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Abstract 

The complexity in road infrastructure and human travel behavior makes the performance of 

urban transport system hard to predict, especially in real time. Recent advances in traffic flow 

theory at the network level, namely the Macroscopic Fundamental Diagram (MFD), reveals 

the existence of well-defined laws of congestion dynamics at aggregated levels. The MFD has 

been demonstrated as a reliable tool for monitoring and controlling the performance of large-

scale urban road networks. The same knowledge for multimodal networks however is limited. 

As people travel through different modes of transport such as cars, buses, taxis that compete 

for scarce urban road infrastructure, it is critical to understand how this space can be allocated 

and managed for multimodality. The objective is to develop aggregated modeling and 

optimization approaches, which will contribute on the knowledge of congestion dynamics in 

cities of different structures and mode usages, and ultimately facilitate the design of efficient 

and equitable urban transport policies, such as dedicated bus lane allocation, parking 

limitation and congestion pricing.  

Building on the knowledge of the single-mode MFD theory, a bi-modal MFD model 

considering the effect of mode conflict is proposed for mixed networks of buses and cars.  A 

system-level model is developed where a city network is decomposed to multiple regions with 

different characteristics. Each region has its unique mode-specific MFD, which is assumed 

known in advance, given space allocation condition. The flow dynamics among regions are 

described by a regional level flow conservation law, where vehicles are categorized by 

families regarding their traveling directions and the movement throughput is represented by 

the bi-modal MFD. An approximate dynamic mode choice is also developed based on 

imperfect information of the time-dependent cost estimated with variables from the MFD. 

Combining the bi-modal MFD flow model, the mode choice model and the aggregated flow 

conservation model, a non-linear optimization framework is performed to optimize space 

allocation, minimizing the total passenger cost, given certain demand, city structure and road 

facility. Then, parking limitation is integrated in the proposed multi-modal system model, 

where vehicles cruising for parking are also integrated. The extra delay of cruising is captured 

by a geometric distribution related to the time-dependent parking availability and estimated at 

the aggregated level. The delay cost to other users is also estimated via the bi-modal MFD, 

and it shows the effect of cruising on all travelers of the system, even the ones moving 



 
 

II 
 

towards their destination and do not require parking. Optimal parking pricing policies for on-

street and garage parking are obtained through the optimization framework, as well. 

To identify and quantify the patterns of multimodal congestion, the existence of a three-

dimensional MFD (3D-MFD) for mixed bi-modal networks is investigated and analyzed via 

micro-traffic simulation studies. A 3D-MFD relates vehicular production of a network (flow, 

travel distance) to the density of cars and buses, where the impact of each mode on network 

performance can be directly observed. An exponential function is proposed for the analytical 

form of the 3D-MFD. To further compare the modal impact on performance, the Bus-Car 

Unit equivalent value is estimated by the function form of the 3D-MFD. Result indicates that 

this value is state- and mode-composition dependent rather than deterministic. In addition to 

the conventional vehicle-flow-based analysis, passenger dynamics expressed by a passenger 

3D-MFD are derived from the vehicle 3D-MFD, which provides a different perspective of the 

flow characteristics in bi-modal networks. The properties of the passenger 3D-MFD are 

discussed, and a partition algorithm is applied to identify the impact of heterogeneity of mode 

composition and congestion distribution on the bi-modal modeling. Simulation study on 3D-

MFD based perimeter-control shows promising performance in real-time control of congested 

multimodal city centers.  

The final part of the thesis concerns the development of MFD-controlled cordon- and area-

based pricing schemes for congestion management. Feedback-type control mechanisms are 

proposed to determine and adjust the time-dependent tolls, based on congestion level as 

expressed by the MFD. In the case of the area-based pricing, the pricing scheme also 

considers user’s adaptation to the toll cost, allowing a great flexibility in toll adjustment, and 

deals with the promotion of public transport usage by integrating incentive programs such as 

accessibility improvement of buses using the collected toll revenue. The performance of the 

pricing schemes is investigated in an existing agent-based model where the complex travel 

behavior in real-life is reasonably reproduced. Results demonstrate that both pricing schemes 

are effective in congestion reduction, while the area-based pricing scheme achieves higher 

efficiency as large welfare gain can be obtained. Smooth behavioral equilibrium in long-term 

operation is found under such pricing schemes. Furthermore, user heterogeneity with respect 

to value-of-time is introduced in the agent-based model. Significant differences are found in 

behavioral response and trip cost. By realizing and treating this heterogeneity, pricing 

strategies can achieve even higher efficiency and equitable benefit. 
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The findings of this thesis are of great importance because the multi-modal MFD can be 

utilized to: (i) monitor and predict traffic performance in urban networks, and (ii) develop 

simple policies and identify different management strategies maximizing vehicle or passenger 

throughput for cities with heterogeneous regions and users. Both (i) and (ii) can be achieved 

with feasible data inputs and implementation costs therefore are readily applicable in large-

scale urban city networks. Policy-makers can rely on the MFD-based tools to adjust 

management strategies and operate a city at different mobility levels. 

Key words: Macroscopic Fundamental Diagram (MFD), Multimodality, Aggregated system 

dynamics, Space allocation, Dynamic dedicated bus lane allocation, Optimization, Passenger 

hours travelled, Parking limitation, Cruising-for-parking, Parking pricing, Congestion pricing, 

Feedback control, Agent-based approach  
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Résumé 

La complexité du réseau routier et du comportement des usagers rendent difficile la prévision 

des performances d’un système de transport, a fortiori en temps réel. Cependant, une avancée 

récente dans la théorie du trafic – le Diagramme Macroscopique Fondamental (MFD) – 

montre l’existence de lois bien définies régissant le comportement dynamique de la 

congestion à un niveau agrégé. Il a été prouvé que le MFD est un outil fiable pour la 

surveillance et le contrôle à large échelle de réseaux routiers urbains. Néanmoins, ces outils 

ont été développés principalement pour les flux automobiles et la gestion des réseaux 

multimodaux n’a été que très partiellement étudiée. Or, les différents modes de transports sont 

aujourd’hui en compétition non seulement en termes de demande mais aussi en termes 

d’espace urbain. Il est donc primordial de comprendre comment l’allocation de cet espace 

urbain entre les différents modes affecte les performances du système. Le premier objectif de 

ce travail est de développer une modélisation agrégée adaptée afin de mieux comprendre les 

dynamiques de la congestion en fonction de la structure urbaine et des modes de transports 

utilisés. Le second objectif est de créer des méthodes d’optimisation basées sur la 

modélisation précédente afin de faciliter l’élaboration de politiques de transports efficaces et 

équitables, telles que la création de voies réservées aux bus, la gestion du stationnement et la 

tarification liée aux encombrements. 

En s’appuyant sur la théorie du MFD pour un seul mode de transport, un modèle de MFD bi-

modal est proposé pour les réseaux mixtes bus/automobiles, qui prend en compte les conflits 

entre ces deux modes. Un modèle est développé pour l’ensemble du système, dans lequel le 

réseau urbain est constitué de différentes régions. Chaque région est régie par son propre 

MFD, qui est considéré comme connu, étant donnée l’allocation de l’espace. Les dynamiques 

du trafic entre les régions sont décrites à l’échelle régionale par une loi de conservation, où les 

véhicules sont répartis en différentes catégories selon leur destination et le débit est exprimé 

grâce à un MFD bi-modal. Un modèle d’approximation dynamique du choix modal est aussi 

développé, en considérant une connaissance imparfaite des coûts en fonction du temps, basée 

sur des variables du MFD. En associant le MFD bi-modal, le modèle de choix modal et le 

modèle agrégé de conservation du flux, une méthode d’optimisation non-linéaire est proposée 

afin de minimiser le coût des usagers en optimisant l’allocation de l’espace, étant données la 

demande et les infrastructures de transport. Ensuite la gestion du stationnement est intégrée 

dans ce système multi-modal, prenant en compte les véhicules en mouvement à la recherche 
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d’une place de stationnement. Le délai additionnel représenté par ce phénomène est modélisé 

de manière agrégée par une distribution géométrique dépendant de l’offre de stationnement en 

temps réel. Le coût pour les autres usagers est lui aussi estimé, via le MFD bi-modal, 

montrant l’impact de ce phénomène sur l’ensemble du réseau. Des politiques optimales pour 

le stationnement sont obtenues par la méthode d’optimisation proposée. 

Afin d’identifier et de quantifier les phénomènes de congestion avec différents modes de 

transport, l’existence d’un MFD tridimensionnel (3D-MFD) pour les réseaux bimodaux est 

étudiée à l’aide de simulations microscopiques du trafic. Un MFD tridimensionnel associe la 

production d’un réseau (en termes de distance parcourue par l’ensemble des véhicules par 

unité de temps) aux densités de bus et de voitures. Une fonction exponentielle est proposée 

pour décrire analytiquement la forme du MFD tridimensionnel. Pour approfondir cette étude, 

l’impact des bus dans le réseau est approximé par un nombre de voitures équivalent. 

Cependant, les résultats montrent que cette valeur dépend de l’état du réseau et de la 

répartition modale. En outre, un MFD tridimensionnel alternatif est proposé, dans lequel la 

production du réseau est exprimée en termes de distance totale parcourue par l’ensemble des 

passagers (et non des véhicules) par unité de temps. Les propriétés de ce MFD 

tridimensionnel alternatif sont étudiées et un algorithme de partitionnement est utilisé afin 

d’identifier l’impact de l’hétérogénéité de la décomposition modale et de la congestion sur le 

MFD bimodal. Une stratégie de contrôle du périmètre basée sur le MFD tridimensionnel est 

étudiée via des simulations et met en évidence le potentiel important du contrôle en temps réel 

pour les réseaux multimodaux des centres-villes soumis à la congestion. 

La dernière partie de cette thèse est dédiée au développement de stratégies de tarification de la 

congestion basées sur le contrôle d’une région soit à son périmètre soit sur l’intégralité de son 

territoire. Des mécanismes de commande par rétroaction sont proposés afin de déterminer les 

tarifs des péages en fonction du temps, en utilisant les estimations de la congestion obtenues 

avec le MFD. Dans le cas d’une région contrôlée sur l’intégralité de son territoire, la stratégie 

de tarification prend en compte l’adaptation du comportement des usagers en fonction du coût 

et le potentiel développement des transports en commun obtenu en réinvestissant les recettes 

des péages. Les performances de telles stratégies sont étudiées grâce à un modèle multi-agents 

déjà existant, reproduisant assez fidèlement le comportement complexe des usagers. Les 

résultats montrent que les deux stratégies sont efficaces pour réduire la congestion mais que la 

stratégie contrôlant l’intégralité du territoire de la région est plus efficace en termes de bien-

être social. Il est à noter qu’un équilibre est atteint quand ces stratégies sont mises en œuvre 
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sur le long terme. Pour approfondir cette étude, une hétérogénéité de la valeur du temps pour 

les différents usagers est introduite dans le modèle multi-agent, conduisant à des différences 

significatives du comportement. En prenant en compte cette hétérogénéité, les stratégies de 

tarification permettent d’obtenir une efficacité encore supérieure et des bénéfices 

équitablement répartis. 

Les résultats de cette thèse sont d’une importance majeure car le MFD tridimensionnel peut 

être utilisé pour : (i) surveiller et prédire la performance de réseaux urbains, (ii) développer 

des politiques simples et des stratégies de gestion maximisant la production du réseau, en 

termes de véhicules ou de passagers, pour des villes avec des régions et des usagers 

hétérogènes. Les résultats (i) et (ii) peuvent être obtenus avec les données généralement 

disponibles et pour des coûts de mise en œuvre raisonnables.  Ainsi, ces mesures sont 

directement applicables aux réseaux urbains à grande échelle. 

Mots clés : Diagramme Macroscopique Fondamental (MFD), Multimodalité, Dynamiques de 

systèmes agrégés, Allocation de l’espace, Allocation dynamique de voies réservées aux bus, 

Optimisation, Temps de parcours de l’ensemble des usagers, Gestion du stationnement, 

Véhicules en recherche de stationnement, Tarification du stationnement, Tarification liée aux 

encombrements, Contrôle par rétroaction, Modèle multi-agents. 
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1  Introduction 

With the rapid economic growth and social development, city centers are experiencing 

significant amount of daily commuting. Traffic congestion notoriously spreads in urban road 

networks. Management strategies ought to be developed and implemented, in order to 

maintain mobility levels and mitigate the negative impact generated by congestion on social 

welfare. These strategies should be efficient, equitable and sustainable. More importantly, 

they should be based on sound knowledge of congestion physics and practically applicable in 

the nowadays large-scale multimodal transport systems. This is a challenging task as the 

dynamics of urban transport systems are complex: (i) Detailed demand patterns (origin-

destination table) with reasonable temporal-spatial resolution are almost impossible to obtain 

with a decent accuracy; (ii) disaggregated travel behavior (route and mode choices) involves 

unpredictable rationality and stochasticity, which is difficult to be integrated in a real-time 

traffic management; (iii) the capacity of individual road facilities varies by topology and 

signal settings, etc. Despite the presence of these complexities, recent advances in traffic flow 

theories encourage the transition from prediction-based approaches to monitoring-based ones. 

The latter approaches reveal the existence of well-defined laws of congestion dynamics at 

aggregated levels and they can be utilized with smart strategies to improve mobility in cities.  

The knowledge, however, is still limited for multimodal networks. As people travel through 

different modes of transport such as cars, buses, taxis that compete for scarce urban road 

infrastructure, it is critical to understand how this space can be allocated and managed. This 

thesis indeed attempts to make effort towards this direction. The objective is to develop 

aggregated modeling and optimization approaches, which will contribute on the knowledge of 

congestion dynamics in cities of different structures and mode usages, and ultimately facilitate 

the design of efficient traffic management policies, such as dedicated bus lane allocation, 

congestion pricing and parking limitation. In this first chapter of this thesis, we aim to review 

the existing literature on modeling and controlling multimodal urban transport system, and to 

identify the key issues that this thesis has to address.  
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1.1 Research Background and Motivation 

Multimodality plays a critical role in mobility management. If not managed well, traffic 

congestion will be increasingly pervasive in urban areas. Constructing new infrastructure is an 

expensive solution, as extremely high cost is needed to keep pace with increase in demand 

and the induced demand (Small, 2004). Smart planning and allocation of the existing road 

space among different mode usage therefore is required. As people travel through various 

modes of transport compete for the limited urban road space, understanding mode conflict 

pattern, and the relation between space allocation and the resultant congestion, are important. 

By assigning space in priority to more efficient modes, the re-allocation of road space aims to 

change the mode share and decrease the car usage and congestion. In case the mode shift is 

insufficient to improve the mobility level, pricing strategies can facilitate this shift to the 

desired one. These pricings can be congestion-charge type, such as the cordon-based pricing 

in London and the area-based pricing in Singapore, but also through accessibility control such 

as parking limitation or bus service improvement which could possibly come from congestion 

toll collection. In the case of parking limitation, if the characteristics of the cruising-for-

parking phenomenon can be captured, strategies such as on-street parking pricing (where 

availability significantly influences the extra travel delay) can be suitable policy in congestion 

alleviation. Sub-sections 1.1.1-1.1.3 will investigate multimodal mobility in literature from 

three dimensions: road space, parking limitation and congestion pricing. To develop 

sustainable multimodal networks, congestion dynamics should not be ignored. After all, the 

goal is to reduce congestion and the underlying approach of the management strategies should 

be consistent with the physics of congestion. To this end, a comprehensive review of the 

recent development on traffic flow theories is provided in sub-section 1.1.4. 

1.1.1 Space and Mobility  

Road space is an important factor in influencing mobility. Under a multimodal environment, 

space should be allocated taking into account spatiotemporal differences in the demand, the 

topology, the mode usage and the control characteristics. If these spatiotemporal decisions are 

made incorrectly, space could be wasted and mobility is being restricted as this wasted space 

could be used by more productive modes, e.g. modes with high passenger occupancy. The 

importance of multimodality by considering passenger throughput rather than vehicle 

throughput was earlier mentioned by Vuchic (1981) who suggested that evaluations of 

multimodal systems should integrate the occupancies of each mode. Empirical studies in 



Chapter 1 Introduction                                                                                             

3  
 

Californian freeways showed accordance with this argument as well. For example, Chen et al. 

(2005) questioned the effectiveness of high-occupancy vehicle (HOV) lanes and have shown 

that HOV lanes are underutilized and the passenger capacity of freeways has decreased, 

resulting in heavier congestion levels. Other studies on this discussion include Sparks and 

May (1971) who evaluated priority lanes for high occupancy vehicles on freeways by a 

mathematical model; Dahlgren (1998) and Daganzo and Cassidy (2008) studied how different 

modes use freeways, recognizing that different modes serve different numbers of passengers 

and should not be considered all equally. Most of these works are limited to small-scale 

systems as they looked at the effect on total passenger travel time if a lane on a specific road 

section was dedicated to multiple occupant vehicles. Nevertheless, the connection between 

road space for different occupancies vehicles and performance is highlighted as the passenger 

capacity of the modes is recognized.  

A body of researches also looked at how street space (through HOVs or dedicated bus lanes) 

should be allocated to reduce vehicular congestion, such as Radwan and Benevelli (1983) and 

Black at al. (1992). These early research explorations towards space and mobility have limited 

applicability, however, since they assume steady-state traffic conditions and they ignore the 

dynamic fluctuations and spill-over effects that typically characterize urban traffic congestion. 

Currie et al. (2004) carried out impact analysis in planning studies of road space allocation, 

via a disaggregate micro-simulation which relies on intensive travel data inputs, such as time-

dependent origin-destination tables and traffic supply curves (flow-density relationship) that 

are typically unavailable or unreliable for urban networks. In simple-structured and 

uncongested road networks (as of the time period those studies were done), these treatments 

may work sufficiently. However the impact of space on congestion is unfortunately more 

complicated nowadays. Other works including Pushkarev and Zupan (1977), Pickrell (1985), 

Kenworthy and Laube (2001) and Cameron et al. (2003) focused on the connection between 

performance of transport systems and land use for transportation as a whole, without further 

consideration on allocation by specific mode usage. Recent researches carried out qualitative 

analysis on space allocation, see in Gonzales et al (2010) and Gonzales and Daganzo (2012). 

The former work proposed dedicated bus lanes for the city of Nairobi, and tested the 

performance at intersection level via micro-simulation. The latter work recognized that the 

network capacity for cars is reduced if transit operations receive dedicated space. However 

neither quantified the impact of this dedicated space on the global performance.  
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Though the existing studies have made many effort in addressing space and multimodality, 

the limitations lie in application level and consideration of congestion dynamics. Furthermore, 

scenario analysis by micro-simulation and agent-based models require huge effort to be 

calibrated and cannot be utilized in a real-time framework. To fill in these research gaps, an 

approach should be developed which is suitable for large-scale road space allocation with 

proper treatment of traffic dynamics.  Detailed research proposal will be provided in Sections 

1.2 to 1.4. 

1.1.2 Parking and Mobility  

Parking limitation is another space-related issue in urban cities. The accessibility and cost of 

parking significantly influence people’s travel behavior, such as mode choice and facility choice 

(on-street or garage parking). Parking thus has direct influence on travel cost. Car-users may 

have to cruise for on-street parking space before reaching destinations and cause delays 

eventually to everyone, even users with destinations outside the limited parking areas.  

Many studies have showed the impact of parking on mobility. One of the highly focused field 

addresses how parking limitation and parking policies influence people’s mode choice and the 

resultant behavioral equilibrium. This type of literature can be found for example in Arnott, and 

Rowse (1999), Anderson and de Palma (2004), Arnott (2006), Forsgerau and de Palma (2013), 

Qian et al. (2013) and elsewhere. By utilizing and extending the classical bottleneck-model of 

Vickrey (1969), behavioral adaptation given parking constraints is revealed. However static 

bottleneck capacity and redundant parking availability were assumed in these studies. In case of 

non-steady conditions, such as when congestion and the demand for parking are time-varying, 

the system dynamics become much more complicated; while in case of insufficient parking 

space, cruise-for-parking flows are different than the normal running flows and can lead to 

traffic congestion. Unfortunately the parking-economics focused approaches cannot capture 

those dynamics.    

Studies taking the impact of cruising into account can be found in Shoup (2005), Arnott and 

Rorwse (2009), Arnott et al. (2013) for analyzing parking pricing policies;, in Martens et al. 

(2010) for examining spatial effect on searching-for-parking; and in Horni et al. (2013) where 

parking choice and searching-for-parking were incorporated in an agent-based model with 

simplistic traffic modeling. However, the inadequacy still lays in the treatment of traffic 

dynamics, particular the dynamics of the cruising flow. For example, trip length may change 

significantly as vehicles are cruising for parking. As more vehicles are cruising, the probability 

of finding a space decreases and eventually the trip length in the destination area increases. It is 
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expected that the increase of trip length would lead to the increase of vehicle density, and thus a 

decrease in average speed and flow of the whole area. No work has been done quantitatively 

towards this direction with proper treatment of cruising and congestion.  

Other studies attempting to study cruising can be found below. Gallo et al. (2011) incorporated 

parking cost in their traffic assignment model. Van Ommeren et al. (2012) carried out an 

empirical study on the diverse features of cruising time in the Netherlands. Guo and Gao (2012) 

estimated travel time including the delay from searching for on-street parking space. The 

proposed approaches either require data that are difficult to collect (e.g. detailed information of 

origin-destination and parking availability at destination) or they become computationally 

expensive in large-scale applications (e.g. microscopic traffic or agent-based models). Several 

works analyzed delay caused by on-street parking at intersections with specific layout, see for 

example in Yousif and Purnawan (2004) and Cao et al. (2014), which deal with single-lane 

downstream section of an intersection. Unfortunately their approach cannot be readily applied 

on a large-scale network.  

To influence urban mobility via parking policies, the dynamics of cruising and its impact on 

congestion deserve further research attention. Similar modeling approach as proposed for road 

space and allocation can be applied with the integration of parking limitation.   

1.1.3 Pricing and Mobility  

Provided with well-designed space allocation between different models, urban networks may 

still be exposed to congestion and rarely sustain at the designed vehicle or passenger capacity. 

The reason is that travelers do not always make rational decisions rather than to maximize their 

own utility when making choices. Pricing therefore has been applied in many cities, with the 

goal of triggering rational travel behavioral changes. Charged by the external costs of facility 

usage, demand is redistributed in a way that the average user cost is optimized.  

There exists an extensive body of studies on congestion pricing models. A comprehensive 

literature summary of these models can be found in Yang and Huang (2005). The theoretical 

background of pricing has relied on the fundamental concept of marginal cost, first introduced 

by Pigou (1920) and followed by Vickrey (1963) and other researchers. In the traffic 

assignment literature, tolls of this type belong to the first-best pricing category and have been 

proposed to drive a user equilibrium pattern (Wardrop, 1952) towards a system optimum. 

Despite their idealized theoretical basis, first-best pricing models have been impractical and 

difficult to implement. Merchand (1968) investigated second-best tolls using a general 
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equilibrium model. According to the second-best pricing models, e.g. Arnott et al. (1990), Small 

and Yan (2000), Verhoef (2002), tolls are charged in a subset of selected links where the 

bottlenecks are located. Utilizing the classical bottleneck equilibrium approach (Vickrey, 1969) 

for pricing has received as much attention and effort as for the parking-related studies, such as 

Arnott (2007), Wu et al. (2011), Verhoef (2012) etc. The critical inadequacy in these works, 

which was pointed out by Geroliminis and Levinson (2009), is that the Pigouvian-type pricing 

assume a network supply curve (desired or input demand vs. average travel cost) which is not 

consistent with the physics of traffic. The total cost expressed in delay terms for a given desired 

demand over a period of time is sensitive, during congested conditions, to small variations of 

flow within the given period and depends on the initial state of the system and the level of 

congestion. In other words, such supply-demand relation is memory-less and does not consider 

the dynamics and evolution pattern of traffic congestion, leading to inefficient pricing 

implementations. 

The second issue of pricing is that charging individual links cannot guarantee (improved) 

optimum travel condition and is also difficult to implement, while pricing at large aggregated 

scales (e.g. cordon- and area-based pricing) lacks a base that is theoretically sound and 

practically applicable. Nevertheless, pricing schemes of aggregated links and networks were 

developed and applied in different cities, such as cordon-based pricing in London and 

Stockholm, area-based pricing in Singapore, and elsewhere. Many studies discussed the 

resultant improvements in travel condition and the political, equity and other relevant concerns 

of these real-life implementations. However, it is unfortunate that few studies explain or aware 

the underlying mechanisms for pricing determination, except the general principle of 

Singapore’s pricing was briefly explained in Liu et al. (2013), where the time-dependent 

cordon-pricing scheme was adjusted based on regular survey on traveling speed. On the 

theoretical side, Anderson and Mohring (1997) examined congestion on the Twin Cities road 

network by charging drivers marginal costs and using a user equilibrium assignment for a single 

period. Yang and Huang (2005) examined the principle of marginal-cost pricing in a road 

network. Maruyama and Sumalee (2007) compared the performance of cordon- and area-road 

pricing schemes regarding their efficiency and equity via simulation. Liu et al. (2013) proposed 

a speed-based toll similar to the one applied in Singapore. The ambiguity in most of these 

models, once more, falls on that traffic conditions are considered either stationary or using the 

traditional demand-supply curve for congestion modeling. The estimated congestion toll based 
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on idealized or memory-less traffic models may not be optimal and the system may be either 

still congested if underpriced or very uncongested if overpriced.  

To develop efficient pricing schemes, especially for large-scale urban networks, an approach 

must capture the aggregated dynamics of congestion towards pricing. Furthermore it is crucial 

to consider heterogeneity (e.g. distribution of VOTs among users) and users’ behavioral 

adaptation (e.g. change of travel behavior in response to pricing). Few studies provide 

quantitative approach to evaluate the effect of pricing on multimodality. Questions such as how 

to adjust pricing rate based on user’s behavioral changes or what are the impacts of an incentive 

program of using public transport (PT) on the performance of pricing should be addressed. It 

has to be highlighted that despite the vast literature in pricing, field tests are quite limited and 

this is among other reasons due to user acceptability. Providing incentives to other modes of 

transport (e.g. return a fraction of the tolls paid to users that switched to public transport mode) 

can make such policies more attractive for real cases.   

1.1.4 Congestion Dynamics in Urban Road Networks 

The main challenge in mobility management of large-scale multimodal urban networks is to 

develop a multimodal dynamic modeling framework at the network level. This framework 

should capture congestion dynamics of the multimodal system and links the performance of 

road networks to road space allocation, parking limitation, pricing and other policies. In this 

section we provide an overview of the literature on traffic flow models, shedding light on the 

research directions of this thesis.   

There is a strong understanding and vast literature of congestion dynamics and spreading in 

car-to-car-scale or road-scale traffic systems with a single mode of traffic, e.g. a highway or 

urban street section with cars. Traffic scientists, mathematicians and physicists have 

contributed to the field of traffic flow theories from many aspects. Because a detailed review 

of numerous publications is beyond the scope of this thesis, readers are advised to refer to 

Helbing (2001) for an overview. Briefly speaking, the main modeling approaches can be 

classified as follows: (i) Car-following models deal with the non-linear interactions and 

dynamics of individual vehicles (e.g. Gipps, 1981). To address computational burden, (ii) 

cellular automata describe the dynamics of vehicles in a coarse-grained way by discretizing 

space and time, (e.g. Nagel and Schreckenberg, 1992; Daganzo, 1994). (iii) Gas-kinetic 

models formulate a partial differential equation for the spatio-temporal evolution of the 

vehicle density and the velocity distribution (e.g. Helbing and Treiber, 1998). (iv) First-order 

flow models are based on a partial differential equation for the density and a fundamental 
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diagram relation (e.g. Lebacque, 1996; Leclercq et al, 2007). (v) Second-order models contain 

an additional equation for non-steady state conditions. In continuum models, a network is 

approximated as a continuum in which users choose their routes in a two-dimensional space 

(e.g. Jiang et al., 2011). It has been broadly shown through simulation and field experiments, 

e.g., Munoz and Daganzo (2003), Geroliminis and Daganzo (2008), Helbing et al. (2009), that 

the classical linkage between pertinent variables flow, speed and density on a spatially 

disaggregated level (e.g. one link) is very scattered and does not follow a well-defined curve. 

One of the reasons is that traffic systems are not in steady-state conditions at a link level, 

particularly in urban networks where traffic signals, turning movements and spill-overs are 

widely present and intervene with traffic. Management strategies based on these models cannot 

guarantee efficiency and are also difficult to be implemented in real time due to computational 

complexity.  

On the other hand, models based on aggregated traffic dynamics appear to reflect traffic 

performance and congestion evolution at network level and could overcome the 

computational burden if they can highlight the main important characteristics of dynamic 

congestion. The idea of an aggregated traffic flow model for car-only urban networks was 

initially proposed in Godfrey (1969) and was re-initiated later in Mahmassani et al. (1987) and 

Daganzo (2007). The demonstration of the existence and dynamic features of a Macroscopic 

Fundamental Diagram, the MFD, was only recent in Geroliminis and Daganzo (2008), with 

empirical data from Yokohama, Japan. According to the definition, an MFD relates the 

production (total distance travelled by all vehicles per unit time or trip completion rate) or 

space mean speed (as defined by Edie (1963)) to vehicle accumulation (total amount of 

vehicles) of a network. The same work by Geroliminis and Daganzo (2008) showed that the 

MFD is a property of the network itself (infrastructure and control) if the network is 

homogeneously congested and not very sensitive to demand, i.e. the space-mean flow is 

maximum for the same value of critical density of vehicles, for many origin-destination tables. 

Fig. 1.1(a) displays the MFD observed from field data of the city center network in Yokohama. 

Each point in the MFD plot corresponds to a 5-min aggregation (space-mean) of density and 

network circulating flow data collected in different days and at different times. Remarkably, 

the scatters follow closely a well-defined curve, although the same relationship does not hold 

for individual links, as shown in Fig. 1.1(b) the flow-density relationship on two links in the 

same network.  
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Fig. 1.1(a)  Empirical evidence on the existence of the MFD relating network circulating flow 

and the space mean density, Yokohama city center network in Japan, and (b) fundamental 

diagram of flow-density relation on two individual links in the same network. Data source: 

Geroliminis and Daganzo (2008). 

An MFD facilitates performance monitoring at network-level. A graphical explanation is 

added in Fig. 1.1(a). In the figure, three traffic regimes can be observed in the MFD scatter 

plot. Regime I corresponds to under-saturated states where most of the links in the network 

sufficiently serve vehicles with an actual throughput smaller than the maximum possible. 

Regime II represents saturated states. In this regime, most of the links are filled with 

permanent queues and many operate at capacity. This capacity is approximately constant, but 

never larger than the quantity ∑ 𝐿𝑖𝑔𝑖𝑠𝑖𝑖 , where 𝐿𝑖 is the link length, 𝑔𝑖 is the duration of green 

phase and 𝑠𝑖  is the saturation flow of link 𝑖 . Furthermore, the critical density 𝐾𝑐𝑟  that 

maximizes flow is achieved in Regime II. While in Regime III, production decreases with 

more vehicles joining the network (oversaturated states) and long queues or spillbacks are 

observed in many links. It can be seen that an MFD provides explicitly the optimal traffic 

state of the networks, which is to operate closely to the critical density in Regime II. The goal 

of an MFD-based management strategy would be to avoid states in Regime III instead to 

maintain in Regime II or not exceeding 𝐾𝑐𝑟, as much as possible. These properties can be of 

great importance to unveil management policies in such a way that maximize the network 

capacity of vehicles or even the passenger capacity in multimodal networks, if similar patterns 

can be observed. 

Recent works highlighted that the spatial distribution of congestion can affect the shape of the 

MFD with higher flows observed for less spatial heterogeneity, e.g. Mazoumian et al. (2010), 

Geroliminis and Sun (2011), Daganzo et al. (2011), Mahmassani et al. (2013), and Knoop et al. 

(2013) explored the properties of the MFD via simulation analysis. Analytical theories have 

been derived for estimating the MFD as a function of network and intersection parameters, 
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using variational theory for homogeneous and heterogeneous network topologies, respectively 

(Daganzo and Geroliminis (2008), Geroliminis and Boyaci (2012), Leclercq and Geroliminis 

(2013)). The conditions of a well-defined MFD, stability and scatter phenomenon are 

analyzed through many other simulation studies and experimental tests, such as in Buisson 

and Ladier (2009), Ji et al. (2010), Gayah and Daganzo (2011), Saberi and Mahmassani 

(2012), Ji and Geroliminis (2012), and Mahmassani et al. (2013).  

 

Fig. 1.2 Effect of spatial heterogeneity of congestion in the MFD: (a-left) Snapshot of the San 

Francisco network during peak hour (colors indicate density level, the darker the more 

congested), (b-middle) the network partitioned in 3 regions, and (c-right) MFDs of the 3 

partitioned regions, with the congestion starting times indicated. Data source: Ji and 

Geroliminis (2012). 

It should be further emphasized that the MFD of freeway road networks likely exhibit 

hysteresis and capacity drop phenomenon. Geroliminis and Sun (2011) concluded that this 

phenomenon mainly is caused by heterogeneity in congestion distribution and they observed 

different congestion centers exist in the studied network. This property should not be neglected 

(both for urban and freeway networks) as each congestion center may reach the congested 

regime at different times. Control strategies based on a global MFD for the whole city thus 

may not be effective as they treat regions with different level of congestion in a similar manner. 

A recent study by Ji and Geroliminis (2012) presented a partitioning algorithm to identify 

regions with different congestion levels.  Fig. 1.2 displays an application of partitioning for a 

simulation of the San Francisco network. Fig. 1.2(b) shows the result of the partitioning 

algorithm, given congestion distribution over the network illustrated in Fig. 1.2(a) (the darker 

the more congested), while Fig. 1.2(c) plots the MFDs of the three partitioned regions. It can 

be observed that there is a clear distinction between congested and uncongested regimes for all 

three regions. The time each of the regions reaches the congested regime is very different. 
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With successful partitioning, network-level monitoring and optimization would be a feasible 

approach, as congestion is homogeneous inside each partitioned region and all the regions 

have a well-defined MFD with low scatter. 

Once the MFD is obtained and given, real-time traffic performance can be monitored with 

input data that can be easily collected via current communication technologies, such as GPS, 

Bluetooth, loop detectors etc. Management strategies then can be developed, examples 

including MFD-based perimeter flow control which can be found in Keyvan-Ekbatani et al. 

(2012), Geroliminis et al. (2013), Aboudolas and Geroliminis (2013), and Haddad et al. (2013). 

As multiple modes compete for limited urban space, conflicts and interactions are developed 

resulting in congestion. Congestion dynamics and mode conflict patterns of multimodal urban 

networks need to be analyzed. Existing literature on multimodal traffic mainly focuses on 

design and operation of special lanes (Daganzo and Cassidy (2008), Li et al. (2010), Tirachini 

and Hensher (2011)), optimization of signal control (Mesbah and Currie (2011), Christofa et 

al. (2013)). However, few of these works were dedicated on the modeling of traffic dynamics 

and even fewer on the influence of each mode on the network performance. Furthermore, 

most of the aforementioned works fall short either in the scale of application or the treatment 

of congestion dynamics (small scale and/or static models). For example, Li et al. (2010) and 

Mesbah et al. (2011) are based on a BPR ((Bureau of Public Roads, 1964) type of model, 

which works only for static conditions. Daganzo and Cassidy (2010) and Tuerprasert and 

Aswakul (2010) utilized the link-scale Fundamental Diagram, which can experience high 

scatter and therefore cannot provide accurate estimates of speed and travel time at the network 

level. These somehow detailed models can also be computationally complex when applied at 

the network scale.  

Mobility of multimodal urban networks needs to be analyzed under various network 

structures, as well. A multimodal network can be treated as a system of multiple regions, 

where each region exhibits similar congestion patterns. This treatment is plausible thanks to 

the development of the MFD theory, as the dynamics in each region can be represented by an 

MFD. However, capturing such multimodal system dynamics is still challenging. This is 

because the MFD of a multimodal network, if exists, is expected to be influenced by space 

allocation and mode usage. Traditional models based on detailed OD information and traffic 

assignment models, or small-scale traffic flow models, can be computationally costly when 

applied for large-scale networks and require data that are difficult to obtain. With the respect 
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to this issue, an MFD-type based system model is suitable and can serve as a strong 

alternative for multimodal network modeling and control. Recent works towards this direction 

can be found in Gonzales and Daganzo (2012) (2013), who examined system optimum 

solutions using MFD for a transport system with cars and public transit share space for the 

peak-hour commune problems.  

Furthermore, the impact of operational and service characteristics and interaction between 

different modes when sharing the same space should not be ignored. While literature has 

focused on congestion modeling for vehicular traffic, the effect of service stops (like when a 

bus or taxi stops to board and alight passengers) in the overall performance of a large-scale 

urban system requires further research effort. It is intuitive that the effect of these stops in the 

network capacity is almost negligible during light demand conditions, but nowadays city 

centers are experiencing high level of congestion and the frequency in time and space of these 

stops is significantly high. One bus creates more congestion than a moving car. On the other 

hand as mentioned in Section 1.1, the additional delay per passenger carrying is smaller for 

large bus occupancies, making buses a more sustainable mode of transport compared to cars. 

A semi-analytical approach building on variational theory was developed to estimate an MFD 

for networks with cars and buses (Boyaci and Geroliminis, 2011). Buses service stops were 

treated as periodic red phases of fictitious traffic signals that decrease the capacity of the road 

at the bus stop locations. While such a framework can provide important insights for network 

capacity for different operational characteristics of buses, it cannot directly integrate the 

heterogeneity in the spatial distribution of buses and cars in the network. 

The promising tool to advance the understanding of multimodal traffic dynamics is the 

extension of an MFD for car-only urban traffic to a multimodal framework. If an MFD-type 

model exists for multimodal networks and it unveils similar pattern as observed in the MFD, 

system model can be developed to produce the aggregated behavior and be utilized to design 

and test management strategies. 

1.2 Research Objectives 

To address the aforementioned research gaps, this thesis aims to develop a macroscopic 

modeling and optimization approach for influencing mobility and multimodality of urban 

networks. The approach shall contribute on the knowledge of congestion dynamics in cities of 

different structures and mode usages, and ultimately facilitate the design of effective and 
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efficient urban transport policies, such as dedicated bus lane allocation, congestion pricing 

and parking limitation. To this end, four objectives are identified.  

Objective I: To develop a network-level dynamic traffic flow model for optimizing road space 

allocation in multimodal urban networks. In order to gain insightful understanding of the 

complex multimodal dynamics, bi-modal dynamics of cars and buses should be studied as a 

first step. The developed bi-modal traffic model needs to capture congestion dynamics, e.g. 

the effect of bus operation (such as dwell time of service stops) in the global performance. 

The model should also link traffic performances to space allocation between cars and buses. 

Based on the bi-modal traffic model, a system model needs to be developed to reproduce the 

system dynamics under given demand, city structure and road infrastructure. With such 

system model, an optimization framework can be built up for designing space allocation 

strategies. 

Objective II: To develop a system dynamic model for designing parking polies in multimodal 

urban networks with limited parking. Given the achievement of Objective I, the focus moves 

on the integration of cruising-for-parking in the bi-modal traffic model, such that the change 

of system dynamics due to parking limitation and cruising can be reflected, and the cost of 

cruising can be estimated e.g. the increase of average cruising delay or the reduction in 

average speed. Incorporating this parsimonious model to the system model developed in 

Objective I, the ultimate objective is to design optimal parking pricing strategies through 

optimization.  

Objective III: To develop a new type of network-level traffic flow model, which captures the 

congestion dynamics by modes, the modal conflict patterns, and passenger flow dynamics. 

Completing objectives I and II, one obtains a modeling approach for mixed-traffic networks 

where the joint effect of all vehicles in congestion can be evaluated. The key objective now is 

to propose a model that can monitor and quantify the impact of each individual mode on the 

global traffic performance in multimodal networks, for example the proposed model should 

be able to analyze the network vehicle and passenger flow throughput at different mode 

composition rates. This modeling tool is also expected to identify mobility levels with respect 

to passenger flow under different presence of buses, so that passenger-dynamics-based 

analysis can be carried out.   

Objective IV: To develop network-level area-based and cordon-based congestion pricing 

schemes for multimodal networks based on the concept of the MFD. The proposed pricing 
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schemes aim at controlling congestion for an entire network, thus the underlying pricing 

control mechanism must be consistent with congestion physics at aggregated scales. To 

ensure the efficiency of the pricing schemes in congestion management, traveler’s behavioral 

adaptation ought to be taken into account for toll rates adjustments. Furthermore, the 

promotion of public transport service through redistribution of the toll revenue should be 

treated, as the goal is to increase multimodality. The distributional effect of benefit and loss 

over heterogeneous users under such pricing schemes should also be investigated.    

1.3 Research Contributions 

The contributions of this thesis can be summarized in four categories, which correspond to the 

four objectives defined in Section 1.2. By achieving these objectives, this thesis succeeds in 

developing a macroscopic tool for understanding the congestion dynamics in multimodal 

networks and developing strategies for mobility and multimodality management.  

A Multi-modal Multi-region Modeling Framework for Road Space Allocation (Chapter 2) 

 A bi-modal Macroscopic Fundamental Diagram model (bi-modal MFD) is developed 

for capturing congestion dynamics of a mixed-traffic network of cars and buses, 

relating the network production to the network space mean accumulation of the mixed-

traffic. Space allocation affects the shape of the bi-modal MFD. 

 An aggregated system dynamic model is proposed for reproducing the aggregated flow 

movements and (time-dependent) travel cost in a bi-modal multi-region transport 

system for given city structure and road infrastructure.  

 As traffic performance of the system is linked to space allocation, an optimization 

framework is established to determine space allocation and mode usage strategies that 

minimize the total cost of all the travelers. Two allocation strategies are obtained: a 

static and a dynamic dedicated bus lane allocations.  

 The developed modeling and optimization framework can be utilized for real-life 

application, as the required data that are feasible to collect. It is also demonstrated that 

this framework is not very sensitive to the changes on the values of the main 

parameters.  

Modeling and Optimizing Multimodal Urban Network with Limited Parking and Pricing 

(Chapter 0) 
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 The system model developed in Chapter 2 is extended with parking limitation. The 

dynamics of cruising are integrated in the system dynamic model.  

 A parsimonious model is proposed to estimate cruising delay and a dynamic average 

trip length, assuming the average probability of finding a parking space follows a 

geometric distribution and depends on the time-dependent parking space availability.  

 The cruising effect is integrated in the bi-modal MFD model as well, where delay to all 

car-users including those who do not participate in cruising for parking and those travel 

outside of the congestion region, can be estimated.  

 Close-to-optimum pricing schemes can be obtained through the optimization 

framework, such as a real-time parking pricing control scheme, where the price of 

parking depends on congestion level and cruising delay. Furthermore, the model can be 

applied to investigate competition behavior of the parking market, if the operation 

authority of different types of parking facilities belongs to different parties. 

 

A Three-dimensional Macroscopic Fundamental Diagram for Mixed Bi-modal Traffic 

(Chapter 4) 

 The existence of a three-dimensional Macroscopic Fundamental Diagram (3D-MFD) 

for bi-modal mixed urban networks is demonstrated through micro-simulation, relating 

the total network production to the accumulation of cars and buses if a region is 

(roughly) uniformly congested. With the 3D-MFD, the individual modal impact on the 

global traffic performance can be directly identified and quantified.   

 A passenger 3D-MFD is proposed and derived where the passenger production over the 

accumulation of cars and buses can be observed and it provides a different perspective 

of traffic dynamics of bi-modal networks. 

 Network partition is applied to obtain the 3D-MFD for networks with heterogeneity in 

mode composition and congestion level. Recognizing this heterogeneity improves the 

accuracy of the 3D-MFD modeling. 

 An exponential model is proposed for the functional form of the 3D-MFD. With the 

function form, the Bus-Car Unit equivalent value is derived and found to be state- and 

mode composition-dependent instead of a constant value as is usually assumed in 

literature. 

 The 3D-MFD can be significantly useful for monitoring and managing congestion in 

bi-modal networks, e.g. a 3D-MFD based perimeter flow control can achieve high 
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efficiency in congestion reduction and equitable benefit between users of different 

modes and in different parts of the network. 

Congestion Pricing Schemes combining Macroscopic Fundamental Diagram and Agent-based 

Approach (Chapter 5) 

 An approach combining the MFD and agent-based model is proposed to design city-

level congestion pricing schemes.  

 A cordon-based pricing is developed via a Proportional feedback-type control 

mechanism, where the pricings are determined and adjusted based on aggregated 

congestion level, as expressed by the MFD.  

 An area-based pricing is developed via a Proportional-Integral feedback-type control 

mechanism, where the pricings are determined and adjusted based on aggregated 

congestion level and behavioral adaptation, expressed by the MFD as well.  

 Pricing is found more efficient: when behavioral adaptation is considered; when 

incentive programs are integrated in the pricing schemes through redistributing the toll 

revenue to promote bus usages; and when heterogeneity of travelers such as difference 

in value-of-time is recognized and treated separately.  

 MFD-based pricing strategies are practical for implementation, given their reasonable 

data input requirements and implementation costs. 

1.4 Thesis Outline 

This thesis consists of six chapters. The main four chapters, Chapters 2 to 5 intend to address 

the four stated objectives respectively. The outline of each chapter is given below.  

Chapter 2 extends the single-mode MFD model to a multi-modal one with focus on bi-modal 

case, and constructs a dynamic system model. A city network is decomposed to multiple 

regions. Each region has its unique mode specific MFD or bi-modal MFD which is assumed 

known in advance, given space allocation condition (the shape of this MFD is investigated 

later in Chapter 4). The flow dynamics among regions are described by a regional level flow 

conservation law, where vehicles are categorized by families regarding their traveling 

directions and the movement throughput and speed is represented by the bi-modal MFD. An 

approximate dynamic mode choice (that can be integrated in an optimization framework) is 

also given to passengers to choose modes based on imperfect information of the time-

dependent cost, where the cost is identified from the MFD. Combining the bi-modal MFD, the 
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mode choice model and the aggregated flow conservation model, a non-linear optimization 

framework is proposed to allocate road space between cars and buses, such as a time-

dependent dedicated bus lane allocation strategy in the congested center, given the total 

available road space of a city. A case study is carried in a hypothetical two-region network to 

prove the rationale of the aggregated system model. Two space allocation strategies are 

introduced and optimized with the objective of minimizing total cost of all travelers. 

Furthermore, a sensitivity analysis on the key parameters of the model is carried out. 

Performance under high demand scenarios is also investigated. The preliminary results of this 

chapter are presented in: 

 Optimizing space allocation for multimodal transport system: A macroscopic approach. 

Zheng, N. and Geroliminis, N., 2012. Paper presented at the 12
th

 Swiss Transportation 

Research Conference (STRC). Ascona, Switzerland.  

 Re-distribution of urban road space for multimodal congested networks with MFD 

representation. Zheng, N. and Geroliminis, N., 2012. Paper presented at the 92
nd

 

Annual Meeting of Transportation Research Board. Washington D.C., USA.  

The most important findings of chapter 2 are published in: 

 On the distribution of road space for urban multimodal congested networks. Zheng, N. 

and Geroliminis, N., 2013. Transportation Research Part B 57: 326-341. The paper 

was also presented at the 20
 th

 International Symposium on Transportation and Traffic 

Theory (ISTTT), Noordwijk, The Netherlands, 2013. 

Chapter 3 integrates parking limitations into the dynamic model and the optimization 

framework developed in Chapter 2. The system model is enhanced by incorporating a 

cruising-for-parking vehicle family, where vehicles before reaching their destination should 

cruise due to the limitation of parking space. The cost of cruising is estimated by a 

parsimonious model where the probability of finding a parking space is assumed to follow a 

geometric distribution and depend on the time-dependent parking availability. While the total 

system delay due to cruising estimated by the bi-modal MFD for the whole network. It also 

shows the effect of cruising on users who even do not require parking search. The impact of 

parking on the performance of the system is analyzed utilizing the same idealized network. 

Two parking facilities are available: on-street parking with limited space requiring cruising, 

and garage parking with infinite capacity requiring higher parking fee. Two parking pricing 

strategies are designed, optimized and tested. Furthermore, the developed system model is 
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utilized to investigate parking market competition between on-street and garage parking. A bi-

objective and a bi-level optimization framework are formulated for cooperative and non-

cooperative price competition, respectively. The preliminary results of this chapter are 

presented in the following conferences, while a journal article is under preparation: 

 A dynamic approach for influencing multimodal mobility of buses and cars with 

limited parking. Zheng, N. and Geroliminis, N., 2014. Paper presented at the 14
th

 

Swiss Transportation Research Conference (STRC). Ascona, Switzerland.  

 A dynamic approach for influencing multimodal mobility with limited parking. Zheng, 

N. and Geroliminis, N., 2014. Paper presented at the 3
rd

 Symposium of the European 

Association for Research in Transportation (hEART). Leeds, UK. 

 Modeling and optimization of multimodal urban network with limited parking and 

dynamic pricing. Zheng, N. and Geroliminis, N., 2015. Paper submitted to the 94
th

 

Annual Meeting of Transportation Research Board. Washington D.C., USA.  

Chapter 4 has two main objectives: (i) It investigates the existence of aggregated 

relationships that describes the performance of urban bi-modal networks with buses and cars 

sharing the same road infrastructure and (ii) identifies how this performance is influenced by 

the interactions between modes and effect of bus stops. To this end, a three-dimensional 

vehicle MFD is developed, relating the accumulation of cars and buses, and the total 

circulating vehicle flow in the network. This relationship experiences low scatter and can be 

approximated by an exponential function. An analytical model is then proposed to estimate a 

three-dimensional passenger MFD, which provides a different perspective of the flow 

characteristics in bi-modal networks, by considering that buses carrying more passengers. 

With the function form of the 3D-MFD, it is also derived and shown that a constant Bus-Car 

Unit equivalent value cannot describe the influence of buses in the systems as congestion 

develops. A partitioning algorithm is performed to cluster the network into a small number of 

regions with similar mode composition and level of congestion. Interactions between buses 

and cars in the partitioned regions are analyzed and compared. The preliminary results of this 

chapter are presented in: 

 A city-scale Three-dimension Macroscopic Fundamental Diagram: Simulation 

findings. Zheng, N., Aboudolas, K. and Geroliminis, N., 2013. Paper presented at the 

13
th

  Swiss Transportation Research Conference (STRC). Ascona, Switzerland.  
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 Investigation of a city-scale three-dimensional Macroscopic Fundamental Diagram for 

bi-modal urban traffic, Zheng, N., Aboudolas, K. and Geroliminis, N., 2013. Paper 

presented at the 16
th

 International IEEE Annual Conference on Intelligent 

Transportation Systems (ITSC). The Hague, the Netherland.  

 A city-scale macroscopic fundamental diagram for mixed bi-modal urban traffic, 

Geroliminis, N., Zheng N. and Aboudolas, K., 2014. Paper presented at the 93
rd

 

Annual Meeting of Transportation Research Board. Washington D.C., USA.  

The last section of Chapter 4 demonstrates the potential use of the 3D-MFD to real-time 

traffic management, via perimeter flow control (note that the author of this thesis mainly 

contributes in the application of the developed controller and numerical analysis). The 

presented simulation results and analyses are included in the following papers where the 

author of this thesis serves as the second author: 

 Perimeter flow control in bi-modal urban road networks: A robust feedback control 

approach. Aboudolas, K., Zheng, N. and Geroliminis, N., 2014. In the proceedings of 

the 2014 European Control Conference: 2569-2574. 

 Robust control of bi-modal multi-region urban networks: An LMI optimization 

approach. Aboudolas, K., Zheng, N. and Geroliminis, N., 2014. In the proceedings of 

the 17
th

 International IEEE Annual Conference on Intelligent Transportation Systems 

(ITSC). Qingdao, China (a journal version is under preparation considering the above 

two articles). 

Chapter 4 as a whole addresses research objective III, given research background in Sub-

section 1.1.4. The complete version of the modeling part is published in:  

 A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban 

networks. Geroliminis, N., Zheng, N. and Aboudolas, K., 2014. Transportation 

Research Part C 42: 168-181.  

Chapter 5 concerns the development of network-level congestion pricing schemes for 

multimodal urban networks with the concept of the MFD and implementation in an agent-

based approach, with the consideration of user adaptation and user heterogeneity. Two time-

dependent schemes are designed through a Proportional (P) and a Proportional-integral (PI) 

type feedback controllers respectively, where prices are adjusted based on the level of 

congestion and behavior adaptation of the travelers that are observed offline from the MFD. 

Within the PI pricing scheme, the toll revenue is redistributed to promote the usage of buses. 
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Furthermore, two groups of users are differentiated with respect to their value-of-time in order 

to investigate equity. To ensure the MFD-based analysis is suitable, the output of the agent-

based model is firstly investigated for consistency with the aggregated congestion physics as 

expressed by the MFD. Two case studies are then carried out implementing the two pricing 

schemes in the Zurich center network and the Sioux-Fall network respectively. Comparing the 

results of the two pricing schemes, the PI-based scheme is found more efficient as it is 

flexible in toll adjustment. Efficiency can be further improved when the promotion of bus 

usage by toll redistribution is incorporated in the pricing scheme. Considering user 

heterogeneity also results higher efficiency and more equitable benefit to users. The 

preliminary results of this chapter are presented in: 

 A dynamic cordon pricing model – A robust and effective road pricing model, Zheng, 

N. and Geroliminis, N., 2012. Research presented at the European Conference on 

Transport Research (Transport Research Arena). Athens, Greece, 2012. (This work 

obtained The Year 2012 Golden Award of the Doctoral Transportation Research 

Competition at the conference). 

 A dynamic cordon pricing scheme combining a macroscopic and an agent-based 

model. Zheng, N., Waraich, R., Axhausen, K. and Geroliminis, N., 2012. Paper 

presented at the 91
th 

Transportation Research Board 2012 Annual Meeting., 

Washington, D.C., USA.  

 Area-based pricing scheme for multimodal systems and heterogeneous users in an 

agent-based environment. Zheng, N.  Rérat, G. and Geroliminis, N., 2015. Paper 

submitted to the 94
th 

Transportation Research Board Annual Meeting. Washington, 

D.C., USA. 

Chapter 5 as a whole addresses research objective IV, built in the research background of 

Sub-sections 1.1.3 and 1.1.4. Two complete versions are published respectively in: 

 A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram 

and an agent-based traffic model. Zheng, N., Waraich, R., Axhausen, K. and 

Geroliminis, N., 2012. Transportation Research Part A 46(8): 1291–1303. 

 A time-dependent area-based pricing scheme for multimodal urban networks with user 

adaptation: An agent-based approach. Zheng, N. and Geroliminis, N., 2015. In the 

proceedings of the 17
th

 International IEEE Annual Conference on Intelligent 

Transportation Systems (ITSC). Qingdao, China. (A journal version is under 

http://www.sciencedirect.com/science/article/pii/S096585641200081X
http://www.sciencedirect.com/science/article/pii/S096585641200081X
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preparation combining the 2015 TRB paper and IEEE ITSC 2014 conference papers 

listed above) 

Chapter 6 summarizes the main findings and highlights the contribution of this thesis to the 

existing literature.  

Please note that Chapters 2 to 5 are self-standing articles. For the sake of readability, a 

nomenclature is provided in the beginning of each chapter for the main variables and 

parameters utilized in that chapter. Same notations may be used with different meanings in 

different chapters.     
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2  A Multi-modal Multi-region Modeling 

Framework for Road Space Allocation 

 

In this chapter, a quantitative approach is proposed, linking traffic performance and road 

space allocation for multimodal urban transport systems. Such system can be treated as an 

interconnected network of regions (sub-networks) with one or more modes moving. In this 

extension, different parts of a city can be subject to different management strategies (see for 

example Fig. 2.1). Perhaps bus-only streets are allocated only in the central region while other 

parts of the city allow vehicles to operate in mixed traffic. It is important to understand how 

the space should be allocated and their impacts on traffic performance. With the recent 

findings in the macroscopic modeling and dynamics of traffic in cities which have provided 

knowledge of single-mode/ single-region cities and single-mode/multi-region cities, 

understanding the dynamic of multi-mode, multi-region cities is promising. Operational 

characteristics of different modes should be considered. Despite the different features of 

modes in terms of occupancy (number of passengers), driving behavior (speeds, acceleration 

and deceleration profiles, length), duration of travel, etc., all of these vehicles when moving to 

an urban environment make stops related to traffic congestion (e.g. red phases at traffic 

signals) and other stops, which also cause delays to the transportation system as a whole, e.g. 

buses stop at bus stops to board/alight passengers, taxis stop frequently and randomly when 

they search/pick up/deliver passengers, cars may stop/maneuver when search/find a parking 

spot. While there is a good understanding and vast literature of the dynamics and the 

modeling of congestion for congestion-related stops, the effect of service or general purpose 

stops in the overall performance of a transportation system still remains a challenge.  

The proposed approach eventually should answer how road space should be allocated to each 

mode to minimize the travel costs of users traveling with all modes, providing quantitatively 

how changes in infrastructure, demand, or traffic management in one region have impact on 

the multimodal traffic performance. We will show that (i) the proposed approach captures the 

operational characteristics of different modes, (ii) the resulting system dynamics are 

consistent with the physics of traffic given different road space strategies, e.g. with or without 

dedicated bus lanes, (iii) allocation of road space can be readily optimized in a static and 



 

24 
 

dynamic way, and (iv) pricing strategies can further improve the efficiency of the system with 

less space dedicated for buses.  

 

Fig. 2.1 A multi-region, multimodal urban road system. 

 

In Sections 2.1and 2.2, the methodological frameworks for multimodal system dynamics and 

road space optimization are developed, respectively. Section 2.3 presents the results of a case 

study with a two-region city and two modes, buses and cars. A summary of this chapter is 

provided in Section 2.4.  

Table 2.1 provides a nomenclature of main variables and parameters for Chapter 2.  

Table 2.1 Nomenclature of main variables and parameters in Chapter 2. 

Variables Description 

𝑄𝑖
𝑘(𝑡) demand generated at time 𝑡 in region 𝑖 with next destination region 𝑘 

𝑄𝑖
𝑘𝑚(𝑡) demand generated at time 𝑡  in region 𝑖  with next destination region 𝑘 , 

choosing mode 𝑚 

𝑝𝑖
𝑘𝑏(𝑡) Bus mode share for demand 𝑄𝑖

𝑘(𝑡) 

𝑂𝑖
𝑚(𝑛𝑖

𝑏(𝑡), 𝑛𝑖
𝑐(𝑡)) flow exiting region 𝑖 of mode 𝑚 at time 𝑡 as a function of accumulations 

𝑟𝑖
𝑘𝑚(𝑡) fraction of 𝑂𝑖

𝑚 from region 𝑖 with final destination 𝑘 at time t 

𝑃𝑖
𝑚(𝑡) total distance traveled by all vehicles of mode 𝑚 in region 𝑖 at time 𝑡 

𝑂𝑖→𝑗
𝑘𝑚(𝑡) transfer flow of mode m from region 𝑖 to 𝑗 with final destination 𝑘 at time 

𝑡 

Buses
Taxis

Cars

Taxis

Taxis        Cars
Buses

Taxis        Cars
Buses

Taxis        Cars
Buses

Buses
Taxis

Cars
Taxis

Buses
Cars

Taxis
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𝜋𝑖(𝑡) space share allocation plan of region 𝑖 at time t 

𝑈𝑖
𝑘𝑚(𝑡) utility of using mode 𝑚 at time 𝑡 in region 𝑖 with next destination region 

𝑘 

𝑛𝑖
𝑘𝑚(𝑡) accumulation of mode 𝑚  in region 𝑖  with next destination region 𝑘  at 

time 𝑡 

𝑛𝑖
𝑚(𝑡) accumulation of mode 𝑚 currently in region 𝑖 at time 𝑡 

𝑜𝑏𝑖
𝑐 average number of passengers per car in region 𝑖 

𝑜𝑏𝑖
𝑘𝑏(𝑡) average number of on-board passengers per bus in region 𝑖  with 

destination k at time 𝑡 

𝛿𝑖→𝑗
𝑘 (𝑡) binary variable showing the sequence of the trip, with value equal to 1 if a 

trip from region 𝑖 to 𝑘 passes through 𝑗 immediately after leaving 𝑖, and 0 

otherwise  

𝑂𝐵𝑖
𝑘𝑏(𝑡) total number of bus on-board passengers in region 𝑖 with destination k at 

time 𝑡 

𝛼𝑖
𝑏(𝑡) parameter for the effect of dwell times on bus speed in region 𝑖 at time 𝑡 

𝑇𝑇𝑖
𝑏(𝑡) , 𝑉𝑖

𝑏(𝑡)  average travel time and speed by using mode 𝑚 in region 𝑖 at time 𝑡 

𝑇𝑇𝑑
𝑏(𝑡) extra travel time spent due to bus dwell times in region 𝑖 at time 𝑡 

𝐿′̅𝑖𝑏 average trip length of bus passengers in region i 

𝐿̅𝑖𝑚 average trip length of mode 𝑚 in region i 

𝐶𝑏𝑢𝑠 storage capacity of buses (persons per vehicle) 

𝐷𝑖
𝑏(𝑡)  bus discomfort (crowdedness) in region 𝑖 at time 𝑡 

𝜃𝑖 percentage of on-board passengers reaching destination i 

𝛾, 𝛽1, 𝛽2 parameters for mode choice and bus crowdness 
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2.1 Bi-modal MFD Model and System Dynamics 

Consider a city as a multi-region system, where the road network of the city is divided into 𝑁 

regions as in Fig. 2.1, denoted by 𝑖 = 1,…… ,𝑁 . Criteria for partitioning a region 

(approximate size a few hundred links each) are: homogeneous distribution of congestion 

within each region to obtain a low scatter MFD (see in details in Ji and Geroliminis (2012)), 

similar topological characteristics and similar type of mode usage. In this thesis, we assume 

both the partition result and the MFDs are given, where the MFDs can be estimated 

analytically (Boyaci and Geroliminis (2012)) or approximated given data collected from 

sensors (Keyvan-Ekbatani et al. (2012), Ortigosa et al. (2013), Leclercq and Geroliminis 

(2013)).  

Any region 𝑖 is partitioned into sub-regions, each one containing a specific type of mode 

usage, e.g. it can be dedicated bus lanes, mixed traffic lanes, car-only lanes or any other 

special usage lanes. The strategy of allocating fraction of space to each sub-region in region 𝑖 

at time 𝑡 is denoted by vector 𝜋𝑖(𝑡) (which can be static e.g. 20% of space for bus-only lanes 

all the time, or dynamic e.g. 10% during off-peak while 20% during peak). Without losing the 

aggregated treatment of 𝜋, detailed distribution of the space is not considered here e.g. which 

roads have bus lanes (nevertheless an average cost of accessing those lanes is included in the 

model).   

Demand defined as regional origin-destination is also considered known (for instance, 

demand from region 𝑖 to 𝑘 at time 𝑡). We will later relax this assumption and investigate how 

uncertainty and errors in the demand influence our approach.  

The goal of road space optimization for such multimodal multi-region transport systems is to 

minimize the total passenger hours travelled (PHT) over time for all modes of transport 𝑚 

that serve the total demand, by redistributing the road space in areas with different usages of 

the city. Mathematically, the optimization problem is 

Problem (2-1)  is subject to the dynamics of the transport system. The dynamic interactions 

are illustrated in Fig. 2.2, (change the index of variable vectors to bold) where 𝒏(𝒕) is the 

vector of accumulation of vehicle in different regions, 𝑶(𝒕) the outflow, 𝑸(𝒕) the demand and 

𝑪(𝒕) the cost of travel for each of the regions. Given the initial state of the system at time 𝑡0 

𝑚𝑖𝑛
𝝅(𝑡)

𝑍 = ∑ 𝑃𝐻𝑇𝑡,𝑖,𝑚
𝑡,𝑖,𝑚

(𝝅(𝑡)) (2-1) 
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and a space allocation strategy 𝝅(𝒕), the system modeled by three parts that interact at every 

time step: The average traveling speed and travel cost of each mode at each region, the flow 

dynamics within and between regions and mode choice of the generated demand at each 

region. We develop the methodological framework in the following sections. 

 

Fig. 2.2 System dynamics flow chart. 

Traffic flow dynamics  

Let us now describe in detail the dynamics, by looking at individual region 𝑖. Let 𝑄𝑖
𝑘𝑚(𝑡) be 

the demand generated in region 𝑖 with final destination 𝑘 choosing to travel with mode 𝑚 at 

time 𝑡 . The total demand generated during this interval from 𝑖  to 𝑘 , 𝑄𝑖
𝑘(𝑡) = ∑ 𝑄𝑖

𝑘𝑚(𝑡)𝑚 . 

Route choice for each demand pair from 𝑖 to 𝑘 is defined exogenously with binary variables 

 𝛿𝑖→𝑗
𝑘 (𝑡), that show the sequence of the trip, with value equal to 1 if a trip from region 𝑖 to 𝑘 

passes through 𝑗 immediately after leaving 𝑖 , and 0 otherwise. It is assumed that all trips 

generated from 𝑖 with destination 𝑘 follow the same sequence of regions in their route. In our 

model it is assumed that the sequence of regions is not altered by traffic conditions (the 

sequence of passing regions, e.g. 𝑖 → 𝑗 → 𝑘, is exogenously given). Let us now consider two 

modes bus and car, with indices 𝑐  and 𝑏  respectively 𝑚 = {𝑏, 𝑐} . Let 𝑛𝑖
𝑘𝑚(𝑡)  be the 

accumulation of mode 𝑚 in region 𝑖 with final destination 𝑘, 𝑂𝑖→𝑗
𝑘𝑚(𝑡) be the transfer flow of 
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mode m from region 𝑖 to 𝑗 with final destination 𝑘. Note that 𝑛𝑖
𝑚(𝑡) = ∑ 𝑛𝑖

𝑘𝑚(𝑡)𝑁
𝑘=1 . Note 

also that for 𝑖 = 𝑘, 𝑂𝑖→𝑗
𝑘𝑚  is zero ∀𝑗 ≠ 𝑖. 𝑂𝑖→𝑖

𝑖𝑚  is the trip ending flow with final destination 

region 𝑖. 

As long as flow 𝑂𝑖→𝑗
𝑘𝑚(𝑡) enters 𝑗 , it becomes part of accumulation 𝑛𝑗

𝑘𝑚(𝑡). The dynamic 

equations between the state variables 𝑛𝑖
𝑘𝑚, flow variables 𝑂𝑖→𝑗

𝑘𝑚 , and the demand 𝑄𝑖
𝑘𝑚 of the 

system with 𝑁 regions for the two modes are  

 

where, 𝑜𝑏𝑖
𝑐 is the occupancy of cars in region 𝑖, which is a constant (say 1-1.3 passenger per 

car) and will remain the same until the end of the trip and 
𝑄𝑖
𝑘𝑐(𝑡+1)

𝑜𝑏𝑖
𝑐  is the number of generated 

car trips. Both equations are discrete versions of a mass conservation differential equation, 

where 𝑡 represents an interval. Equation (2-2) states that the change of car accumulation 𝑛𝑖
𝑘𝑐 

over time equals to:   

(i) The internally generated demand from region 𝑖  to 𝑘  (2
nd

 item, RHS of (2-2)), 

minus  

(ii) The outflow from region 𝑖 with final destination 𝑘 (3
rd

 item, RHS of (2-2)), plus  

(iii) The inflow from all regions adjacent to 𝑖 with final destination 𝑘, which is also the 

outflow for these regions (last item, RHS of (2-2)).  

A graphical illustration of Equation (2-2) with indications of the flow items can be found in 

Figure 2.3. 

𝑛𝑖
𝑘𝑐(𝑡 + 1)  = 𝑛𝑖

𝑘𝑐(𝑡) +
𝑄𝑖
𝑘𝑐(𝑡 + 1)

𝑜𝑏𝑖
𝑐 −∑𝑂𝑖→𝑗

𝑘𝑐 (𝑡)

𝑁

𝑗=1

+ ∑𝑂𝑙→𝑖
𝑘𝑐 (𝑡),

𝑁

𝑙=1

 (2-2) 

𝑛𝑖
𝑘𝑏(𝑡 + 1)  = 𝑛𝑖

𝑘𝑏(𝑡) −∑𝑂𝑖→𝑗
𝑘𝑏 (𝑡)

𝑁

𝑗=1

+ ∑𝑂𝑙→𝑖
𝑘𝑏 (𝑡),

𝑁

𝑙=1

 

 

(2-3) 
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Figure 2.3 An illustration of the flow conservation as described by Equation (2-2), where 

index 𝑚 corresponds to 𝑐, cars 

Equation (2-3) is similar to (2-2), but without new generation of bus trips (𝑄𝑖
𝑘𝑏) to the system. 

It is assumed that the amount of buses in service is usually constant during typical commuting 

hours. Note that the number of buses in each region at different times depends on the relative 

speeds and MFDs of the regions.  

Flow 𝑂𝑖→𝑗
𝑘𝑚(𝑡) is the minimum of two terms: the sending flow from region 𝑖, which depends on 

the accumulations of region 𝑖 and the boundary capacity of region 𝑗, 𝐵𝐶𝑗, which is a function 

of the receiving region’s accumulations. Nevertheless, this constraint can be ignored during 

the optimization process. The physical reasoning besides this assumption is that (i) boundary 

capacity decreases for accumulations much larger than the critical accumulation that 

maximizes flow (see Geroliminis and Daganzo (2007)), and (ii) optimized space allocation 

will not allow the system to get close to gridlock. Note also that 𝑂𝑖→𝑗
𝑘𝑚(𝑡) = 0, 𝑖𝑓 𝛿𝑖→𝑗

𝑘 (𝑡) = 0. 

The sending flow of 𝑂𝑖→𝑗
𝑘𝑚(𝑡) is estimated by the macroscopic fundamental diagram 𝑂𝑖

𝑚. The 

MFD of mode 𝑚 of region 𝑖 is denoted as 𝑂𝑖
𝑚(𝑛𝑖

𝑏(𝑡), 𝑛𝑖
𝑐(𝑡)). For our approach, the given 

condition is that the city is partitioned in homogeneously congested regions and that each 

region has a well-defined MFD. MFD 𝑂𝑖
𝑚  can be analytically estimated as a function of 

accumulation for different mode usages and space allocations using variational theory. Then,  

𝑂𝑖→𝑗
𝑘𝑚(𝑡)  = 𝑚𝑖𝑛 {𝑂𝑖

𝑚(𝑛𝑖
𝑏(𝑡), 𝑛𝑖

𝑐(𝑡)) ∙ 𝑟𝑖
𝑘𝑚(𝑡), 𝐵𝐶𝑗(𝑛𝑖

𝑏(𝑡), 𝑛𝑖
𝑐(𝑡))} (2-4) 
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where 𝑟𝑖
𝑘𝑚(𝑡)  is the proportion of the outgoing flow 𝑂𝑖

𝑚  from region 𝑖  to 𝑗  with final 

destination 𝑘. If the average distance traveled by travelers within region 𝑖 is assumed to be 

independent of their destinations, then the proportion 𝑟𝑖
𝑘𝑚(𝑡) can be estimated as a ratio of the 

related accumulations, according to Little’s formula (Little, 1961).  

We should also estimate the dynamics of passengers for each mode and every region. With 

respect to the car, we just need to multiply both sides of Equation (2-2) by 𝑜𝑏𝑖
𝑐. For simplicity, 

we assume 𝑜𝑏𝑖
𝑐 = 1. With respect to the bus, we need to estimate how the occupancy of bus 

(in passengers) evolves over time according to demand and finished trips. The dynamics of 

bus passengers are very different than bus dynamics. A simple on-board passenger mass 

conservation equation is    

where  

In Equation (2-6), 𝑂𝐵𝑖
𝑘𝑏 is the number of bus on-board passengers currently in region 𝑖 with 

final destination 𝑘. (2-7) estimates 𝑜𝑏𝑖
𝑘𝑏, the average number of on-board passengers per bus 

from region 𝑖 to 𝑘. The RHS of (2-6) consists of the following terms: (i) the passenger inflow 

at time 𝑡 + 1 for the specific OD pair, (ii) the passengers that move outside region i while in 

the bus, (iii) the passengers that move inside region 𝑖 while in the bus and (iv) the passengers 

that finish their trip inside region 𝑖. The last term is non-zero only for 𝑖 = 𝑘 (binary 𝑏𝑖
𝑘 = 1 

for 𝑖 = 𝑘 and zero otherwise). This term approximates the passenger trip endings in region 𝑖 

as the mean of a Bernoulli trial which is repeated z times for each passenger with probability 

𝑟𝑖
𝑘𝑚(𝑡) =

𝑛𝑖
𝑘𝑚(𝑡)

𝑛𝑖
𝑚(𝑡)

 (2-5) 

 

𝑂𝐵𝑖
𝑘𝑏(𝑡 + 1) = 𝑂𝐵𝑖

𝑘𝑏(𝑡) + 𝑄𝑖
𝑘𝑏(𝑡 + 1) −∑𝑂𝑖→𝑗

𝑘𝑏 (𝑡) ∙ 𝑜𝑏𝑖
𝑘𝑏(𝑡) +

𝑁

𝑗≠𝑖

 

                             ∑𝑂𝑙→𝑖
𝑘𝑏 (𝑡) ∙ 𝑜𝑏𝑙

𝑘𝑏(𝑡)

𝑁

𝑙=1

− 𝑏𝑖
𝑘  ∙ 𝑂𝐵𝑖

𝑘𝑏(𝑡) ∙ (1 − (1 − 𝜃𝑖)
𝑧)  

 

(2-6) 

𝑜𝑏𝑖
𝑘𝑏(𝑡) =

𝑂𝐵𝑖
𝑘𝑏(𝑡)

𝑛𝑖
𝑘𝑏(𝑡)

,  (2-7) 

𝜃𝑖  = {
(
𝐿̅′𝑖𝑏
𝑠𝑖 
)

−1

,    𝑖𝑓 𝑖 = 𝑘

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(2-8) 
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of success 𝜃𝑖. Variable 𝑧 is the number of stops that a bus travels during interval 𝑡, which is 

𝑉𝑖
𝑏(𝑡)𝑇/𝑠𝑖 (𝑇 is the duration of the interval and 𝑉𝑖

𝑏(𝑡) is the space-mean speed of buses in 

region 𝑖, which will be described later). At each stop in region 𝑖, every on-board passenger 

from the previous time step has probability 𝜃𝑖 of reaching its destination. 𝐿′̅𝑖𝑏 is the average 

trip length of bus passengers and 𝑠𝑖 is spacing between bus stops for region 𝑖, i.e. passengers 

travel 1/𝜃𝑖 stops on average. Note that the trip length of a passenger, 𝐿̅′𝑖𝑏, is different than the 

trip length of a bus in the region, 𝐿̅𝑖𝑏. If more detailed data exists from real measurements, the 

generic model can be adjusted accordingly with a non-homogeneous Bernoulli process (or a 

Brownian motion). How the demand 𝑄𝑖
𝑘 is divided between the two modes, 𝑄𝑖

𝑘𝑐 and 𝑄𝑖
𝑘𝑏 is 

discussed later. 

Multimodal travel time estimation  

The multimodal traffic flow dynamics of the previous section considered that the demand is 

known for each mode. This will be an input of a mode choice model, which is presented in the 

next section. To obtain this goal, it is important to identify the speed and travel time of each 

mode of transport. The estimation of space-mean speed 𝑉𝑖
𝑚(𝑡) for each mode depends on the 

type of usage, i.e. mixed traffic of cars and buses or dedicated bus lanes. Keep in mind that 

variational theory estimation for shared-use of car and bus estimates the network flow and of 

cars for given car density given the conflicts and the operational characteristics of buses 

(frequency, dwell times etc.). It does not estimate the speed of buses and extra effort is needed 

to account for the additional delay due to dwell times. This extra step is not required in 

separated bus lanes as there is only one mode of transport.  

The space-mean speed in a time interval is by definition the ratio of the total distance 

travelled and the total hours traveled. Let 𝑃𝑖
𝑚(𝑡) be the total distance travelled by vehicles of 

mode 𝑚 (bus or car) in region 𝑖 at time 𝑡 and 𝐿̅𝑚 the average trip length of mode 𝑚 in region 𝑖. 

Then, for steady state queuing systems 𝑃𝑖
𝑚(𝑡) = 𝑂𝑖

𝑚(𝑡) ∙ 𝐿̅𝑖𝑚  (Little, 1961) and 𝑉𝑖
𝑚(𝑡) ≝

𝑃𝑖
𝑚(𝑡)  /𝑛𝑖

𝑚(𝑡) . Geroliminis and Daganzo (2008) have shown that trip length of cars in 

downtown Yokohama was a time invariant variable. The average trip length of buses can be 

easily estimated as buses have fixed routes. By using the above equations and variational 

theory (Daganzo and Geroliminis, 2008; Geroliminis and Boyaci, 2012), we can estimate (i) 

𝑂𝑖
𝑐  and 𝑉𝑖

𝑐  for car-only regions and mixed traffic car-bus regions and (ii) 𝑂𝑖
𝑏  for bus-only 

regions. For shared-use car-bus regions, the speed of buses further decreases because of dwell 

times for picking up and dropping off passengers by a parameter 0 < 𝛼𝑖
𝑏(𝑡) ≤ 1 and  𝑉𝑖

𝑏(𝑡) =
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𝑉𝑖
𝑐(𝑡) ∙ 𝛼𝑖

𝑏(𝑡). If we assume that buses have the same speed with cars when they are not 

stopped at bus stops then 𝛼𝑏(𝑡) can be approximated as 

where 𝑇𝑇𝑑
𝑏(𝑡) is the total time spent at bus stops (total dwell time) in interval 𝑡, and 𝑇𝑇𝑖

𝑏(𝑡) is 

the average travel time of buses in region 𝑖 excluding 𝑇𝑇𝑑
𝑏 , which is given by  𝐿̅𝑖𝑏/𝑉𝑖

𝑐(𝑡). 

Average travel time of cars in region 𝑖, 𝑇𝑇𝑖
𝑐(𝑡), can be estimated as 𝐿̅𝑖𝑐/𝑉𝑖

𝑐(𝑡). 

 

 

Fig. 2.4 (a-top left) The MFD of mixed car-bus network, (b-top right) the MFD of dedicated 

bus lanes and (c-down) speed profile for mixed network. 

To validate all of the above assumptions, we performed a micro-simulation of San Francisco 

network taken from (Geroliminis and Daganzo, 2007), which provides a low scatter MFD and 

can be estimated with variational theory with small error. While in the previous version this 

was a car-only simulation, we performed additional simulations for shared-use bus-car lanes 

and for dedicated bus lanes with different bus frequencies and dwell times. Fig. 2.4 

summarizes the MFDs in some of the scenarios for mixed traffic (Fig. 2.4(a)) and the 

dedicated bus lanes (Fig. 2.4(b)), while Fig. 2.4(c) shows the average speed of cars, the speed 

of buses and estimated speed of buses according to the aforementioned methodology (time 

interval is 5min). A detailed analysis of these results will be reported later in Chapter 4.  
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Aggregated mode choice 

Suppose that the selection of the preferred mode is made by the travelers only once when they 

enter the network and start their trip. The total demand generated at each time interval 

𝑄𝑖
𝑘(𝑡) = ∑ 𝑄𝑖

𝑘𝑚(𝑡)𝑚  is assigned to the preferred modes through an endogenous approach. 

Mode choice of a traveler only happens at this moment and remains the same until her trip is 

finished. The choice of a mode is based on the utility of the mode, which is expressed as the 

travel cost of using that mode at the beginning of the trip. We consider that the travel cost of 

the whole route consists of travel time for cars and buses 𝑇𝑇𝑖
𝑐(𝑡) and 𝑇𝑇𝑖

𝑏(𝑡), on-board spatial 

discomfort 𝐷𝑖
𝑏(𝑡) for buses and extra costs 𝐶𝑖

𝑐(𝑡) for cars vs. buses (e.g. parking, tolls, fare) 

for each region 𝑖 and interval 𝑡. Calculation of utility for car and bus for a specific origin 

destination pair (from 𝑖 to 𝑘) is given by (2-10), where the summation term considers the set 

of all regions that a trip passes on its route from 𝑖 to 𝑘, {𝑆𝑖
𝑘}, that can be estimated using 

binaries 𝛿𝑖→𝑗
𝑘 (𝑡).  

𝑈𝑖
𝑘𝑐(𝑡) = − ∑ (𝑇𝑇𝑗

𝑐(𝑡)

𝑗∈{𝑆𝑖
𝑘}

+ 𝐶𝑗
𝑐(𝑡)) 

𝑈𝑖
𝑘𝑏(𝑡) = − ∑ (𝑇𝑇𝑗

𝑏(𝑡)

𝑗∈{𝑆𝑖
𝑘}

+ 𝐷𝑗
𝑏(𝑡)) 

 

(2-10) 

where 

The rationale of the spatial discomfort 𝐷𝑗
𝑏  is that (i) the utility of using bus decreases if 

number of on-board passengers (crowdedness) increases and (ii) it prevents the buses from 

reaching overcrowded conditions if buses are much faster than cars. Spatial discomfort of 

passengers 𝐷𝑗
𝑏 is a function of the average occupancy of a bus at time 𝑡, which is the ratio 

between the average on-board passengers per bus in region 𝑗 , 𝑜𝑏𝑗
𝑏 = ∑ 𝑜𝑏𝑗

𝑘𝑏𝑁
𝑘=1  and the 

storage passenger capacity of a bus, 𝐶𝑏𝑢𝑠. The spatial discomfort term is transformed to time 

unit by parameter 𝛾 , which should be calibrated with real data. Nevertheless, during the 

optimization process, which is described in details in the next section, we noticed that by 

changing the chosen value of  𝛾 by ±50%, objective function varies only by 2-3%. A different 

formulation with the same logic can be proposed for 𝐷𝑗
𝑏 , which should always be a 

monotonically increasing function of bus average occupancy.    

𝐷𝑗
𝑏(𝑡)  = 𝛾 ∙ (

𝑜𝑏𝑗
𝑏(𝑡)

𝐶𝑏𝑢𝑠
)

2

 

 

(2-11) 
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Given the described utilities, we propose to model the mode choice of buses over time 𝑝𝑖
𝑘𝑏(𝑡) 

(for cars is 1 − 𝑝𝑖
𝑘𝑏(𝑡)) and 𝑄𝑖

𝑘𝑏(𝑡)  with a sequential approach, where the difference of 

utilities between the modes for a given origin destination pair is ∆𝑈𝑖
𝑘(𝑡) = 𝑈𝑖

𝑘𝑐(𝑡) − 𝑈𝑖
𝑘𝑏(𝑡).  

Equation (2-12) states that (i) if traffic conditions do not change, mode choice percentage 

remains the same as of the previous period and (ii) if traffic conditions change, mode choice 

percentage changes in proportion to the difference in utilities as expressed by ∆𝑈𝑖
𝑘, and to the 

evolution of ∆𝑈𝑖
𝑘. In such a way, we assume that all travelers make smart choices based on 

current and historic information. Note that travelers choose the mode of travel only once in 

the beginning of their trip based on the traffic conditions of this time. Parameters 𝛽1 and 𝛽2 

should be calibrated using real data. Alternatively, one can use the traditional logit-form 

model. Since we are trying to model a dynamic choice process and we consider that a 

dynamic estimation of a logit model might be a challenging task, we utilize the proposed 

approach while a more complicated mode choice model with diverse utility considerations 

can be developed and estimated given real data. Furthermore, it is worth mentioning that 

Equation (2-12) tries to succeed a set point, which is an equal utility of modes in our case 

(equilibrium in the choices). This type of controllers is a generic widely used control loop 

feedback mechanism. The equation calculates an error value as the difference between a 

measured process variable and a desired set-point. It attempts to minimize the error ∆𝑈𝑖
𝑘 by 

adjusting the process inputs, 𝑝𝑖
𝑘𝑏. The adjustment depends on the present error (term 𝛽1) and 

the accumulation of past errors (term 𝛽2). Sensitivity analysis of parameters 𝛾, 𝛽1 and 𝛽2 is 

performed later.  

2.2 Road Space Allocation Management  

Road space can be deliberately allocated between competing modes. Although the allocation 

of this space is a policy-oriented decision, it should be informed by the correct congestion 

physics and system dynamics. After the introduction of the system modeling in the previous 

section, we can now build up an optimization framework for space allocation. Given the space 

𝑝𝑖
𝑘𝑏(𝑡 + 1) = 𝑝𝑖

𝑘𝑏(𝑡) + 𝛽1 ∙ ∆𝑈𝑖
𝑘(𝑡) + 𝛽2 ∙ (∆𝑈𝑖

𝑘(𝑡) − ∆𝑈𝑖
𝑘(𝑡 − 1)) 

𝑄𝑖
𝑘𝑏(𝑡 + 1)  = 𝑄𝑖

𝑘(𝑡 + 1) ∙  𝑝𝑖
𝑘𝑏(𝑡 + 1) 

 

(2-12) 
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allocation vector 𝝅 (which include temporal and spatial variables), the total passenger hours 

travelled (PHT) can be obtained as (where 𝑇 is the duration of the interval 𝑡) 

Optimization of (2-13) is highly non-linear. We solve this problem by a non-linear 

programming method, the sequential quadratic programming (SQP). SQP method solves a 

sequence of optimization sub-problems, each of which optimizes a quadratic model of the 

objective subject to a linearization of the constraints. Consider a non-linear programming 

problem of the form 𝑚𝑖𝑛𝜋 𝑃𝐻𝑇(𝜋) subject to constraints 𝑔𝑀(𝜋) ≥ 0 and ℎ𝑀(𝜋) = 0. In our 

case, 𝑔𝑀(𝜋) will state the constraints of implementation of space allocation in practice, e.g. 

space should not be frequently reallocated. ℎ𝑀(𝜋)  will be system dynamics equations 

introduced in the previous sections. The general Lagrangian for this problem is defined as (𝜆 

and 𝜎 are Lagrange multipliers)  

At an iteration 𝜋𝐾, an approximation is made of the Hessian of the Lagrangian function, using 

a quasi-Newton updating method. This is then used to generate a quadratic programming sub-

problem, and it can be solved using any QP algorithm. The solution is used to form a search 

direction 𝑑𝑘  for searching a new iterate 𝜋𝐾+1 = 𝜋𝐾 + 𝛼𝐾𝑑𝐾 , where the step length 𝛼𝐾  is 

determined by an appropriate line search procedure. The iteration will continue until stop 

criterion is achieved: the change of objective function is below a certain threshold. For 

detailed description of the SQP algorithm, please refer to Nocedal and Wright (2006). We 

apply this algorithm for multiple initial values (around 1000) to avoid convergence to local 

minima, which might be the case for a non-smooth objective function. 

2.3 Case Study and Analysis  

An application of the developed methodological framework is performed with a case study of 

a two-region city. Consider an urban network with two concentric regions, as shown in Fig. 

2.5. Mixed traffic of buses and cars occurs in the outside region (periphery), while a fraction 

of road space in the center region is dedicated to buses. The radius of the center region is 

𝑅1 =1.6km and of the periphery is 𝑅1 + 𝑅2 = 3.2km. The road networks of the two regions 

𝑃𝐻𝑇(𝝅) =∑∑∑(𝑛𝑖
𝑘𝑐(𝑡) ∙ 𝑜𝑏𝑗

𝑘𝑐 + 𝑂𝐵𝑖
𝑘𝑏(𝑡)) ∙ 𝑇

𝑘𝑖𝑡

 (2-13) 

ℒ(𝜋, 𝜆, 𝜎) = 𝑃𝐻𝑇(𝜋) +∑𝜆𝑀 ∙

𝑀

𝑔𝑀(𝜋) +∑𝜎𝑀 ∙

𝑀

ℎ𝑀(𝜋) (2-14) 
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are well connected at the border. We simulate an urban road traffic system for 4-hours (80 

time units), a typical morning or evening period. Demand has a symmetric trapezoidal shape 

with time and the length of peak period is equal to 1hr. A 70% fraction of the demand 

generated in the periphery will travel to the city center and 30% fraction of the demand 

generated in the center will travel to the periphery of the city. The dynamics of the system 

follow the equations defined in Sections 2.1 and 2.2, while MFDs for different sub-areas are 

estimated with variational theory. Two modes of transport are considered available in the 

system, car and bus. A fraction 10% of the users are captive and do not have access to cars. 

The network topology, signal settings and traffic parameters are as follows: (i) two-lane one-

way roads with block lengths 𝑙𝑏1 = 154m and 𝑙𝑏2 = 308m, (ii) signal settings for all 

intersections, green, 𝑔 = 40𝑠𝑒𝑐 ; cycle, 𝑐 = 90𝑠𝑒𝑐  and offset, 𝑜 = 0𝑠𝑒𝑐 , (iii) a triangular 

fundamental diagram for each link with free flow speed for buses and cars, 𝑢𝑓 = 15𝑚/𝑠𝑒𝑐; 

jam density, 𝑘𝑗𝑎𝑚
𝑐 = 0.15𝑣𝑒ℎ/𝑚 for cars and 𝑘𝑗𝑎𝑚

𝑏 = 0.05𝑣𝑒ℎ/𝑚 and congested wave speed 

for buses and cars, 𝑤 = 5𝑚/𝑠𝑒𝑐.  

 

Fig. 2.5 Illustration of the case study two-region network sturcture and properties.  

Static and dynamic space allocations are investigated. We also investigate how an area-based 

pricing strategy can further facilitate demand shift from cars to public transport. Sensitivity 

analysis for the non-physical parameters of the model is performed, while the effect of 

demand increase and uncertainty is also integrated in the analysis.  

2.3.1 Static space allocation  

We first investigate the performance of the traffic system, where a constant amount of space 

is allocated to dedicated bus lanes in the center region during all times. The results of the 

basic scenario where buses and cars share the whole network system without bus lanes, and of 

lb1

ZOOM  IN

R1+R2

R1

CENTER

PERIPHERY

lb2

g, c, o



Chapter 2 Multimodal multi-region model for road space allocation                                                                                            

37 
 

a scenario where 10% and 15% of the space in the center region is dedicated to bus lanes, are 

shown in Fig. 2.6. Note that the system performance of the latter scenarios significantly 

improves. The highly congested part disappears, the center of the city operates close to the 

maximum outflow of the car MFD, and total person hours traveled (PHT) during peak hours 

reduces by more than half.  

Since we apply a static space allocation which has only one space variable to be optimized, 

we can simply enumerate all the possible values of space allocation and compare the results. 

Result of such an experiment is shown in Fig. 2.7(a), where PHTs are plotted over percentage 

of space for bus lanes. The small “kink” for 𝜋 = 3% is because of the behavior of captive 

users that choose bus even if car is a faster mode. The optimal space allocation can be found 

around 10%. The SQP optimization approach of the previous section provides identical results. 

From the figure, an interesting observation is that the resulting PHTs are similar for 𝜋 = 10% 

to 15%. This means that small variations in the demand or errors in the parameters of the 

model will still produce close-to-optimality results and PHTs will remain low.  

Let us check more carefully the efficiency of the allocated space, which is defined as the ratio 

between the passenger trips completed during the total simulation time and the total lane 

kilometers of the space for buses. Space allocations of 10% and 15% cases are compared, 

where efficiency of bus lanes is shown in Fig. 2.7(b) and efficiency of space of the whole 

center region in Fig. 2.7(c). If we look at the space efficiency of the bus lanes, it is clear that 

with the increase of allocated space for buses, the trip completion rate per ln-km actually 

decreases. Note that for the whole region (Fig. 2.7(c)), the two cases are almost identical. The 

reason is that: More space for buses allows to transport more persons on bus lanes, but at the 

same time it constraints the capacity of car network and car users travel at a slower rate. Also, 

higher number of bus passengers increases the dwell times and the benefit of more space is 

smoothed off. Given the fact that the cost of operating dedicated bus lanes is high, the optimal 

solution should still hold at the lower value of 10%. 
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Fig. 2.6 An illustration of the performance of the system with two cases of space allocation to 

buses: (a) The car MFD in center region (cases 10%, 15% cars only, case 0% cars and buses 

mixed), and (b) PHT for both modes over time. 
 

 

 

Fig. 2.7 (a-top) Total PHT, (b-down left) efficiency of bus lanes given difference space 

allocation, and (c-down right) efficiency of the whole space with different space allocation of 

bus lanes. 

2.3.2 Dynamic space allocation 

It is clear in Fig. 2.7(b) that the utilization of bus lanes is higher during peak hour, while it is 

much less during the onset and the offset of congestion. A dynamic space allocation strategy, 
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where space is allocated in a time-dependent way is expected to increase spatial efficiency 

and further minimize the total travel cost. Nevertheless, given the associated infrastructure, 

the change of space should not happen many times during the day as implementation will be 

difficult. In this section, we investigate the optimal solution for a four-variable, three-period 

dynamic space allocation strategy. The three periods are the peak hour and the off-peak before 

and after the peak hour. The four optimized variables are: (i) the starting time 𝑡1 and (ii) the 

ending time 𝑡2 of the high space allocation, (iii) space allocated to bus lane during the off-

peak periods 𝜋1 and (iv) during the peak period 𝜋2.  

We apply the algorithm described in Section 2.2. The iteration and the solution of 10 

executions with different random initial solutions out of the 1000 are shown in Fig. 2.8. The 

dotted line in both figures indicates the best solution among these 10 examples. We see that 

by applying a multiple random initial search, we are indeed able to avoid local minima, for 

example note a solution that gives 30% of the space to buses during the peak period.  

 

Fig. 2.8 (a) 10 solutions by the SQP optimization algorithm for different starting points, and 

(b) the corresponding optimal solutions after a number of iterations for each execution. The 

dotted line corresponds to the best solution. 

Fig. 2.9 shows the optimal solution for this dynamic space allocation strategy. The line “pi” is 

the resulting space share of bus lanes over time, while “demand” is the demand profile. Note 

that the optimal strategy allocates less space when demand is low, but three times more during 

the “identified” peak period. The starting time and the ending time of the identified peak 

period makes physical sense, as it starts earlier than demand rate reaches its maximum and 

finishes later than demand rate starts decreasing. In such a way, the strategy “forces” travelers 

to choose to travel by bus proactively, before the beginning of peak hour, therefore all 

travelers avoid experiencing high travel cost. It also “tolerates” travelers to choose cars as the 
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main mode of travel after the end of the peak hours. The optimal PHT is 19715 hours, better 

than the optimal PHT by a static space allocation, which is 20216 hours (10% further 

improvement from the 𝜋 = 0 solution). Note that this improvement is succeeded with 15% 

less total space allocated for buses, as expressed by the total lane-km-hrs of individual bus 

lanes. Furthermore, a dynamic allocation gives flexibility in space management under demand 

fluctuation which is not possible in the static case.  

 

Fig. 2.9 The optimal solution of a time-dependent bus lane space allocation strategy (pi: 𝜋). 

Now let us compare the efficiency of allocated bus lanes and the bus occupancy during the 

peak hour between the static strategy and the dynamic strategy. The results are shown in Fig. 

2.10. During the off-peak period, the dynamic strategy allocates less space to buses, dropping 

from 10% to 5%, which increases the efficiency of bus lanes (as expressed by passengers 

served per lane-kilometer of bus space). While during the peak period, the dynamic strategy 

has lower utilization rate when the allocated space increases from the constant 10% to 16%, 

nevertheless the dynamic strategy actually serves more demand for buses during the period 

(shown by the right figure). Note that two sharp changes for the dynamic case are observed 

during the space changes, at times 𝑡1  and 𝑡2  (off-peak to peak, and peak to off-peak). 

Nevertheless, the number of served passengers is smooth vs. time (see Fig. 2.10(b)). These 

changes represent the transition of operation between the two space allocation scenarios.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

d
e

m
an

d
 (

p
er

so
n

/h
r)

 

time interval 

demand

pi

p
e

rcen
tage

 o
f sp

ace to
 b

u
s lan

es 

t2 t1 



Chapter 2 Multimodal multi-region model for road space allocation                                                                                            

41 
 

 

Fig. 2.10 Comparison of static and dynamic allocation: Time series of (a) space efficiency and 

(b) bus occupancy. 

 

As a high utilization rate indicates that a large amount of demand chooses to travel by bus, 

one might question if this strategy will create cases of buses full of passengers (at capacity 

𝐶𝑏𝑢𝑠), which is neither comfortable nor realistic. This will not happen in the developed model, 

because Equation (2-10) ensures that mode choice of buses will reduce significantly when 

buses are crowded. If we check the occupancy of buses, as shown in Fig. 2.10(b), we see for 

both the static strategy and the dynamic strategy that buses are occupied less than half of their 

capacity (40 persons/bus). In fact, if more demand shifts from cars to buses, while buses are 

given enough space to travel with high speed, PHT could be further reduced. This is 

investigated in the next section. 

2.3.3 Dynamic space allocation with pricing 

Following the discussion, we will investigate measures to improve the occupancy of buses. To 

trigger mode shift from cars to buses, we apply an area-based pricing in the peak-hour, where 

car users have to pay when they drive in the center of the city. The cost of pricing is added 

into (2-10) and influences the mode choice. Since toll is in money units, we transform it to 

time by multiplying with a value-of-time (VOT). In our application we utilize a value of 16 

Swiss Franc (CHF) per hour, which is estimated based on an analysis by Axhausen et al. 

(2005) for Swiss travelers. The start and end of pricing is assumed to be the same as of the 

peak-hour space allocation, between 𝑡1 and 𝑡2. The amount of toll charged 𝑐1 is an additional 

variable to be optimized (5 in total). In our analysis we assume that toll will only affect the 

mode choice and not the departure time of the trip. While an analysis of the morning commute 

for multiple modes is analyzed for a simpler system in Gonzales and Daganzo (2012), 
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departure time is not included in this current work as it will make the modeling part very 

tedious and intractable.  

We execute this five-variable optimization with the SQP algorithm with multiple initial 

searches. The total PHT is 18215hrs, which is about 12% smaller than the PHT without 

pricing and dynamic space allocation. The space allocation during the peak period decreases 

from 𝜋 =16% without pricing to 14%, while values for 𝑡1 and 𝑡2 are identical for the two 

cases. The savings in PHT are about the same with the total toll paid divided by VOT. While 

this is the case in the single bottleneck model (Vickrey, 1969), in systems governed by a 

variable capacity (like the MFD model), savings can be much larger, because congested states 

are avoided (Geroliminis and Levinson, 2009). But, the no toll case operates close to capacity, 

because of an efficient space allocation, while the toll paid is similar to delay savings. 

Nevertheless, as we will show later, an increase in the demand of travel in a city can create 

additional congestion and given that a new design of space allocation is not an easy solution 

(due to high infrastructure cost), variations in pricing can significantly improve the state of the 

system and avoid congestion.   

The occupancy of buses over time is compared in Fig. 2.11(a) where “dynamic with pricing” 

is the resulting bus occupancy of the pricing strategy. As expected, the buses are more 

occupied after pricing. Besides, it can be observed that the occupancy goes to zero earlier 

when approaching the end of the simulation (interval 81), indicating that passengers are able 

to finish their trips earlier. This shows that a faster travel speed is achieved for all users and it 

corresponds to a reduction in PHT. Fig. 2.11(b) shows the MFD states for cars in the center of 

the city. The two different maximum values for the dynamic case represents the two different 

space allocations. With pricing the system operates at a more reliable state as this is less than 

the critical accumulation that maximizes outflow (n=4000veh). As we will show later, in this 

case the system can absorb increase in demand or small stochastic fluctuations without 

entering the congested regime, while in the case without pricing, a demand increase will also 

be associated with higher congestion. 

The pricing strategy also succeeds higher demand shift and utilization rates of the buses 

during peak hours (Fig. 2.11(c)). Fig. 2.11(d) shows how the utility of bus and car change 

over time for two different O-D pairs (center to center and periphery to center). Note that 

when bus share is minimum, car utility (during the off-peak) is significantly higher, while 
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during the other times the two utilities are about the same. Thus, model (2-12) succeeds in 

identifying a dynamic equilibrium of mode choice.  

 

     

Fig. 2.11 Comparison of the dynamic allocation with and without pricing: (a-top left) 

Occupancy of buses vs. Time; (b-top right) MFDs of the center region for cars; (c-down left) 

Mode share of bus vs. time and (d-down right) Utilities of car and bus vs. Time for trips from 

center to center (C-C) and periphery to center (P-C) for the “dynamic with pricing” case. 
 

2.3.4 Sensitivity analysis 

In this section we discuss how sensitive is the resulting PHT, if parameters of mode choice 𝛽1 

and 𝛽2 in Equation (2-12) and discomfort parameter 𝛾 are given different values. We also 

investigate how an increase in the demand will create additional congestion and if this can be 

resolved without a new re-distribution of the urban space. Table 2.2 shows the results of a 

sensitivity test. The basic scenario is the one where the solution of optimal static allocation is 

applied. For each of the three parameters, values vary by percentages as shown in the first row 

of the table. When one parameter is changing, the other two remain constant and the 

corresponding change of PHT is calculated. We see that the changes of 𝛽1 and 𝛽2 have small 

impact on the resulting PHT, while the change of 𝛾 has relatively greater impact. This result 

shows a good property of 𝛽1 and 𝛽2. While for 𝛾, a higher value of 𝛾 prevents users from 

using buses therefore worse off the whole system significantly, while a low 𝛾 encourages 
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users and consequently reduces PHT. But when 𝛾 is too low, buses attract too much demand, 

the dwell times increase and reduce the speed of buses therefore PHT starts to increase again.  

Table 2.2 Sensitivity analysis on β1, β2 and  𝛾. 

 change of 

parameters 

-

75% 

- 

50% 

-

25% 

 

Base 

+ 

25% 

+ 

50% 

+ 

75% 

+ 

100% 

+ 

200% 

change 𝛽1 0.7 -0.03 0.1 0 0.02 0.01 0.2 0.3 0.6 

of PHT 𝛽2 0.2 0.08 0.04 0 -0.09 0.1 -0.2 -0.2 -0.4 

(%) 𝛾 -1.4 -1.5 -0.8 0 0.7 1.4 2 3 5 

Note that for 𝛽1 and 𝛽2, an extreme high value will result to an “all-or-nothing” mode choice: 

all users choose to travel with the better mode but then the travel cost of this mode becomes 

huge suddenly and result a complete choice of the other mode in the next time period, creating 

unrealistic instability and oscillations. For 𝛾, a high value will prevent travelers from choosing 

buses, which not only underutilizes the bus space but also results in heavier congestion for 

cars. In our model, we tune the parameters via trial-and-error, with the objective of having a 

coherent and stable mode choice process. As mentioned already, these parameters need to be 

calibrated when the model is applied in a real city.  

During the optimization process, perfect information about the demand profile was assumed. 

In reality demand can experience stochastic fluctuations or erroneous measurements, as it 

might not be straightforward to accurately measure, even at the aggregate level. To investigate 

how the model reacts under demand uncertainty, the effect of unbiased and biased errors are 

introduced for the optimal solution, obtained by the trapezoidal demand. With respect to the 

unbiased demand, we consider fluctuations from the deterministic trapezoidal demand as a 

standard normal distribution 𝒩(0,1), multiplied by a degree of error 𝜆, i.e. 𝑄̂𝑖
𝑘(𝑡) = 𝑄𝑖

𝑘(𝑡) ∙

(1 + 𝜆 ∙ 𝒩(0,1)). We perform multiple runs for values of 𝜆 ∈ [0,0.25] and the predetermined 

space allocation and tolls. Even for large degrees of error, the total passenger hours travelled 

(PHT) do not change more than 5%, which highlights that the approach is robust and not very 

sensitive to random demand fluctuations.    

In the case of biased error, for example because of a demand increase, the analysis is more 

complicated as PHT can significantly increase. The reason is that the base case represents a 

high demand case, which without efficient space allocation creates significant congestion, 

while the optimized solution operates at the network capacity in the center region for the 
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roads devoted to cars. Thus, this demand increase will create states in the congested part of 

the MFD and increase the PHT. Nevertheless, a new redistribution of the urban space might 

not be a feasible solution due to high infrastructure costs and it should not be performed 

frequently. Instead, a change in the price of toll is easy to be implemented and for some range 

of demand increase can still lead the system to an efficient state and avoid states in the 

congested part of the MFD, which results in network capacity loss. To quantitatively analyze 

the above, we estimate the total PHT of the two-region model as demand increases for the 

optimal space allocation and tolls of the base scenario. Afterwards, we keep the space 

allocation identical and optimize the system with respect to the value of the toll in the peak 

hour for different demand levels.  

 

                   

Fig. 2.12 Comparison of system performances under different pricing scenarios for different 

levels of demand increase: (a-top left) PHT and (b-top right) average bus occupancy over 

different demand increase percentages. (c-down left) and (d-down right) show the resultant 

MFDs under the three pricing when there are 15% increase and 25% increase of demand.  

The results are summarized in Fig. 2.12, where PHT for different demand increase is 

estimated for (i) the dynamic allocation without toll, (ii) the dynamic allocation with fixed toll 

of the base scenario and (iii) the dynamic allocation with toll re-optimization for each demand 

level. We also show the average bus occupancy (in passengers/bus) during the peak hour for 

the three scenarios and the price of the optimal toll. Note that with price re-optimization, bus 

utilization is much higher while congested states are avoided for demand increase up to 25% 
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(see the associated MFDs for cars in the city center). For higher increase (>25%) buses 

become full and congestion is unavoidable. The price of toll stabilizes for higher demand as 

buses are full and cannot attract more passengers. A solution in this case is to introduce more 

frequent buses in the system, which will allow for lower bus occupancy, but it might decrease 

the efficiency of the bus network. Nevertheless, pricing appears to be an effective measure for 

dealing with uncertainty in demand.  

2.4 Summary 

In Chapter 2, we presented a macroscopic approach for allocating road space among modes of 

transport with the objective of minimizing the total hours traveled by travelers (PHT). We 

extended the single-mode MFD to a bi-modal one, where the effect of bi-modal operation in 

global performance was considered. For example, the effect of dwell time and the share of 

dedicated bus lanes (of the total space) on network space-mean speed were quantified by the 

bi-modal MFD. A system model then was constructed for a multi-region network, with a 

network-level flow conservation model and an aggregated dynamic mode choice model. 

Given this system model, the performance under different road space strategies can be 

predicted, provided with data input that can be readily collected such as regional origin-

destination tables and road space allocation plans. We tested the rationale of this modeling 

approach with a two-region bi-modal city case study, and investigated the performance of two 

space allocation strategies for the center region of the city where demand was high and heavy 

congestion existed. A static and a dynamic (time-dependent) allocation strategies were 

obtained through non-linear optimizations respectively. We found that the dynamic allocation 

strategy managed to minimize PHT in a more efficient way as it utilized the bus lane space 

during the off-peak period and served a higher amount of passengers during peak period. By 

implementing pricing during the peak period, further reduction of PHT was achieved, as 

pricing led a higher demand shifted and increased the utilization of buses which was the faster 

traveling mode. We also observed the existence of user equilibrium in our macroscopic model, 

e.g. the utilities of traveling by modes became equivalent during the peak-period. Furthermore, 

we carried out sensitivity analysis and showed the robustness of our approach towards the 

fluctuations in demand inputs and model parameters.  
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3  Modeling and Optimizing Multimodal Urban 

Network with Limited Parking and Pricing 

Chapter 2 presented a macroscopic approach to model the dynamics of a bi-modal transport 

system with infinite parking capacity. Unlimited parking is rarely realistic in urban city centers. 

Parking limitation has significant effect in mobility. The objective now is to integrate the 

treatment of parking limitation into the developed macroscopic modeling framework. The 

extended approach shall capture the flow characteristics of cruising for parking, estimate the 

direct cost of users with different mode choice, and enable the development and optimization of 

parking polies for improving multimodal mobility. Similar aggregated models treating parking 

limitation can be found in Geroliminis (2014), where a parking model built into an MFD 

modeling framework was proposed and perimeter flow control strategy was developed to 

reduce both parking cost and total cost for travelers, for single-mode systems; and in Arnott and 

Inci (2010), where equilibrium conditions under parking constraint (space, duration) are derived 

for a single-region single-mode and single-parking-facility system under steady-states.  

Consider a system where travelling by car and searching for an on-street parking is the only 

available mode of transport (see for example Arnott and Rorwse (2009), Arnott and Inci (2010), 

Geroliminis (2014)). In this case under high demand the system has a stable equilibrium, which 

is close to gridlock. Parking will always be full and whenever there is a free spot, this will be 

occupied immediately by the cruising vehicles as very well stated in Arnott and Inci (2010) and 

also showed in Geroliminis (2014). If passengers have efficient alternative choices (e.g. change 

of departure time, utilizing a parking garage, switch to public transport) and some of these 

choices might be properly priced, then the system might end up in non-gridlock states.  This 

chapter investigates the traffic dynamics of a system with limited on-street parking, unlimited 

but priced garage parking and a public transport alternative. It develops a feedback-based 

pricing scheme that does not require prediction of the state of the system and shows that hyper-

congestion and cruising can be avoided. It also investigates how close such a traffic 

management strategy can get to the system optimum pricing with perfect information of the 

future conditions of the system. While detailed micro- or agent-based simulations could provide 

a scenario analysis of such a system, we follow a “dynamic aggregated approach” consistent 

with the physics of traffic congestion that can contribute to develop some strong physical 



 

50 
 

intuition for such a challenging problem. Time of departure is not considered, as it will make 

the solution approach too hard for analytical derivations. 

The chapter is organized as follows. Section 3.1 presents the system model under parking 

limitation consisting of four modules: the traffic flow model, system model, cruising-for-

parking model and choice model, respectively. Section 3.2 develops two parking pricing 

strategies for congestion and cruising management. Utilizing the system model, case studies are 

carried out on the performance of the pricing strategies and the results are shown in Section 3.3. 

Furthermore, system performances under parking pricing competition (between parking facility 

operators) are estimated and preliminary results are discussed.  

A standing-alone nomenclature of this chapter is provided in Table 3.1 for the main variables 

and parameters. 

Table 3.1 Nomenclature of main variables and parameters used in Chapter 0. 

Variables Description 

𝑃𝑖
𝑚(𝑡) Total distance traveled (production) in region 𝑖  by mode 𝑚  at 

time interval 𝑡   

𝑁𝑖
𝑚(𝑡) The accumulation of mode 𝑚 currently in region 𝑖 at time 𝑡 

𝐺𝑖
𝑚(𝑁𝑖

𝑚(𝑡)) The production MFD for  mode 𝑚 in region 𝑖 , in function of the 

accumulation 𝑁𝑖
𝑚 at time 𝑡 

𝑄𝑖→𝑗
𝑘𝑚(𝑡) Demand generated using mode 𝑚 in region 𝑖 approaching to the 

neighbor region 𝑗 at time 𝑡 with final destination regions 𝑘 

𝑂𝑖→𝑗
𝑘𝑚(𝑡) Trip completion/transfer flow of mode 𝑚  from region 𝑖 

approaching to the bounded neighbor regions 𝑗  with final 

destination regions 𝑘 at time 𝑡 

𝑂𝑖
𝑚(𝑡) Vehicle outflow of mode 𝑚 exiting region 𝑖 at time 𝑡  

𝐼𝑖
𝑚(𝑡) Incoming flow of mode 𝑚 from external regions to region 𝑖  at 

time 𝑡 

𝑁𝑃𝑖
𝑚(𝑡) Passenger accumulation on mode 𝑚 currently in region 𝑖 at time 𝑡 

𝑂𝑃𝑖
𝑚(𝑡) Passenger outflow on mode 𝑚 exiting region 𝑖 at time 𝑡 

𝑁𝑥,𝑖(𝑡) Accumulation of car family 𝑥  in region 𝑖  at time 𝑡  ( 𝑥 =

𝑟, 𝑠, 𝑜, 𝑔, 𝑜𝑠) 

𝑂𝑥,𝑖(𝑡) Outflow flow of car family 𝑥 in region 𝑖 at time 𝑡 

𝜔𝑜𝑠,𝑖
𝑐 (𝑡)|𝜔𝑔,𝑖

𝑐 (𝑡) Fraction of trip-finishing cars for on-street (or garage parking) in 
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region 𝑖 at time 𝑡 

𝜔𝑖
𝑚(𝑡) Fraction of passengers travelling with mode 𝑚 in region 𝑖 at time 

𝑡 

𝑂𝑟→𝑠,𝑖(𝑡)|𝑂𝑟→𝑔,𝑖(𝑡) The transfer flow from the running family to searching family or 

to garage parking in region 𝑖 at time  

𝑙𝑥,𝑖 The average trip distance of car family 𝑥 travelled in region 𝑖 

𝑜𝑐𝑐𝑖
𝑚(𝑡) The average occupancy of mode 𝑚 in region 𝑖 at time 𝑡 

𝑁𝑜𝑠,𝑖(𝑡) The occupied on-street parking spaces at time 𝑡 of region 𝑖 

𝐴𝑖 The total amount of on-street parking spaces of region 𝑖 

𝜑𝑖(𝑡) The probably of finding an available on-street parking space at 𝑡 

in 𝑖  

𝐿𝑖(𝑡) The average cruising distance before finding an available on-

street parking space at time 𝑡 in region 𝑖 

𝑇𝑐𝑟𝑢,𝑖(𝑡) The average cruising delay at time 𝑡 in a region 𝑖 

𝑝𝑜𝑠(𝑡)| 𝑝𝑔(𝑡) Pricing rates for on-street parking (or garage parking) at time 𝑡  
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3.1 System Dynamics with Parking Consideration  

In this section, we present the macroscopic approach for modeling multimodal traffic dynamics 

with limited parking. The embedded traffic, parking, system and choice models will be 

described in details. An overview of such system is illustrated in Figure 3.1 below and will be 

explained in the later text. 

Ni
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m(t)
Nx,i(t), Nos,i(t), Li(t)
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m(t)
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Current demand

Ci
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Veh. dynamics 
(2)-(5), (7)-(8)  

Oi
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(6)

NPi
m(t+1)

 

Fig. 3.1 Dynamics of a bi-modal transport system with parking choice, with indication of 

principal variables. 

Traffic flow model 

We utilize in this work both the single-mode and the multimodal MFD (cars and buses) as the 

traffic model, relating the total distance travelled in region 𝑖 of mode 𝑚 (𝑚 can be any vehicular 

mode that either utilizing dedicated road space or sharing space with other modes) at time 𝑡, the 

production 𝑃𝑖
𝑚(𝑡), to vehicle accumulation 𝑁𝑖

𝑚(𝑡). Mathematically, it is written as follows, for 

single-mode traffic (e.g. dedicated lanes separating cars and buses) and mixed traffic: 

where 𝑁𝑖
𝑚⃗⃗ ⃗⃗ ⃗⃗   represents accumulation of all modes utilizing the specific road infrastructure; 𝐺𝑖

𝑚 

is MFD functions which can be obtained via analytical approximations e.g. as in Geroliminis 

and Boyaci (2012) and Leclercq and Geroliminis (2013). Under steady state condition, we can 

approximate the trip completion rate, the outflow of a network 𝑂𝑖
𝑚(𝑡) from the production by: 

𝑂𝑖
𝑚(𝑡) = 𝑃𝑖

𝑚(𝑡)/𝑙𝑖
𝑚  where 𝑙𝑖

𝑚  is the average trip distance. We can also obtain the average 

speed by its definition 𝑣𝑖
𝑚(𝑡) = 𝑃𝑖

𝑚(𝑡)/𝑁𝑖
𝑚(𝑡). 

 

𝑃𝑖
𝑚(𝑡) = 𝐺𝑖

𝑚 (𝑁𝑖
𝑚⃗⃗ ⃗⃗ ⃗⃗  (𝑡))  (3-1) 
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System model 

A city network shall be clustered into regions, as illustrated in Fig. 2.1 in Section 2.1 of Chapter 

2, applying the same criteria for clustering: (i) homogeneous distribution of congestion within 

each region to obtain a low-scatter MFD (see Ji and Geroliminis (2012) for more details) and (ii) 

similar type of mode usage. Given the regional accumulation 𝑁𝑖
𝑚(𝑡) , the regional MFD 

𝐺𝑖
𝑚 estimates production 𝑃𝑖

𝑚(𝑡)  and outflow 𝑂𝑖
𝑚(𝑡)  of vehicles, and of persons 𝑂𝑃𝑖

𝑚(𝑡) =

𝑂𝑖
𝑚(𝑡) ∙ 𝑜𝑐𝑐𝑖

𝑚(𝑡) provided the average passenger occupancy of mode 𝑚, 𝑜𝑐𝑐𝑖
𝑚(𝑡). Given the 

traffic demand of mode choice 𝑚, 𝑄𝑖
𝑚(𝑡), the dynamics of each partitioned region 𝑖 of this bi-

modal system can be described by the change of 𝑁𝑖
𝑚(𝑡) for vehicle flow, and the change of 

𝑁𝑃𝑖
𝑚(𝑡) for person flow. A discrete version of the dynamics can be found as follows: 

In the equations, demand 𝑄𝑖
𝑚(𝑡)=∑ ∑ 𝑄𝑖→𝑗

𝑘𝑚(𝑡)𝑗𝑘≠𝑖 , where 𝑄𝑖→𝑗
𝑘𝑚  is the demand generated in 

region 𝑖 approaching to the neighbor regions 𝑗 with final destinations 𝑘. The regional outflow 

𝑂𝑖
𝑚(𝑡) = ∑ ∑ 𝑂𝑖→𝑗

𝑘𝑚(𝑡)𝑗𝑘≠𝑖 , is constrained by the receiving capacity of the approaching regions 

𝑗 and the boundary capacity between 𝑖 and 𝑗. Variable 𝐼𝑖
𝑚 denotes the total incoming vehicle 

flow from the neighbor regions, 𝐼𝑖
𝑚(𝑡) = ∑ ∑ 𝑂𝑗→𝑖

𝑘𝑚(𝑡)𝑗≠𝑖𝑘 , while 𝐼𝑃𝑖
𝑚(𝑡) is the incoming flow 

in person units. Note that (i) for route choice between an origin-destination pair, a regional 

route choice model can be applied to determine the sequence of the passing regions 

(Yildirimoglu and Geroliminis, 2014), and (ii) for details on the distributions of flows over 

the different regional ODs, for example 𝑁𝑖→𝑗
𝑘𝑚 over 𝑁𝑖

𝑚, readers can refer to Equation (2-5) of 

Chapter 2.  

To estimate the cruising time for cars, it is indispensable to decompose 𝑁𝑖
𝑐(𝑡) in Equation (3-2) 

into the three movement families that were introduced in the previous subsection: 𝑁𝑖
𝑐(𝑡) =

𝑁𝑟,𝑖(𝑡) + 𝑁𝑠,𝑖(𝑡) + 𝑁𝑜,𝑖(𝑡). Buses are assumed to have one family of vehicles with external 

destinations and no generated “demand”, as buses operate usually circular routes across the 

regions with small time-varying service frequencies. Equations (3-2) and (3-3) without the 

demand terms 𝑄 are sufficient for describing the dynamics of buses.  Fig. 3.2 displays flow 

movements of buses and cars with parking choices in region 𝑖, with all state variables included. 

𝑁𝑖
𝑚(𝑡 + 1) = 𝑁𝑖

𝑚(𝑡) +
𝑄𝑖
𝑚(𝑡)

𝑜𝑐𝑐𝑖
𝑚(𝑡) 

+ 𝐼𝑖
𝑚(𝑡)  − 𝑂𝑖

𝑚(𝑡) 
 

(3-2) 

𝑁𝑖
𝑚(𝑡 + 1) = 𝑁𝑃𝑖

𝑚(𝑡) + 𝑄𝑖
𝑚(𝑡) + 𝐼𝑃𝑖

𝑚(𝑡) − 𝑂𝑃𝑖
𝑚(𝑡) (3-3) 
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Fig. 3.2 Flow movements in region network 𝑖 with parking choices. 

Assume 𝑜𝑐𝑐𝑖
𝑐(𝑡) = 1 and constant, the flow conservation of the families I, II, III, and the two 

families of the parked cars can be written as follows and illustrated by Fig. 3.2: 

In Equation(3-4a), 𝑄𝑖
𝑖𝑐(𝑡) is the internal demand from region 𝑖 to 𝑖; 𝐼𝑖

𝑖𝑐  is the total incoming 

flow from external regions to region 𝑖  and ending their trips in region 𝑖 , where 𝐼𝑖
𝑖𝑐 =

∑ 𝑂𝑗→𝑖
𝑖𝑐 (𝑡)𝑗≠𝑖 . In Equation (3-4b),  𝑂𝑟→𝑠,𝑖(𝑡) is the transfer flow from running (family I) to 

searching-for-parking (family II),  𝑂𝑟→𝑠,𝑖(𝑡) = 𝑂𝑟,𝑖(𝑡) ∙ 𝜔𝑜𝑠,𝑖
𝑐 (𝑡)  and 𝜔𝑜𝑠,𝑖

𝑐 (𝑡)  denotes the 

percentage of trip-finishing cars that pursing on-street parking. The term 𝑄𝑖
𝑘𝑐(𝑡) =

∑ ∑ 𝑄𝑖→𝑗
𝑘𝑚(𝑡)𝑗≠𝑖𝑘≠𝑖  in Equation (3-4c) denotes the total demand generated in region 𝑖  with 

𝑁𝑟,𝑖(𝑡 + 1) = 𝑁𝑟,𝑖(𝑡) + 𝑄𝑖
𝑖𝑐(𝑡) + 𝐼𝑖

𝑖𝑐(𝑡) − 𝑂𝑟,𝑖(𝑡) 

𝑁𝑠,𝑖(𝑡 + 1)  = 𝑁𝑠,𝑖(𝑡) + 𝑂𝑟→𝑠,𝑖(𝑡) − 𝑂𝑠,𝑖(𝑡) 

𝑁𝑜,𝑖(𝑡 + 1) = 𝑁𝑜,𝑖(𝑡) + 𝑄𝑖
𝑘𝑐(𝑡) + 𝐼𝑖

𝑘𝑐(𝑡) − 𝑂𝑜,𝑖(𝑡) 

𝑁𝑜𝑠,𝑖(𝑡 + 1) = 𝑁𝑜𝑠,𝑖(𝑡) − 𝑄𝑖,𝑜𝑠
𝑐 (𝑡) + 𝑂𝑠,𝑖(𝑡) 

𝑁𝑔,𝑖(𝑡 + 1) = 𝑁𝑔,𝑖(𝑡) − 𝑄𝑖,𝑔
𝑐 (𝑡) + 𝑂𝑟→𝑔,𝑖(𝑡) 

(3-4a) 

(3-4b) 

(3-4c) 

(3-4d) 

(3-4e) 
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external destinations 𝑘; 𝐼𝑖
𝑘𝑐(𝑡) = ∑ ∑ 𝑂𝑗→𝑖

𝑘𝑚(𝑡)𝑗≠𝑖𝑘≠𝑖  is the total through transfer flow; while the 

last term 𝑂𝑜,𝑖(𝑡) = ∑ ∑ 𝑂𝑖→𝑗
𝑘𝑚(𝑡)𝑗≠𝑖𝑘≠𝑖  is the total outflow exiting region 𝑖. Equations (3-4d) and 

(3-4e) describe the dynamics of the parking flows, where 𝑄𝑖,𝑜𝑠
𝑐 (𝑡) and 𝑄𝑖,𝑔

𝑐 (𝑡) are the demand 

generated from on-street parking and garage parking, 𝑄𝑖,𝑜𝑠
𝑐 (𝑡) + 𝑄𝑖,𝑔

𝑐 (𝑡) = 𝑄𝑖
𝑖𝑐(𝑡) + 𝑄𝑖

𝑘𝑐(𝑡).  

The family-specific outflow 𝑂𝑥,𝑖(𝑡), 𝑥 ∈ {𝑚, 𝑔, 𝑠, 𝑜} can be obtained by Little’s formula:  

where 𝑁𝑖
𝑐(𝑡) = ∑ 𝑁𝑥,𝑖(𝑡)𝑥 , and  𝑃𝑖

𝑐(𝑡) = 𝑃𝑖
𝑐(𝑁𝑖

𝑐(𝑡)) is estimated by (3-1). 𝑙𝑥,𝑖  is the average 

trip distance of family 𝑥 travelled in region 𝑖, where 𝑙𝑚,𝑖 = 𝑙𝑔,𝑖 = 𝑙𝑜,𝑖 = 𝑙𝑐  and 𝑙𝑐  is network 

specific and given. 𝑙𝑠,𝑖 = 𝐿𝑖(𝑡) is estimated in the parking model introduced later .  

Mode and parking facility choices  

To determine the mode split of the newly-generated demand (between car and bus) a Nested-

Logit model is applied based on the latest known trip disutility (costs) 𝐶𝑖
𝑐,𝑛(𝑡) for travelling 

with cars with parking facility choice 𝑛 = {𝑜𝑛 𝑠𝑡𝑟𝑒𝑒𝑡 𝑣𝑠. 𝑔𝑎𝑟𝑎𝑔𝑒}, and 𝐶𝑖
𝑏(𝑡) for traveling 

with buses. For cars, trip disutility includes travel time, cruising delay and the costs of parking. 

While for buses, trip cost consists of travel time, accessing time and the discomfort of on-board 

overcrowding (see detail in Zheng and Geroliminis (2014)). In our case, the nest is required by 

the parking facility choice 𝑛. Denote 𝜔𝑔,𝑖
𝑐 (𝑡), 𝜔𝑜𝑠,𝑖

𝑐 (𝑡),the percentage of mode choice of cars 

with garage or on-street parking, and 𝜔𝑖
𝑐(𝑡) and 𝜔𝑖

𝑏(𝑡), the percentage of mode choice of cars 

and buses. We assume the travelers choose their mode of transport, either cars or buses, in the 

beginning of their trips. The estimation of bus share 𝜔𝑖
𝑏(𝑡)  is given by  

𝜔𝑖
𝑏(𝑡) =

𝑒𝑥𝑝(𝜏𝑏∙𝐶𝑖
𝑏(𝑡))

𝑒𝑥𝑝(𝜏𝑐∙𝐶𝑖
𝑏(𝑡))+𝑒𝑥𝑝(𝜏𝑐∙𝐶𝑖

𝑐(𝑡))
, where 𝐶𝑖

𝑐(𝑡) =
1

𝛽
∙ 𝑙𝑛 ∑ 𝑒𝑥𝑝𝑛 (𝛽 ∙ 𝐶𝑖

𝑐,𝑛(𝑡)) . Scale 

parameters 𝛽, 𝜏𝑏, 𝜏𝑐are calibrated to avoid oscillation in mode shift. By definition 𝜔𝑖
𝑐(𝑡) = 1 −

𝜔𝑖
𝑏(𝑡). Given the total demand 𝑄𝑖(𝑡), 𝑄𝑖

𝑚(𝑡) can be estimated by 𝜔𝑖
𝑐(𝑡) and 𝜔𝑖

𝑏(𝑡). Given the 

car demand generation 𝑄𝑖
𝑐(𝑡), 𝑄𝑖,𝑜𝑠

𝑐 (𝑡) and 𝑄𝑖,𝑔
𝑐 (𝑡) in Equation (3-4) can be obtained, as we can 

assume a fixed ratio that demand generated from the parking facilities (meanwhile releasing the 

parking space) is given.   

Note that the car-users have limited knowledge on the possible availability of the on-street 

parking by the time they start their trip. Then if they chose to travel by car, when they get in the 

𝑂𝑥,𝑖(𝑡) =
𝑁𝑥,𝑖(𝑡)

𝑁𝑖
𝑐(𝑡)

∙
𝑃𝑖
𝑐(𝑡)

𝑙𝑥,𝑖
    (3-5) 
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proximity of the destination, they re-evaluate the costs of on-street and garage parking and they 

make a new decision. If they decide to travel bus, they do not have such an option. Therefore 

the final choice on parking facility is determined on-site. While the a priori and the final 

decision are the same in the majority of the case, we consider such a framework more realistic. 

The distribution of the arriving flow 𝑂𝑟,𝑖(𝑡) between the two parking facilities can be estimated 

trough a Logit model by 𝜔𝑔,𝑖
𝑐 (𝑡)  and 𝜔𝑜𝑠,𝑖

𝑐 (𝑡) , where 𝜔𝑜𝑠,𝑖
𝑐 (𝑡) = 𝑒𝑥𝑝 (𝛽 ∙ 𝐶𝑖

𝑐,𝑜𝑠(𝑡)) /

(𝑒𝑥𝑝 (𝛽 ∙ 𝐶𝑖
𝑐,𝑜𝑠(𝑡)) + 𝑒𝑥𝑝 (𝛽 ∙ 𝐶𝑖

𝑐,𝑔(𝑡))). The production of 𝑂𝑟,𝑖(𝑡) ∙ 𝜔𝑜𝑠,𝑖
𝑐 (𝑡) thus is the input 

to the cruising family 𝑁𝑠,𝑖(𝑡).  

Parking model 

Consider a city network that has two typical parking facilities: on-street parking and garage 

parking. The on-street parking has total parking space 𝐴𝑖 and the occupied parking space at time 

𝑡 is 𝑁𝑜𝑠,𝑖(𝑡). The available parking space thus is 𝐴𝑖 − 𝑁𝑜𝑠,𝑖(𝑡) ≥ 0, while the garage parking is 

assumed to have infinite capacity without cruising delay. To reflect the impact of parking 

limitation on traffic, a parking model must be introduced. A bi-modal MFD model with 

unlimited parking such as the one in Zheng and Geroliminis (2013) considers two families of 

car movements: (I) cars moving towards internal destination, and (II) towards external 

destinations. We now extend the treatment to three families: (I) cars running towards internal 

destination but not yet search for parking 𝑁𝑟,𝑖(𝑡), (II) cars reaching destination and searching 

for on-street parking space  and (III) cars moving towards external destination regions 𝑁𝑜,𝑖(𝑡). 

Cars reaching destination and successfully parked are denoted by 𝑁𝑜𝑠,𝑖(𝑡) and 𝑁𝑔,𝑖(𝑡)  for on-

street parking and garage parking, respectively. The interactions among the different families 

will be illustrated later. For simplicity, mode index 𝑐 (for cars) is skipped in these family 

notations.   

For family II, the cruising-for-parking process is considered to be repetitive Bernoulli trials, 

until an available parking spot is obtained, which is expressed by a geometric distribution 

(number of trials until the first success). The probability 𝜑𝑖(𝑡) that a parking spot is available 

when being reached, is in direction proportion to the ratio between the available space 𝐴𝑖 −

𝑁𝑜𝑠,𝑖(𝑡) and the total parking space 𝐴𝑖 (in this work we consider only one region with parking 

difficulties, but this can be easily extended to multiple regions) 
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We assume the parking spaces evenly distributed around the destinations, with a spacing 𝑠𝑖 . 

Alternatively one may apply a two-dimension cruising model, provided with detailed data on 

spatial distribution of parking spaces and the cruising behavior of cars.  

Given the property of Bernoulli trial, it is apparent that the average number of parking spaces 

passed by cars in family II before finding an available parking space (number of trials before 

success) is 1/𝜑𝑖(𝑡). The average cruising distance 𝐿𝑖(𝑡) thus can be obtained by Equation (3-7), 

while a similar model with exists in Geroliminis (2014):  

Given the speed 𝑣𝑖
𝑐(𝑡) from the MFD, the cruising delay 𝑇𝑐𝑟𝑢,𝑖(𝑡) can be obtained as:  

Regarding the pricing of using the facilities, denote 𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡) for on-street parking rate 

and garage parking rate at time 𝑡. Cruising inside garages is neglected in this study.  

3.2 Parking Management 

Studies have demonstrated that the MFD modeling can contribute to develop traffic 

management strategies, examples including space allocation bus lanes of Chapter 2 and 

dynamic traffic signal perimeter control (Haddad et al. (2013), Aboudolas and Geroliminis 

(2013)). We propose two dynamic pricing schemes (strategy P1 and P2) to determine on-street 

parking pricing 𝑝𝑜𝑠(𝑡) and garage pricing 𝑝𝑔(𝑡) such that the congestion of traffic and parking 

is reduced. Pricing is only applied in the center region which experiences more congestion, i.e. a 

region index is omitted from the above pricing variables. Note that for the strategies under 

discussion, we assume to have full authority of both pricings whereas in reality they belong to 

parties with different operating objectives (and competition might occur). We will address this 

subject in the final part of the paper.  

Strategy P1 develops a generic widely used control loop feedback mechanism. It tries to 

succeed two set points, related to (i) the maximum production of the network (in terms of 

vehicle-kilometers travelled per time interval) and (ii) small cruising time for on-street 

𝜑𝑖(𝑡) =
𝐴𝑖 − 𝑁𝑜𝑠,𝑖(𝑡)

𝐴𝑖
 (3-6) 

𝐿𝑖(𝑡) = 𝑠𝑖 ∙
1

𝜑𝑖(𝑡)
    (3-7) 

𝑇𝑐𝑟𝑢,𝑖(𝑡) =
𝐿𝑖(𝑡)

𝑣𝑖
𝑐(𝑡)

=
𝑠𝑖

𝜑𝑖(𝑡) ∙ 𝑣𝑖
𝑐(𝑡)

     (3-8) 
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parking. The strategy calculates an error value as the difference between a measured process 

variable and the desired set point. It attempts to minimize the error by adjusting the prices 

𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡).  

Strategy P2 considers that the dynamic evolution of the system is known and solves a single 

full horizon optimization problem to minimize the total costs experienced by all passengers. 

While such an approach can be considered to provide close to system optimum conditions, it 

is considered an ideal scenario, which is also difficult to implement. Nevertheless, it provides 

an upper limit for comparison purposes with more feasible strategies like P1 or time-

independent pricing.  

A congestion- and cruising-responsive feedback parking pricing scheme (Strategy P1) 

This pricing scheme should aim to reduce traffic congestion caused by cars and by cruising. Car 

users will pay a parking fee based on the magnitude of congestion they cause at the moment 

they enter the network. A feedback-type controller is employed to update the time-dependent 

prices 𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡), where the control variables are the total accumulation 𝑁𝑐(𝑡) and the 

accumulation of cruising family 𝑁𝑠,𝑖(𝑡). The concept is that garage users have to pay for the 

hyper congestion due to large accumulations of cars in the network, while on-street users have 

to pay for the cost of cruising as well. In this way, both types of congestion can be eliminated. 

Equations (3-9) and (3-10) describe mathematically the two pricing control mechanisms 

respectively, where 𝑐1 and 𝑐2 are control gain parameters. Equation (3-9) states that the garage 

price for the next time interval 𝑡 + 1, 𝑝𝑔(𝑡 + 1), increases if the accumulation of car users 

𝑁𝑐(𝑡) exceeds the critical accumulation of the network 𝑁𝑐𝑟  (where the maximum network 

production is reached and network production decreases if 𝑁𝑐(𝑡)>𝑁𝑐𝑟). 𝑁𝑐𝑟 is derived from the 

MFD. Equation (3-10) indicates that the on-street price 𝑝𝑜𝑠(𝑡 + 1) charges the same amount for 

the reduction of network production, and an additional amount for causing cruising delay which 

is proportional to the difference between 𝑁𝑠(𝑡) and a pre-defined threshold 𝑁𝑠𝑇 . Having 𝑐1 

parameter in both (3-10) and (3-11) simply means that all car users have to pay for congestion 

independently of the parking choice. Parameter 𝑁𝑠𝑇 can be interpreted as the tolerated amount 

of cruising vehicles, a policy factor influencing the service level of on-street parking. We will 

show in a later graph how 𝑁𝑠𝑇 is chosen. Strategy P1 does not require any prediction and is 

based only on quantities that can be estimated with existing sensing techniques.  
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A system optimum parking pricing scheme (Strategy P2) 

The second parking pricing scheme aims at achieving a system optimum. The goal of this 

pricing scheme is to minimize the TPC that serves the total demand by optimizing the parking 

pricings in the center region controlled by a central operator with a full knowledge of the 

system, while such a strategy is difficult to be implemented due to prediction limitations and 

day to day variations of demand. Mathematically it can be described as the following: 

where 𝑇 is the duration of the time interval 𝑡. Problem (3-11) is subject to the system dynamics 

introduced in the previous section. We also add a constraint that 𝑝𝑜𝑠(𝑡) <  𝑝𝑔(𝑡). The reason 

is the following. Since on-street parking requires cruising time, if 𝑝𝑔(𝑡) was not larger than 

𝑝𝑜𝑠(𝑡), the cost of garage parking would be less and the optimization will consequently rule 

out the option of on-street parking. Pricing without this constraint will be evaluated as a future 

work. The optimization problem (3-11) is highly non-linear. We solve this problem by 

sequential quadratic programming. We apply this algorithm for multiple initial values (around 

1000) to avoid convergence to local minima, which might be the case for a non-smooth 

objective function. 

3.3 Case Study and Analysis 

The proposed approach is tested in an idealized two-region bi-modal network. Mixed traffic 

of buses and cars occurs in the outside region (periphery), while an optimum fraction of road 

space in the center region (center) is pre-determined and dedicated to bus usage only (e.g. 

solution from Chapter 2). The radius of the center region is 1.6km and of the periphery is 

3.2km. The road networks of the two regions are well connected at the border. We simulate an 

urban road traffic system for 4-hours (80 time units), a typical morning period. Demand has a 

symmetric trapezoidal shape with time and the length of peak period is equal to 1hr. A 70% 

fraction of the demand generated in the periphery will travel to the city center and 30% 

fraction of the demand generated in the center will travel to the periphery of the city. A mixed 

𝑝𝑔(𝑡 + 1) = 𝑝𝑔(𝑡) + 𝑐1(𝑁
𝑐(𝑡) − 𝑁𝑐𝑟)  (3-9) 

𝑝𝑜𝑠(𝑡 + 1) = 𝑝𝑜𝑠(𝑡) + 𝑐1(𝑁
𝑐(𝑡) − 𝑁𝑐𝑟)  + 𝑐2(𝑁𝑠(𝑡) − 𝑁

𝑠𝑇) (3-10) 

𝑚𝑖𝑛
 𝑝𝑜𝑠(𝑡),𝑝𝑔(𝑡)

𝑍 = ∑ 𝑇𝑃𝐶𝑖
𝑚(𝑡)

𝑡,𝑖,𝑚

= ∑ 𝑁𝑃𝑖
𝑚(𝑡) ∙ 𝑇

𝑡,𝑖,𝑚

  (3-11) 
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bi-modal MFD for the periphery and two single-mode MFDs for the center are utilized and 

given. Two modes of transport are considered available in the system, car and bus. A fraction 

10% of the users are captive bus users and do not have access to cars. The network topology, 

signal settings and traffic parameters are as follows: two-lane one-way roads with block 

lengths 𝑙𝑏1 =154m and 𝑙𝑏2 =308m; signal settings for all intersections, green, 𝑔 = 40𝑠𝑒𝑐; 

cycle, 𝑐 = 90𝑠𝑒𝑐  and offset, 𝑜 = 0𝑠𝑒𝑐 . The average distance between parking spaces 

𝑠 = 20𝑚. The duration of on-street parking is 1hr. A sensitivity analysis on parking duration 

will be reported as future work.  

In the first sub-section, we show the resultant dynamics of the two-region bi-modal system 

under parking limitation and pricing, illustrating the mechanism of the modeling approach. 

Then we give performance comparison of four parking pricing policies: a base scenario with 

free on-street parking, a flat parking-rate scenario for both garage and on-street, Strategy P1 

and Strategy P2. A discussion is followed in the final sub-section to address indications on 

parking policy from the results. The base scenario applies a time-constant parking garage fee 

𝑝𝑔 which creates crowding for the cruising traffic. The flat parking rate scenario estimates 

constant values of 𝑝𝑜𝑠 and 𝑝𝑔 by minimizing objective function (3-11). 

3.3.1 System dynamics with parking pricing   

Fig. 3.3 displays the system dynamics for the center region (the region index is skipped in the 

text), under the optimal constant pricing scheme where 𝑝𝑜𝑠 = 0.4$/ℎ𝑟 and 𝑝𝑔 = 1.6$/ℎ𝑟. In 

Fig. 3.3(a) and (d), it can be observed that mode share of buses increases during peak-hour as 

traveling with cars experience higher travel costs than buses. From the outflow-accumulation 

MFD in Fig. 3.3(b) (with the critical accumulation 𝑁𝑐𝑟 = 5200veh and a decreasing branch up 

to 𝑁𝑐(𝑡) = 9000veh for car network), we can clearly confirm the car network experiences 

congestion. Judging from the time series of cruising delay in Fig. 3.3(c), limitation of parking 

contributes to the high travel cost of cars as well. Nevertheless, even if demand is high, on-street 

parking is not fully occupied because travelers have alternatives of lower total cost (e.g. public 

transport or garage with fee). Note that such a pricing scheme cannot fully avoid neither 

congestion nor cruising. The travel cost of buses remains nearly the same since buses are 

operated on the dedicated lanes with scheduled frequencies, although a slight increase can be 

found in Fig. 3.3(d) during the peak-hour, which is a reflection of speed reduction due to the 

longer dwelling time for boarding more passengers. Congested states can be observed in the 

MFD in Fig. 3.3(b), where different values of outflow occur for the same accumulation. The 
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reduction of outflow can be explained by the reduction of on-street parking availabilities. As 

cars have to cruise longer distance to compete for a parking space, the outflow drops 

accordingly (outflow is production over trip length).     

 

Fig. 3.3 System dynamics and traffic performance under optimal constant parking pricing 

scheme for the center region: (a-top left) mode share of bus ω
b
center and total travel demand 

over time, (b-top right) the MFD of the center region car network with congestion observed, 

(c-down left) the prices of pos and pg, and cruising-for-parking time, and (d-down right) the 

cost of traveling with each mode over time. 

 

Fig. 3.4 illustrates the resultant system performance under the feedback-type time-dependent 

pricing Strategy P1. Prices are updated every 15min (5 interval units). In Fig. 3.4(c), the time-

dependent pricing rates 𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡) are plotted where higher pricing rates are found for 

the peak hour. Fig. 3.4(a) plots the cruising condition of the basic scenario. For the applied 

Strategy P1, the objective is to control the cruising delay under 3min therefore we choose a 

value of 900veh for 𝑁𝑠𝑇 . Then shown in Fig. 3.4(d), the accumulations 𝑁𝑐(𝑡) and 𝑁𝑠(𝑡) 

fluctuate closely around the critical values 𝑁𝑐𝑟 and 𝑁𝑠𝑇, though there are a few cases where 

congestion exceeds the desired states. This shows consistency with the expected system 

dynamics by feedback controllers.  
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Fig. 3.4 (a-top left) Relationship between cruising delay Tcru and cruising vehicles Ns,center 
of the basic scenario; System performance by Strategy P1: (b-top right) the MFD of the center 

region car network, (c-down left) the prices of  pos  and pg, and cruising-for-parking time Tcru, 

and (d-down right) the evolution of accumulations with the desired states in dotted lines: 

upper red for critical accumulation N
cr

 and magenta for the cruising threshold N
sT. 

 

Fig. 3.5 System dynamics and traffic performance under the optimal Strategy P2. The same 

graphs are reproduced as in Fig. 3.3. 

0 500 1000 1500 2000
0

2

4

6

8

N
s,center

 (vehs)

T
c
ru

 (
m

in
)

 

 

Basic scenario

0 5000 10000 15000
0

500

1000

1500

2000

N
center

c
 (vehs)

O
c
e
n
te

r

c
 (

v
e

h
s
/3

m
in

)

 

 

MFD
center

8h 9h 10h 11h 12h
0

2

4

6

8

t

V
a

lu
e
 u

n
it

 

 

p
g
 ($/hr)

p
os

 ($/hr)

T
cru

 (min)

8h 9h 10h 11h 12h
0

1000

2000

3000

4000

5000

6000

t

A
c
c
u

m
u

la
ti
o

n
 (

v
e

h
s
)

 

 

N
s,center

N
center

c

8h 9h 10h 11h 12h
0

0.5

1

1.5

t

V
a
lu

e
 u

n
it

 

 

Q
center

(10
3
vehs/3min)


b

center
 (%)

0 5000 10000 15000
0

500

1000

1500

2000

N
c

center
 (vehs)

O
c c
e
n
te

r (
v
e
h
s
/3

m
in

)

 

 

MFD
center

8h 9h 10h 11h 12h
0

2

4

6

8

t

V
a
lu

e
 u

n
it

 

 

p
g
 ($/hr)

p
os

 ($/hr)

T
cru

 (min)

8h 9h 10h 11h 12h
-30

-20

-10

0

10

t

D
is

u
ti
lit

y
 (

m
in

)

 

 

C
b

center

C
c,g

center

C
c,os

center



Chapter 3 Multimodal multi-region model with parking limitation                                                                                           

63 
 

Now let us examine the performance under Strategy P2. The same graphs of Fig. 3.3 are 

reproduced and displayed in Fig. 3.5. Comparing to Strategy P1, the cruising delay and 

accumulation further decrease. Higher maximum outflow can be observed from the MFD. With 

a careful investigation on the resultant mode shares of bus, we conclude that the improvement 

of performance under Strategy P2 is due to its capability of triggering an earlier mode shift from 

cars to buses during the on-set of the peak-hour. Remarkably, such small change (roughly a 

mode share difference of 2% during 20min) in the mode share creates significantly different 

traffic performances. Furthermore, it should be highlighted that less total pricing is charged on 

the users in strategy P2.   

3.3.2 Pricing scheme evaluation 

The proposed modeling approach is capable of producing the physics of overcrowding in 

general traffic and on-street parking, the effect of cruise-for-parking, and the aggregated 

behavioral change (mode choices) given parking space limitation and cost. The second part of 

this case study is to test and attain efficient pricing strategies. We compare the resultant system 

costs among the 4 scenarios by the following performance indicators: the savings in total person 

hours travelled (PHT) comparing to the base scenario, the total toll paid (TTP, converted to time 

unit with a mean value-of-time of 16$/hr), the toll efficiency which is the ratio between the 

savings in PHT and the corresponding TTP, and the average cruising delay which is the total 

delay time divided by total amount of on-street parkers. The statistics are listed in Table 3.2.  

Table 3.2 Comparison of the performances of different pricing schemes. 

 PHT Savings 

(hrs)  

Total toll 

(hrs) 

Toll efficiency 

(PHT.sav / TTP) 

Ave. cruising 

delay (min) 

Base scenario PHT=45337 660 0 3.7 

Constant pricing 1211 2641 45.8% 1.9 

Strategy P1 5944 7207 82.5% 1.4 

Strategy P2 6990 5857 119.5% 1.2 

The base scenario applies a flat rate to garage parking only. In this case, on-street parking is 

highly desired at first, as parking on-street experiences less cost until the cruising time cost is 

equivalent to garage pricing rate. However due to the large demand for on-street parking, on-

street parking becomes full and results an average 3.7min cruising delay for the later travelers. 

For the studied network, the average travel time per trip is 6min under free-flow condition and 
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15min under congestion. A 3.7min cruising time is a relatively considerable amount. Small 

improvement in PHT can be found when flat-rate tolls are implemented and optimized for both 

garage and on-street parking. From an efficiency point of view, however, the constant-pricing 

strategy makes users pay two times more than they gain in the reduction of travel time, reflected 

by the toll efficiency value of 45.8%.  

Applying Strategy P1, it is observed that the PHT significantly decreases. To achieve this, 

however, high parking tolls have to be charged. The resultant toll efficiency for achieving this 

PHT saving is improved to 82.5% albeit still indicating an insufficient toll scheme. Stimulating 

result is obtained by the implementation of Strategy P2, where the saving in PHT is higher than 

the required amount of toll payment.. Moreover, the cruising delay by Strategy P2 outweighs 

Strategy P1 by 15%. The difference in efficiency between the two pricing strategies P1 and P2 

can be explained as the following. Since Strategy P1 is responsive, controllers (3-9) and (3-10) 

do not explicitly consider congestion evolution. While benefiting from the optimization, 

Strategy P2 is able to predict and adapt traffic conditions and set optimal tolls to trigger an early 

mode shift. As mentioned-above, a slight mode shift during the on-set of peak-hour could lead 

to substantial improvement. While strategy P2 is difficult to be implemented in reality as it 

requires future predictions, a careful analysis of historical data can possibly make this feasible 

through a model predictive control approach where uncertainty will be treated in the 

optimization horizon. This is a challenging but interesting future direction.       

3.3.3 Parking policy indication 

Time-dependent parking-rate represents the current mainstream parking price management in 

urban areas, though the rates may be determined based on different criteria. For instance, the 

public-owned parking facilities in the city of San Francisco operate demand-responsive parking 

pricing which updates the prices at a monthly or shorter basis to reduce cruising time. Strategies 

P1 attempts to employ such pricing mechanism with a second objective to reduce general 

congestion. The result shows that the strategy indeed effectively reduces the total PHT and 

average cruising time. Strategy P2 demonstrates higher efficiency thanks to the opportunities of 

adapting the changing conditions of both the users and the parking prices. Such opportunities in 

practice can be offered through online information system.     

Note that in this study, we assume policy-makers operate the two parking facilities and have full 

control of the pricings 𝑝𝑜𝑠 and 𝑝𝑔. In practice, the authorities belong to different operators, e.g. 

city policy-makers operate on-street parking while real-estate companies operate garage parking. 
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These operators can be considered that have different objectives, e.g. city tries to minimize the 

generalized cost of all users, TPC, while garage operator maximizes its profit. Then Problem 

(3-11)  can be re-formulated as the follows: 

where 𝑇𝑜𝑠𝑖
𝑐(𝑡), 𝑇𝑔𝑖

𝑐(𝑡) is the total toll collected at time 𝑡 in region 𝑖 from car users using on-

street parking and garage parking, respectively.  

It can be seen that direct conflict of interests, represented by the term 𝑇𝑔𝑖
𝑐(𝑡) in Equations 

(3-12) and (3-13), exists between the two operators. Competition behaviour thus should be 

expected. Let us provide some preliminary result on the system performance under conditions 

with the existence of competition, while more detailed investigation will be reported in a later 

version of the paper.   

Assume now that the two operators are cooperative with each other and they compete to 

maximize the common profit. Then solving Problems (3-12) and (3-13) can be considered as a 

bi-objective optimization problem. We apply standard optimization procedure, to obtain the 

efficient frontier. Two scale parameters valued (0, 1) are given to the two objective functions 

respectively, where the sum of the two parameters equals to 1. With the scale parameters, the 

problem is transformed into a single-objective optimization and different Pareto optimal 

solutions are produced. Fig. 3.6(a) displays the efficient frontier of this problem. With our 

system model, the potential combination of management pricing policies can be readily 

estimated.   

Assume a second scenario that the two operators are selfish. The pricing competition is a 

responsive and negotiate-alike process, where each operator changes the pricing strategy after 

recognizing the impact of the other party’s action. We consider solving such competition by a 

leader-follower optimization procedure, where the policy-maker as the higher level leads the 

process and the real-estate companies as the lower level follows. At each competition round, 

each operator tries to optimize its own objective given the action of the previous one. To avoid 

oscillatory behavior of the optimization procedure, we add constraints that the actions of the one 

optimization problem should not worsen the other problem by more than 20% compared to the 

previous step. Comparing to the existing applications of bi-level optimization in transport-

𝑚𝑖𝑛
 𝑝𝑜𝑠(𝑡)

𝑇𝑃𝐶 = ∑(𝑃𝐻𝑇𝑖
𝑚(𝑡) + 𝑇𝑜𝑠𝑖

𝑐(𝑡) +

𝑡,𝑖,𝑚

𝑇𝑔𝑖
𝑐(𝑡))  (3-12) 

𝑚𝑎𝑥
 𝑝𝑜𝑔(𝑡)

𝐵𝐺 =∑ 𝑇𝑔𝑖
𝑐(𝑡)

𝑡,𝑖

  (3-13) 
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related researches, such as in Yin (2000), the challenges here are two-fold: (i) the two objective 

functions have direct conflict, and (ii) the existence of equilibrium or a competition efficient 

frontier where the two parties cannot improve their profit. Result of a simulated competition is 

displayed in Fig. 3.6(b), which illustrates that a long-term equilibrium can be reached for the 

pricing strategies between the two operators. On-going work makes further effort in the 

investigation of convergence towards this direction. 

  
 

Fig. 3.6 (a) The efficient frontier between maximizing the system performance (minimizing 

total cost TPC) for the on-street parking operator and maximizing BG the revenue for garage 

parking operator; (b) The evolution of the costs of TPC and BG over 20 rounds of leader-

follower pricing competition 

3.4 Summary 

Following Chapter 2, we proposed in Chapter 0 a macroscopic modeling approach for modeling 

multi-modal traffic system with parking limitation and cruising-for-parking flow. Parking 

limitation was integrated in the developed multi-modal system model, where vehicles need to 

cruise for parking before reaching destination. The time of cruising was estimated by assuming 

the probability of finding a parking space follows a geometric distribution and depends on the 

dynamic parking availability. The effect of cruising on the global performance, e.g. the average 

speed, was also captured, by the MFD dynamics. Case study was carried out in the same two-

region bi-modal network as in Chapter 2. Two parking choices were added: limited on-street 

parking requiring cruising, and unlimited garage parking with higher parking fee but no cruising 

cost. The resultant system behavior under parking limitation and pricing were consistent with 

the common expectations. We then used the system model to test two network-level parking 

pricing strategies. One strategy adapted a feedback-type controller for determining the parking 

price, which was congestion- and parking availability-dependent. Applying this pricing strategy, 
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traffic performance was maintained at desired (controlled) levels. The second strategy was 

obtained through optimization of the total cost (PHT + parking fee). Applying this strategy, the 

total cost was further reduced, as the prices were determined with long-term impact taking 

into account. Inspired by this result, we investigated the impact of competition on the 

performance of the pricing strategy, assuming the authorities of on-street and garage parking 

belong to different parties who manage prices with different goals. We presented preliminary 

results of cooperative-competition via a bi-objective optimization, while a bi-level optimization 

framework was proposed to simulate a responsive and negotiate-alike parking pricing market. 

 



 

 
 

 



 

69 
 

4  A Three-dimensional Macroscopic 

Fundamental Diagram for Mixed Bi-modal 

Networks 

In this chapter, we shift our focus from system modeling and optimization to the analysis of 

traffic flow characteristics, and seek for an approach for capturing the bi-modal traffic 

congestion patterns and the individual modal impact on the global network performance. 

Furthermore, the approach is expected to provide insight into the dynamics of passenger flows 

and identify types of heterogeneity that may exist. If MFD-type of models would hold for 

further scrutiny in multimodal networks and enable the aforementioned investigations, 

network-level control strategies can be developed to maximize urban mobility. Despite the 

dynamics of traffic flow in bi-modal networks are more complicated due to the operational 

characteristics of buses and the interactions between cars and buses, simulation studies from 

previous study (Gonzales et al. (2011)) and the results of Chapter 2 on small networks showed 

that a classical MFD applies (under certain conditions) for bi-modal urban networks. However, 

the influence of each mode in the network dynamics and performance cannot yet be quantified. 

Understanding this relationship will facilitate the development of control strategies at various 

levels, e.g. bus signal priority controls, or redistribution of urban space as proposed in Chapter 

3.  

This chapter is organized as follows. Section 4.1 investigates the existence and the properties 

of a three-dimensional vehicular MFD (3D-vMFD) relating the accumulation of cars and 

buses, and the total circulating vehicle flow in a bi-modal network based on data collected 

from the simulation of the San Francisco network. A three-dimensional passenger MFD (3D-

pMFD) is obtained as well, relating the accumulation of cars and buses and the passenger 

flow. Then, an analytical form of the 3D-vMFD is estimated. A Bus-Car Unit equivalent value 

representing the bi-modal mode conflict pattern is also derived from the function form of the 

3D-vMFD. Section 4.2 presents an analytical approach to approximate the shape of the 3D-

pMFD, given the 3D-vMFD. In Section 4.3, the existence of heterogeneity with respect to 

mode composition and congestion distribution is investigated. A network partitioning 

algorithm is proposed to deal with such heterogeneity. In Section 4.4, the application result of 

a 3D-MFD based perimeter flow control is illustrated and discussed. The last section 
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summarizes the findings of this chapter. 

A nomenclature is provided in the table below for the main variables and parameters used in 

this chapter.   

Table 4.1 Nomenclature of the main variables and parameters used in Chapter 4. 

Variables Description 

𝑄𝑚|𝑃𝑚 Circulating vehicle (passenger) flow in a mixed network by mode 𝑚 

𝑁𝑚 The accumulation of mode 𝑚 currently in the network  

𝑄𝑚(𝑁𝑐 , 𝑁𝑏)|𝑃𝑚(𝑁𝑐 , 𝑁𝑏) Vehicle (passenger) flow of  mode 𝑚 in function of the bi-modal 

accumulations  

𝑞𝑖𝑚(𝑡)|𝑘𝑖𝑚(𝑡) Flow (density) of mode 𝑚 on link 𝑖 in the network at time 𝑡  

𝑙𝑖 Link length of link 𝑖 

𝐿 The total network length (lane-kms)  

𝐿𝑖
𝑚 The total network length (lane-kms) of partitioned region 𝑖 for mode usage 𝑚 

𝑛̃𝑐 The critical value of car accumulation (given a specific bus operation) 

𝑘̂𝑏 The critical value of bus density for dedicated-bus-lane network 

ℎ𝑚(𝑡) The average passenger occupancy on mode 𝑚 in the network  

𝐵𝐶𝑈(𝑛𝑐 , 𝑛𝑏) 
Bus-Car Unit equivalent value in function of the bi-modal accumulations  

 𝛿𝑖 Mode composition ratio (for a bi-modal network) in the partitioned region 𝑖 
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4.1 A City-scale Three-dimensional MFD for Bi-modal Traffic 

In this section, we investigate the relation among accumulation of cars and buses and 

circulating flow (both vehicle and passenger) in bi-modal traffic networks via simulation 

experiments. We show that area of Downtown San Francisco exhibits a city-scale three-

dimensional vehicle MFD (3D-vMFD) relating the accumulation of cars and buses to flow 

with moderate scatter under different bi-modal demand patterns. We further show that our test 

site exhibits a city-scale three-dimensional passenger MFD (3D-pMFD) relating accumulation 

of cars and buses, to the passenger flows in the bi-modal network.  

An empirical study on the 3D-vMFD and 3D-pMFD is hard to carry out due to the difficulty 

on data availability. We therefore perform our analysis with data collected from a microscopic 

traffic simulation environment AIMSUN. The test site is a 3 km
2
 area of Downtown San 

Francisco including about 100 intersections and 430 links of total 100 lane-kms. The number 

of lanes varies from 2 to 5 lanes and the free flow speed is around 45 km/h. Traffic signals are 

all multiphase fixed-time operating on a common cycle length of 100s for the west boundary 

of the area and 60s for the rest. The traffic flow in the (bi-modal) network comprises two 

vehicle classes, i.e., passenger cars and buses. Bus routes and frequencies for lines in the 

studied network have been obtained from the San Francisco Municipal Transportation Agency 

(SFMTA). 

4.1.1 A three-dimensional MFD for vehicle flows (3D-vMFD) 

Let us denote by 𝑛𝑐 the accumulation of cars and 𝑛𝑏 the accumulation of buses at a specific 

time interval, 𝑄𝑚 is the total network circulating flow for each mode respectively, 𝑚𝜖{𝑏, 𝑐} 

and 𝑄 the total network flow (in vehicle per unit time), which is the sum of car and bus 

circulating flows, all estimated during the same interval. 𝑄𝑚  is defined in accordance to 

Edie’s definitions as 𝑄𝑚 = ∑ 𝑙𝑖𝑞𝑖𝑚𝑖 /𝐿, where 𝑙𝑖 is the length of link 𝑖, 𝑞𝑖𝑚 is the flow of link 

𝑖 at interval t for mode 𝑚 and 𝐿 is the average link length (Edie, 1963). For the developed 

model, the flow 𝑄 in the bi-modal network is considered to be a function of 𝑛𝑐 and 𝑛𝑏 given 

by (time interval t is omitted from the equations for simplicity)   

𝑄 =  𝑄(𝑛𝑐 , 𝑛𝑏) = 𝑄𝑐(𝑛𝑐, 𝑛𝑏) + 𝑄𝑏(𝑛𝑐 , 𝑛𝑏) (4-1) 

To obtain the shape of (4-1) we perform extensive simulation experiments in the test network 

with time-dependent asymmetric origin-destination tables, starting from different initial 
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compositions of the bi-modal traffic (pairs of 𝑛𝑐  and 𝑛𝑏 ). The initial profile for cars is a 

typical peak-hour demand with a trapezoidal shape. For buses, the demand is determined by 

the number of lines and their operational frequency using data from SFMTA. Higher demand 

scenarios are also analyzed to generate various mode compositions, i.e. 𝑛𝑐/𝑛𝑏  ratios. The 

simulation horizon for each experiment is 5.5 h and pairs of data (𝑛𝑐 , 𝑛𝑏) are gathered every 5 

min from the simulator. For each 5min interval, 𝑄𝑏, 𝑄𝑐 are estimated as described above. It 

should be noted that more than 20 scenarios with different dynamic demand characteristics 

are carried out to generate the corresponding traffic performance 𝑄 for a wide range of 𝑛𝑐 and 

𝑛𝑏. Some scenarios will be carefully analyzed later. 

Fig. 4.1(a) illustrates the 3D-vMFD for bi-modal traffic, 𝑄(𝑛𝑐 , 𝑛𝑏). As a first remark, Fig. 4.1 

(a) confirms the existence of a 3D-vMFD like-shape for bi-modal networks, whose shape is 

seen to depend on the accumulation of both cars and buses. To enable a better understanding 

of this figure, Fig. 4.1(b) displays the contour plot of the 3D-MFD on the (𝑛𝑐 , 𝑛𝑏) plane, using 

Delaunay triangulation/interpolation algorithm (De Berg et al., 2008) to estimate flow in a 

continuous space of the accumulation plane. The triangle in this figure indicates (𝑛𝑐 , 𝑛𝑏) pairs, 

where the network operates close to the maximum throughput of the 3D-vMFD (values within 

the 80% range of the maximum flow). In particular, it captures the “optimal operational 

regime” of bi-modal traffic. City managers and practitioners could seek to derive management 

strategies to operate at this optimal regime. It can be seen that the flow 𝑄  decreases 

monotonically as 𝑛𝑐 and  𝑛𝑏 increases, albeit with different slopes. Remarkably, the slope of 

buses is higher that the slope of cars. This indicates that effect of an additional bus in the 

network is much different than an additional car. A simple explanation is that buses make 

additional to traffic signal stops for passengers, and negatively influence traffic and create 

stop-and-go phenomena. The figure also depicts critical accumulations of cars 𝑛̃𝑐 (rising line 

in the triangle) where 𝑄 reaches its maximum for different values of 𝑛𝑏 . The slope of the 

rising dashed line reflects that the capacity to serve cars has to be compromised in order to 

serve more buses, approximately 𝑛̃𝑐 ≅ 3500 − 0.5𝑛𝑏 . As a general remark, the 3D-vMFD 

can be used by policy makers to exploit the trade-off between the operation of buses and cars 

and design more sustainable cities. Note also that the maximum value of the network flow 

occurs for 𝑛𝑏 = 0 and 𝑛𝑐 = 3500 because of the effect of bus stops. If one ignores the higher 

passenger bus occupancy, an optimal strategy to maximize vehicle flow is to operate at the 

(3500,0) pair. As we will show in the next section, a consideration of different vehicle 
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occupancies for buses and cars and the estimation of network passenger flow will produce a 

completely different result. 

 

Fig. 4.1 (a) The 3D-vMFD points for bi-modal traffic and (b) contour plot of the 3D-vMFD 

after interpolation by Delaunay triangulation. The color represents the value of circulating 

flow 𝑸 (vehs/h). 

4.1.2 A three-dimensional MFD for passenger flows (3D-pMFD) 

Given the 3D-vMFD in Fig. 4.1, incoming flow can be controlled at the boundary of the 

network in order to direct the network operates at its “optimal operational regime”. Existing 

methodologies for car-only perimeter control can be found in Keyvan-Ekbatani et al. (2012), 

Geroliminis et al. (2012), Haddad and Geroliminis (2012), Aboudolas and Geroliminis (2013) 

and elsewhere. However, these types of strategies are not able to consider that buses are more 

efficient modes due to higher passenger occupancy and they might restrict bus flow from 

entering the network. Before developing traffic management strategies for bi-modal systems 

with preferential treatment of buses, dynamics of passenger flows have to be investigated. 

Denote 𝑃 the passenger flow in the bi-modal network, with 𝑛𝑐 and 𝑛𝑏. We are interested in 

observing 𝑃 = 𝑃(𝑛𝑐 , 𝑛𝑏). Denote ℎ𝑚 the average number of on-board passenger occupancy 

per vehicle, 𝑚𝜖{𝑏, 𝑐} . We assume that car occupancy ℎ𝑐  is constant ℎ𝑐 =1.3, while we 

estimate bus occupancy ℎ𝑏 as a function of the dwell times. Dwell times are time-dependent, 

with three periods: on-set, during and off-set of peak hour. Dwell times are stochastic 

following a normal distribution, so to capture some uncertainty in passenger demand (in the 

simulation, only dwell times are available).  Detailed description can be found in Section 2.1. 

Then, by definition, total passenger flow 𝑃 can be expressed as 

𝑃(𝑛𝑐 , 𝑛𝑏) = ℎ𝑐𝑄𝑐(𝑛𝑐, 𝑛𝑏) + ℎ𝑏𝑄𝑏(𝑛𝑐 , 𝑛𝑏) (4-2) 
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We estimate passenger flow via the simulated data, with the measurements of car flows 𝑄𝑐, 

bus flows 𝑄𝑏 and the estimated bus occupancy ℎ𝑏. We use the same simulated flow data as 

the ones used to construct Fig. 4.1(a). Fig. 4.2(a) illustrates the 3D-pMFD relating 

accumulation of cars and buses to passenger flow. This figure presents an 3D-MFD like-shape 

for passenger flow, which looks similar with Fig. 1(a), but with higher maximum value, due 

to the ℎ𝑏 term in Equation (4-2). Nevertheless, a more careful look through the contour plot 

will reveal significant changes. 

Fig. 4.2(b) depicts the resulting contour plot of 𝑃 on the (𝑛𝑐, 𝑛𝑏) plane after applying the 

same triangulation algorithm as in Fig. 4.1(b). The polygon in this plot captures the “optimal 

operational regime” of passenger flow of bi-modal traffic. It can be seen that the shape of the 

region is significantly different from the one observed in Fig. 4.1(b). More precisely, for a 

given 𝑛𝑐  passenger flow 𝑃 first monotonically increases as 𝑛𝑏 increases to a critical 𝑛̃𝑏  and 

then decreases for 𝑛𝑏 > 𝑛̃𝑏. Thus, having buses in the network will significantly increase the 

efficiency of the system but overloading buses will eventually cause delays for all vehicles 

and reduce passenger throughput. The figure also displays that 𝑛̃𝑐 in this case (rising dotted 

line in the polygon) has a clear tendency of becoming smaller as 𝑛𝑏 increases, 𝑛̃𝑐 ≅ 3500 −

6𝑛𝑏. The slope of the rising line reflects that only a slight increase of buses can allow a large 

reduction of cars to maintain the same passenger flow. The maximum network flow occurs 

now for a positive 𝑛𝑏 , the (2800, 120) pair. It can be foreseen that more buses can be 

deployed in the network to succeed a higher passenger flow if dedicated bus lanes are 

provided.   

 

Fig. 4.2 (a) The 3D-pMFD for bi-modal passenger traffic, and (b) contour plot of the 3D-

pMFD, the color represents the value of flow 𝑷 (pers/h). 
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4.1.3 A functional form of the 3D-MFDs 

Given that evaluating 𝑄(𝑛𝑐 , 𝑛𝑏) in Equation (4-1) for many pairs of 𝑛𝑐  and 𝑛𝑏 is tedious, we 

propose instead using an analytical function that approximates the 3D-vMFD in Fig. 4.1(a). 

Given the properties of 𝑄(𝑛𝑐, 𝑛𝑏)  described in the previous section, we consider an 

exponential-family function, which has useful algebraic properties. In general exponential 

families are in a sense very natural distributions to consider with plenty of applications in 

physics and statistics.  Note that parabolic families do not provide a good fit given their single 

value of the 2
nd

 derivative. To this end, we consider the following exponential flow function 

for data fitting: 

𝑄(𝑛𝑐 , 𝑛𝑏) = 𝑎(𝑛𝑐 + 𝑛𝑏)𝑒
𝑏𝑛𝑐

2+𝑐𝑛𝑏
2+𝑑𝑛𝑐𝑛𝑏+𝑒𝑛𝑐+𝑓𝑛𝑏 (4-3) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are model parameters. The parameter values should be specified so as to 

minimize the deviation of model (4-1) from the corresponding measured values 𝑸′ . This 

function can be considered as a generalization of the Drake’s exponential function for a 

single-mode fundamental diagram between flow and density. An unconstrained estimation 

will not be consistent with the physics of traffic thus constraints (4-4b) are added and 

described later. To this end, we estimate the values by Least-Squares parameter estimation for 

the given simulated data 𝑄′ in Fig. 4.1(b). The parameter estimation problem is formulated as 

follows (P1): 

𝑚𝑖𝑛
𝑎,𝑏,𝑐,𝑑,𝑒,𝑓

𝑍 =‖𝑸 − 𝑸′‖2 

subject to  

{
 
 

 
 
𝑄 ≥ 0,    𝑓𝑜𝑟    0 ≤ 𝑛𝑐 ≤ 𝑚𝑎𝑥(𝑛𝑐)  𝑎𝑛𝑑  0 ≤ 𝑛𝑏 ≤ 𝑚𝑎𝑥(𝑛𝑏),

      
𝜕𝑉(𝑛𝑐, 𝑛𝑏)

𝜕𝑛𝑐
≤ 0, 𝑓𝑜𝑟   0 ≤ 𝑛𝑏 ≤ 𝑚𝑎𝑥(𝑛𝑏),   

 
𝜕𝑉(𝑛𝑐 , 𝑛𝑏)

𝜕𝑛𝑏
≤ 0,         𝑓𝑜𝑟    0 ≤ 𝑛𝑐 ≤ 𝑚𝑎𝑥(𝑛𝑐),

 

(4-4a) 

 

 

 

 

 

(4-4b) 

where 𝑉 is the space-mean speed in the network, 𝑸, 𝑸′ are vectors with elements of the model 

(4-3) and the simulated data for each 5 min sample interval, respectively. Variable 

𝑉(𝑛𝑐 , 𝑛𝑏) ≝ 𝑄𝐿/(𝑛𝑐 + 𝑛𝑏) , where 𝐿  is the average link length of the network. The first 

constraint in (4b) guarantees non-negative flows for values of accumulation between zero and 

jammed. The second and the third constraint emphasize that the space-mean speed of all 

vehicles should decrease monotonically as 𝑛𝑐 and 𝑛𝑏 increase. 
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* The R-square value is calculated with its general form 1 − 𝑆𝑆𝑅𝑒𝑠/𝑆𝑆𝑇𝑜𝑡, where 𝑆𝑆𝑅𝑒𝑠 is the residual sum of 

squares 𝑆𝑆𝑅𝑒𝑠 = ∑ (𝑄𝑖
′ − 𝑄𝑖)

2
𝑖   and 𝑆𝑆𝑇𝑜𝑡 the total sum of squares 𝑆𝑆𝑇𝑜𝑡 = ∑ (𝑄𝑖 − 𝑄𝑖̅)

2
𝑖 .  

 

The parameter estimation problem (P1) is nonlinear and is solved through the Sequential 

Quadratic Programming (SQP) approach. SQP method solves a sequence of optimization sub-

problems, each of which optimizes a quadratic model of the objective subject to a 

linearization of the constraints. We apply this algorithm for multiple initial values (around 

1000) to avoid convergence to local minima, which might be the case for non-smooth data. 

The estimated parameters resulting from the optimization problem are: {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} =

{1.95 ∙ 102, −2.34 ∙ 10−9, 5.28 ∙ 10−7, 6.34 ∙ 10−8, −2.92 ∙ 10−4, −1.50 ∙ 10−3} . Note that as 

accumulation terms 𝑛𝑐 and 𝑛𝑏 have a unit scale of 103, the parameters 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 appear to 

have low values. Result of T-test indicates that all six parameters are statistically significant 

(p-value almost zero). Fig. 4.3(a) illustrates the results of fitting model (P1) with the estimated 

parameters to the simulated data. An R-square value* of 0.91 (close to 1) indicates that the 

resulting 3D-vMFD fits well with the data and all physical constraints (4-4b) are satisfied. We 

also verify the fitting performance of the model by 3 additional datasets, which were not used 

for model estimation and have different demand profiles. The average R-square value for 

these 3 datasets is 0.85. Fig. 4.3(b) depicts the contour plot of the 3D surface on the (𝑛𝑐 , 𝑛𝑏) 

plane. Comparing Fig. 4.3 (b) with Fig. 4.1(b), we can see that most patterns observed closely 

matches each other except the area for very high values of buses 𝑛𝑏 > 600 due to: (i) the 3D 

surface does not reach zero when the values of 𝑛𝑏 are extremely high, a typical phenomenon 

with the Drake’s exponential formulation, and (ii) lack of simulated data for this area. 

Nevertheless, the traffic states reflected by the area cannot be easily observed in real systems. 

Moreover, it can be seen that the “optimal operational regime” (triangle in Fig. 4.1(b)) of bi-

modal traffic is reproduced in a very similar way.  

We perform a similar optimization for fitting the measured passenger flow 𝑃 with parameters 

𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝑒′, 𝑓′, 𝑔′  for 𝑃(𝑛𝑐, 𝑛𝑏) = 𝑎′(𝑛𝑐 + 𝑔′𝑛𝑏)𝑒
𝑏′𝑛𝑐

2+𝑐′𝑛𝑏
2+𝑑′𝑛𝑐𝑛𝑏+𝑒′𝑛𝑐+𝑓′𝑛𝑏 . Denote this 

parameter estimation problem as (P2). Solving (P2), we get {𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝑒′, 𝑓′, 𝑔′} =  {3.46 ∙

102, 6.41 ∙ 10−10, −2.27 ∙ 10−6, −1.14 ∙ 10−7, −3.77 ∙ 10−4, −5.30 ∙ 10−4, 3.66 ∙ 100} . Fig. 4.3(c) 

depicts the fitted model. The R-squared value of 0.91 (close to 1) indicates a decent model 

fitting, as well. Fig. 4.3(b) depicts the contour plot of the 3D surface on the (𝑛𝑐 , 𝑛𝑏) plane. 

Nevertheless, by comparing the parameters of the two models, no physical interpretations can 

be made. In the next section we will provide an analytical derivation to estimate 𝑃(𝑛𝑐 , 𝑛𝑏) 

from 𝑄(𝑛𝑐 , 𝑛𝑏), without the need for curve-fitting, that will unveil interesting properties of 

network traffic flows. 
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Fig. 4.3 (a) The exponential 3D surface plot of Q(nc, nb), (b) the contour plot of Q(nc, nb); (c) 

The exponential 3D surface plot of P(nc, nb) and (d) the contour plot of P(nc, nb). 

4.1.4 Bus-Car Unit (BCU) Equivalent 

In case of bi-modal systems, it is a common approach to assume that each bus is equivalent to 

a constant number of cars independent of the level of congestion and the densities of each 

mode and simplify the derivations of different performance measures. Nevertheless, it is clear 

from the explanation of the previous section that the influence of buses in the network 

performance depends on the state of the system (𝑛𝑐 , 𝑛𝑏) and cannot be considered constant. 

Thus, a static BCU consideration is insufficient to reflect the dynamic relationship between 

bus/car accumulation and congestion. For this reason, we propose here an analytical 

estimation of the BCU value as a function of the accumulation of both modes.  

Let’s consider that average network speed is 𝑉(𝑛𝑐, 𝑛𝑏) ≝ 𝑄(𝑛𝑐 , 𝑛𝑏)𝐿/(𝑛𝑏 + 𝑛𝑐). We assume 

that for a given 𝑛𝑏 , 𝑉(𝑛𝑐 , 𝑛𝑏)  is monotonically decreasing function of 𝑛𝑐  and the same 

assumption for 𝑛𝑐 (see the 2
nd

 and 3
rd

 constraint of Equation (4-4b)). Given that 𝑉(𝑛𝑐 , 𝑛𝑏) is a 

continuous and differentiable function, we can estimate the effect that buses and cars have in 
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speed 𝑉 for a given (𝑛𝑐 , 𝑛𝑏) pair. Mathematically speaking, 𝐵𝐶𝑈 is defined and estimated as 

the ratio of partial derivatives with respect to 𝑛𝑐and 𝑛𝑏  

𝐵𝐶𝑈(𝑛𝑐 , 𝑛𝑏) =

𝜕𝑉(𝑛𝑐 , 𝑛𝑏)
𝜕𝑛𝑏

𝜕𝑉(𝑛𝑐 , 𝑛𝑏)
𝜕𝑛𝑐

 

 

(4-5a) 

By assuming the closed form solution of 𝑄(𝑛𝑐 , 𝑛𝑏) in (3) and after some manipulations we 

obtain  

𝐵𝐶𝑈(𝑛𝑐 , 𝑛𝑏) =
2𝑐𝑛𝑏 + 𝑑𝑛𝑐 + 𝑓

𝑑𝑛𝑏 + 2𝑏𝑛𝑐 + 𝑒
 (4-5b) 

Fig. 4.4 plots the 𝐵𝐶𝑈(𝑛𝑐 , 𝑛𝑏), a monotonically decreasing function of vehicle accumulations 

Physically speaking, Fig. 4.4 highlights that the effect of buses in the network speed is smaller 

as the network is more congested. This is because dwell times at bus stops are a smaller 

fraction of car travel time compared to free-flow conditions. For example, in case of 10% bus 

accumulation, BCU values range between 5.0 for free-flow conditions to 3.5 for highly 

congested conditions.  

 

Fig. 4.4 A 3D diagram relating accumulation of cars and buses with BCU. 

Nevertheless, Equation (4-5a) might not be straightforward to estimate with real data without 

curve fitting, due to the scatter of the MFD measurements. An approximation of (4-5a) based 

on engineering principles, 𝐵𝐶𝑈∗(𝑛𝑐 , 𝑛𝑏) , can be obtained by (4-5b) if we consider for a 

given pair of (𝑛𝑐 , 𝑛𝑏) , an equivalent system with cars only that satisfies 𝑉(𝑛𝑐0, 0) =

 𝑉(𝑛𝑐 , 𝑛𝑏), where 𝑛𝑐0 is the accumulation of cars for a car-only network, i.e. 𝑛𝑏 = 0. Thus, 

𝐵𝐶𝑈∗(𝑛𝑐 , 𝑛𝑏) is the solution of the equation 𝑛𝑐0 = 𝑛𝑐 + 𝐵𝐶𝑈
∗ ∙ 𝑛𝑏 . In other words, BCU 
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expresses an equivalent system with cars only that has the same space-mean speed with the 

mixed-traffic network. Then the average speed can be rewritten as:  

𝑉(𝑛𝑐 + 𝐵𝐶𝑈
∗ ∙ 𝑛𝑏, 0) = 𝑉(𝑛𝑐 , 𝑛𝑏) (4-6a) 

Combining the functional form (4-3) and Equation (4-6a), we obtain an analytical solution of 

BCU as a solution of the quadratic equation (𝑏𝑛𝑏𝐵𝐶𝑈
∗2 + (2𝑏𝑛𝑐 + 𝑒)𝐵𝐶𝑈

∗ − 𝑐𝑛𝑏 − 𝑑𝑛𝑐 −

𝑓 = 0) 

𝐵𝐶𝑈∗(𝑛𝑐 , 𝑛𝑏) =
−(2𝑏𝑛𝑐 + 𝑒) − √(2𝑏𝑛𝑐 + 𝑒)

2 + 4𝑏𝑛𝑏(𝑐𝑛𝑏 + 𝑑𝑛𝑐 + 𝑓)

2𝑏𝑛𝑏
 

        

(4-6b) 

Given that the value of 𝑏 is relatively small, BCU estimation can be approximated (error less 

than 0.01 by the solution of 𝑒𝐵𝐶𝑈 − 𝑐𝑛𝑏 − 𝑑𝑛𝑐 − 𝑓 = 0  and therefore gives the 𝐵𝐶𝑈∗  a 

plane shape). These results also indicate that the 𝐵𝐶𝑈∗ value for buses becomes smaller as 

congestion increases. While this result might be considered as counter-intuitive, it is 

consistent with the physics of traffic because the effect of bus related stops is a smaller part of 

the total travel time for congested conditions.  

4.1.5 An MFD for buses operating in dedicated lanes 

As dedicated bus lane allocation becomes an important strategy for multimodal urban 

transport system with preferential treatment of higher occupancy modes of transport, it 

deserves the effort to look into a city-wide MFD for buses running on dedicated bus lanes. 

While a detailed analysis is beyond the scope of this thesis, we perform an analysis where all 

the bus lines perform in dedicated lanes. To this end, the existing test site is updated and one 

lane in each road of the city center with public transport lines is dedicated to buses if space is 

available. The resulted bus-lane network is well connected and includes about 5 km of 

dedicated bus lanes. To derive and investigate the shape of the MFD for buses, simulations 

are performed with a field-applied fixed-time signal control plan and fixed number of bus 

lines. To account for demand effects of the bi-modal traffic composition, ten runs were 

carried out for a 4-h time-dependent scenario with different car demand and bus frequency. 

Additionally, two scenarios (with five runs each) based on different dwell time of buses were 

defined in order to investigate the impact of the dwell time in the shape of the MFD for buses. 

Fig. 4.5 displays the MFD for buses resulting for the aforementioned runs. This figure plots 

the network flow-density relationship (buses/5min vs. buses/km) in the network for the whole 
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simulation time period. Each measurement point in the diagram corresponds to 5 minutes. Fig. 

4.5(a) confirms the existence of an MFD for buses with moderate scatter across different 

scenarios. Note that the value of critical density and maximum flow are considerably smaller 

compared to the ones of the vehicle MFD (critical density=7 buses/km and capacity=70 

buses/hr).  

It can be seen that the free flow speed in the bus lanes is around 25 km/h and the maximum 

flow occur in a density range from 5 to 10 buses per km. If the density is allowed to increase, 

then the dedicated bus lanes become severely congested. The flow decreases with density 

(negative slope) and the network can lead to gridlock. This MFD like-shape for buses 

operating in dedicated lanes is quite conforming to the MFD for cars and mixed traffic. An 

interesting observation is that the diagram indicates a high flow scatter for the critical bus 

density 𝑘̂𝑏 . This difference is attributed to different traffic patterns for the cars and the 

interaction of the bi-modal traffic at the intersections that could lead to partially block of the 

dedicated bus lanes due to spillbacks. Besides bus frequency, the effect of the dwell times in 

the shape of the MFD is analyzed as longer dwell times reduce the average speed and flow. 

Fig. 4.5(b) illustrates the impact of different dwell time of buses on the MFD, plotting the 

MFD for buses resulting for multiple scenarios, where half scenarios have average dwell time 

of 25 s and the other 45 s. It can be seen that the higher dwell times lead to smaller flow 

capacity (in buses/hr), by about 15%. But, if we consider that bus occupancy might be almost 

double with higher dwell times, then the efficiency of the specific dedicated bus lanes in 

terms of passengers significantly increases. Optimal redistribution of road space between 

buses and cars has been introduced in in the previous chapters. 

 

Fig. 4.5 (a) The MFD for buses for ten runs with different bi-modal traffic patterns and (b) the 

impact of different average dwell times of buses on the MFD. 
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4.2 An Analytical Passenger Flows Three-dimensional MFD 

To maximize the passenger flow of a network and thus realize the efficiency of a multimodal 

network, we shall need a 3D-pMFD that can capture the dynamics of passenger flows but also 

can be derived from model (4-3) rather than curve fitting. To this end, we describe a 

derivation of the analytical form of the passenger flow 3D-pMFD based on the vehicle flow 

3D-vMFD in this section. We further show that by partitioning the network into regions with 

homogeneous traffic and mode composition, the analytical model is able to reproduce the 

passenger flow pattern as observed from the data. 

Let us investigate the analytical derivation of 𝑃 given the analytical form of 𝑄 in (4-3). Our 

first objective is to estimate flows 𝑄𝑐 and 𝑄𝑏 for each mode by utilizing 𝑄, 𝑛𝑐 and 𝑛𝑏. To this 

end, we first consider that 𝑉 = (𝑣𝑐𝑛𝑐 + 𝑣𝑏𝑛𝑏)/(𝑛𝑐 + 𝑛𝑏) where 𝑣𝑐 is the speed of car and 𝑣𝑏 

the speed of bus, and: 

𝑄 = 𝑄𝑐 + 𝑄𝑏 = (𝑣𝑐𝑛𝑐 + 𝑣𝑏𝑛𝑏)/𝐿 (4-7) 

To be able to estimate the individual flows of each mode, a relationship between their speeds 

is necessary, 𝑣𝑏 = 𝑣𝑐(𝑛𝑐, 𝑛𝑏) . To obtain 𝑣𝑏  as function of 𝑣𝑐 , we utilize a first order 

approximation, a linear model between 𝑣𝑐 and 𝑣𝑏  

𝑣𝑏 ≅ 𝜃𝑣𝑐 + 𝛽, (4-8) 

where 𝜃  and 𝛽  are parameters that can be estimated with real data and depend on the 

operational characteristics of the buses, the network topology and the ratio of cars and buses 

in the network. Alternatively, one can use a more detailed speed model, as for example the 

one proposed in Section 2.1 of Chapter 2, where the average distance between successive bus 

stops and the average dwell time at a bus stop influence the relation between 𝑣𝑏 and 𝑣𝑐. We 

will show later that model (4-8) can give a decent approximation of 𝑣𝑏 . Nevertheless, 

parameters 𝜃 and 𝛽 might not be universal and depend on the ratio of buses and cars in the 

network, 𝑛𝑐/𝑛𝑏. The aforementioned models might be less accurate in case of bus bunching, 

where multiple buses are queued in a bus stop with limited berths for boarding and alighting. 

A more detailed queuing model can be derived in such a case. By introducing (4-8) in (4-7), 

we can obtain the analytical form of 𝑣𝑐. Then after some manipulations we estimate 𝑄𝑐 and 

𝑄𝑏 as follows (𝑄(𝑛𝑐 , 𝑛𝑏) is noted as 𝑄):   
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𝑄𝑐 = 𝑣𝑐𝑛𝑐 =
𝑄𝐿 − 𝛽𝑛𝑏
(𝑛𝑐 + 𝜃𝑛𝑏)

𝑛𝑐
𝐿

 (4-9) 

𝑄𝑏 = 𝑣𝑏𝑛𝑏 = (
𝑄𝐿 − 𝛽𝑛𝑏
(𝑛𝑐 + 𝜃𝑛𝑏)

𝜃 + 𝛽)
𝑛𝑏
𝐿

 (4-10) 

A physical interpretation of such equations is that as bus is a slower mode, the fraction of bus 

flow is smaller than the fraction of bus accumulations. Then we derive 𝑃(𝑛𝑐, 𝑛𝑏)  by 

combining (4-2), (4-9) and (4-10).  

𝑃(𝑛𝑐, 𝑛𝑏) = ℎ𝑐
𝑄(𝑛𝑐 , 𝑛𝑏)𝐿 − 𝛽𝑛𝑏

(𝑛𝑐 + 𝜃𝑛𝑏)

𝑛𝑐
𝐿
+ ℎ𝑏 (

𝑄(𝑛𝑐, 𝑛𝑏)𝐿 − 𝛽𝑛𝑏
(𝑛𝑐 + 𝜃𝑛𝑏)

𝜃 + 𝛽)
𝑛𝑏
𝐿

 
(4-11) 

Note that the 3D-pMFD is a function of the 3D-vMFD, the individual accumulations of buses 

and cars, (𝑛𝑐 , 𝑛𝑏) and the average link length,  𝐿 . A validation of the analytical model is 

provided later.  

4.3 Network Partitioning for Mixed Bi-modal Network 

4.3.1 Homogeneity in mixed bi-modal networks  

By using a single value of 𝜃 and 𝛽 in Equation (4-8) for the whole network, one assumes that 

the interaction between cars and buses is homogeneous in space and time. Nevertheless, the 

analytical estimation in (4-11) cannot accurately reproduce 𝑃(𝑛𝑐 , 𝑛𝑏) if 𝑄(𝑛𝑐 , 𝑛𝑏) is assumed 

to follow the exponential model of (4-3). The reason is simple, bus lines are not evenly 

distributed in the studied network. The ratio 𝛿𝑖 between the density of bus 𝑘𝑏𝑖 and density of 

cars 𝑘𝑐𝑖 (where i is a link) is much higher in the center of the network, where there is higher 

frequency and density of bus lines. Fig. 4.6(a) displays the bus routes of the simulated 

network, which match the real ones. Note that some lines share links with the others in the 

center part of the network and that not all the lines can be visualized in the figure. We can 

observe that, the center area of the network (𝑥𝜖 [2500, 4000], 𝑦𝜖 [3500 4500]) includes more 

bus lines than the other parts of the network. Let us take 𝛿𝑖 at a certain time interval during 

the simulation, when the network is operating at its maximum flow rate. Fig. 4.6(b) illustrates 

the scale distribution of 𝛿𝑖 by a grey-scale plot, where a darker color indicates a higher value 

of 𝛿𝑖. This result shows that there exists a strong heterogeneity in the spatial distribution of 𝛿𝑖, 

especially when comparing the mode composition between the center area (roughly identified) 

and the rest of the network.  
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To this end, we partition this network for the sake of homogeneity of 𝛿𝑖  within each 

partitioned regions. This partitioning builds in a clustering algorithm proposed in Ji and 

Geroliminis (2012) for heterogeneously congested networks. The objectives of partitioning are 

to obtain (i) small variance of link ratio 𝛿𝑖 within a cluster and (ii) spatial compactness of each 

cluster, which makes feasible the application of perimeter control strategies. The partitioning 

mechanism consists of three consecutive algorithms. Firstly, an over segmenting of the 

network is provided by a sophisticated algorithm (Shi and Malik, 2000). Secondly, a merging 

algorithm is developed based on initial segmenting and a rough partitioning of the network is 

obtained. Finally, a boundary adjustment algorithm is designed to further improve the quality 

of partitioning by decreasing the variance of 𝛿𝑖 while keeping the spatial compactness of the 

clusters. The similarity between links 𝑖 and 𝑗, 𝑤(𝑖, 𝑗),  is given by 

𝑤(𝑖, 𝑗) = {
𝑒𝑥𝑝 (−(𝛿𝑖 − 𝛿𝑗)

2
) , 𝑖𝑓 𝑟(𝑖, 𝑗) = 1

0, 𝑜. 𝑤.
 

(4-12) 

where 𝑟(𝑖, 𝑗) is the spatial distance between two links denoted by the length of the shortest 

part between 𝑖 and 𝑗. Equation (4-12) simply explains that if two links are not adjacent, their 

similarity is negligible. Such an approach, can guarantee that the developed clusters will be 

well-connected (compact) and the topological characteristics influence links in the same 

cluster.  For a detailed description, the reader should refer to Ji and Geroliminis (2012).  

The studied network is divided into two regions (clusters) as shown in Fig. 4.6(c) after the 

application of the algorithm. Let us denote these two regions the “center region” and the 

“outside region” respectively, where the center region has more bus lines. We can see that this 

result closely matches what we have observed from the data in Fig. 4.6(b). Note that, the 

partition algorithm by its nature tries to give a compact shape with smooth boundaries of the 

partitioned regions. This explains why the exact shape of the area with high value of 𝛿𝑖 is not 

fully obtained. Nevertheless, the objective of partitioning is satisfied as the mean value of 𝛿𝑖 

in the center region is much larger than the one in the outside region, (𝛿𝑐𝑒𝑛𝑡𝑒𝑟, 𝛿𝑜𝑢𝑡𝑠𝑖𝑑𝑒) =

(0.40, 0.04). The mean value of 𝛿𝑖 in the whole network is 0.20 (around 20% of vehicles are 

buses). The standard deviation of 𝛿𝑖  is 0.45 for the center region and 0.12 for the outside 

region, which is smaller compared to 0.76 for the whole network. This means that the 

algorithm succeeds to cluster together links with more similar 𝛿𝑖 . Note that standard 

deviations are high because in both sub-regions there are plenty of links with no buses, 𝛿𝑖 = 0 

and in the center region there are plenty of cases with bus bunching (and high 𝛿𝑖). We are 
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interested in investigating if this partition reduces the heterogeneity of congestion as well. 

Therefore, we calculate the total density 𝑘𝑖  (𝑘𝑖 = 𝑘𝑐𝑖 + 𝑘𝑏𝑖 ) of link  𝑖  in each partitioned 

region and comparing the variance of 𝑘𝑖 within each region. The mean values of 𝑘𝑖 are 15 for 

the whole network, while 18 for the center region and 13 for the outside region. The standard 

deviation of  𝑘𝑖 are 9 for the center region, and 6 for the outside region, which is again smaller 

compared to a value of 16 for the whole network. It shows that a mode-composition-based 

partitioning is sufficient to reduce heterogeneity of 3D-MFD. In reality this may not always 

be the case, if the scale of flow densities is not similar among links. In those cases, one may 

apply a partition algorithm based on both 𝛿𝑖 and 𝑘𝑖. As we will show in the next section, the 

resulting partitioning is sufficient for understanding the traffic heterogeneity and provides a 

good approximation of the 3D-pMFD.   

Furthermore, we verify the usefulness of the partitioning from a traffic point of view, by 

examining the time when each region reaches congestion. Here, the “congestion” is referred 

as the start of network flow drop after the network reaches its maximum flow. To compare 

regions of different sizes, instead of accumulations we utilize densities. Fig. 4.7(a) shows the 

MFD (vehicle flow 𝑄 = 𝑄𝑏 + 𝑄𝑐  vs. vehicle density 𝑘 = ∑ 𝑘𝑖𝑖 ) of the center region, the 

outside region and the whole network respectively, for one scenario. Density of buses and 

cars (𝑘𝑏, 𝑘𝑐) are estimated by dividing accumulations with the total lane kilometers utilized by 

each mode, 𝐿𝑏
𝑐𝑒𝑛𝑡𝑒𝑟 = 24 ln-km,  𝐿𝑐

𝑐𝑒𝑛𝑡𝑒𝑟 = 37 ln-km, 𝐿𝑏
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = 26 ln-km,  𝐿𝑐

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = 64 ln-

km, {𝑏, 𝑐} for bus and car respectively. The start of congestion in each region is indicated by 

an arrow with the corresponding timestamp attached. We can observe that the center region 

reaches congestion first, half hour earlier than the outside region. Fig. 4.7(b) displays the time 

series of the average density of the two regions respectively. It is clear that traffic condition in 

the center region is always heavier than the outside region. This information is important, as it 

indicates that different traffic management measures should be applied for the two regions 

based on their individual traffic states.  
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Fig. 4.6 Illustration of the partitioned network: (a-left) Layout of the bus lines over the 

network, (b-middle) contour plot of link ratio δi, and (c-right) result of partitioning. 

 

Fig. 4.7 Comparing the time each region reaches congestion in (a) network flow-density 

relation and (b) density time-series. 

4.3.2 Vehicle 3D-vMFD after partitioning  

Let us now show the 3D-vMFD for the partition regions. We utilize the data of the same 

scenarios as used for Fig. 4.1. To have the scale of the MFDs of the two regions comparable, 

we normalize the values of accumulations and reproduce densities. Denote density of cars 𝑘𝑐 

and density of buses 𝑘𝑏 . Densities of buses, have been estimated by normalizing 

accumulations with the length of roads in the sub-networks that buses are moving on. The 

normalized 3D-vMFDs for the two partitioned regions are plotted in Fig. 8(a). 𝑘𝑏 of the center 

region has a much higher value, as the region is covered by more bus lines. Nevertheless, the 

general pattern observed in Fig. 8(b) and (c) is similar to the 3D-vMFD as observed in Fig. 3, 
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especially the values of critical densities (for example 35vh/km * 100 ln-km =3500 veh which 

is the critical accumulation of Fig. 4.3(b)). Given the 3D-vMFD of each region, specific 

management measures such as perimeter signal control can be applied with the objective of 

operating at the region’s optimal regime.  

 

 

Fig. 4.8 (a-top) The normalized 3D-vMFD of the partitioned regions; the contour plots of the 

3D-vMFD on (kc, kb) plane for (b-down left) the center and (c-down right) the outside region. 

4.3.3 Passenger 3D-pMFD after partitioning 

The 2-D accumulation-flow relations (5min) of one single scenario are displayed in Fig. 

4.9(a), for both vehicles and the passengers. Even without partitioning, the network has a low 

scatter MFD with a well-defined maximum flow and a clear value of critical accumulation. As 

the accumulation ratio 𝛿 is not significantly varying during the simulation, passenger flow 

𝑃(𝑛) vs. total accumulation 𝑛 = 𝑛𝑏 + 𝑛𝑐 follows an MFD-shape as well. Both MFDs have 

similar shape, but the value of critical accumulation of 𝑄(𝑛) is larger.  

Now let us compare the resulting passenger dynamics before and after the partitioning. Fig. 

4.9(b) plots 𝑛𝑏 vs. 𝑛𝑐 with time for the two partitioned regions. It can be seen that the value of 

𝛿 for the center region is about 9%, which is 6 times larger than 𝛿 of the outside region. Note 
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that  𝛿  is the aggregated ratio between ∑ 𝑛𝑏𝑖𝑖 /∑ 𝑛𝑐𝑖 𝑖 . Fig. 4.9(c) depicts the space-mean 

speed relation for each region between cars and buses. The dashed lines are the fitting results 

of model (4-8) on the speed relation scatters. Parameter 𝜃 for the center region has a value of 

0.3 and for the outside region is 0.5, while 𝛽 is 0 in both cases. If Equations (4-8) to (4-11) 

were applied to estimate 𝑃(𝑛), errors would not be negligible because of the differences in 𝛿 

and 𝜃  between the two regions. An example is given in Fig. 4.9(d), which displays the 

estimated 𝑃(𝑛𝑐 , 𝑛𝑏) for the whole, the center and the outside regions respectively. Evidently, 

the dynamics are distinct for the three regions. 

   

 

Fig. 4.9 (a-top left) Passenger MFD from the simulation, (b-top right) nc vs. nb, (c-down left) 

vc vs. vb, and (d-down right) the estimated passenger MFD for the two partitioned regions and 

the whole network. 

Let’s now utilize model (4-8)-(4-11) and estimate the 3D-pMFD for three different scenarios 

with various bus demands. Denote the three scenarios as s1, s2 and s3 respectively. After 

applying the partitioning algorithm, 𝛿 and 𝜃 are estimated for the center and outside region, 

and the passenger MFDs are estimated. The total network passenger flow is then estimated as  

𝑃(𝑛𝑐(𝑡), 𝑛𝑏(𝑡)) =  𝑃1(𝑛𝑐1(𝑡), 𝑛𝑏1(𝑡)) + 𝑃2(𝑛𝑐2(𝑡), 𝑛𝑏2(𝑡)) (4-13) 

where indices 1 and 2 represent the two partitioned regions, center and outside.   
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Fig. 4.10 Comparison of (a-top left) nc vs. nb for the entire network, (b-top right) the 

estimated 3D-pMFD and (c-down) the measured 𝑃 vs. the estimated 𝑃 by model (4-13) for 

the three scenarios. 

Fig. 4.10(a) shows the accumulation relationship (5min) for the entire network for the three 

scenarios. The red dotted line (middle) represents the same scenario as of Fig. 4.9. The 

yellowing circles highlight the accumulation pairs where maximum flow is achieved in each 

scenario. Fig. 4.10(b) depicts the corresponding 𝑃(𝑛𝑐 , 𝑛𝑏) of the three different scenarios, and 

the 𝛿 of each scenario can be approximately estimated given the projection of the 3D curves 

on the (𝑛𝑐 , 𝑛𝑏) plane.  By applying partitioning and identifying the region-specific 𝜃 , the 

analytical model is able to reproduce the important patterns as observed in Fig. 4.2(b): (i) 𝑃 

increases and then decreases as 𝑛𝑏  increases, (ii) the critical accumulation largely shifts 

towards the left, and (iii) there exists an “optimal operational regime” where the same value 

of maximum 𝑃 (close to critical value) can be achieved with different combinations of 𝑛𝑏 and 

𝑛𝑐 . Fig. 4.10(c) compares the estimated 𝑃  from the model with the measured 𝑃  from the 

simulation for the whole network (the closer the linear rate to 1, the closer the estimation to 

the original values). With the partitioning, the estimation result of 𝑃 shows a decent accuracy. 

Furthermore by comparing the estimated passenger flow with and without partitioning, we 

find that the mean absolute error has a 10% improvement (the higher the value of 𝛿, the 

higher the improvement).  
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4.4 Application of the 3D-MFD and Partition: Real-time Perimeter Flow 

Control  

It is worth mentioning here that the 3D-MFD and the partitioned 3D-MFD can be readily 

utilized to develop perimeter flow control strategy. In this section, we will briefly introduce 

the control logic and the improved system performance under two perimeter flow control 

schemes: namely a single-region control and a two-region control. The performance of these 

two control strategies will be compared to the embedded control plan of the studied network, 

which was implemented in the field network (will be referred as the “pre-timed control” in 

later text). 

The dynamics for a perimeter controlled network can be illustrated as follows. Denote the 

time-dependent inflow of the network 𝛽(𝑡) ∈ [𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥], controlled at the perimeter of the 

network; 𝑑(𝑡) as the uncontrolled demand and disturbances. Buses enter the network with 

slow-varying service frequencies. The outflow of the network 𝑂(𝑛(𝑡), 𝛿) is described by the 

3D-MFD. Mode composition 𝛿 depends on the operational characteristics of buses. Assume 

we can monitor the mixed traffic accumulation 𝑛(𝑡), may be estimated via detectors or GPS 

in real-time. Then the state equation can be written by  

 

 
𝑑𝑛(𝑡)

𝑑𝑡
= 𝛽(𝑡) +  𝑑(𝑡) − 𝑂(𝑛(𝑡), 𝛿) (4-14) 

Equation (4-14) is highly non-linear, given the non-linear property of the 3D-MFD. Provided 

the function form of the 3D-MFD, linearization can be performed at the desired point 

(𝑛̂, 𝛽,̂ 𝑑̂) with first-order Taylor approximation. Recall that the desired state is the critical state 

given  𝛿. Briefly speaking, our perimeter flow control has the form in Equation (4-15), aiming 

to mitigate congestion in the bi-modal network by maintaining the above system to operate 

around the desired steady-state (𝑛̂, 𝛽̂) for given 𝛿 ∈ 𝛺 , while the system’s throughput (as 

expressed by the 3D-MFD) is maximized.  

  

𝛽(𝑡) = 𝛽̂ − 𝐾[𝑛(𝑡) − 𝑛̂] (4-15) 

where 𝛽(𝑡) is the flow of vehicles allowed to enter the network if the current state 𝑛(𝑡) is 

observed. This controller is a classical Linear Quadratic Regulator (LQR). In control theory, 

such controllers can be analytically obtained given the dynamics of the target system 



Chapter 4 A three-dimensional MFD model for bi-modal networks                                                                                           

90  
 

(Equation (4-14)), and they are proved with high stability in maintaining the target system at 

desired states (Papageorgiou and Kotsialos, 2000). For detailed information on the design of 

the controllers (the linearization of the system dynamic equation, the derivation of Equation 

(4-15), the determination of control gain 𝐾, the combination of Equation (4-15) for the two 

partitioned regions in the two-region control case), an interested reader should refer to 

Ampountolas et al. (2014a), (2014b), in which the author of this thesis serves as the second 

author that mainly contributes in the application of the developed controller and performing 

the numerical analysis. 

 

Fig. 4.11 (a-top left) The composition rate 𝛿 for three representative scenarios, 𝛺 =[0.02 0.15] 

(b-top right) A cross-section of the 3D-MFD for a constant bus accumulation demonstrates 

the typical dependence of flow with 𝛿, and (c-down) Network characteristics: 2 square-kms, 

100 intersections, 430 links of total 100 lane-kms, 8 major  bus lines (in total 29 lines with 

service frequencies between 3-20mins). 

4.4.1 Single-region control  

Fig. 4.11 shows the relevant properties of the studied network. Let us first present case study 

results on the single-region controller in Fig. 4.12 and Fig. 4.13, by comparing scenarios 

without applying the controller (denoted as pre-timed control, fixed pre-defined signal control 

plan), and with applying the perimeter controller (denote as perimeter control). Fig. 4.12(a) 

and (b) depict the resulting MFD of five scenarios under pre-timed control and perimeter 
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control cases. When perimeter control is applied, the network operates under efficient traffic 

conditions and states in the decreasing part of the MFD are not observed; under pre-timed 

control, the network becomes severely congested with states in the congested regime of the 

MFD. Moreover, the outflow is maintained to high values around the set point. We can also 

observe that the hysteresis formed in the offset period of congestion is reduced significantly, 

especially for the traffic congested scenarios S2 and S4.  

 

 

Fig. 4.12 Comparing overall traffic performances for 5 different scenarios: (a-top left) 2D-

MFD with pre-timed control and (b-top right) 2D-MFD with the proposed perimeter control 

(the overall congestion is eliminated); (c-down) Boxplot of performance indicators: Travel 

speed and delay improved 40% for cars and 30% for the buses. 

Fig. 4.12(c) depicts the resulting average performance (speed, delay, stops) of each mode of 6 

replications. Clearly the proposed perimeter control increases the speed and decreases delays 

and number of stops in both modes of traffic (in average from 40% to 50%). A further 

analysis of the spatial dimension of traffic congestion in the central avenue (Market Avenue) 

of the network and its upstream links (southeast) can shed more light in the perimeter control 

actions within the transport public lines. The considered path includes the entire route for 

public lines 15 and 19 and six other bus lines that overlap parts of the path such public lines 5, 

11, and 13, to investigate the interaction among conflicting public transport lines.  
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To gather the bus trajectories that traverse this path, we simulate buses equipped with GPS-

based mobile sensors that reporting their location every 3 seconds. Fig. 4.13 displays the 

gathered bus trajectories for eight public transport lines (each with different colour) during the 

heart of the rush (11:00 am to 13:00 am), when pre-timed control and perimeter control are 

applied. In these time-space diagrams, the x-axis reflects the simulation time, while the y-axis 

reflects the one-dimensional distance travelled. Given that the studied network is a grid, the 

two-dimensional road distance is transformed into one-dimensional by calculating the 

Manhattan distance between the GPS-reported location of a bus and the starting point of the 

path. The horizontal time distance between consecutive bus trajectories with the same colour 

indicates the headway between two buses servicing the same public transport line. The 

location of junctions and bus stops are also reported (see caption for details) to allow a better 

understanding of bus bunching and stop-and-go phenomena within the public transport lines. 

Fig. 4.13 underlines the superiority of perimeter flow control over pre-timed control to 

maintain public transport lines normal time schedule. A time-space diagram of bus trajectories 

for one of the high demand corridors (across Market Avenue) is shown for pre-timed and 

dynamic control. Traffic conditions are almost identical for both control cases from 11:00 am 

to 11:20 am, as time goes on, in the pre-timed control case, buses entering their transport lines 

(upstream traffic) suffer increasing delays waiting other buses and cars in the centre of the 

network between 700 m and 1200 m (downstream traffic) to be served. Then traffic condition 

becomes deteriorated in the center of the network, link queues start spilling back and blocking 

upstream junctions, thus the entering traffic approximately matches the speed of the 

downstream traffic. This creates multiple backward moving shockwaves with negative speed 

that are illustrated with arrows in Fig. 4.13. Clearly when perimeter control is applied the 

network operates under free-flow traffic conditions and buses are able follow their normal 

time schedule (with slight travel delays). It can be seen that buses only experience delays 

between 11h50 and 12h30 at the same spatial distance. To further investigate what caused 

these delays, the traffic conditions in bus line 11 (among others) were carefully analysed. The 

inspection of different replications eventually shown that the delays are mainly caused by a 

sudden increase of left turn demand of cars and buses at a specific junction close to the 

protected network. Note that the existence of such cases can be possible under perimeter 

control, since we only control junctions at the perimeter of the network. 
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Fig. 4.13 Comparing bus trajectories in several bus lines in the network during the heart of 

rush between (a) pre-time control and (b) perimeter control. Dotted lines indicate the location 

of intersections. Dashed lines indicate the location of bus stops. Arrows indicate shockwaves. 
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4.4.2 Two-region control  

The results presented in Fig. 4.15 and Fig. 4.16 are based on the two-region clustering in Fig. 

4.14(a), which is used to exploit and illustrate the benefits of two-region over single-region 

(whole network) perimeter control. The single-region control remains the same. We apply 

both controllers in scenarios where demands are higher than the ones used in the previous 

section. Fig. 4.15 depicts the average performance (speed, delay, stops) of each mode of 

traffic for 10 replications of a demand scenario with strong heterogeneity in the spatial 

distribution of mode composition and congestion. It can be seen that two-region robust 

perimeter control increases the speed and decreases delays and number of stops in both modes 

of traffic in average by 10%. It should be noted that for scenarios with small variability of 

mode composition the performance of the two-region over single-region control is slightly 

deteriorated, as expected. Thus, multi-region perimeter control must be carefully designed and 

applied to a heterogeneous network.  

 

Fig. 4.14 (a) Snapshot of Downtown San Francisco clustering into two regions; red color on 

the city center; green color the rest of the network, and (b) the 3D-MFD of the center region 

relating accumulation of cars nc and buses nb with circulating flow, respectively. 

 

A further analysis of the spatial dimension of traffic congestion within the two regions can 

shed more light of the effect of perimeter control to the Public Transport Lines (PTL). The 

considered spatial distance includes eight PTL that overlap parts of the two regions, to 

investigate the interaction among conflicting public transport lines. To not repeat ourselves, 

we carry out the analysis on the efficiency and equity properties of both modes of traffic 

under single-region and two-region perimeter control. Travel Time per Kilometre-distance 

Travelled (TTKT) is chosen as performance indicator. Considering TTKT allows us to 

compare travel times of the same scale in case they those travel times vary significantly due to 
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different trip lengths. Different trip lengths are natural because the size of the two regions is 

uneven and the two modes of traffic generate different trips. Fig. 4.16 displays the cumulative 

probability distribution of the TTKT for each region and mode (cars and buses). TTKTs are 

collected from 5 scenarios, every 5-min for a 2.5-hour peak period. The two curves (with blue 

and red colour) in each of the four subplots depict commutative distributions of TTKT under 

single-region and two-region control, respectively. The median and the standard deviation of 

each distribution is calculated and displayed. It can be seen that the two-region control 

performs better than single-region. The median value of the TTKT for cars improves by about 

10% for both regions. For buses the improvement in terms of median is quite small (about 

3%), but reliability increases (standard deviation is 20% smaller). Remarkably, the two-region 

controller increases the reliability of the network as its cumulative curve of TTKT is less 

spreading and the variance is smaller. Finally, it is stimulating to observe that the two-region 

control provides fairly equal improvements to both regions, albeit the center region seems to 

benefit slightly more than the outside region. 

 

Fig. 4.15 Minimum, maximum, and median values of different performance indices for the 

two modes of traffic under single-region (1-region) and two-region controls (2-region). 
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Fig. 4.16 Cumulative distributions of TTKT for the two modes of traffic in the two regions 

under single-region and two-region controls. 

 

4.5 Summary 

To identify and quantify individual modal impact on the global traffic performance, we 

investigated a new type of MFD model in Chapter 4. The existence of a three-dimensional 

multimodal MFD (3D-MFD), relating the accumulation of cars and buses, and the circulating 

vehicle flow in a network, was demonstrated via simulation experiments. An exponential-

family function was proposed for the analytical form of the 3D-MFD, where the individual 

modal and the joint impact on global performance were directly observed. To further 

investigate the modal impact, the Bus-Car Unit equivalent value was estimated and found 

state- and mode-composition-dependent rather than deterministic. Then, we derived the 

passenger-flow 3D-MFD with an elegant analytical model, which provided a different 

perspective of bi-modal flow characteristics. We applied a partitioning algorithm to cluster a 

center and an outside region of the network according to the similarity of the car/bus density 

ratio. It was found that such partition enhanced the accuracy in the estimation of the 3D-
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MFDs, which revealed the impact of heterogeneity of mode composition on the bi-modal 

modeling. Furthermore, we utilized the 3D-MFD to develop perimeter flow control strategies. 

We presented the results of two controllers, a single-region controller and a two-region 

(center-outside) controller. Congestion was significantly reduced for the whole network, 

while the performance of buses in terms of travel delays and schedule reliability was 

improved without even giving bus priority. Queues and gridlock were avoided on critical 

paths of the network. 

The multimodal urban modeling should be also investigated by considering additional 

heterogeneity (i) among users, with respect to their mode choices and the trip length and (ii) 

among different regions of a city. We will show how the findings of this part in the following 

chapter.  
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5  Development of Dynamic Congestion Pricing 

Schemes with Macroscopic Fundamental Diagram 

in an Agent-based Simulation 

The previous chapters have demonstrated the efficiency of the MFD-based strategies for 

improving mobility. In this chapter, we aim to investigate how such strategies, in particular 

the congestion pricing schemes, can be designed  with the MFD if complex behavioral 

dynamics are present (comparing to Chapter 2 and 3 where mode choices are treated, and 

Chapter 4 with route choices). We will test different pricing schemes in an agent-based model 

where travel behaviors are reproduced comprehensively for resembling the reality. Comparing 

to traditional approaches, the advantages our pricing approach lie in that it has lower 

collection and transaction costs than the link-based or area-based tolling, and it is based on 

traffic models utilizing input data that are readily observable with existing monitoring 

technologies.  

To develop efficient pricing schemes, behavioral adaptation and heterogeneity should not be 

overlooked. Questions such as how to adjust pricing rate based on user’s behavioral changes or 

what are the impacts of an incentive program of using public transport (PT) on the performance 

of pricing should be addressed. It has to be highlighted that despite the vast literature in pricing, 

field tests and implementations are quite limited and this is among other reasons of user 

acceptability. Thus, providing incentives for taking other modes of transport (e.g. return a 

fraction of the tolls paid to users that switched to public transport mode) can make pricing 

policies more attractive for real cases. 

This chapter is structured as the follows. Section 5.1 provides a general description of the 

properties and simulation algorithm of the utilized agent-based model. Before presenting in 

detail our MFD-based pricing control schemes in Sections 5.3 and 5.4, Section 5.2 examines 

the existence of the MFD in the simulation output and other traffic flow characteristics that 

are relevant to support the development of MFD-based control strategies. Case studies on the 

two proposed pricing schemes are given in Section 5.3 and 5.4 respectively. The performance 

of pricing with respect to effectiveness, efficiency and user adaptation is evaluated. Section 

5.5 takes one step further and investigates the impact of pricing if heterogeneity among users 

is considered. A summary of the chapter can be found in Section 5.6.          
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5.1 The Multi-agent Based Traffic Simulator 

The agent-based model MATSim has been widely applied for transport and land use studies 

and travel behavior modeling. The simulation model integrates activity-based demand 

generation with dynamic traffic assignment.  

Demand generation is embedded in a concept of daily activity sequence from which the need 

for transport is derived. In the context of activity-based demand, the entire activity plan (mode 

choice, departure time choice and the activity sequence) is the unit of decision to iterate route 

assignments.  

Random utility theory is applied to generate plans of daily activities. Each agent in the 

simulation is assigned with different utility functions when performing different activities. A 

typical utility function consists of four items for an agent performing her daily plan: 𝑈𝑖,𝑎𝑐𝑡 

being the score performing activity 𝑖, 𝑈𝑖,𝑡𝑟𝑎𝑣𝑒𝑙 being the score of traveling to activity 𝑖, 𝑈𝑖,𝑤𝑎𝑖𝑡 

being a penalty for waiting instead of performing activity 𝑖, and 𝑈𝑖,𝑠ℎ𝑜𝑟𝑡 being a penalty for 

performing activity 𝑖 for a too short duration, where 𝑖 ∈ {1…𝑛} is the number of planned 

activities. Now let us consider the existence of heterogeneity in the agent population and 

agents are grouped with respect to VOT (agents within the same group have the same VOT). 

Denote 𝑗 as the group index. Equation (5-1) shows the utility calculation for user group 𝑗: 

𝑈𝑝𝑙𝑎𝑛
𝑗

= ∑ 𝑈𝑖,𝑎𝑐𝑡
𝑗

+ 𝑈𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑗

+ 𝑈𝑖,𝑤𝑎𝑖𝑡
𝑗

+ 𝑈𝑖,𝑠ℎ𝑜𝑟𝑡
𝑗

  

𝑖=1:𝑛

  (5-1) 

Note that in the current work, the influence of VOT is mainly reflected by the physical travel 

cost term 𝑈𝑖,𝑡𝑟𝑎𝑣𝑒𝑙
𝑗

, while it is easy to incorporate treatment to other terms, such as earliness 

and lateness penalty which are embedded in  𝑈𝑖,𝑎𝑐𝑡
𝑗

.   

These properties provide more realistic reaction of the users (agents) towards any traffic 

management strategy, and thus help traffic engineers develop more reliable toll schemes.  

As for the simulation, the process can be summarized as follows: Each agent performs its 

activity plan (daily events), which are simulated along the timeline in the model 

representation of the physical world. A First-In-First-Out queue traffic model is embedded to 

determine the travel time of the agents moving from one location to another, with predefined 

road capacity and consideration of shockwave between vehicles travelling backwards at 

constant speed in the case of traffic jam discharge. The executed activity plans are evaluated 
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with a measure of general utility, as introduced above in Equation (5-1). Given the evaluation, 

certain amount of the agents (by default 10%) carries out a re-planning strategy such as 

changing mode choice or departure time choice. New plan thus is created and added into 

agents’ memory. Agents then decide to either execute the new plan or choose one of the plans 

from their memories, preferably these with the highest scores. This procedure is iterated via a 

day-to-day learning process, until conceptually agent-based stochastic user equilibrium is 

achieved (Nagel and Flötteröd, 2009).  

Under such equilibrium, not only travel behavior (e.g. mode choice and route choice between 

the same origin-destination) is stabilized, but also the utility of the entire daily activities 𝑈𝑝𝑙𝑎𝑛
𝑗

 

is indirectly optimized. Please note that as it is complicated to achieve a classical SUE for 

systems with such multi-dimension behaviors, trade-off needs to be made between the 

computational cost of iterations and the magnitude of behavioral stabilization. For detailed 

information on MATSim, the readers may refer to Meister et al. (2010).    

5.2 The Existence of the MFD in the Agent-based Simulation  

The main motivation of this section is to t examine the traffic outputs of the agent-based 

simulator MATSim, before carrying out the analysis on pricing. We will show that although 

MATSim is designed and calibrated for activity-based simulation without modeling in details 

disaggregated characteristics of traffic (such as car-following and queue dynamics), the 

outputs can reproduce the physics of traffic reasonably at an aggregated level, as expressed by 

an MFD. Therefore, the effect of traffic management on performance can be quantitatively 

observable independently, without utilizing the high-level detailed information of MATSim. 

MFD-based strategies can be developed and tested in this simulation environment of complex 

behavioral adaptations, e.g. the change of departure time and mode choice. Furthermore, we 

also examine if spill-back phenomenon can be observed in MATSim since spill-back is the 

key reason of the existence of capacity decrease.  

5.2.1 The MFD 

For a 4.5km-radius center region of Zurich, two MFDs are shown in Fig. 5.1(a). They show 

the existence of Regime I and the beginning state of Regime II, indicating this network on a 

macroscopic level is not heavily congested. To observe a complete MFD with congested 

states, we zoom into the center region of the area where traffic congestion can be observed. 

The resultant MFD is shown in Fig. 5.1(b), with the existence of a complete Regime II in 
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which network is operated at its capacity and congestion Regime III where the more agents 

queue in the network while less reach destination.   

     

Fig. 5.1  (a) MFD of a 4.5km radius area network of Zurich and (b) of a 1km radius area   

5.2.2 An explanation of scatter in the MFD  

By examining Fig. 5.1(a), we find loops in the timely connected scatters. Similar phenomena 

have been observed by Geroliminis and Sun (2011), and defined as the hysteresis phenomena: 

higher network flows are observed for the same average network density in the onset and 

lower in the offset of congestion. This is because there are different spatial distributions of 

congestion, high variance among densities, for the same level of average network density for 

different times of a day.  

 

Fig. 5.2  Density distribution of the network at time 6h35, 9h15 and 11h40. Axis represent 

coordinates of links (x,y-axis represent coordinates) 

In Fig. 5.2 we draw link density distributions of all links in the network at three different 

times, where the network holds the same amount of vehicles. The chosen times are 6h35 (the 

highest point), 9h15 (the lowest point) and 11h40 (medium point). They refer to the onset of 

the morning peak from 6h30 to 9h30, and the offset from 9h30 to 11h30. The size of the 
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“bubble” is the value of density and X-Y axis are coordinates of links. It is clear that traffic is 

more uniformly distributed at 6h35 than at 11h40, while at 9h15 densities are extremely high 

at some locations. The standard deviations of density are 24, 29 and 32 veh/km respectively, 

while flow rates are 840veh/h, 720veh/h and 600veh/h.  

5.2.3 The Fundamental Diagram (FD) and spill-back effect  

We now provide a detailed investigation on how congestion propagates at link level in 

MATSim. Flow rate and density are calculated for individual link. We study if spillback 

effects are present and long queues can decrease the output of upstream links. Fig. 5.3 shows 

the FDs for four consecutive links along one of the arterial roads of Zurich in Scenario 1. The 

colour of the scatters in the figure corresponds to the link with the same colour. From the 

figure, we see at density around 10, the flow rate reaches its maximum and remains the same 

value until density around 30. Then flow decreases as density increases, indicating congestion 

happen at the latter point. Secondly, we see that congestion spills back from downstream to 

upstream, as the links in green and yellow operate in Regime I and II while the links upstream 

experience Regime III. These observations make clear that queues are growing from 

downstream to upstream and blocking effects are present in the simulator. We also observe 

that queues propagate from downstream to upstream, as congestion appears upstream at a 

later time. It is also clear that the individual fundamental diagrams exhibit high scatter, 

especially in the congested regime. 

 

Fig. 5.3  Illustration of congestion propagation along consecutive links. Axis is density of the 

road and axis y is the flow rates. Note that the scenario utilized 25% of the population 
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5.2.4 The MFD-controlled pricing schemes 

Let us now introduce the control algorithm of the pricing scheme. Denote 𝑛 as the simulation 

and the toll adjustment index, 𝑛 = 1,2……𝑛, the toll at the (𝑛)-th toll adjustment for time 

interval 𝑡, 𝑇𝑜𝑙𝑙𝑡(𝑛) , and the network density 𝐾𝑡(𝑛). Suppose we have an initial scenario for a 

certain urban network, without any pricing. We observe the congestion level (historical data) 

and determine an initial pricing (offline). Then a new simulation is executed where travelers 

make changes to optimize their new travel cost. Once the travelers fully adapt their behaviors 

under the pricing and stabilization is reached, we evaluate and adjust the tolls. Note that the 

toll is kept fixed during each simulation 𝑛(if prices are adapted in every iteration, then the 

travelers do not have enough time to adapt their decisions and convergence might never be 

reached. To be able to simulate traveler adaptation in a realistic way while dynamic pricing is 

applied, pricing is updated based on the traffic conditions after a number of iterations where 

the system is close to convergence: the agent-based equilibrium as described in Section 5.1).  

Given the traffic conditions (converged) under the 𝑛-th toll, we obtain the resultant MFD and 

identify 𝐾𝑡(𝑛) which exceeds the critical density 𝐾𝑐𝑟 (where maximum network capacity is 

reached and the network production drops down), and control the toll for time 𝑡 to prevent the 

network from falling beyond 𝐾𝑐𝑟 A typical result is that traffic density will maintain a state 

around 𝐾𝑐𝑟 . Different from online traffic control strategies, where the effect of control on 

traffic is immediate and car users might not have the ability to adapt, the effect of pricing can 

be long-term and depends on how users change their travel behavior. Pricing could make 

users to change their departure time from the origin, or mode of transport. Considering this 

adaptation in the development and design of efficient pricing schemes is highly desired, while 

challenging. As the adaptation is quite difficult to model in an analytical way, we consider 

that an agent-based framework influences their decisions in an unknown way to system 

operators (traffic manager). Nevertheless, the operators can monitor the aggregated behavior 

as network densities at different times 𝐾𝑡(𝑛)  are known. This MFD-controlled pricing 

adjustment process will be terminated until all 𝐾𝑡(𝑛) are found below 𝐾𝑐𝑟.   

The algorithm is illustrated in the flow chart below. 
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Fig. 5.4 An illustration of the optimization algorithm of pricing 

Detailed description of the algorithmic steps is provided below:  

(i)   Initial scenario (𝑛 = 0, 𝑇𝑜𝑙𝑙𝑡 = 0). 

(ii) Perform the  𝑛th simulation with the updated pricings 𝑇𝑜𝑙𝑙𝑡(𝑛) until stabilization  

(iii) Obtain the resultant MFD. If there exists congested states where 𝐾𝑡(𝑛)  ≥ 𝐾𝑐𝑟, go to 

step (iv), otherwise to step (v).  

(iv) Update 𝑇𝑜𝑙𝑙𝑡(𝑛) (detailed approach will be elaborated in the next sections). Pass the 

updated toll 𝑇𝑜𝑙𝑙𝑡(𝑛 + 1) to the (𝑛 + 1)-th simulation. 

(v)   Terminate the toll adjustment and obtain the optimal pricing. 

5.3 A Feedback-type Pricing scheme 

5.3.1 The pricing controller  

Firstly we propose a proportional controller to update the pricing. This controller is a classic 

linear feedback control strategy. It is known in control theory that dynamical systems with 

well-defined properties (e.g. small errors in the state description) can be stabilized with a 

feedback strategy to a desired state by choosing an appropriate value of parameter 𝑐  in 

Equation (5-2): 

𝑇𝑜𝑙𝑙𝑡(𝑛 + 1) = 𝑚𝑎𝑥 (0, 𝑇𝑜𝑙𝑙𝑡(𝑛) + 𝑐(𝐾̅𝑡(𝑛) − 𝐾𝑐𝑟) )  (5-2) 
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Detailed information on proportional controllers can be found in (Otaga, 2001). Basically the 

controller states that if the average density of the peak hour (pre-defined) 𝐾̅𝑡 exceeds 𝐾𝑐𝑟 after 

the 𝑛th round of pricing adjustments, an additional toll is charged in the 𝑛 + 1-th round. This 

additional value is proportional to the difference between  𝐾̅𝑡(𝑛)  and 𝐾𝑐𝑟 . For practical 

consideration, time index 𝑡 here refers to morning and evening peak and two different tolls are 

estimated accordingly. Parameter 𝑐 is the constant proportion, which influences the rate of 

achieving the optimal toll. 𝐾𝑐𝑟 is a constant as well and estimated from the MFD directly, 

recalling that 𝐾𝑐𝑟 is a property of the network. These types of controllers have been widely-

applied in freeway traffic flow management, e.g. the well-known ramp-metering algorithm 

ALINEA utilizes it as the core control law to control flow entering from on-ramp to main 

freeway.  Stability analysis has shown the global convergence of this law: For all choices of 

controller parameters the strategy preserves closed-loop stability and forces the actual 𝐾𝑡 to 

reach the desired one (Kosmatopoulos and Papageorgiou, 2003).  Note that the pricing control 

we perform here is offline. The objective is to determine an optimal pricing based on day-to-

day feedback, and reduce the congestion level for the considered time slot 𝑡. The principle 

remains the same, although the application is different from e.g. ALINEA.  

The choice of the value of 𝐾𝑐𝑟 in Equation (5-2) can be a policy decision. Some might argue 

that if 𝐾𝑐𝑟 belongs in regime I the toll is very strict and over-charging might occur, as the 

system operates in a state less than its capacity. Nevertheless, this does not necessarily 

indicate over-charging, unless the total toll paid outweigh the total travel time savings. The 

reason is that the length of the toll period is shorter than the length of the congestion period 

without toll. This is because the network capacity, as expressed by the MFD, decreases for 

high values of network density and the system is not operating at the maximum network flow 

during congestion (this is not the case in the classical bottleneck problem of morning 

commute (Vickrey, 1969), where toll period is equal to the congestion period). Nevertheless, 

the system operator can choose the desired toll in a way to maximize the network flow and as 

a result to transfer the highest possible number of users.  The value of toll which results in 

points in the MFD just without Regime III can be set as the lower bound, while the one which 

results the total toll paid just equal to total travel time savings can be set as the upper bound in 

order to avoid over-charging. This higher toll will push the system to operate at a smaller than 

the maximum outflow during the toll period, but with higher average speed and some 

potential savings in travel delay. This also implies that we should use a smaller value for 𝐾𝑐𝑟 

in Equation (5-2). For example, state for 𝐾𝑐𝑟 =20vh/km in Fig. 1.1 is a more reliable and less 
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equitable state, because the average speed is higher (and more likely to be stable), but the 

system operates at a network outflow below the maximum. Thus, fewer people (presumably 

those with a higher value of time) pay the toll and travel in the rush hour. State for 𝐾𝑐𝑟 

=35vh/km is more equitable (with a higher flow) but has a slower speed, so the total welfare 

may be smaller depending on the distribution of the value of time within the population. Also, 

state with smaller critical density is more reliable because given that users reaction in toll 

changes is not part of the model, a toll may not be efficient at all times, and allow the system 

to reach congested states with 𝐾̅𝑡(𝑛) > 𝐾𝑐𝑟. In which state of the MFD a city should operate is 

a policy decision. Also, note that the city operates in the part of MFD with critical density. 

This means that most of the links during the peak hour operate in Regime II (capacity) and a 

few in Regime I and III. During the same period without pricing most of the links were in 

Regime III. While the objectives of existing operational pricing strategies are similar, the 

MFD gives the quantitative tools to meet these objectives and identify the efficiency and 

operability of a network. 

5.3.2 Case study setup 

We now test the effectiveness of the MFD-based pricing scheme proposed in Section 4.1. The 

data of Scenario 2 are used, which experiences congestion and some scatter. In this way, we 

expect to provide a stricter test for the effectiveness/robustness of a cordon-based pricing 

scheme, given that our macroscopic approach is less accurate. The targeted cordon area is a 

circle of 1km-radius, the area inside the red solid ring in Fig. 5.5. Agents who cross the border 

of the area, the red line, will pay a toll. Before we apply any toll on the cordon, we run one 

simulation until it achieves equilibrium. Network density over time is plotted in Fig. 5.6(a), 

while the resulting MFD is plotted in Fig. 5.6(b) as the “no pricing” curve in these two figures. 

The following information is calculated, given as input to Equation (5-2): The critical density 

𝐾𝑐𝑟 is 28veh/km; The periods for charging a toll from 7:30am to 9am and from 4pm to 8pm.  
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Fig. 5.5 The targeted cordon area (area insider the solid line) and the neighbour area (between 

the solid line and the dotted line), the city of Zurich 

5.3.3 Performance of the pricing scheme   

An initial toll of 1€ for the morning while 4€ for the evening are applied in the first trial. A 

value of 1euro/density for the regulator parameter 𝒄 is used. The optimal toll is achieved after 

four updates: a 2€ toll is charged for the morning peak, while 10€ toll is charged between 

18:30 and 19:30 and an 8€ is charged for the rest part of the evening peak). We see in Fig. 5.6 

(a), traffic congestion, drops as the amount of toll increases; and in Fig. 5.6(b), congestion 

states in Regime III disappear. Thus this aggregated approach for pricing, which does not 

consider individual link behaviour, produces the desired results to reduce congestion and 

identifies the appropriate value of pricing tolls to meet the desired mobility goals. 

Furthermore, we look at the same graphs for the area outside the charging zone as defined in 

Fig. 5.5 (1.5km distance from the cordon line, concentric). The motivation is to check if the 

traffic conditions in the periphery become worse. Fig. 5.6(c) shows that the density of the 

neighbour area slightly increases. The explanation is that some agents who travelled through 

the cordon area now choose to not enter it but detour in the neighbour area, in order to avoid 

the toll. But if we look at the MFD for this area, which is shown in Fig. 5.6(d), the entire area 

is operating in Regime I and II. Traffic volumes on the links in the cordon area are illustrated 

in Fig. 5.7, in which red colours represent congested links and green colour uncongested or at 

capacity. By applying a toll, traffic decreases during peak hours and travel conditions are 

improved. We now provide a quantitative analysis to estimate delay savings after the 

implementation of tolls.   
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Fig. 5.6 For Cordon area (a- top left) network density time series before and after final 

pricing; (b-top right) the MFDs before and after the final update of pricing; For outside 

Cordon (c-down left) density time series before and after the final update of pricing; (d-down 

right) the MFDs before and after the final update of pricing. The green bars indicate toll 

period. 

  

Fig. 5.7 Comparison of the link traffic volumes in (a) the no-toll scenario and (b) the 4th-toll 

scenario at 19pm 

From an economic point of view, we look at travel time savings (as expressed by vehicle 

hours travelled) and total toll costs. Total travel time savings are estimated as the reduced 

travel time of the cordon area minus the increased travel time of the periphery. Results are 

0

10

20

30

40

50

60

70

80

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
2

:0
0

0
:0

0

network 
density 

(veh/km) 
no pricing

intermediate

final pricing

time 0

500

1000

1500

2000

2500

0 20 40 60 80 100

outflow 
(veh/h) 

network density 
(veh/km) 

no pricing

final pricing

0

10

20

30

40

50

60

70

80

0
:0

0

2
:0

0

4
:0

0

6
:0

0

8
:0

0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
2

:0
0

0
:0

0

network 
density 

(veh/km) 

no pricing

final pricing

time   
0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

outflow  
(veh/h) 

network density 
(veh/km) 

no pricing

final pricing



Chapter 5 Congestion pricing schemes with MFD- and agent-based approach 

110  
 

summarized in Table 5.1. Considering the average value of travel time savings (VTTS) of the 

agents is 15€/hour (Axhausen et al. (2007)), the total savings in the study network are larger 

than the total toll paid, by an amount of about 20%. Note that most congestion charging 

methodologies charge a toll equal to the delay cost, while in our case savings are significantly 

higher. This is a promising result at an aggregated level. Furthermore, we also investigate the 

savings at an individual user level, which is calculated as travel time savings per km travelled 

per trip. We see that the effectiveness ratio between travel savings per km travelled per trip 

inside cordon (positive) and outside cordon (negative) is 7, much higher than the same ratio at 

the aggregated level (in veh-hours), which is around 1.5. This indicates that a low amount of 

additional delay (0.13 min per km per trip) which generates almost no impact for the outside 

cordon, creates significant savings inside the cordon (almost 1 min per km per trip). Zhang 

and Levinson (2005) among the others argue that the value-of-time should be a non-linear 

function of travel delay, i.e. the effect of a longer delay (in €/min) is much more significant 

than the effect of a short delay. Furthermore, comparing the Zurich results to the cordon 

pricing case of London, the improvement in travel time savings in London is 0.7 min per km 

per agent (information  from Transport for London, http://www.tfl.gov.uk), which shows that 

our pricing scheme is more effective.   

Table 5.1 Summary of the social of the proposed pricing 

 TTT Savings 

(In cordon) 

TTT Savings 

(Out cordon) 

Effectiveness 

Ratio 

Aggregated 

Social Gain 

6356  veh-hours - 4541 veh-hours 1.5 

 Travel Savings per 

Km Travelled per trip 

(In Cordon) 

Travel Savings per 

Km Travelled per trip 

(Out Cordon) 

Effectiveness 

Ratio 

Disaggregated 

Social Gain 

 

0.94 minutes 

 

-0.13 minutes 

 

7 

 

5.3.4 Behavioral changes 

We analyse the impact of pricing on shifting the time of departure of agent trips. One direct 

impact is that agents change the time they pass the cordon line. Fig. 5.8 shows a time series of 

the flow of agents crossing the cordon line with and without pricing. It is clear that some 
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amount of agents avoided passing the cordon line during the tolling-period, which is shown in 

green colour. In the morning peak, agents tend to switch to later times while in the evening 

peak agents change their crossing times in both sides of the toll period. We now see how and 

to what extent agents change their behaviour because of tolls.     

 

Fig. 5.8 Time series of the flow of agents passing the cordon 

In the default version of MATSim, heterogeneity only exists among agents when they 

perform different activities. This heterogeneity is determined by the duration of the performed 

activity. Given these information, we can identify the impact of pricing on different activities. 

We classify activities into two groups: purpose of going-to-work and leaving-from-work, as 

work-related activities (WA); and purpose of going-to-leisure as non-work-related activities 

(NWA).  Fig. 5.9 shows the comparison of time shift of performing WA and NWA trips in the 

“no pricing” and the “with pricing” scenarios. The green bars mark the toll periods. Both 

groups of agents experience a time shift. Agents performing WA tend to switch the starting 

time of their trip to an earlier time, while agents performing NWA tend to switch to both 

earlier and later times. The explanation is that for work-related activities the penalty of 

earliness is lower than this of lateness. About 5% of WA trips shift during the morning toll 

period while the amount for NWA is 15.7%. During the evening toll period, 16.1% of WA  

and 19.5% of NWA shift their departure time. We can observe that WA are much less 

sensitive to small value of toll, as adjusting WA is  less flexible than NWA. For higher tolls, 

the impacts are more substantial. An additional explanation for the observation that the 

morning shift is less than evening shift, is that starting time of the activities is fixed in the 

morning, therefore agents have to be on time to avoid a large penalty of not performing their 

trip (do nothing); while in the evening there is more flexibility. Given the optimal pricing, the 
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number of agents who perform NWA by car outside toll period reduces, which is due to mode 

change. A deeper investigation on behavioural shift and on equity can be done, if individual 

data such as income or value of time of agents are available, similar to Axhausen et al. (2007). 

We will show in later sections, with the integration of the heterogeneity in the distribution of 

Value-of-time, the behavioural difference can be analysed.  

 

Fig. 5.9 Time shift of WA (a) and NWA (b) in the no pricing and the final pricing scenarios. 

Y-axis unit, Trips: trip completion rate. 

5.4 A Feedback-type Pricing Scheme with User Adaptation 

5.4.1 The pricing controller  

Secondly, we extend the fixed-peak-hour feedback pricing scheme to a time-dependent one. 

Furthermore, we aim to include the adaptation of travelers to the change of pricing into the 

pricing determination process. Once the performance of a network falls into Regime III, 

control actions should guide the network recover to Regime II around the critical density 𝐾𝑐𝑟. 

Different from online traffic control strategies, where the effect of control on traffic is 

immediate and drivers might not have the ability to adapt, the effect of pricing can be long-

term and depends on how users change their travel behavior. Pricing could make users to 

change their departure time from the origin or change mode of transport. Considering this 

adaptation in the development and design of efficient pricing schemes could be challenging. 

As the adaptation is quite difficult to model in an analytical way, we consider that an agent-

based framework influences their decisions in an unknown way to the system operators. 

Nevertheless, the operators can monitor the aggregated behavior as network vehicle 

accumulations are known.  
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The algorithmic steps are the same as given in Fig. 5.4. And controller (5-2) is extended in 

Equation (5-3). The toll at the (𝑗 + 1)-th toll adjustment for time interval 𝑡, 𝑇𝑜𝑙𝑙𝑗+1(𝑡) , is 

proportional to the magnitude that the average network density 𝐾𝑗(𝑡)  exceeds 𝐾𝑐𝑟, and the 

difference between the resultant densities under the current pricing 𝐾𝑗(𝑡)  and its previous one 

𝐾𝑗−1(𝑡). 𝑐1 and 𝑐2 are the proportional and integral gain parameters, respectively.  

𝑇𝑜𝑙𝑙𝑡(𝑛 + 1) = 𝑇𝑜𝑙𝑙𝑡(𝑛) + 𝑐1(𝐾𝑡(𝑛) − 𝐾𝑐𝑟) + 𝑐2(𝐾𝑡(𝑛) − 𝐾𝑡(𝑛 − 1))       (5-3) 

The toll-updating scheme employs a Proportional-integral (PI) type controller which is a 

classic feedback control strategy. It was demonstrated that dynamic systems with well-defined 

properties (e.g. small errors in the traffic states) can be stabilized with this type of feedback 

strategy to a desired state, as well. Comparing to the toll controller (5-2), controller (5-3) 

distinguishes temporal difference in congestion level, and gives higher flexibility in toll 

adjustment based on user’s adaption to the toll. In particular, this schemes allows reduction of 

toll if 𝐾𝑗(𝑡) is smaller than 𝐾𝑗−1(𝑡) which benefits the users from being not overcharged. 𝑐1 

and 𝑐2 are constant and positive parameters. The values are chosen offline via a trial-and-error 

process to avoid oscillations. Details on the design of the controller will not be discussed here. 

We would emphasize that this pricing strategy is robust to moderate parameter changes and 

has fast and global convergence.   

5.4.2 Case study setup  

This case study is carried out in a similar scale network, the well-known Sioux Fall urban 

network, though the activity patterns are quite different from the Zurich case. The structure of 

the network captures the major arterial roads of the real city: highways with 3 lanes per 

direction at the perimeter of the network and urban roads with 2 lanes in the city center. The 

average link length is 0.4km. The total length of the network is 150 lane-kms. As a general 

remark, the scale of the network is suitable for applying MFD-based analysis. The embedded 

public transport system consists of 5 bus lanes crossing the network and serving 10 bus routes. 

The spacing between bus stops is 0.6km and the frequency of service is in between 5 to 

15min.The studied network area holds a total amount of 110000 travelers. The daily plans of 

the travelers are created based on detailed regional census data. The generated traffic demand 

exhibits typical morning- and evening-peak characteristics. For more information on the 

design of the Sioux Fall simulation scenario for this study, readers may refer to Chakirov and 

Fourie (2014).             



Chapter 5 Congestion pricing schemes with MFD- and agent-based approach 

114  
 

 

Fig. 5.10 The MFD of the study site: (a) network speed-density data scatter and the fitted 

curve, 𝑉 = 29.48𝑒−0.032𝐾 (R-square test of the fitting is 0.85) and (b) best-fit network flow-

density plot 

Parameter 𝐾𝑐𝑟  is obtained by simulation data of this network. Speed and density data are 

collected from scenarios with different demand profiles and plotted in Fig. 5.10(a). Each data 

point corresponds to 5-min interval. This speed-density curve is fitted by an exponential-

family function, which is consistent with the classical form of the fundamental diagram and 

the one proposed in Section 4.2. Given the fitted function and the flow dynamic equation 

𝑄 = 𝑘𝑣 , where 𝑄,𝐾, 𝑉  are network space mean flow, density and speed respectively, the 

MFD of 𝑄  and 𝐾  can be obtained. Fig. 5.10(b) displays this MFD. 𝐾𝑐𝑟  is estimated 

analytically based on the exponential family curve and is approximately 35veh/km.   

We will look at the resultant network density level, and the total person-hours travelled (PHT), 

the impact of pricing on multimodal mobility, the efficiency and welfare gain where welfare 

is defined as the difference between the savings of PHT and the total toll paid (TTP). To have 

the same unit of the two items, TTP is converted to time unit by value-of-time, denoted as 

vTTP. The value-of-time is 16$/hr. A positive gain is desirable because it may not be efficient 

if a pricing strategy reduces congestion at the high expense of users. Moreover, we examine 

traveler’s behavioral adaptation to the pricing.     

5.4.3 Performance of the pricing scheme 

Let us first look at the traffic performance of the network without and with pricing. 

Simulations are executed and an optimal toll is found from the toll scheme described in the 

previous section. Fig. 5.11 displays the density time series without and with pricing (left axes). 

The time series of the final optimal pricing is plotted in the same figure (right axes). It gives a 

0.8$/trip toll for the morning peak between 7h30 and 8h30, and a higher step toll for the 
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evening peak between 17h-19h (a value of 0.5$/(veh/km) and 0.3$/(veh/km) is used for 𝒄𝟏 

and 𝒄𝟐 in Equation (5-3)). For computational feasibility consideration, the tolling interval is 

set to 0.5 hr.  

 

Fig. 5.11 Density time series without and with optimal time-dependent pricing. The dashed 

line indicates the final toll rates over the day 

We can observe that the congestion level of the network, as expressed by density, decreases 

significantly for both the morning and the evening peaks, albeit with different toll rates. It is 

interesting to see that roughly similar amount of car usage reduction can be achieved in the 

morning with much smaller toll rate than in the evening. To understand this result, let us have 

a closer look on how densities and the corresponding pricing rates change over simulations. 

Fig. 5.12 illustrates the evolution of densities and toll rates over three simulations. Fig. 5.12(a) 

shows that the initial tolls are equally high for both peak periods. The morning car traffic 

adapts quickly to the increased cost due to pricing, and the density level decreases to slightly 

above 𝐾𝑐𝑟 . Since our pricing scheme adjusts the tolls according to user’s adaptation, the 

morning toll is thus decreased so that car users are not overcharged. We can also observe that 

there is almost no induced demand for the morning peak, even though the toll rates become 

less comparing to the initial toll. While for the evening peak, higher toll must be given and 

kept for two reasons: (i) travelers have to travel during the peak hour as the peak hour 

overlaps the closing time of nearly all the facilities where they perform activities. Leaving 

activities early would experience “schedule penalty” which is larger than the cost of pricing; 

and (ii) the PT mode is not sufficiently fast to trigger mode shift until the cost of pricing is 

greater than the difference in travel times. Therefore many travelers choose to travel anyway 

which weakens the elasticity of demand towards pricing.   
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Pricing adjustment to user’s adaptation can be observed for the evening peak, as well. As the 

implementation of the initial toll decreases network density, a considerable drop of the toll 

rate can be found at the 3
rd

 toll in Fig. 5.12(b). Given this adjustment, it seems that travelers 

begin to switch back to the peak period and take advantage of the improved network condition. 

Our pricing scheme identifies this trend. The same figure shows that a higher toll is re-

implemented from the 6
th

 pricing adjustment. Note that a pricing adjustment takes place 

approximately every 50-iterations of the agent-based simulation. A relevant question now is 

that how sensitive are the travelers to the change of tolls. We will address this later.    

  

Fig. 5.12 (a) The density series and (b) toll rates of three simulations before reaching the 

optimal pricing 

Table 5.2 Comparison of total and average travel time after pricing 

 Total PHT (hrs) Ave. TT. (hrs/trip) 

Car PT 

Without pricing 73840 0.58 0.87 

Optimal pricing 68433 0.47 0.88 

To quantify the impact of pricing on traffic performance, we calculate the improvement in 

travel time over toll adjustments, at aggregated and disaggregated scales between “Without 

pricing” and “Optimal pricing”. The statistics are summarized in Table 5.2. The total PHT 

decreases by 7%, and a 17% for average travel time by car. There is however no improvement 

for traveling by PT, which is understandable as the same level of PT service now attracts 

more users. To improve the mobility of multimodal network, a pricing strategy should 

promote the development of PT services and stimulate mode shift. To this end, we decide to 

utilize a fraction of the toll revenue such that it serves as an incentive for higher PT usage. We 
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will show in the next sub-section that substantial welfare gain can be obtained with such 

incentives.   

5.4.4 PT benefit and accessibility improvement 

Continuing the discussion above, we seek to enlarge the efficiency of the pricing scheme by 

promote PT-oriented strategies. We propose to distribute the collected TTP in two ways: (i) to 

expand the number of bus lines and bus networks so that the accessibility cost (e.g. access 

time from home to bus stops) decreases, and (ii) to provide a one-time award money for 

travelers who shift the mode from cars to buses. In practice, the design and operation of such 

incentive programs are complex and highly dependent on political, financial and other 

purposes. We do not wish to deepen ourselves into this direction of discussion, but to 

demonstrate via compact analysis that proper treatment of toll revenue on PT system and PT 

users can produce critical impact on the efficiency of the pricing schemes.   

In Table 5.3, the total cost and welfare gain are estimated for the three pricing strategies: (i) 

the pricing scheme defined by Equation (5-3), denote as “pricing only”; (ii) a fraction of 

pricing revenue is invested to improve PT accessibility, e.g. the resultant average access time 

from home to bus stops are assumed to decrease 15%. Denote this scheme as “pricing+BA”; 

and (iii) in addition to strategy (ii), 50% of the toll revenue is rewarded one-time and evenly 

distributed to the mode shifters. Denote as “pricing+BAI”. Since a fraction of the collected 

toll is returned to users, vTTP shall not be entirely viewed as cost term for strategies (ii) and 

(iii). In Table 5.3, the pricing efficiency is calculated (recall that this is the ratio of total 

savings in PHT compare to that of without pricing (73840 in Table 5.2) and vTTP). It is 

evident that congestion pricing can be remarkably efficient if the service of PT is improved 

using the toll revenue. With a full investment of the toll revenue, the “pricing+BAI” strategy 

may expect 100% efficiency.     

Table 5.3 Comparison of PHT savings and pricing efficiency   

 Savings in PHT  

(hrs) 

vTTP 

 (hrs) 

Pricing efficiency  

(%) 

pricing only 5627 14790 38.1% 

pricing+BA 9673 13437 72.0% 

pricing+BAI 9090  9177 99.0% 
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With the PT benefit, congestion level of the network can be controlled at 𝐾𝑐𝑟 by a smaller 

amount of toll. For example, Fig. 5.13 (a) and (b) compare the time series of density and toll 

between the “pricing only” strategy and the “pricing+BA” strategy. The “pricing+BA” 

succeeds in maintaining network density under 40vehs/km with 20% less toll charge. For 

mode share of PT users under different pricing strategies, it is as expected that the number of 

PT users increases with the magnitude of PT benefits. Strategy “pricing BA” for instance, 

results a 5% increase in mode shift than “pricing only” and a nearly 10% increase to “without 

pricing”.      

 

Fig. 5.13 Comparison of (a) density series and (b) resultant toll between “pricing only” and 

“pricing BA” 

5.4.5 User adaptation 

Finally, let us address the question on how sensitive the travelers react to pricing and if the 

proposed pricing scheme reaches equilibrium. To this end, we investigate the shape of the 

total toll paid (TTP) and the total number of mode shifters over toll adjustments. Fig. 5.14(a) 

plots TTP for strategies “pricing only” and “pricing+BA” over the entire iterations. The first 

pricing is implemented at the 100
th

 iteration. Since then, the tolls are adjusted after every 50 

iterations (recall that 50 iterations per simulation). It can be seen that travelers struggle to 

adapt the tolls when the tolls are initially introduced, reflected by the huge jumps at the 150
th

 

and the 200
th

 iterations. Similar phenomenon can be observed in Fig. 5.14(b), where the 

number of mode shifters (from car to bus) is plotted over iterations for the two cases. After 

the 3
rd

 adjustment of the toll (the 250
th

 iteration), however, both TTP and mode shifts vary 

slowly over toll adjustments. With sufficient amount of iterations, it can be expected that a 

user-equilibrium could be achieved. These are intriguing results, as they indicate that our 

pricing scheme shows high convergence in the long-term operation of pricing. Small level of 
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induced demand might appear from time to time, similar to we have observed in Fig. 5.12, 

nevertheless neither congestion would not return nor travelers would perform drastic 

behavioral change as the pricing scheme of Section II is designed to be behavioral adaptive. 

   

Fig. 5.14 Equilibrium condition of the pricing schemes: (a) total money paid over iterations, 

and (b) mode shifters over iterations 

5.5 Impact of User Heterogeneity 

So far we have focused our discussion on the global performance. In this section, we will 

investigate the disaggregated impact of pricing on different groups of users in the system. 

There exists works in literature on the treatment of heterogeneity of travelers. The distribution 

of VOT among travelers has been the main focus, for instance in Lu et al. (2008), van der Berg 

and Verhoef (2011), and Qian and Zhang (2013). Given the advantage of the agent-based 

approaches and the efficiency of the MFD-based pricing, we extend the homogenous single-

user-group MATSim to a two-group one.  Thus for Equation (5-1), index  𝑗 equals to 2. There 

are a group of users with a high value of VOT, which takes one third of the whole population, 

and a group with low VOT for the rest of the population. We consider the mean VOT for the 

entire population has a value of 16$/hr, and determine the VOT for the two groups as 27$/hr 

and 11$/hr respectively. The VOTs are part of travelers’ decision-making and planning process 

in Equation (5-1).   

5.5.1 Behavioral difference 

Let us first show the behavioral difference after introducing heterogeneity, without 

implementation of pricing. The mode share of buses is displayed in Fig. 5.15(a) for scenario 

without user heterogeneity (a single user group) and the scenario of two groups defined earlier. 
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Denote the user group with high VOT the “R group” and the one with low VOT the “P group” 

(as rich vs. poor groups). It is observed that the mode choice behavior is quite different when 

heterogeneity is taken into account. While the mode share of buses is identical for the single-

group scenario, there is nearly 10% difference between the R group and the P group when two 

VOTs are active. The R group tends to prefer traveling with cars, as it is less costly and travel 

time are valued much higher for the users of this group than those of the P group. Since the P 

group now has a smaller VOT comparing to their VOT in the single-group scenario, more 

users are willing to travel with bus even if the utility difference remains the same between 

travelling with buses and with cars.  

 

Fig. 5.15 (a) Mode choice difference of the two user groups, without congestion pricing, and 

(b) comparison of mode shift, toll paid and savings between the two user groups under 

strategy “pricing”. 

When congestion pricing is applied, the two user groups exhibit distinct reactions as expected. 

Fig. 5.15(b) displays the comparison of the resultant mode shift (the percentage of users shift 

from cars to buses after pricing), average congestion toll paid per person (total toll paid 

divided by the total amount of the users), and the average savings per person (welfare divided 

by the amount of the users) under strategy “pricing”. For mode choice behavior, more users 

from the P group tends to switch to buses though the numerical result suggests a minor 

difference between the two groups. The resultant average toll indicates that the R group users 

are willing to pay 0.3$ more toll for traveling faster with cars. The resultant saving is negative 

for the entire population, and almost equivalent for the two groups of users. Nevertheless, 

different behavior for the two groups of users is observed in the other pricing schemes.       
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5.5.2 Distributional effect under different pricing strategies    

The results on VOT heterogeneity shown in the previous sub-section are consistent with 

findings in literature summarized in Levinson (2010). We will now investigate the resultant 

equity of the pricing strategies. Fig. 5.16(a) illustrates the mode shift by strategies “pricing”, 

“pricing BA” and “pricing BAIp” (recall that strategy “pricing BAIp” distributes subsidy only 

for the mode shifters from the “P group”). Mode shift here is the mode shift to buses under 

each of the three strategies compared to the “no pricing” case. As the incentive of using buses 

arises, there is an increasing demand for both groups to travel with bus, because of pricing 

and the attraction by PT benefit. For the R group, it is evident that users are reluctant to 

change mode even though traveling with bus becomes less costly. Mode shift is below 1% 

under strategy “pricing” while less than 2.5% under the other two pricing strategies. This is 

probably due to the fact that traveling with cars becomes less costly at the same time as more 

users travel with buses, and therefore traveling with cars becomes attractive for the R group 

who values the gain in travel time much more important. While for the P group, mode shift 

shows a clear tendency of growth as strategies provide more PT benefit. Under strategies 

“pricing” and “pricing BA”, the mode shifts are 1.8% and 4.5% each and nearly doubles the R 

group; while under “pricing BAIp” the percentage goes to 6.8% which nearly triples the P 

group. Comparing to strategy “pricing BA”, “pricing BAIp” makes 3% more users of the R 

group switch their mode. We will show next that this strategy is not only efficient in 

triggering mode shift but also advantageous in equity.      

 

Fig. 5.16 (a) Comparison of the difference in mode shifts and (b) comparison of mode shift, 

toll paid and savings the two user groups among the three pricing strategies: pricing, pricing 

BA and pricing BAIp. 
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Fig. 5.16(b) illustrates the comparison of average toll paid and average savings for the two 

user groups under the three pricing strategies. In all cases, the R group users are willing to pay 

higher toll to reserve the right of traveling with cars. It seems both user groups benefit from 

the PT incentives, since they all find positive savings. The savings of the P group users 

outweighs the R group by 100% when subsidy only provided to the R group. As the users of 

the P group is generally considered to represent the users with lower income, strategy “BAIp” 

is undoubtedly a more equitable pricing scheme. These results indicate that heterogeneity of 

users and distributional effect should be treated carefully when designing strategies and 

policies of congestion pricing, so that beneficial and equitable condition can be achieved for 

everybody.      

5.6 Summary 

In this chapter, we combined an agent-based approach with MFD to develop and evaluate 

city-level congestion pricing schemes. We first investigated the feasibility of the combined 

approach by examining whether the outputs of the agent-based model exhibits traffic patterns 

as expressed in the fundamental diagram at road section level and the MFD at network level. 

We found and concluded that they were consistent with the existing traffic flow theories. We 

then developed cordon-based and area-based pricing strategies for congested multimodal 

urban networks. Two feedback-type control logics were proposed to determine the pricing 

schemes. Stimulating results were found for both pricing schemes in congestion reduction and 

social welfare optimization, with case studies on the Zurich center region network and the 

Sioux-Fall network respectively. The second pricing scheme considered user’s adaptation to 

the toll cost, allowing a greater flexibility in toll adjustment. The scheme also dealt with the 

promotion of PT usage. Integrating incentive programs such as PT accessibility improvement 

or money award for PT mode shift using the collected toll revenue, this pricing scheme 

achieved high efficiency as large welfare gain is obtained. Remarkably, smooth user 

behavioral equilibrium in long-term operation was also found under such pricing scheme. 

Furthermore, we investigated the impact of pricing on the traffic performance in a system of 

heterogeneous user groups. Two groups were recognized with respect to their value-of-times. 

Significant differences in behavioral responses and trip costs were found for the two groups. 

By realizing user heterogeneity, pricing strategies achieved higher efficiency and equitable 

result. 
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6  Conclusions 

Developing effective, efficient and sustainable traffic management strategies for multimodal 

urban networks are challenging tasks given the complex dynamics of the transport system. 

This thesis is dedicated to develop a network-level approach which unveils the fundamental 

laws of congestion dynamics in multimodal networks despite of the complexity, and 

facilitates the design of management strategies for mobility and multimodality optimization. 

The findings and contributions are summarized in this final chapter.   

6.1 Thesis Summary   

In Chapter 2, we presented a macroscopic approach for allocating road space among modes of 

transport with the objective of minimizing the total hours traveled by travelers (PHT). We 

extended the single-mode MFD to a bi-modal one, where the effect of bi-modal operation in 

global performance was considered. For example, the effect of dwell time and the share of 

dedicated bus lanes (of the total space) on network space-mean speed were quantified by the 

bi-modal MFD. A system model then was constructed for a multi-region network, with a 

network-level flow conservation model and an aggregated dynamic mode choice model. 

Given this system model, the performance under different road space strategies can be 

predicted, provided with data input that can be readily collected such as regional origin-

destination tables and road space allocation plans. We tested the rationale of this modeling 

approach with a two-region bi-modal city case study, and investigated the performance of two 

space allocation strategies for the center region of the city where demand was high and heavy 

congestion existed. A static and a dynamic (time-dependent) allocation strategies were 

obtained through non-linear optimizations respectively. We found that the dynamic allocation 

strategy managed to minimize PHT in a more efficient way as it utilized the bus lane space 

during the off-peak period and served a higher amount of passengers during peak period. By 

implementing pricing during the peak period, further reduction of PHT was achieved, as 

pricing led a higher demand shifted and increased the utilization of buses which was the faster 

traveling mode. We also observed the existence of user equilibrium in our macroscopic model, 

e.g. the utilities of traveling by modes became equivalent during the peak-period. Furthermore, 

we carried out sensitivity analysis and showed the robustness of our approach towards the 

fluctuations in demand inputs and model parameters.  
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Following Chapter 2, we proposed in Chapter 0 a macroscopic modeling approach for modeling 

multi-modal traffic system with parking limitation and cruising-for-parking flow. Parking 

limitation was integrated in the developed multi-modal system model, where vehicles need to 

cruise for parking before reaching destination. The cost of cruising was estimated by assuming 

the probability of finding a parking space follows a geometric distribution and depends on the 

dynamic parking availability. The effect of cruising on the global performance, e.g. the average 

speed, was also captured, by the MFD. A case study was carried out in the same two-region bi-

modal network as in Chapter 2. Two parking choices were considered: (i) limited on-street 

parking requiring cruising, and (ii) unlimited garage parking with higher parking fee but no 

cruising cost. The resultant system behavior under parking limitation and pricing were 

consistent with the common expectations. We then used the system model to test two network-

level parking pricing strategies. One strategy adapted a feedback-type controller for determining 

the parking price, which was congestion- and parking availability-dependent. Applying this 

pricing strategy, traffic performance was maintained at desired (controlled) levels. The second 

strategy was obtained through optimization of the total cost (PHT + parking fee). Applying this 

strategy, the total cost was further reduced, as the prices were determined with long-term 

impact taking into account. Inspired by this result, we investigated the impact of competition 

on the performance of the pricing strategy, assuming that the authorities of on-street and garage 

parking belong to different parties who manage prices with different objectives. We presented 

preliminary results of cooperative-competition via a bi-objective optimization, while a bi-level 

optimization framework was proposed to simulate a responsive and negotiate-alike parking 

pricing market. 

To identify and quantify individual modal impact on the global traffic performance, we 

investigated a new type of MFD model in Chapter 4. The existence of a three-dimensional 

multimodal MFD (3D-MFD), relating the accumulation of cars and buses, and the circulating 

vehicle flow in a network, was demonstrated via simulation experiments. An exponential-

family function was proposed for the analytical form of the 3D-MFD, where the individual 

modal and the joint impact on global performance were directly observed. To further 

investigate the modal impact, the Bus-Car Unit equivalent value was estimated and found 

state- and mode-composition-dependent rather than deterministic. Then, we derived the 

passenger-flow 3D-MFD with an elegant analytical model, which provided a different 

perspective of bi-modal flow characteristics. We applied a partitioning algorithm to cluster a 

center and an outside region of the network according to the similarity of the car/bus density 
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ratio. It was found that such partition enhanced the accuracy in the estimation of the 3D-

MFDs, which revealed the impact of heterogeneity of mode composition on the bi-modal 

modeling. Furthermore, we utilized the 3D-MFD to develop perimeter flow control strategies. 

We presented the results of two controllers, a single-region controller and a two-region 

(center-outside) controller. Congestion was significantly reduced for the whole network, 

while the performance of buses in terms of travel delays and schedule reliability was 

improved without even giving bus priority. Queues and gridlock were avoided on critical 

paths of the network. 

In the final chapter, we combined an agent-based approach with the MFD to develop and 

evaluate city-level congestion pricing schemes. We first investigated the feasibility of the 

combined approach by examining whether the outputs of the agent-based model exhibits 

traffic patterns as expressed in the fundamental diagram at road section level and the MFD at 

network level. We found and concluded that they were consistent with the existing traffic 

flow theories. We then developed cordon-based and area-based pricing strategies for 

congested multimodal urban networks. Two feedback-type control logics were proposed to 

determine the pricing schemes. Stimulating results were found for both pricing schemes in 

congestion reduction and social welfare optimization, with case studies on the Zurich center 

region network and the Sioux-Fall network respectively. The second pricing scheme 

considered user’s adaptation to the toll cost, allowing a greater flexibility in toll adjustment. 

The scheme also dealt with the promotion of PT usage. Integrating incentive programs such as 

PT accessibility improvement or money award for PT mode shift using the collected toll 

revenue, this pricing scheme achieved high efficiency as large welfare gain was obtained. 

Remarkably, smooth user behavioral equilibrium in long-term operation was also found under 

such pricing scheme. Furthermore, we investigated the impact of pricing on the traffic 

performance in a system of heterogeneous user groups. Two groups were recognized with 

respect to their value-of-times. Significant differences in behavioral responses and trip costs 

were found for the two groups. By realizing user heterogeneity, pricing strategies achieved 

higher efficiency and equitable result. 

6.2 Research Contributions  

In this thesis, a dynamic network-level approach is developed for modeling and controlling 

multi-modal urban mobility. It is demonstrated that the developed approach not only captures 

congestion dynamics, travel costs and mode conflict patterns under various network structures, 
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road space allocations and multi-modal operations, but also enables the development of 

efficient and dynamic traffic management  strategies, such as dedicated bus lane allocation,  

parking  pricing, real-time perimeter flow control and congestion pricing. The contributions of 

this thesis therefore are both methodological and practical.  

Regarding the methodological part, the major contributions can be listed as follows:  

 A bi-modal MFD model is developed for capturing the congestion dynamics, considering 

the effect of bus operation in the global traffic performance in bi-modal urban road 

networks.   

 An aggregated system model is developed to represent the aggregated flow movements and 

travel cost in a multi-modal multi-region transport system, where system performance is 

linked to road space allocation and parking is integrated to the network-level dynamics. 

 A 3D-MFD model is proposed for capturing the individual modal impact on the global 

traffic performance and mode conflict patterns in mixed-traffic bi-modal urban networks. 

A passenger flow 3D-MFD is also derived and it enables a passenger-based analysis. 

 An MFD- and agent-based approach is proposed for developing dynamic city-level 

congestion pricing schemes for multimodal urban networks with heterogeneous users. 

For managing mobility and multimodality in practice, the most significant contributions are:  

 An optimization framework is established for the developed bi-nodal system model with 

the objective of minimizing the total travel cost of passengers. Road space allocation and 

parking pricing strategies for bi-modal networks can be obtained. 

 The 3D-MFD can be utilized to monitor performance, and develop real-time control 

strategies, such as perimeter flow control, for networks with bi-modal usages.  

 The MFD-based congestion pricing schemes increase the multimodality level of the priced 

networks by integrating the incentive programs of using public transport modes. 

 MFD-based management strategies are in favor of field applications given the fact that 

their efficiency in congestion management is achieved with feasible data requirements and 

implementation costs. 

Other important contributions include:  

 Based on the developed bi-modal system model, a bi-objective and bi-level optimization 

frameworks are proposed to simulate the competition behavior in the parking pricing 

market.  
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 Network partitioning is applied to identify the heterogeneity in mode composition and 

congestion level in bi-modal networks. Recognizing this heterogeneity improves the 

accuracy of modeling and the efficiency of control.  

 The 3D-MFD derives a state- and mode composition-dependent “bus-car equivalent” value, 

while it is considered constant in the literature.    

 An MFD-based pricing scheme can result equitable benefit to users when heterogeneity is 

taken into account and treated properly.   

6.3 Future Work 

Thanks to the emergence and advance in the macroscopic traffic flow theory, the bi-modal 

MFD and the 3D-MFDs that are developed in this thesis, and show a stimulating strength in 

congestion modeling and mobility management. To the best knowledge of the author, MFD-

based monitoring and management are being implemented or planned to be implemented in 

field tests to deal with mobility problems. We need to point out that there are still aspects 

deserve and require further research efforts, which are both academically challenging and 

practically interesting.  

To keep the aggregated nature of our model tractable, the dedicated bus lanes and parking 

spaces are assumed to be distributed evenly over a network. We optimize the percentage of 

road space allocation while the detailed bus lane assignment is not captured in our model 

(considered a political decision). If the access cost of different space allocation layouts is 

provided, it can he inputted directly to the system model. As for cruising, the treatment is 

dimensionless, meaning that the cruising cost is estimated without identifying the detailed 

routes of cruising. Such consideration aims at the average cost at system level and ignores the 

cruising possibilities at disaggregated level. Nevertheless large disaggregated heterogeneity is 

not expected given the spatial correlations in the distribution of congestion and well-defined 

bi-modal MFD can possibly be found for more complex city structures. 

We will continue to study the effectiveness of the space allocation and parking pricing 

strategies optimized based on our aggregated system model. The system dynamics under the 

developed strategies ought to be verified by other type of approaches. For example, empirical 

studies are extremely desired to demonstrate the relation between the cost of cruising and the 

parking space availability. Another alternative is to test our result in microscopic traffic 

models in order to investigate if the findings by macroscopic models are consistent with the 
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outputs by traditional microscopic models. Such accordance will strongly support the 

soundness of our methodology.  

For homogeneous large-scale networks where trips are completed internally or center-

periphery structure type networks where trips concern two regions, the MFD representation 

allows modeling without detailed treatment of route choice. However, for trips that across 

multiple regions (e.g. due to long travel distance), a region sequence choice should be 

provided to identify the dynamics. We aim to incorporate such regional route choice model in 

the dynamic network model with multiple regions. Ongoing work in Lab Urban Transport 

Systems at EPFL investigates such regional route choice pattern via empirical data and 

simulation studies. 

The proposed system model deals with mode choices of travelers at the aggregated level. By 

influencing mode choice in a timely dynamic manner, the total cost is minimized. Though 

only two modes are treated in detail in this thesis, extending the framework to multimodal is 

not difficult. Furthermore, we have showed in our case studies that under such optimal 

management, travel costs (utility) by mode can reach convergence. Future work will also try 

to incorporate departure time choices. The classical Vikrey’s bottleneck model may be 

applied here with MFD as the traffic state and capacity model. Convergence might be an issue 

and equilibrium may not be obtained straightforward through iterations, given the increased 

complexity in system dynamics. As for parking facility choices, a further direction is to 

investigate the effect of parking space capacity. For instance, excessive on-street parking 

space may lead to cases that fewer travelers go for garage parking even though it is much 

cheaper.   

The existence of the 3D-MFD in this thesis is observed via microscopic traffic simulation due 

to lack of empirical data from multiple modes for the same network. Evidences from 

empirical studies on its shape, dynamics nature and properties are highly desired. Though this 

is a challenging task due to the data availability issue (obtaining the 3D-MFD requires data 

inputs such as traffic accounts, floating GPS data, which belong to different authorities), we 

are making significant amount of efforts in pursuing possible data sources. Furthermore, the 

performance of the 3D-MFD based perimeter flow control will be tested in other type of 

networks, where the mode composition pattern and congestion distribution are significantly 

different from the San Francisco network used in this thesis.  
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As for the pricing schemes, we demonstrate that efficient pricing schemes can be developed 

based on reliable network-level performance monitoring, even though complex behavior 

dynamics and uncertainties exist which make it impossible to obtain optimal tolls via 

traditional pricing approaches (e.g. marginal cost based). We are currently further exploring 

the efficiency of the pricing schemes with the proposed approach, and welfare distribution 

among heterogeneous groups, e.g. different trip purposes and users with different value-of-

time. These investigations are feasible by utilizing the agent-based model. We will later test 

the efficiency of the developed pricing schemes for cities where network structure and traffic 

patterns are more complicated. For such cases, identifying optimal pricing strategies can be 

challenging as different pricings might be applied for different parts of a city. Furthermore, 

combing the promotion of bus usage with pricing deserves research attention. It has been 

shown that this strategy, if applied properly and accepted by users in real-life, can 

significantly increase mobility and multimodality.   
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