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Abstract—Query optimizers depend heavily on statistics rep-
resenting column distributions to create efficient query plans. In
many cases, though, statistics are outdated or non-existent, and
the process of refreshing statistics is very expensive, especially for
ad-hoc workloads on ever bigger data. This results in suboptimal
plans that severely hurt performance. The main problem is that
any decision, once made by the optimizer, is fixed throughout
the execution of a query. In particular, each logical operator
translates into a fixed choice of a physical operator at run-time.

In this paper, we advocate for continuous adaptation and
morphing of physical operators throughout their lifetime, by
adjusting their behavior in accordance with the statistical prop-
erties of the data. We demonstrate the benefits of the new
paradigm by designing and implementing an adaptive access path
operator called Smooth Scan, which morphs continuously within
the space of traditional index access and full table scan. Smooth
Scan behaves similarly to an index scan for low selectivity; if
selectivity increases, however, Smooth Scan progressively morphs
its behavior toward a sequential scan. As a result, a system with
Smooth Scan requires no access path decisions up front nor
does it need accurate statistics to provide good performance. We
implement Smooth Scan in PostgreSQL and, using both synthetic
benchmarks as well as TPC-H, we show that it achieves robust
performance while at the same time being statistics-oblivious.

I. Introduction

Perils of Query Optimization Complexity. Query ex-
ecution performance of database systems depends heavily
on query optimization decisions; deciding which (physical)
operators to use and in which order to place them in a plan
is of critical importance and can affect response times by
several orders of magnitude [1]. To find the best possible plan,
query optimizers typically employ a cost model to estimate
performance of viable alternatives. In turn, cost models rely
on statistics about the data. With the growth in complexity
of decision support systems (e.g. templatized queries, UDFs)
and the advent of dynamic web applications, however, the
optimizer’s grasp of reality becomes increasingly loose and
it becomes more difficult to produce an optimal plan [2]. For
instance, to defy complexity and make up for lack of statis-
tics, commercial database management systems often assume
uniform data distributions and attribute value independence,
which is in reality hardly the case [3]. As a result, database
systems are increasingly confronted with suboptimal plans and
subpar performance [4]–[9].

Motivating Example. To illustrate the severe impact of
incomplete statistics and consequent suboptimal access path
choices, we use a state-of-the-art commercial system, referred
to as DBMS-X, and run the TPC-H benchmark [10] (the
exact set-up is discussed in Section VI-B). When considering
access paths, the optimizer needs accurate statistics to estimate
the tipping point between a full scan and an index scan to
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Fig. 1: Non-robust Performance due to Optimization Errors in
a State-of-the-art Commercial DBMS when running TPC-H.

make the proper choice. Figure 1 demonstrates the impact of
suboptimal index choices after tuning DBMS-X for TPC-H;
the graph shows normalized execution times over non-tuned
performance. Despite using the official tuning tool of DBMS-
X in the experiment, for several queries performance degrades
significantly after tuning (e.g., up to a factor of 400 for Q12).1

The only change compared to the original plan of Q12 is the
type of access path operator. This decision however prolonged
the execution time from a minute to 11 hours.

Robust Execution. The core of the problem of suboptimal
plans lies in the fact that even a small estimation error may lead
to a drastically different result in terms of performance. For in-
stance, one tuple difference in cardinality estimation can swing
the decision between an index scan and a full scan, possibly
causing a significant performance drop. Overall, this results
in unpredictable performance thereby affecting the robustness
of the system. In addition, the overall behavior is driven by
the accuracy of statistics present in the current server, which
aggravates the testing repeatability across different servers or
even different invocations (since statistics might change in
between). Stability and predictability, that imply that similar
query inputs should have similar execution performance, are
major goals for industrial vendors towards respecting service
level agreements (SLA) [12]. This is exemplified, nowadays,
in cloud environments, offering paid-as-a-service functionality
governed by SLAs in environments which are much more ad-
hoc than traditional closed systems. In these cases, a system’s
ability to efficiently operate in the face of unexpected and espe-
cially adverse run-time conditions (e.g., receiving more tuples
from an operator than estimated) becomes more important than
yielding great performance for one query input while suffering
from severe degradation for another [13]. We define robustness

1Similar results have been presented in a related study [11].
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in the context of query processing as the ability of a system to
efficiently cope with unexpected and adverse conditions, and
deliver near-optimal performance for all query inputs.

Past efforts on robustness focus primarily on dealing with
the problem at the optimizer level [7], [14], [15]. Nonetheless,
in dynamic environments with constantly changing workloads
and data characteristics, judicious query optimization per-
formed up front could bring only partial benefits as the envi-
ronment keeps changing even after optimization. Orthogonal
approaches on run-time adaptivity [5], [9], [16], [17], although
promising, are lacking the flexibility at the level of access
paths.2 Furthermore, since the violation of the optimizer’s esti-
mates usually triggers reoptimization, these approaches remain
sensitive to the accuracy of statistics, which complicates testing
across different environments.

Smooth Scan. We respond to the need for robust execution
by introducing a novel class of access path operators designed
with the goal of providing robust performance for every input
regardless of the severity of cardinality estimation errors. Since
the understanding of the data distributions is a continuous
process that develops throughout the execution of a query
plan and moreover since one execution strategy might not
be optimal over the entire data set (i.e., we can have sparse
and dense regions with respect to the tuple placement on
disk), we need a new class of morphable operators that
continuously and seamlessly adjust their execution strategy as
the understanding of the data evolves. We introduce Smooth
Scan, an operator that morphs between an index look-up and a
full table scan, achieving near-optimal performance regardless
of the operator’s selectivity and obliviously to the existing
data statistics. Our aim is to provide graceful degradation with
respect to the selectivity increase and be as close as possible to
the performance that could have been achieved if all necessary
statistics were available. In addition, morphing relieves the
optimizer from choosing an optimal access path a priori, since
the execution engine has the ability to adjust its behavior at
run-time as a response to the observed operator selectivity.

Contributions. Our contributions are as follows:

• We propose a new paradigm of smooth and mor-
phable physical operators that adjust their behavior
and transform from one operator implementation to
another according to the statistical properties of the
data observed at run-time.

• We design and implement a statistics-oblivious
Smooth Scan operator that morphs between an index
access and a full scan as selectivity knowledge evolves
at run-time.

• Using both synthetic benchmarks and TPC-H, we
show that Smooth Scan, implemented fully in Post-
greSQL, is a viable option for achieving near-optimal
performance throughout the entire selectivity interval,
by being either competitive with or outperforming
existing access path alternatives.

2They are limited either in their scope (by ignoring intra-operator adaptivity,
or by performing binary switching decisions that introduce risks and could
lead to thrashing) or with respect to performance (by duplicating work and/or
transforming operators into blocking ones).
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Fig. 2: Access Paths in a DBMS.

II. Background

In order to fully understand the advantages and the mech-
anisms of the Smooth Scan operator, this section provides a
brief background on traditional access path operators.

Full Table Scan is employed when there are no alternative
access paths, or when the selectivity of the access operator is
estimated to be high (above 1-10% depending on the system
parameters). The execution engine starts by fetching the first
tuple from the first page of a table stored in a heap, and
continues accessing tuples sequentially inside the page. It then
accesses the adjacent pages until it reaches the last page. Figure
2a depicts an example of a full scan over a set of pages in the
heap; the number placed on the left-hand side of each tuple
indicates the order in which it is accessed. Even if the number
of qualifying tuples is small, a full table scan is bound to fetch
and scan all pages of a table, since there is no information on
where tuples of interest might be. On the positive side, the
sequential access pattern employed by the full table scan is
one to two orders of magnitude faster than the random access
pattern of an index scan.

Index Scan. Secondary (non-clustered) indices are built
on top of data pages. They are usually B+-trees containing
pointers to tuples stored in the heap. Figure 2b depicts a B+-
tree built on top of the same table we used in Figure 2a. The
leaves of the tree point to the heap data pages. A query with a
range predicate needs to traverse the tree once in order to find
the pointer to the first tuple that qualifies, and then it continues
following adjacent leaf pointers until it finds the first tuple that
does not qualify. The upside of this approach, compared to
the full scan, is that only tuples that are needed are actually
accessed. The downside is the random access pattern when
following pointers from the leaf page(s) to the heap (shown as
lines with arrows). Since the random access pattern is much
slower than the sequential one, performance degrades quickly
if many tuples need to be selected. Moreover, the more tuples
qualify, the higher the chance that the index scan needs to visit
the same page more than once.

Sort Scan (Bitmap Scan) represents a middle ground
between the previous two approaches. Sort Scan still exploits
the secondary index to obtain the identifiers (TIDs) of all tuples



that qualify, but prior to accessing the heap, the qualifying
tuple IDs are sorted in an increasing heap page order. In this
way, the poor performance of the random access pattern gets
improved by transforming the access into a (nearly) sequential
pattern, easily detected by disk prefetchers. This strategy,
however, has dramatic influence on the execution model. The
index access that traditionally followed the pipeline execution
model, now gets transformed into a blocking operator which
can be harmful, especially when the index is used to provide
an interesting ordering [18]. One advantage of B-tree indices
comes from the fact that tuples are accessed in the sorted
order of attributes on which the index is built. Sorting of tuple
IDs based on their page placement breaks the natural index
ordering that needs to be restored by introducing a sorting
operator above the index access (or up in the tree). In addition,
the blocking operator so early in the execution plan could stall
the rest of the operators; if they require a sorted input, their
execution can start only after the second sort finishes.

III. Smooth Access Paths

We now present the concept of smooth access path oper-
ators that adjust their execution strategy at run-time to fit the
data distributions. We first discuss Switch Scan that switches
access path strategy with a binary decision at run-time. We
then introduce Smooth Scan that instead of making a single
on/off decision, gradually and adaptively shifts its behavior
between access path patterns, avoiding performance drops.

Switch Scan. The main cause for suboptimal access paths
comes from a wrong selectivity estimation. One approach to
resolve the problem is to monitor result cardinality during
query execution and switch the access path strategy when
we realize that the initial estimation was wrong. Once the
actual cardinality exceeds the expected result cardinality, we
can throw away all the work performed until that point and
restart the execution with a different access path. A more
advanced approach reuses the existing intermediate results,
e.g., by remembering which tuples and pages the previous
access path already visited.

Switching Perils. Switch Scan bounds the worst case
execution time as it will never degrade as much as an index
scan only approach. However, it is still not a robust approach.
The main problem with Switch Scan is that it is based on
a binary decision and switches completely when a certain
cardinality threshold is violated. This means that even a single
extra result tuple can bring a drastically different performance
result if we switch access paths. We refer to the effect of
a sudden increase in execution time as a performance cliff.
The performance hit together with the uncertainty whether the
overhead incurred at the time of a change will be amortized
over the remaining query time renders this approach volatile
and non-robust.

Smooth Scan. The core idea behind Smooth Scan is thus
to gradually transform between two strategies, i.e., a non-
clustered index look-up and a full table scan, maintaining the
advantages of both worlds. Our main objective is to provide
smooth behavior, i.e., at no point should an extra tuple in
the result cause a performance cliff. Smooth Scan instead
morphs its behavior incrementally, and continuously, causing
only gradual changes as it goes through the data and its
estimation about result cardinality evolves.

….

...

...

1

2

3

4

5

6

78

9

10

XX X XX

Flattening AccessEntire Page Probe

Morphing region

Fig. 3: Smooth Scan Access Pattern.

A. Morphing Mechanism

During a single scan Smooth Scan can be in three modes,
while morphing between an index and full scan. In each mode
the operator performs a gradually increasing amount of work
as a result of the selectivity increase.

Mode 1: Entire Page Probe. To avoid repeated page
accesses from which the index scan suffers, in this mode
Smooth Scan analyzes all records from each heap page it
loads to find qualifying tuples, trading CPU cost for I/O cost
reduction. Since the cost of an I/O operation translates to an
order of million CPU instructions [19], Smooth Scan invests
CPU cycles for reading additional tuples from each page with
minimal CPU overhead. Figure 3 depicts the access pattern of
a Smooth Scan in this mode. As in Figure 2, the number at
the left-hand-side of each tuple indicates the order in which
the access path touches this tuple. Within each page, Smooth
Scan accesses tuples sequentially.

Mode 2: Flattening Access. When the result cardinality
grows, Smooth Scan amortizes the random I/O cost by flat-
tening the random pattern and replacing it with a sequential
one. Flattening happens by reading additional adjacent pages
from the heap, i.e., for each page it has to read, Smooth Scan
prefetches a few more adjacent pages (read sequentially). An
example of a morphing region is depicted in Figure 3.

Mode 2+: Flattening Expansion. Flattening Access Mode
is in fact an ever expanding mode. When it first enters
Flattening Access Mode, Smooth Scan starts by fetching one
extra page for each page it needs to access. However, when it
notices result selectivity increase, Smooth Scan progressively
increases the number of pages it prefetches by multiplying it
with a factor of 2. The reason is that, as selectivity increases,
the I/O increase of fetching more potentially unnecessary pages
could be masked by the CPU processing cost of the tuples that
qualify. In this way, as the result cardinality increases more,
Smooth Scan keeps expanding, and conceptually it morphs
more aggressively into a full table scan.

B. Morphing Policies

We now describe how Smooth Scan changes modes.

Greedy Policy. Assuming a worst case scenario, Smooth
Scan can perform morphing expansion after each index probe.
In this way, the morphing expansion greedily follows the
selectivity increase. The upside of this approach is that, due
to its fast convergence, its worst case performance resembles



the performance of a full scan. The downside is that in the
case of low selectivity it introduces an overhead of reading
unnecessary pages that could not be masked by useful work.

Selectivity Increase Driven Policy. Blindly morphing
between the modes may introduce too much overhead if the
I/O cost cannot be overlapped with useful work. With this
policy, Smooth Scan continuously monitors selectivity at run-
time, and it expands the morphing region when it notices a
selectivity increase. In particular, Smooth Scan computes the
result selectivity over the last morphing region and it increases
the morphing region size each time the local selectivity over
the last morphing region (Eq. (1))3 is greater than the global
selectivity over the so far seen pages (Eq. (2)). If selectivity
does not increase, Smooth Scan keeps the previous morphing
region size. This way, morphing is performed at a pace which
is purely driven by the data and the query at hand.

sellocal =
#Pres region

#Pseen region
(1)

selglobal =
#Pres

#Pseen
(2)

Elastic Policy. When considering large data sets, it is
unlikely that a single execution strategy will be optimal during
the whole scan of a big table in a given query; dense and
sparse regions with respect to the tuple placement on disk
frequently appear in such a context due to skewed data
distributions. To benefit from the density discrepancy and use
skew as an opportunity, Smooth Scan uses the Elastic Policy to
morph two-ways; it increases the morphing size over a dense
region, while it decreases the morphing region size when it
passes through a sparse region. More precisely, if the local
selectivity over the last morphing region is higher than the
global selectivity over all tuples seen so far, then this implies
we are in a denser region, hence we double the morphing size.
In the opposite case, we decrease the morphing size for the
next morphing region.

C. Morphing Triggering Point

We now present Smooth Scan morphing triggers.

Optimizer Driven. Smooth Scan can be introduced to the
existing query stack as a reaction to unfavorable conditions,
i.e., as a robustness patch. With this strategy, we initiate
morphing once the result cardinality exceeds the optimizer’s
estimate. A cardinality violation is an indication that the
optimizer’s estimate is inaccurate and that the chosen access
path might be suboptimal. After triggering, Smooth Scan can
morph with either of the policies described in Section III-B.

SLA Driven. Another option is to take action only when
in danger of violating a performance threshold, i.e., a service
level agreement (SLA). For example, let us assume a given
time T as an upper bound (SLA) for the operator execution.
In this case, Smooth Scan continuously monitors execution
and has a running estimate of the expected total cost (based
on the cost model discussed in Section V). The moment we
realize that unless we switch to more conservative behavior
we will not be able to guarantee the SLA target performance,
we trigger morphing with Smooth Scan.

3The meaning of the parameters can be found in Table I.

Eager Approach. An alternative approach, which we favor,
is to completely replace access paths with Smooth Scan. With
this strategy, we eagerly start with Smooth Scan immediately
as of the first tuple. In this way, we guarantee that the total
number of page accesses will be equal to the total number
of heap pages in the worst case. Moreover, with this strategy
there is no need to record tuples produced before morphing
has started (to prevent result duplication), which provides
additional benefit and decreases bookkeeping information.

In our experiments Eager is the default strategy. We study
other strategies in detail in the experimental section.

IV. Introducing Smooth Paths into PostgreSQL

In this section, we discuss the design details of smooth
access operators, and their interaction with the remaining
query processing stack. We implement our operators, both
the Switch Scan and Smooth Scan families in PostgreSQL
9.2.1 DBMS as classical physical operators existing side by
side with the traditional access path operators. During query
execution, the access path choice is replaced by the choice of
Smooth Scan, while the upper layers of query plans generated
by the optimizer remain intact. Unlike the dynamic reoptimiza-
tion approaches proposed in [17], [20], our proposal requires
minimal changes to the existing database architecture.

Switch Scan could conceptually be considered as an in-
stance of Smooth Scan with a threshold driven policy (usu-
ally the optimizer’s result cardinality estimate) that abruptly
switches to Full Scan after reaching the threshold. Therefore,
we do not discuss it separately; except when performing the
experimental evaluation in Section VI-F.

A. Design Details

To make the Smooth Scan operator work efficiently, several
critical issues need to be addressed.

Page ID Cache. To avoid processing the same heap page
twice (since multiple out-of-order leaf pointers of the index
can point to the same page), Smooth Scan keeps track of the
pages it has read and records them in a Page ID Cache. The
Page ID Cache is a bitmap structure with one bit per page.
Once a page is processed its bit is set to 1. When traversing
the leaf pointers from the index, a bit check precedes a heap
page access. Smooth Scan will access the heap page only if
that page has not been accessed before. Otherwise, we skip
the leaf pointer (X in Figure 3) and continue the leaf traversal.

Result Cache. If an index is chosen to support an inter-
esting order (e.g., in a query with an ORDER BY clause),
then the tuple order has to be respected. This means that
a query plan with Smooth Scan cannot consume all tuples
the moment it produces them. To address this, the additional
qualifying tuples found (i.e., all but the one specifically pointed
to by the given index look-up) are kept in the Result Cache.
The Result Cache is a hash-based data structure that stores
qualifying tuples. In this setting, an index probe is preceded
by a hash probe of the Result Cache for each tuple identifier
obtained from the leaf pages of the index. If the tuple is found
in the Result Cache it is immediately returned (and could
be deleted), otherwise Smooth Scan fetches it from the disk
following the current execution mode. The cache deletion is
done in a bulk fashion. We partition the Result cache into a



number of smaller caches that can be deleted once all tuples
from an instance are produced. By grouping the caches per key
ranges, we can remove all items from one cache as soon as the
key range of the cache is traversed. The key range intervals are
decided by looking at the root page of the index, since the root
page is a good indicator of the key value distributions. Even
more precise information on key range distributions could be
obtained by looking at the internal node pages if they are
cached in memory (which is to be expected since these pages
are usually 1� to 1% of data pages).

Tuple ID Cache. If we switch from the traditional index
scan following the Optimizer or SLA Driven strategy, we
have to ensure that the result tuples will not be duplicated.
This could happen if a result tuple is produced by following
the traditional index, and later on we fetch the same page
with Smooth Scan. To address this issue, we keep a cache of
tuple IDs produced with the traditional access in a bitmap-like
structure. Later, while producing tuples with Smooth Scan we
perform a bit check if the tuple has already been produced. The
overhead of the Tuple ID Cache, while relatively low, could be
avoided if a DBMS maintains a strict (indexkey,T ID) ordering
in the secondary index. Then it is sufficient to remember the
last tuple we reached with the traditional index, and ignore
tuples with (indexkey,T ID) lower than that last tuple.

Discussion. Both the Page ID and Tuple ID Cache are
bitmap structures, meaning that their size is significantly
smaller than the data set size (they easily fit in memory). To
illustrate, their size is usually a couple of MB for hundreds
of GB of data. In the Tuple ID cache, we keep IDs of the
tuples produced with the traditional index, which is in practice
significantly lower than the overall number of tuples. The
Result Cache is an auxiliary structure whose size depends
on the access order of tuples, the number of attributes in
the payload, and the overall operator selectivity. By grouping
caches per key value, we are able to delete them as soon as
they are not needed. If memory becomes scarce, cache spilling
could be employed by using overflow files. Caches containing
the ranges the furthest from the current key range are spilled
into the overflow files that are read upon reaching the range
keys belong to.

B. Interaction with Query Processing Stack

Smooth Scan is an access path targeted primarily at
preventing severe degradation due to unexpected selectivity
increase. Nonetheless, its impact goes much beyond.

Simplified Query Optimization. Smooth Scan simplifies
the query optimization process. Effectively, when choosing the
access path for a select operator the optimizer can always
choose a Smooth Scan. The Smooth Scan will then make all
decisions on-the-fly during query execution.

Interaction with Other Operators. The output of Smooth
Scan is input for other operators in a query plan. Depending
on the next operator a different variation of Smooth Scan may
be used. For example, if a Merge Join follows Smooth Scan,
then the variant of Smooth Scan with the result caching will be
used. If instead Index Nested Loops Join (INLJ) is performed,
Smooth Scan does not have to respect the order of tuples
coming from the outer input, hence it can produce tuples the
moment it finds them. If the ordering requirement is placed
by some of the operators up in the tree, we still employ the

TABLE I: Cost model parameters
Parameter Description

TS Tuple size (bytes).

#T Number of tuples in the relation.

PS Page size (bytes).

#TP Number of tuples per page.

#P Number of pages the relation occupies.

KS Size of the indexing key (bytes).

sel Selectivity of the query predicate(s) (%).

card Number of result tuples.

cardmX Number of tuples obtained with Mode X.

#Pres Number of pages containing result tuples.

#Pres region Number of pages with results in the current region.

#Pseen Number of pages seen so far.

#Pseen region Number of pages in the current region.

#randio Number of random accesses.

#seqio Number of sequential accesses.

randcost Cost of a random I/O access (per page).

seqcost Cost of a sequential I/O access (per page).

Derived values

f anout B+-tree fanout.

#leaves Number of leaf pages in B+-tree.

#leavesres Number of leaf pages with pointers to results.

height Height of B+-tree.

OPcost Cost of an operator in terms of I/O.

CR Competitive ratio.

first option. If Smooth Scan serves as an inner input (i.e., a
parameterized path) to an INLJ join, the results per join key
could be produced in an arbitrary order. Smooth Scan thus
performs morphing per key value which reduces the number
of repeated and random access for that particular key. The
latter helps in the case of multiple matches per key (e.g., in a
PK-FK relationship).

Beyond Traditional Join Operators. We have seen how
Smooth Scan enables graceful degradation of joins, by reduc-
ing random and repeated I/O accesses either at the table level
(when served as an outer input) or per join key value (e.g. when
served as an inner input to INLJ). By employing the same
concept of smooth morphing and transformation, we could
benefit even more at the level of join operators. For instance,
by performing caching of additional (qualifying) tuples from
the inner input found along the way (i.e., for each page we
fetch, we put the remaining tuples in the cache), INLJ morphs
into a variant of Hash Join (HJ) overtime, with the index used
only when a tuple is not found in the cache. Similarly, MJ
morphs into a symmetric Hash Join [21], frequently used in
data streaming environments due to its pipelining nature and
amenability for operator reordering at run-time.

Ultimately, a morphable join and a morphable access path
operator can significantly reduce the complexity and fragility
of existing query optimizers. We, however, leave a discussion
on the join operators as an avenue of future work, and do not
use the proposed join optimization here.

V. Modeling Smooth Access Paths

To better grasp the behavior of different access path alter-
natives, and to answer the critical questions of which policy
and mode we should use and when, we model the operators
analytically. Since a single I/O operation corresponds to a
million CPU cycles [19], we expect that I/O dominates the
total operator cost. Thus, we model the cost of the operators
in terms of the number of disk I/O accesses. Nonetheless, a
detailed cost model including the CPU costs can be found
in [22]. Since the nature of the accesses drives the overall



query performance, we make a distinction between the cost of
a sequential and random access.

#TP = �PS

TS
� (3)

#P = � #T
#TP
� (4)

f anout = � PS

1.2×KS
� (5)

#leaves = � #T
f anout

� (6)

height = �log f anout (#leaves)�+1 (7)

card = sel×#T (8)

#leavesres = � card
f anout

� (9)

Table I contains the parameters of the cost model. Formulas
calculating the cost of the non-clustered index scan and the
full scan are presented for comparison purposes (similar cost
model formulas are found in database text books). We assume
indices are implemented as B+-trees, with k as the tree fanout.
Equations 1-7 are base formulas used for all access path
operators. We simplify the calculations by assuming every page
is filled completely (100%) and that heap pages and index
pages are of the same size (PS ). Lastly, we assume that TS
already includes a tuple overhead (usually padding and a tuple
header). In Eq. (5), we calculate the fanout of the B+-tree by
adding 20% of space per key for a pointer to a lower level.
For Eq. (6) and (9), we assume that every tuple stored in a
heap page is pointed by a leaf page of the index.

Full Table Scan. The cost of full scan does not depend on
the number of tuples that qualify for the given predicate(s).
Thus, regardless of the selectivity of the operator its cost
remains constant. As shown in Eq. (10), the I/O cost is equal
to the cost to fetch all pages of the relation sequentially.

FS cost = #P× seqcost (10)

Index Scan. To fetch the tuples with the (non-clustered)
index scan, we traverse the tree once to find the first tu-
ple that qualifies (height in Eq. (11)). For the remaining
tuples, we continue traversing the leaf pages from the index
(#leavesres× seqcost) and use tuple IDs we found to access the
heap pages, potentially triggering a random I/O operation per
look-up.

IS cost = (height+ card)× randcost

+ #leavesres× seqcost (11)

Smooth Scan. We calculate the cost of Smooth Scan for each
mode separately. Overall result cardinality is split between
the modes (Eq. (12)). Like the index scan, the cost of the
smooth scan access is driven by selectivity. Assuming uniform
distribution of the results (worst case scenario), the number of
pages containing the result is calculated in Eq. (13).

card = cardm0+ cardm1+ cardm2 (12)

#Pres = min(card,#P) (13)

Mode 0: Index Scan. If the traditional index is employed
prior to morphing, the I/O cost to obtain first cardm0 tuples is
identical to the cost of the index scan for the same number of
tuples, hence we omit the formula.

Mode 1: Entire Page Probe. We calculate the number of
tuples for which Mode 1 is going to be employed in Eq. (14)
(again for the worst case). Every page is assumed to be fetched
with a random access (Eq. (15)).

#Pm1 = min(cardm1,#P) (14)

S S cost m1 = #Pm1× randcost (15)

Mode 2: Flattening Access. We calculate the maximum
number of pages to fetch with Mode 2 in Eq. (16). Notice
that pages processed in Mode 1 are skipped in Mode 2. The
nature of the morphing expansion in Mode 2(+) of Smooth
Scan is described with Eq. (17). The solution of the recurrence
equation is shown in Eq. (18). In our case, n is the number of
times we expand the morphing region size (i.e., the number of
times we perform a random I/O access) and f (n) translates to
the number of pages to fetch with Mode 2 (#Pm2). We obtain
the minimum number of random accesses (jumps) to fetch all
pages containing the results from Eq. (20). This number is the
best case scenario, when the access pattern is such that all
pages are fetched with the flattening pattern without repeated
accesses. The worst case scenario number of random accesses
is shown in Eq. (21). When selectivity is low, the number of
random I/O accesses could at worst be equal to the number of
pages that contain the results. There is an upper bound to it,
equal to the logarithm of the number of pages in total.

Since both formulas (20) and (21) converge to the same
value equal to log2(#P+1), we use this value in the remainder
of the section. The I/O cost of Mode 2 of Smooth Scan is
shown in Eq. (22), and is equal to the cost of the number of
jumps with a random access pattern, plus the cost to fetch the
remaining number of pages with a sequential pattern.

#Pm2 = min(cardm2,#P−#Pm1) (16)

f (i+1) = 2× f (i), i = 0..n (17)

f (0) = 0, f (n) = 2n,n >= 0 (18)

#Pm2 =

#randio(m2 min)∑

i=0

2i (19)

#randio(m2 min) = log2 (#Pm2+1) (20)

#randio(m2 max) = min
(
#Pm2, log2 (#P+1)

)
(21)

S S cost m2 = #randio(m2)× randcost

+ (#Pm2−#randio(m2))× seqcost(22)

Finally, the overall cost is the sum of the operator I/O costs
for all employed modes (Eq. (23)).

S S cost = S S cost m0+S S cost m1+S S cost m2 (23)

The cost model formulas allow us to predict the cost of
Smooth Scan, or to decide when is time to trigger a mode
change. For instance, for the SLA driven strategy we know
the overall operator cost defined by an SLA. Based on that
cost and Eq. (23), we can calculate the cardinality, i.e., the
triggering point for Smooth Scan calculated for the worst case
scenario (selectivity 100%). The accuracy of the cost model is
corroborated in experiments presented in [22].

A. Competitive Analysis Summary

To analyze the worst-case performance of Smooth Scan
we do a competitive analysis, comparing the Smooth Scan



operator against optimal decisions. We calculate a competitive
ratio (CR) as the maximum ratio between the cost of Smooth
Scan and the optimal solution throughout the entire selectivity
interval. This metric is important when considering robustness,
since it provides bounds on the worst case suboptimality. Due
to lack of space, we present here a summary of the results,
while the full analysis can be found in [22].

Summary. Our analysis shows that the CR of Greedy
Smooth Scan has a soft upper bound, i.e., the CR is a sublinear
increasing function dependent on the table size, which makes
this policy non-desirable. Selectivity Increase Policy also has a
soft bounded CR, since an initial selectivity increase can lead
to a large morphing region for the rest of the operator lifetime
as shown in Section VI-D (Skew).

The worst CR for Elastic Smooth Scan appears when the
number of random I/O accesses is maximized. This happens
when the access is such that Elastic Smooth Scan never morphs
(every second page has a match), since it never detects the local
selectivity increase. For characteristics of HDDs (randcost =
10 and seqcost = 1), the CR reaches the value of 5.5 when
compared to Full Scan. The same ratio has a value of 3 in the
case of SSDs (for randcost = 2 and seqcost = 1). The theoretical
bound in this case is 11 for HDDs and 6 for SSDs, and is
purely driven by the ratio between the random and sequential
access. Overall, the Elastic policy proves to be the most robust
solution. Moreover, in our experiments, we have empirically
observed a CR of 2 for this policy.

VI. Experimental Evaluation

We now present a detailed experimental analysis of Smooth
Scan. We demonstrate that Smooth Scan achieves robust
performance in a range of synthetic and real workloads without
having accurate statistics, while existing approaches fail to do
so. Furthermore, Smooth Scan proves to be competitive with
existing access paths throughout the entire selectivity range,
making it a viable replacement option.

A. Experimental Setup

Software. Our adaptive operators are implemented inside
PostgreSQL 9.2.1 DBMS. To demonstrate the problem of
robustness presented in Section I we use a state-of-the-art row-
store DBMS we refer to as DBMS-X.

Benchmarks. We use two sets of benchmarks to showcase
algorithm characteristics: a) for stress testing we use a micro-
benchmark, and b) to understand the behavior of the operators
in a realistic setting we use the TPC-H benchmark SF 10 [10].

Hardware. All experiments are conducted on servers
equipped with 2 x Intel Xeon X5660 Processors, @2.8 GHz
(with L1 32KB, L2 256KB, L3 12MB caches), with 48 GB
RAM, and 2 x 300 GB 15000 RPM SAS disks (RAID-0
configuration) with an average I/O transfer rate of 130 MB/s,
running Ubuntu 12.04.1. In all experiments we report cold
runs; we clear database buffer caches as well as OS file system
caches before each query execution.

B. TPC-H analysis

TPC-H in DBMS-X. In Figure 1 in Section I, we demon-
strated the severe impact of sub-optimal index choices on
the overall TPC-H workload. For this experiment, we used
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Fig. 4: Improving performance of TPC-H with Smooth Scan.

TABLE II: I/O Analysis
Q1 Q4 Q6 Q7 Q14

pSql SS pSql SS pSql SS pSql SS pSql SS

#I/O Req.(K) 71 77 225 235 566 95 745 124 416 87

Read data(GB) 8.9 10.2 10.9 12.1 8.7 8.8 11.6 11.6 6.8 8.9

the tuning tool provided as part of DBMS-X, with 5GB
of space allowance (1/2 of the data set size) to propose a
set of indices estimated to boost performance of the TPC-H
workload. In queries Q12 and Q19, the presence of indices
favors a nested loop join when the number of qualifying tuples
in the outer table is significantly underestimated, resulting in
a significant increase in random I/O to access tuples from
the index (“table look-up”), which in turn results in severe
performance degradation (factors 400 and 20 respectively). In
both cases the access path operator choice is the only change
compared to the original plan, i.e., the join ordering stays
the same. Smaller degradation as a result of a suboptimal
index choice followed by join reordering occurs in several
other queries (Q3, Q18, Q21) resulting in an overall workload
performance degradation by a factor of 22.

Improving performance with Smooth Scan. We now
demonstrate a significant benefit that Smooth Scan brings to
PostgreSQL compared to the optimizer’s chosen alternatives
when running TPC-H queries. Since PostgreSQL does not
have a tuning tool, we create the set of indices proposed by
the commercial system from the previous experiment (on the
same workload). Figure 4 shows the results for 5 interesting
TPC-H queries4 that cover selectivities from both ends of
spectrum. The query execution plans are given in Appendix
A of [22]. Q1 and Q6 are single table selection queries, with
the selectivity of 98% and 2% respectively. Q4 and Q14 are
two-table join queries with two selectivity extremes (65% and
1% respectively) when considering the LINEITEM table. The
performance greatly depends on the selectivity of this table,
since it is the largest. Lastly, we run Q7, a 6-table join. Since
Smooth Scan trades CPU utilization for I/O cost reduction,
we show the execution breakdown through CPU utilization
and I/O wait time (i.e., the blocking I/O in the critical path of
execution). Similarly, in Table II we show the number of I/O
requests issued by the operators, coupled with the amount of
data transferred from the disk.

Figure 4 shows that PostgreSQL with Smooth Scan avoids
extreme degradation and achieves good performance for all
queries. For instance, while plain PostgreSQL suffers in Q6
due to a suboptimal choice of an index scan, PostgreSQL

4These queries represent “choke points” for testing data access locality [23].



with Smooth Scan maintains good performance preventing a
degradation of a factor of 10. Q6 selects 2% of the data, which
in the case of the index scan causes 566K of random (blocking)
I/O accesses over the LINEITEM table (shown in Table II).
By flattening (i.e., grouping accesses together) and avoiding
repeated accesses, Smooth Scan reduces this number to 95K
which resulted in much better performance.

On the other hand, in query Q1 with selectivity of 98%
the plain PostgreSQL chooses Sort Scan (also called Bitmap
Heap Scan), which is an optimal path. However, even in this
case Smooth Scan introduces only a marginal overhead; it
quickly realizes that the result selectivity is high and adjusts the
execution by forcing sequential accesses. As a result, Smooth
Scan adds an overhead of only 14% over the optimal behavior.
This overhead is due to periodical random I/O accesses when
following pointers from the index, which increased the number
of I/O requests to disk pages from 71K to 77K.

In Q4, the selectivity of the LINEITEM table is 65%,
and PostgreSQL chooses the full scan as the outer table of a
nested loop join with a primary key look-up as the inner input.
Although Smooth Scan starts with using the index lookup on
the outer table as well, it quickly adjusts its access patterns
and adds less than 1% of overhead over the optimal solution.

On the contrary, the selectivity of the LINEITEM table in
Q14 is around 1%. Both plain PostgreSQL and our implemen-
tation start with an index scan as the outer input, joined with an
INLJ with ORDERS (a primary key look-up). Unlike the index
scan that issues 416K I/O requests, Smooth Scan issues only
87K requests which translates to a performance improvement
of a factor of 8. In both join queries, Smooth Scan does not
perform any additional page fetching over the inner tables since
for each probe we have a single match; thus there is no need to
perform additional adjustments, which Smooth Scan correctly
detects.

Lastly, an index choice for plain PostgreSQL over the
LINEITEM table for a 6-way join in Q7 hurts performance by
a factor of 7 compared to the performance of Smooth Scan.

Discussion. Our memory structures span a couple of MB
in these experiments. For illustration, the Page ID cache for
the LINEITEM occupies 140KB (for 1M pages). Although
Smooth Scan can transfer from disk larger amounts of data
compared to the original access path, its benefit comes from
exploiting the access locality and issuing fewer I/O requests.
Overall, Smooth Scan provides robust behavior without re-
quiring accurate statistics. It brings significant gains when the
original system makes a wrong decision and only marginal
overheads when a correct decision can be made.

C. Fine-grained Analysis over Selectivity Range

We now use a micro-benchmark to stress test the various
access paths. We compare Smooth Scan against Full Scan,
Index Scan and Sort Scan to demonstrate the robust behavior of
Smooth Scan. All experiments are run on top of our extension
of PostgreSQL, thus Full Scan, Index Scan and Sort Scan are
the original PostgreSQL access paths. The micro-benchmark
consists of a table with 10 integer columns randomly populated
with values from an interval 0− 105. The first column is the
primary key identifier, and is equal to a tuple order number.
The table contains 400M tuples, and occupies 25GB of disk
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Fig. 5: Smooth Scan vs. Alternatives w. and w/o. Order By.

space for 3M pages of 8KB size (PostgreSQL’s default value).
In addition to the primary key, a non-clustered index is created
on the second column (c2). We run the following query:

Q1: select * from relation where c2>= 0 and c2<X%
[order by c2 ASC];

Supporting an interesting order. In this experiment, we
show that Smooth Scan serves its purpose of being an index
access path; it maintains tuple ordering and hence outperforms
other alternatives for queries (or sub-plans) that require the
ordering of tuples. Figure 5a shows the performance of all
alternative access paths for a query with an order by clause.
The performance of Index Scan degrades quickly due to
repeated and random I/O accesses. For selectivity 0.1% its
execution time is already 10 times higher than Full Scan,
reaching a factor of more than a 100 for 100% selectivity.
Sort Scan solves the problem of repeated and random accesses,
while at the same time fetching only the heap pages that
contain results; therefore, it is the best alternative for selectivity
below 1%. Nonetheless, its sorting overhead grows and for
selectivity above 2.5% it is not beneficial anymore. Smooth
Scan is between the alternatives when selectivity is below
2.5%, while it achieves the best performance for the selectivity
above this level. This is due to avoiding the overhead of
posterior sorting of tuples to produce results respecting the
interesting order, from which Full Scan and Sort Scan suffer.

Without an interesting order. Figure 5b shows the perfor-
mance of the access paths when executing Q1 without the order
by clause. For selectivity between 0 and 2.5% the behavior of
the operators is the same as in the previous experiment. For
higher selectivity, however, Full Scan is the best alternative,
since it performs a pure sequential access. Both Sort Scan and
Smooth Scan, however, manage to maintain good performance.
The overhead of Sort Scan is attributed to the pre-sort phase
of the tuples obtained from the index; after that the access
is nearly sequential (page IDs are monotonically increasing).
Smooth Scan does not suffer from the sorting overhead, but it
does suffer from a periodical random I/O accesses driven by the
index probes, adding less than 20% overhead when compared
to Full Scan for 100% selectivity. A different behavior is
observed when the experiment is run on an SSD (shown in
Figure 10), where Smooth Scan benefits much more compared
to Sort Scan (by a factor of 3).

Discussion. Smooth Scan bridges the gap between existing
access paths. Its performance does not degrade when selectiv-
ity increases, like in the case of Index Scan. This is particularly
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Fig. 6: Sensitivity Analysis of Smooth Scan Modes.

important in real-life scenarios where a degradation in Index
Scan causes performance drops of several orders of magnitude
[2]. At the same time, Smooth Scan does not pay the cost of
Full Scan to select just a few tuples, which is important for
point queries for which Full Scan is not practical. When the
order is not imposed the absolute performance of Smooth Scan
is comparable to that of Sort Scan; nonetheless, the benefit of
Smooth Scan becomes visible when considering its placement
in the query plan. Unlike Sort Scan, Smooth Scan adheres to
the pipelining model, which is important since the access path
operators are executed first and can stall the rest of the stack.
When selectivity is below 0.01%, Smooth Scan’s Competitive
Ratio reaches a factor of 2 over the optimal solution. To
put absolute numbers in perspective, in our experiment a
maximal overhead of 60 seconds is paid to prevent a worst
case performance degradation of 11 hours. In decision support
systems that are characterized by long running queries, this
overhead is likely to be tolerable as a robustness guarantee
for the prevention of severe performance drops that frequently
happen due to data correlations and skew.

D. Sensitivity analysis of Smooth Scan

We now study the parameters that affect the performance
of Smooth Scan such as the impact of its morphing modes,
policies, and strategies. We show the bookkeeping overhead
and study the Smooth Scan effect on HDDs versus SSDs. For
all experiments in this section, unless stated otherwise, we use
Q1 from the micro-benchmark without an order by clause.

Impact of the Entire Page Probe Mode. The pointer
chasing of non-clustered indices when performing a tuple look-
up in general hurts performance when the selectivity increases.
Figure 6 depicts the improvement that Smooth Scan achieves
by removing repeated accesses when executing query Q1 from
the micro-benchmark. The curve of Smooth Scan denoted as
the Entire Page Probe morphs only until Mode 1. Smooth Scan
improves by a factor of 10 when compared to Index Scan for
selectivity 100%. The performance of Smooth Scan degrades
with selectivity increase up to 1%; this is the point where
approximately all pages have been read. With 120 tuples per
page (64-byte tuples in 8KB pages) and uniform distribution,
we expect one tuple from each page to qualify. After that
point the execution time stays nearly flat with the increase
of 20% for 100% selectivity, showing that the overhead of
reading the remaining tuples from a page is dominated by the
time needed to fetch a page from disk. The execution time of
Smooth Scan when morphing only up to Mode 1, is however
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Fig. 7: Impact of Policy and Trigger Choices.

still significantly higher (a factor of 14) compared to Full Scan
for 100% selectivity. This is due to the discrepancy between
random and sequential page accesses; the former being an
order of magnitude slower in the case of HDD.

Impact of the Flattening Access Mode. To alleviate
the random access problem, Smooth Scan employs Mode 2+
(shown in Figure 6 as the Flattening Access curve). By fetching
adjacent pages Smooth Scan amortizes access costs at the
expense of extra CPU cost to go through all the fetched data.
We perform a sensitivity analysis on the maximum number
of adjacent pages up to which we perform the morphing
expansion. Our experiments show that 2K pages are optimal
(translates to a block size of 16MB); thus we keep this value
as the maximum region size for the rest of the experiments.
Smooth Scan with Flattening Access is not only much better
than Index Scan (by a factor of 115) but also nearly approaches
the behavior of Full Scan; in the worst case of selectivity 100%
Smooth Scan is only 20% slower than Full Scan.

Impact of Policy Choices. We plot the impact of policy
choices in Figure 7a. The Greedy policy morphs with each
index probe, and hence converges to the full scan faster than
other policies. For lower selectivity the Selectivity Increase
and Elastic policies introduce less overhead compared to the
Greedy since they fetch fewer adjacent pages, i.e., more
pages need to be seen for the morphing size to increase.
This particularly holds for the Elastic policy that adjusts the
morphing size depending on the selectivity of the fetched
regions. Since it is the most adaptive to the changes in the
operator selectivity, we favor it in the rest of the experiments.

Impact of Trigger Choices. In Figure 7b, we plot the
impact of triggering strategy choices. The Eager strategy starts
immediately with Smooth Scan; in this case we plot the
Elastic Smooth Scan. The Optimizer Driven strategy starts
with the traditional index and changes to Smooth Scan after
15K tuples (the optimizer’s estimated cardinality), causing the
increase in the execution time for selectivity 0.005%. After
the shift to Smooth Scan, for this experiment we continue
with the Selectivity Increase Driven policy. The overhead of
the Optimizer Driven strategy increases for higher selectivity
compared to the Eager strategy and is attributed to a tuple
check for each tuple produced with Smooth Scan, and to
additional repeated accesses of the same pages accessed before
the Smooth Scan behavior is triggered. On the other hand the
initial execution time is lower compared to the Eager strategy
due to fewer page accesses. Similar behavior is observed with
the SLA driven triggering strategy, with a sharper cliff for point
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0.009%, since with this strategy we switch immediately to
Greedy. For this experiment we have set an upper performance
bound equal to the performance of 2 full scans as the SLA
constraint; the calculated bound is shown as the orange dotted
line in Figure 7b. According to the model the morphing
triggering point is 32K tuples, which guarantees the execution
time just slightly below the SLA bound for 100% selectivity.

Overall, the Eager strategy strikes a balance in terms of
overall performance. However, if we are in an environment
where respecting SLA is the main priority, or Smooth Scan
serves as a means of fixing sub-optimal decisions then an SLA
or Optimizer strategy are viable alternatives; we easily turn a
strategy knob depending on the applications requirements.

Adjusting to Skew Distribution. Smooth Scan has demon-
strated the ability to prevent execution time blow-up due
to selectivity increase. Many modern applications, however,
exhibit non-uniform data distributions (stock markets, internet
networks, etc.). For these applications one execution strategy
is not likely to optimally serve the entire table. We show that
Smooth Scan can adapt well to skewed distribution of values
across pages. We use the Elastic policy and compare it against
the Selectivity Increase (SI) policy.

We use a table with 1.5B tuples, 10 integer columns
(random values from [0-105]) that occupy 100GB, and create a
secondary index on the second column (c2). First 15M tuples
have c2 = 0; afterwards another 0.001% of random tuples have
value 0. The result selectivity is slightly above 1%, with most
of the tuples coming from the pages placed at the beginning
of the relation heap, i.e. we read all tuples where c2 = 0.

Figure 8a plots the execution time of Index Scan, Full Scan,
SI and Elastic Smooth Scan; Figure 8b plots the number of
distinct pages fetched to answer the query. From Figure 8b
we see that SI Smooth Scan fetches 56 times more pages
than Elastic Smooth Scan, and it is 5 times slower. The large
number of pages is due to the initial skew; SI Smooth Scan
notices the high selectivity increase at the beginning, and in
order to reduce the potential degradation it continues fetching
big chunks of sequentially placed page, ultimately fetching
8.8M out of 12.5M pages. On the contrary, after the dense
region, Elastic Smooth Scan decreases the morphing step,
quickly converging back to the access of a single page per
probe, ultimately ending up with only 150K pages fetched
(Index Scan fetches 140K pages; the severe impact of repeated
and random I/O is not seen for Index Scan, since the index
key follows the page placement on disk). Elastic Smooth Scan,
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Fig. 9: Analysis of Auxiliary Data Structures.

thus, continues providing near-optimal performance, despite
the significant initial skew. This is particularly important for
long-running queries over big data, where data distribution
tends to be non-uniform [16]. Approaches that employ one
execution strategy, or run multiple alternatives shortly and kill
all but the winning one are likely to make a mistake and not be
able to benefit from this density discrepancy; Elastic Smooth
Scan, however, adjusts its behavior to fit the data distribution.

Auxiliary Data Structures. To avoid repeated page ac-
cesses, Smooth Scan in PostgreSQL uses the data structures
described in Section IV-A. We now show the bookkeeping
overhead of these structures and their hit rate, demonstrated
on Q1 from the micro-benchmark with an ORDER BY clause.

Figure 9a shows that Result Cache adds a maximal over-
head of 14% when storing all result matches in the cache
(shown as blue bars). At the same, the Result Cache Hit Rate
(calculated as the ratio between the number of tuple requests
served from the cache and the total number of tuple requests)
reaches 100% for 1% selectivity. Figure 9b shows that the
morphing accuracy (calculated as the ratio between the number
of pages containing result matches and the total number of
checked pages with Smooth Scan morphing) gets improved
after 1%, reaching 100% for 2.5% selectivity. The overhead
of page ID checks remains significantly below 1% in all our
experiments, hence we do not show it separately.

E. Smooth Scan on SSD

Given the different access costs of solid state disks (SSD),
better random access performance, and the forecasts of their
potential replacement of HDD [24], we now stress test Smooth
Scan on SSD. We use a solid state disk OCZ Deneva 2C
Series SATA 3.0 with advertised read performance of 550MB/s
(offering 80kIO/s of random reads).

Figure 10 demonstrates that Smooth Scan benefits even
more from solid state technology than with hard disks (shown
in Figure 5). SSDs are well known for removing mechanical
limitations of disks, which enables them to achieve better
performance of random I/O accesses. Our analysis for the
hardware used in this paper, shows that random I/O accesses
are two times slower than sequential accesses on SSD, while
this discrepancy reaches a factor of 10 in the case of HDD.
This difference makes Index Scan (and Smooth Scan) more
beneficial on SSD than on HDD. In our experiments, Index
Scan on HDD is beneficial only for selectivity below 0.01%,
while on SSD this range increases until 0.1%. For higher
selectivity, Index Scan on SSD still loses the battle against
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other alternatives, since it suffers from repeated accesses and
cannot benefit from the flattening pattern compared with other
alternatives. Consequently, Index Scan is slower than Smooth
Scan by a factor of 30 for 100% selectivity. What is interesting
to note is that Sort Scan loses the battle against Smooth Scan
for selectivity above 0.1% (even without the imposed order).

Discussion. Smooth Scan favors SSD over HDD, since
occasional random jumps when following the index pointers do
not hurt performance much, compared to the sorting overhead
of Sort Scan to presort tuples. Smooth Scan is faster than
Full Scan for selectivity below 20%, and is only 10% slower
for 100% selectivity. The smaller gap between random and
sequential I/O and the decreased SSD latency, thus makes
Smooth Scan a promising solution for the future.

F. Switch Scan: A Straw Man Adaptivity

In this section we study the benefit of Switch Scan as a
straightforward approach to providing a mid-operator run-time
adaptivity. We demonstrate that although a simple solution
can help in some cases (SLA), there are consequences behind
binary decisions such as performance cliffs or the inability to
return once the decision has been made.

Figure 11 shows Switch Scan when executing query Q1
from the micro-benchmark. We can observe a performance
cliff for 0.009% selectivity, due to the strategy switch. In this
example, the optimizer’s cardinality estimate is 32K tuples
and it decided to employ an index scan. While monitoring
the actual cardinality, we observe more than 32K tuples and
perform the switch before producing the next result tuple.
The execution time to produce 32001 tuples now becomes
the execution time of the index seek for 32K tuples plus the
execution time of the full table scan. After the switch, Switch
Scan performs just like Full Scan, avoiding degradation of
more than an order of magnitude when selectivity is 100%.
Nonetheless, the moment we opt for the switch, the execution
time increases by the time of the full scan, which might not
be amortized over the rest of the query’s lifetime.

Discussion. Since the decision highly depends on the
accuracy of the statistics, this approach is volatile and hence
non-robust. Smooth Scan, on the other hand, manages to
approach the optimal behavior while being statistics-oblivious.

VII. Related work

Smooth Scan draws inspiration from a large body of work
on adaptive and robust query processing. We briefly discuss
the work more related to our approach, while for a detailed
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Fig. 11: Switch Scan Performance Cliff and Overall Benefit.

summary the interested reader may refer to [8].

Statistics Collection. Since the quality of plans depends on
the accuracy of data statistics, a plethora of work has studied
techniques to improve the statistics accuracy in DBMS. Mod-
ern approaches monitor execution to exploit this information
in future query compilations [4], [25], [26]. In dynamically
changing environments, however, statistical information rarely
stays unchanged between executions; consider data ingest
different devices produce (e.g., smart meters [27], data from
Facebook, etc.). Orthogonal techniques focus on modeling the
uncertainty about the estimates during query optimization [7],
[28]. Considering the two-dimensional change in the workload
characteristics (frequent data ingest, and ad-hoc queries) in
modern applications, and the high price of having up-to-date
statistics for all cases in the exponential search space [26],
[29], the risk of having incomplete statistics remains high.

Single-plan Adaptive Approaches. From the early pro-
totypes to most modern database systems, query optimizers
determine a single best plan for a given query [18]. To cope
with suboptimal plans, work on adaptive query processing
employed reoptimization techniques in the middle of query
execution [5], [9], [16], [17]. Since this reoptimization step
can introduce overheads in query execution, an alternative
technique proposed in the literature is to choose a plan, from
a predefined set chosen at compile time, based on the actual
values of parameters at run-time [30], [31]. A middle ground
between reoptimization and dynamic evaluation is proposed in
[6], [7], where a subset of more robust plans is chosen for given
cardinality boundaries. Regardless of the strategy when to
adjust behavior, reoptimization approaches suffer from similar
binary decisions that we have seen with Switch Scan; once
reoptimization is employed, the strategy switch will almost
certainly trigger a performance cliff.

Multi-plan Adaptive Approaches. Some of the early
techniques with multi-plan approaches employed competition
to decide between alternative plans [20], [32]. Essentially, mul-
tiple access paths for a given table are executed simultaneously
for a short time and the one that wins is used for the rest of
the query plan. In contrast, Smooth Scan does not perform
any work that is thrown away later and is able to adjust the
strategy multiple times during execution.

Adaptive and Robust Operators. With workloads being
less predictable, adaptive indexing emerged, with index tuning
being a continuous effort instead of a one time procedure.
Database cracking and adaptive merging techniques [33]–[35]
lower the creation cost of indices and distribute it over time



by piggybacking on queries to refine indices. Despite bringing
adaptivity in index tuning, these techniques stay susceptible
to the optimizer’s mistakes. The closest to our motivation of
achieving robustness in query processing is G-join [36], an
operator that combines join alternatives into a hybrid join
operator; we, however, consider access path operators and
morph from one operator alternative to another at runtime.

Improving IO Access. Index-lookups cause poor disk
performance due to random-access latency. Asynchronous IO
with prefetching [37] improves performance of such pattern
but still suffers from repeated page reads and small access
size. Partial sorting of tuples [37], [38] can improve access
locality and size, but unless the entire input is sorted, repeated
page reads are still possible.

VIII. Conclusion

With the increase in complexity of modern workloads and
the technology shift towards cloud environments, robustness in
query processing is gaining momentum. With current systems
remaining sensitive to the quality of statistics, however, the
run-time performance of queries may fluctuate severely even
after marginal changes in the underlying data. For a productive
user experience, the performance for every query must be
robust, i.e., close to the expected performance, even with
missing, stale, or insufficient statistics.

This paper introduces Smooth Scan, a statistics-oblivious
operator that continuously morphs between the two access path
extremes: an index look-up and a full table scan. As Smooth
Scan processes data during query execution, it understands the
properties of the data and morphs its behavior to the preferred
access path. We implement Smooth Scan in PostgreSQL and
through both synthetic benchmarks and TPC-H we show that it
achieves near-optimal performance throughout the entire range
of possible selectivities.
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