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ABSTRACT

A K∗-sparse vector x∗ ∈ R
N produces measurements via linear

dimensionality reduction as u = Φx∗ + n, where Φ ∈ R
M×N

(M < N), and n ∈ R
M consists of independent and identically

distributed, zero mean Gaussian entries with variance σ2. An algo-
rithm, after its execution, determines a vector x̂ that has K-nonzero
entries, and satisfies ‖u − Φx̂‖ ≤ ε. How far can x̂ be from x∗?
When the measurement matrix Φ provides stable embedding to 2K-
sparse signals (the so-called restricted isometry property), they must
be very close. This paper therefore establishes worst-case bounds
to characterize the distance ‖x̂ − x∗‖ based on the online meta-
information. These bounds improve the pre-run algorithmic recov-
ery guarantees, and are quite useful in exploring various data error
and solution sparsity trade-offs. We also evaluate the performance
of some sparse recovery algorithms in the context of our bound.

Index Terms— near-oracle performance guarantees, restricted
isometry property, compressive sensing

1. INTRODUCTION
Many problems in data mining, learning, and compressive sensing
(CS) feature a linear dimensionality reduction where an unknown
signal x∗ ∈ R

N is related to its observations u ∈ R
M via

u = Φx∗ + n, (1)

where the vector n ∈ R
M typically consists of independent and

identically distributed (iid), zero mean Gaussian noise with a known
variance σ2. In the sequel, we assume that the columns of Φ are nor-
malized. Because of the broad applicability of (1), there is now a sig-
nificant interest to obtain improved compression rates (i.e., smaller
M ); more stable recovery schemes; faster sampling and recovery
times; and improved analytical recovery bounds.

Since dimensionality reduction loses information in general
(i.e., Φ has a non-trivial null space), we need prior information
to correctly identify the true vector x among–possibly–infinitely
many other vectors that can produce the same measurements u. It is
now well-known that sparse representations provide sufficient prior
information for algorithms to stably and provably recover signals
when the measurement matrix provide stable embedding to the set
of sparse signals. A signal x ∈ R

N has a sparse representation as
x = Ψv in a basis Ψ ∈ R

N×N , when K � N coefficients of v can
exactly represent the signal x. By stable embedding, we mean that
the matrix Φ satisfies the restricted isometry property (RIP) with
isometry constants μ̃K and L̃K :
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μ̃K ‖v‖2 ≤ ‖Φv‖2 ≤ L̃K ‖v‖2 , ∀v ∈ ΣK ; (2)

where ΣK is the set of all K-sparse vectors.1

Random matrices satisfy RIP with high probability [1, 2]. More-
over, their isometry constants are well-characterized in many cases.
For example, when Φ is generated iid Gaussian and is column nor-
malized to unit norm, we have L̃K ≤ (1 +

√
K/M +

√
2t/M)2,

and μ̃K ≥ (1 − √
K/M − √

2t/M)2 with probability 1 − e−t.
Explicit calculations for sub-sampled Fourier matrices can be found
in Theorem 3 in [3]. Other calculations for sparse matrices, based
on expander graphs can be found in [4].

Over the last decade, quite a few sparsity seeking recovery algo-
rithms has been proposed, each of which boasts different recovery
guarantees and speed, along with different parameters for turning,
such as relaxation parameter and desired sparsity level. Surprisingly,
when we execute the available software packages for sparse recovery
problems, we typically obtain different solutions with varying levels
of sparsity. Then, the typical rule-of-thumb, e.g., in machine learn-
ing, stipulates that we pick the sparsest solution instead of the one
that provides the least data error, i.e., f(x) = ‖u − Φx‖2. A more
rigorous understanding of this trade-off could help practitioners to
decide which algorithm is more useful for their own problem.

In this paper, we analytically explore such trade-offs in the pres-
ence of iid Gaussian noise. We assume the measurement matrix Φ
provides stable embedding with known or bounded isometry con-
stants μ̃ and L̃. We then show that if an algorithm obtains a K-sparse
solution x̂, where f(x̂) ≤ ε̃2, then

‖x̂− x∗‖ ≤ ε̃+Δx∗,K√
μ̃2K

+ 4

√
(1 + a)K logN

μ̃2K
σ, (3)

with probability exceeding 1− (
√

π(1 + a) logN ·Na)−1, where

Δx∗,K =

√
L̃K√
μ̃2K

νx∗ + ‖x∗ − x∗
K‖ is the irrecoverable energy, x∗

K

is the best K-term approximation of the true solution x∗ and νx∗ =
‖x∗ − x∗

K‖2 + 1√
K

‖x∗ − x∗
K‖1. ν is known as the irrecoverable

energy in sparse approximation [5]. This bound is quite useful to
compare the recovery performance of different algorithms after their
execution when we have estimates of the decay profile and the total
energy of typical signals.

The paper is organized as follows. Section 2 presents an oracle
performance bound on the problem in the presence of iid Gaussian
noise and some preliminary definitions. Section 3 establishes our
main result in (3) via a series of theorems. Section 4 compares the
performance of three algorithms in the context of our bound. Section
5 provides a concluding discussion.

1In the sequel, we assume that the signals are canonically sparse without
loss of generality (e.g., Ψ = I).
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2. PRELIMINARIES

We first set the stage by establishing a lower-bound on the minimum
error that we can hope to achieve, and then introduce various algo-
rithms that we use in Section 4.

The least-squares oracle estimator is defined as xoracle = Φ†
x∗
K
u,

which has the full knowledge of the support of x∗
K (e.g., the locations

of the sparse coefficients). We denote Φx∗
K

as the submatrix of Φ
that contains the columns in the support of x∗

K . According to [6,
7], the mean squared error (MSE) of the oracle for the iid white
Gaussian noise model is bounded by

E ‖x̂oracle − x∗‖2 ≤ Δ̃2
x∗,K +

Kσ2

μ̃K
,

where Δ̃x∗,K � ‖x∗ − x∗
K‖+

√
L̃K
μ̃K

νx∗ and νx∗ = ‖x∗ − x∗
K‖2+

1√
K

‖x∗ − x∗
K‖1 [5]. In a similar way, using Jensen’s inequality, we

can obtain a bound on the mean of the error:

E ‖x̂oracle − x∗‖ ≤ Δ̃x∗,K +

√
Kσ√
μ̃K

.

While the oracle estimator seems impractical as we do not know
the support of x∗ a priori, certain algorithms can provide solutions,
which are provably a (nearly dimension independent) constant factor
off the oracle error. The Dantzig Selector (DS) estimation bound,
as characterized by Candes and Tao in [8], is one such example.
In [8], the authors show that the DS produces a solution, which is
close to the oracle distance up to

√
logN and an absolute constant

by using the RIP assumption on the measurement matrix Φ. Similar
results were shown for basis pursuit denoising (BPDN) in [9] and for
compressive sampling matching pursuit (CoSaMP), subspace pursuit
(SP) and iterative hard thresholding (IHT) methods in [7]. In [10, 11]
mutual coherence based results, which is a weaker descriptor of Φ,
were presented for DS, BPDN, orthogonal matching pursuit (OMP)
and thresholding methods.

In this work, we develop a recipe to obtain online algorithmic
bounds relying on the meta-information we have after signal recov-
ery, such as signal sparsity, data error, etc. We show that when the
noise is Gaussian, these bounds are asymptotically close to the or-
acle bound, hence may provide a much tighter range for our signal
estimation error.

We demonstrate our approach on two algorithms. The first,
which is a variation of IHT, is fast Lipschitz iterative hard thresh-
olding (FLIHT) proposed in [12]. This algorithm minimizes the
�2 data error by taking two inputs. The first input is the desired
sparsity K of the solution, and the second input is a step-size for
gradient updates. For instance, the FLIHT iteration is of the form
(ai+1 = 0.5(1 +

√
1 + 4a2

i ))

yi+1 = xi +
ai − 1

ai+1
(xi − xi−1)

xi+1 =

[
yi − 1

2L̃3K

∇f(yi)

]
K

, (4)

where [·]K is a hard thresholding operator that keeps the largest K
elements in a vector and zeros the rest.

The second algorithm is the the fast iterative shrinkage-thresholding
algorithm (FISTA) [13], which solves the BPDN formulation:

x̂BPDN = argmin
x

‖Φx− u‖2 + γ ‖x‖1 . (5)

The FISTA iterations are of the same form as FLIHT, but uses soft
thresholding instead of hard thresholding and L = 2λmax(Φ

TΦ),

the Lipschitz constant of the gradient ∇f , instead of 2L̃3K .
Finally, we use the following key lemma from [8] used for es-

tablishing the online bounds in our paper based on the iid Gaussian
noise:

Lemma 1. Given a white Gaussian noise vector n with variance
σ2, and a signal support set Ω, it holds that

∥∥ΦT
Ωn

∥∥2 ≤ (2(1 +

a) logN) |Ω|σ2 with probability exceeding 1−(
√

π(1 + a) logN ·
Na)−1.

Proof. The proof is straightforward, and relies on the following
concentration-of-measure inequality from Section 3 in [8]:

P

(
sup
i

|Φ∗
in| > σ ·

√
2(1 + a) logN

)
≤

1− (
√

π(1 + a) logN ·Na)−1.

3. ONLINE GUARANTEES

In this section, we present our online bounds for reconstruction al-
gorithms. We assume that we can have access to the following in-

formation after the execution of an algorithm: K̂, the sparsity of the
reconstructed signal, and the data error ε̃2. This additional informa-
tion will help us to sharpen the algorithmic guarantees and see the
sparsity versus data error trade-offs.

Based on the meta-information, there are two ways of obtaining
an improved online estimation bound. The first one uses the known
sparsity of the original signal. The second one relies on the sparsity
of the reconstruction of the algorithm. The former setting implies
the following theorem:

Theorem 2. Suppose that the measurement matrix Φ has RIP, and
that we have a reconstruction algorithm that returns x̂ as the esti-
mate of x∗ with f(x̂) − f(x∗) ≤ ε2. For the case where n is a
general adversarial noise, the reconstruction result of the algorithm
satisfies ‖x∗ − x̂‖ ≤ ε√

μ̃2K

+Δx∗,K +Δx̂,K + 2
μ̃2K

∥∥ΦT
x∗−x̂n

∥∥.

The latter setting leads us to the next theorem:

Theorem 3. Suppose that the measurement matrix Φ has RIP, and
that we have a reconstruction algorithm that returns K̂-sparse re-
construction x̂ as the estimate of x∗ and satisfies f(x̂)−f(x∗) ≤ ε2.
For the case where n is a general adversarial noise, the reconstruc-
tion result of the algorithm satisfies ‖x∗ − x̂‖ ≤ ε√

μ̃
2K̂

+Δx∗,K̂ +

2
μ̃
2K̂

∥∥ΦT
x∗−x̂n

∥∥.

The proofs are presented in Appendix A. ε in the theorems can
be approximated by ε̃. In addition, we note that if the sparsity of
the reconstruction result is smaller or equal to the one of the original
representation than the result of Theorem 3 coincides with that of
Theorem 2.

Theorems 2 and 3 above did not assume any distribution on the
noise n. In many cases,

∥∥ΦT
x∗−x̂n

∥∥ can be equal or even greater

than the full noise norm ‖n‖. Adding to that the fact that 2
μ̃
2K̂

> 1

shows that we might get amplification of the noise power instead of
attenuation. Leveraging the noise statistics, we can improve these
theorems via Lemma 1 and re-state them in terms of σ:
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Fig. 1. Maximum and average error of the FISTA (left) and FLIHT (right) method versus σ compared to the oracle error and the theoretical
upper bounds. The FISTA results are not de-biased.

Theorem 4. Let us assume that the matrix Φ satisfies the RIP con-
dition and that we have a reconstruction algorithm that returns x̂ as
the estimate of x∗ and satisfies f(x̂) − f(x∗) ≤ ε2. For the case
where n is white Gaussian noise with a known variance σ2, the re-
construction result of the algorithm satisfies ‖x∗ − x̂‖ ≤ ε√

μ̃2K

+

Δx∗,K +Δx̂,K +
4
√

(1+a)K logN

μ̃2K
σ, with probability exceeding 1−

(
√

π(1 + a) logN ·Na)−1.

Theorem 5. Let us assume that the matrix Φ satisfies the RIP con-
dition and that we have a reconstruction algorithm that returns K̂-
sparse reconstruction x̂ as the estimate of x∗ and satisfies f(x̂) −
f(x∗) ≤ ε2. For the case where n is white Gaussian noise with a
known variance σ2, the reconstruction result of the algorithm satis-

fies ‖x∗ − x̂‖ ≤ ε√
μ̃
2K̂

+Δx∗,K̂ +
4
√

(1+a)K̂ logN

μ̃
2K̂

σ, with proba-

bility exceeding 1− (
√

π(1 + a) logN ·Na)−1.

The claims in Theorems 4 and 5 are a straightforward result of

combining Lemma 1 with Theorems 2 and 3 . Knowing ε and K̂ for
an algorithm, these theorems provide us with improved guarantees
on its performance. By noting that f(x∗) = ‖n‖2 and using the
concentration-of-measure, in a similar way to Lemma 1, one can
better estimate ε by ε̃ minus a lower bound on ‖n‖2.

We demonstrate the use of Theorems 4 and 5 for FLIHT and
BPDN minimization techniques in the next section.

4. EXPERIMENTS

Exact sparsity example. Having a closer look on the guarantees
achieved for FLIHT and BPDN minimization, it is interesting to
check whether the constants in the bounds are tight or not. For this
task we have simulated FLIHT and FISTA (which solves BPDN).

Figure 1 presents the error (averaging over 250 instances of the
experiment) as a function of σ for FISTA (left) and FLIHT (right).
The representation size is N = 1024 and the measured signal size is
m = 512. The columns of Φ and the vector x∗ are normalized and
drawn from the canonical Gaussian distribution, where the support
of x∗ is selected uniformly at random with K = 10. The σ val-
ues range from high signal-to-noise ratio (SNR) to an SNR of 0dB.
The theoretical bounds in the curves are calculated using Theorem 5.
Since we are looking on the exact K-sparse case the value of Δ is
zero for FLIHT. In the current experiment, FISTA’s result is also K
sparse and thus Δ is zero also for it. In addition, ε is negligible com-
pared to the noise term for both techniques. Thus, we present only
the noise term in the bound using a = 0. Approximations for μ̃K ,
μ̃2K and L̃K are calculated using equations (3.1) and (3.2) from [14]
as explained in Section 1.

In both figures it can be seen that the bounds are meaningful
only for high SNR (small values of σ) since the test signals have
unit energy. As the error bound goes above 1, a better estimator is
the zero estimator. In addition, we observe that the FLIHT method
error closely follows the theoretical and oracle bounds, while being
significantly close to the latter. However, for FISTA, when the SNR
approaches to 0dB the error curve stops behaving in a linear way. In
FLIHT, because we have exploited the correct knowledge of K we
do not observe this kind of behavior.

Compressible signal example. In the previous experiment the
values of ε and Δ were negligible and we did not observe their ef-
fect on the bound. We turn to look on the case of a compressible
signal. In this case we cannot neglect these terms. x∗ is not an ex-
act K-sparse signal but obey a certain decay law on its elements.
Having additive noise on the measurement, the reconstruction algo-
rithm should aim at reconstructing the K dominant elements in x∗

and throw the rest since they will be lost by the noise. Choosing the
right value of K is not an easy task. In the next experiment we see
that using the upper bound, one can estimate the right value.

In this experiment the elements in x∗ are generated using the
generalized Pareto distribution [15]. For each element x∗

i we have

x∗
i = ε±r

(
U− 1

r − 1
)
, (6)

where U is uniformly distributed U [0, 1] and ε± is ±1 with proba-
bility 0.5. We choose r = 0.8 and Φ is selected in the same way
as in the previous experiment. The noise power is σ = 100 (the
SNR varies from 6dB to 20dB depending on the signal strength)
and FLIHT is applied with various values of K ranging from 1 to
100. Figure 2 presents the average �2 error of FLIHT and the oracle
together with their theoretical upper bounds. The upper bound for
FLIHT is calculated using Theorem 5 and is composed of three el-
ements: ε, Δ and the noise term. The last is calculated in the same
way as in the first experiment. ε is predicted using ε̃ and Δ is esti-
mated using the statistics of the signal x by

‖x∗ − x∗
K‖p ≈ N1/r

(
r

p− r

)1/p

K−1/r+1/p. (7)

By looking on the figure we can have several observations. First,
FLIHT has a similar behavior to the oracle when applied with small
values of K. For larger values of K, it tends to miss more elements
from the right support and thus get higher error. The theoretical
upper bound of the oracle in the non-exact case is not tight as in
the exact K-sparse case but still has a behavior that is similar to
the oracle error. The last observation and the most important one is
that FLIHT’s upper bound has the same behavior as the real error
providing a good prediction for selecting the right value of K for
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Fig. 2. Average �2 error of FLIHT and the oracle versus K compared
to the theoretical bounds. The behavior of the FLIHT method bound
predicts the value of K that minimizes the error in an accurate way.

FLIHT. This shows that the given bound can be used as a parameter
selection tool when using a certain algorithm if we have a prior on
the distribution of the unknown signal.

Note that our upper bounds are a constant factor off in predicting
the actual behavior. A more focused analysis might improve these
bounds and make them tighter. In particular, when we take a closer
look at the 1-sparse solution of the compressible signal, the upper
bound multiplies the actual error by approximately 3. This factor is
due to the irrecoverable energy bound, which is obtained by a worse
case analysis.

5. CONCLUSIONS

We presented a scheme for obtaining online bounds for reconstruc-
tion techniques. Our scheme is called online because the final guar-
antees depend on the data reconstruction errors. We demonstrate our
bounds for two algorithms: FLIHT and BPDN. Simulation results
show that our bounds are currently not tight for typical, small-scale
signal realizations, while they are much tighter than the recovery
guarantees established for the algorithms prior to execution. How-
ever, in practice the given bounds can help in parameter selection for
a given algorithm.

A. PROOF OF THEOREM 2 AND 3

We begin with the proof of Theorem 2. Using the triangle inequality
and Proposition 3.5 from [5] we have:

f(x̂)− f(x∗) = ‖u− Φx̂‖2 − ‖u− Φx∗‖2
= ‖Φx∗ + n− Φx̂‖2 − ‖n‖2
= ‖Φ(x∗

K − x̂K + x∗ − x∗
K − x̂+ x̂K) + n‖2 − ‖n‖2

≥ ‖Φ(x∗
K − x̂K) + n‖2 − ‖n‖2 − ‖Φ(x̂− x̂K)‖2

−‖Φ(x∗ − x∗
K)‖2 ≥ ‖Φ(x∗

K − x̂K)‖2
− nTΦ(x∗

K − x̂K)− L̃Kν2
x∗ − L̃Kν2

x̂. (8)

Combining the above result with f(x̂)− f(x∗) ≤ ε2 leads to:

‖Φ(x∗
K − x̂K)‖2 ≤ ε2+L̃Kν2

x∗ +L̃Kν2
x̂+2nTΦ(x∗

K−x̂K). (9)

Using the RIP μ̃2K ‖x∗
K − x̂K‖2 ≤ ‖Φ(x∗

K − x̂K)‖2. Since
Φ(x∗

K − x̂K) = Φx∗
K

−x̂K
(x∗

K − x̂K) we get from (9)

‖x∗
K − x̂K‖2 ≤ ε2 + L̃K(ν2

x∗ + ν2
x̂)

μ̃2K

+
2

μ̃2K

∥∥∥ΦT
x∗
K

−x̂K
n
∥∥∥ ‖x∗

K − x̂K‖ . (10)

Based on the observation that a2 ≤ c2 +2ba yields a ≤ c+2b,
and that

√
a2 + b2 < a+ b we have

‖x∗
K − x̂K‖ ≤ ε+

√
L̃K(νx∗ + νx̂)√

μ̃2K

+
2

μ̃2K

∥∥∥ΦT
x∗
K

−x̂K
n
∥∥∥ . (11)

The desired result is achieved by the fact that ‖x∗ − x̂‖ ≤ ‖x∗
K − x̂K‖+

‖x∗ − x∗
K‖+ ‖x̂− x̂K‖ and the definition of Δx,K . �

The proof of Theorem 3 is straightforward by using the result of

Theorem 2 and looking at x∗ as a K̂-sparse vector.
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