other direc-

tion. Persistent substances can thus pass through both compartments if their fate exceeds the compart-

ment residence time, i.e. 760 days for the rural box and 29 days for the urban one. These observations sup-

port the conclusion that the relevance of this model is limited.   

 

 

 
a) b) 

Figure C.9: Fate (a) and intake fraction (b) of the five selected substances modeled with (a) the four archetype mod-
el based on water residence time and equivalent depth vs. the spatial model and (b) the urban and rural archetype 

model 
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C.10 Intake fraction of arsenic vs arsenic emissions for alumina refinery 

Figure C.10: Intake fraction of arsenic vs relative emissions for all alumina refinery sites 

Figure C.11: Intake fraction for all 0.5*0.5° grid cells of the model 
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C.11 Analysis of production- and population-weighted aggregations at the coun-try, continental, generic and archetype level for two alumina refinery sites 
FigureC.12 presents the map of arsenic fate and alumina industries worldwide, that produce up to 6300 

ktalumina per year. We analysed the fate and intake fraction values for the alumina refineries in Boksitogorsk 

(RUS) and Achinsk (RUS).  

 
 

 

 

 

Figure C.12: Aluminium refineries sites and arsenic fate at a 0.5°*0.5° grid cell resolution 

 
Figure C.13.a and b show the fate of arsenic for these three refineries calculated with (a) a production 

weighted and (b) a population weighted aggregation at a country, archetype, continental and generic level 

compared to the fate on a 0.5°*0.5° grid cell. While the archetype value always shows less than one order 

of magnitude difference with the grid cell scale result for all fate results, the country, continent and generic 

value can have a larger under- or overestimation of grid results. For example the production weighted re-

sults show that the fate grid cell value 5.3 years for Boksitogorsk production is underestimated by a factor 

0.03 in the case of generic value and the Achinsk value 0.21 year is overestimated by a factor 8 in the case 

of the country value. Production weighted aggregation do not show a clear advantage compared to popula-

tion weighted values in the case of these specific refineries. For single sites, only the archetype value is 

systematically relevant for the fate estimation. 

Figure C.13.c and d show the intake fraction of arsenic for the same sites. There is more than 1 orders of 

magnitude of difference between the value on the country scale and the 0.5°*0.5° grid cell Boksitogorsk 

results.  

Boksitogorsk Achinsk 
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From this analysis, a simplified regionalization approach does not seem appropriate to estimate the fate or 

intake fraction of single sites. Indeed, keeping the regionalized value seems preferable. 

  

a) b) 

 
 

c)  

d) 

Figure C.13: Comparison of the fate (a and b) and intake fraction (c and d) of arsenic at the Achinsk and Boksito-
gorsk (Russia) alumina refinery modelled at the 0.5°*0.5° grid cell resolution with the country, archetype, continent 

and generic scale with a production weighted (a and c) and population weighted (b and d) aggregation 
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