
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. H. Bleuler, président du jury
Prof. J. D. R. Millán Ruiz, Prof. M. Murray, directeurs de thèse

Prof. O. Blanke, rapporteur 
Prof. N. F. Ramsey, rapporteur 
Prof. A. Schnider, rapporteur 

Neurotechnology for Brain Repair : Imaging, Enhancing and 
Restoring Human Motor Function

THÈSE NO 6397 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 5 DÉCEMBRE 2014

À LA  FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
CHAIRE FONDATION DEFITECH EN INTERFACE NON-INVASIVE DE CERVEAU-MACHINE

PROGRAMME DOCTORAL EN SYSTÈMES DE PRODUCTION ET ROBOTIQUE 

Suisse
2014

PAR

Andrea BIASIUCCI





"E quindi uscimmo a riveder le stelle."

Dante, Inferno, c. XXXIV, v. 139





Acknowledgements
The work presented in this document is built upon the strong belief that no person can be

broken, and that our duty as scientists and technologists is to eradicate the concept of physical

disability from this world. My first thank goes to the patients, therapists, clinicians, researchers

and free thinkers I met during last five years: you managed to convince that spending my life

for this purpose is the best investment I could do.

A special thank goes to José del R. Millán for believing in me (and allowing me to make many

mistakes, especially when he knew they were so): we did incredible things, and the best is

yet to come. Thanks to all my colleagues at CNBI, especially Ricardo Chavarriaga and Robert

Leeb, and to my co-supervisor Micah M. Murray. Merci to Jane Lubna Jöhr for the French

summary and Grazie, Gracias, Danke to the wonderful people I met during the years of the

European project TOBI at Fondazione Santa Lucia Roma, Associazione Italiana Assistenza

Spastici Bologna, SUVA Care Sion. Thanks to the teams of the Hospital Nacional de Parapléji-

cos Toledo, of the Hôpital de Beau-Séjour Genève and of the Centre Hospitalier Universitaire

Vaudois for the great experience.

I would have never made it in these hard years in Lausanne without the true friends I met on

my way, Giulio, Masca, Pisagno, Pool, Frenk, Iungo e Maresciallo. And all the others. Grazie. A

special thought “ai gitani” and David, we’re far but always close.

I owe my creativity to my family, and I owe to my creativity most I have: grazie Elvira, Sergio,

Ana, Caterina. Thanks to my sister Chiara for being the sensitive, talented person she is: I

know I’ll never be alone in life, and you should know it too.

Ευχαριστώ Pana, future lies ahead.

A final thank to the eternal city of Rome for teaching me how to face fate with irony. Ad maiora.

Lausanne, 16 August 2014 A. B.

v





Abstract
Neurotechnology is the application of scientific knowledge to the practical purpose of under-

standing, interacting and/or repairing the brain or, in a broader sense, the nervous system.

The development of novel approaches to decode functional information from the brain, to

enhance specific properties of neural tissue and to restore motor output in real end-users

is a fundamental challenge to translate these novel solutions into clinical practice. In this

Thesis, I introduce i) a novel imaging method to characterize movement-related electroen-

cephalographic (EEG) potentials; ii) a brain stimulation strategy to improve brain-computer

interface (BCI) control; iii) and a therapy for motor recovery involving a neuroprosthesis.

Overall, results show i) that stable EEG topographies present a subject-independent orga-

nization that can be used to robustly decode actual or attempted movements in sub-acute

stroke patients and healthy controls, with minimal a-priori information; ii) that transcranial

direct-current stimulation (tDCS) enhances the modulability of sensorimotor rhythms used

for brain-computer interaction in chronic Spinal Cord Injured (SCI) individuals and healthy

controls; iii) that neuromuscular electrical stimulation (NMES) controlled via closed-loop

neural activity induces significantly stronger upper limb functional recovery in chronic stroke

patients than sham NMES therapy, and that these changes are clinically relevant. These

results have or might have important implications in i) disease diagnostics and monitoring

through EEG; ii) assistive technology and reduction of permanent disability following SCI;

iii) rehabilitation and recovery of upper limb function following a stroke, also after several

years of complete paralysis. Briefly, this Thesis provides the conceptual framework, scientific

rationale, technical details and clinical evidence supporting translational Neurotechnology

that improves, optimizes and disrupts current medical practice in monitoring, substituting

and recovering lost upper limb function.

Key words: neuroimaging, EEG topographic analysis, non invasive brain stimulation, transcra-

nial direct current stimulation, neuroprosthetics, neuromuscular electrical stimulation, brain

computer interfaces
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Sommario
La Neurotecnologia è l’applicazione del sapere scientifico allo scopo pratico di capire, inte-

ragire e/o riparare il cervello o, in senso più ampio, il sistema nervoso. Lo sviluppo di nuovi

approcci atti a decodificare informazioni funzionali dal cervello, ad aumentare specifiche

proprietà del tessuto neurale, o a ripristinare l’output motorio in veri utenti finali è una sfi-

da fondamentale per la traslazione di queste nuove soluzioni alla pratica clinica. In questa

tesi, introduco i) un nuovo metodo di imaging in grado di caratterizzare potenziali motori

dall’elettroencefalogramma (EEG); ii) una strategia di stimolazione cerebrale finalizzata al

miglioramento del controllo di una interfaccia cervello-macchina (BCI); iii) ed una terapia

finalizzata al recupero motorio basata su una neuroprotesi. Complessivamente, i risultati mo-

strano i) che topografie EEG stabili presentano un’organizzazione indipendente dal soggetto

che può essere utilizzata per decodificare in maniera robusta movimenti reali o tentati in pa-

zienti sub-acuti aventi ictus o in contolli sani, utilizzando minima informazione a-priori; che

la stimolazione transcranica in corrente continua (tDCS) aumenta la modulabilità dei ritmi

sensorimotori utilizzati per l’interazione cervello-macchina in pazienti con lesioni spinali

(SCI) e controlli sani; iii) che la stimolazione elettrica neuromuscolare (NMES), controllata

dall’attività neurale ad anello chiuso, induce un recupero funzionale dell’arto superiore si-

gnificativamente più forte rispetto ad elettroterapia sham, e che questo recupero è rilevante

clinicamente. Questi risultati hanno o sono in grado di avere importanti implicazioni per i) la

diagnostica ed il monitoraggio clinico mediante EEG; ii) la tecnologia assistiva e la riduzione

della disabilità permanente derivante da lesioni spinali; iii) la riabilitazione della funzione del

membro superiore a seguito di uno stroke, anche dopo molti anni di paralisi completa. In

breve, questa Tesi riporta l’apparato concettuale, il razionale scientifico, i dettagli tecnici e

l’evidenza clinica atta a supportare una Neurotecnologia traslazionale che migliora, ottimizza

e sovverte la pratica clinica attuale nel monitoraggio, nella sostituzione e nel recupero della

funzionalità motoria dell’arto superiore.

Key words: diagnostica neurologica per immagini, analisi topografica EEG, stimolazione cere-

brale non invasiva, stimolazione transcranica in corrente continua, neuroprotesi, stimolazione

elettrica neuromuscolare, interfacce cervello macchina
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Résumé
La Neurotechnologie caractérise l’application de connaissances scientifiques à des fins pra-

tiques de compréhension, d’interaction, et/ou de rétablissement des mécanismes cérébraux.

Elle comprend ainsi le développement de nouvelles approches assurant un décodage des in-

formations fonctionnelles provenant du cerveau, renforçant les propriétés spécifiques du tissu

neural, et restaurant l’activité motrice chez des utilisateurs véritables. Transposer ces solutions

novatrices à la pratique clinique représente un défi fondamental. Dans cette thèse, j’introduis

i) une nouvelle méthode d’imagerie identifiant des potentiels électro-encéphalographiques

(EEG) relatifs au mouvement ; ii) une stratégie de stimulation cérébrale afin d’améliorer le

contrôle par interface cerveau-ordinateur (BCI) ; iii) et une thérapie de récupération motrice

impliquant une neuroprothèse. Dans l’ensemble, les résultats démontrent i) que des topogra-

phies EEG stables présentent une organisation indépendante des sujets, et que celle-ci peut

être exploitée pour décoder de manière robuste des mouvements réels ou amorcés chez des

patients subaigus (victimes d’accidents vasculaires cérébraux, AVC) comme chez des témoins

sains, et cela avec une information induite minimale ; ii) que la stimulation transcrânienne en

courant direct (tDCS) améliore la modulabilité des rythmes sensori-moteurs employés dans

l’interaction cerveau-ordinateur chez des patients chroniques atteints d’une lésion médullaire

(SCI), comme chez des témoins sains ; iii) qu’une thérapie par stimulation électrique neuro-

musculaire (NMES) contrôlée en circuit fermé, conduit à une récupération fonctionnelle du

membre supérieur significativement et cliniquement plus importante chez des patients chro-

niques victimes d’AVC, comparée à une thérapie NMES fictive. D’importantes implications de

ces résultats pourraient être considérées en matière de i) diagnostics de maladies et contrôle

par EEG ; ii) technologie d’assistance et atténuation d’invalidité permanente suite à SCI ; iii)

rééducation et récupération fonctionnelle du membre supérieur post-AVC, et ceci également

après plusieurs années de paralysie complète. En résumé, cette thèse offre un cadre concep-

tuel combiné à des arguments scientifiques, des détails techniques, et des données cliniques,

qui soutiennent une Neurotechnologie translationnelle cherchant à améliorer et optimiser le

contrôle, la substitution et la récupération de la fonction lésé du membre supérieur.

Mots clefs : neuro-imagerie, analyse topographique EEG, stimulation cérébrale non invasive,

stimulation transcrânienne à courant direct, neuroprothèse, stimulation électrique neuro-

musculaire, interfaces cerveau-ordinateur
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(bottom) presents a reduction in frontocentral-midline discriminant activity,
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4.3 Modulations of slow cortical movement-related potentials. Group-averaged

EEG waveforms at electrode C3* (all data were flipped in order to always have

the affected hemisphere on the left side of the head), representing movement-

related potentials (MRP) before and after the therapy (a and b). All trials were
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sented for all subjects of the BCI-NMES group by their frequency and electrode
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4.5 Clinical indexes of functional recovery. Fugl-Meyer assessment for the upper

extremity (FMA-UE), measuring motor function (a); Secondary outcome scores:

Modified Ashworth Scale (MAS), measuring spasticity, Medical Research Council

Scale (MRC), measuring muscle strength, and European Stroke Scale (ESS), mea-

suring the overall motor and cognitive state (b). Changes in the primary outcome
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received NMES. Secondary outcomes are presented in absolute values at base-

line and at the end of the therapy (b). Both groups show a similar decrease in

spasticity that one would expect as one of the effects of NMES. Muscle strength

recovery, though, appears moderately stronger in the BCI-NMES group than in

the sham-NMES group, but this difference is not statistically significant. The
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tient status having a stronger, but not statistically significant, magnitude in the

BCI-NMES than in sham-NMES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 EEG markers of cortical plasticity. Group-averaged slow EEG potentials recorded

from electrode C3* showing no sign of movement-related potentials in both
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1 Introduction

Any sufficiently advanced technology is

indistinguishable from magic.

Arthur C. Clarke

In recent years, greater attention has been given to public health aspects of neurological

disorders, as it has become evident that many priority health problems, in both developing

and developed regions, affect the brain and the entire nervous system [94]. The Global Burden

of Disease Study, a report conducted by the World Health Organization, the World Bank and

Harvard School of Public Health to estimate the total burden of illness globally, demonstrated

that between 1990 and 2020 there will be a remarkable change in the rank order of diseases

[105]. Neurology is at the focal point of these modifications (Table 1.1), and consensus has

been reached on relative weight of different disabilities (Table 1.2). The paralysis of two limbs

(i.e. paraplegia and hemiplegia) and the paralysis of the four limbs (i.e. quadriplegia) ranked

among the most devastating conditions [105], requiring immediate action by health ministries

worldwide.

Recent history can be seen as a sequence of techno-economic waves inducing substantial

economic, political, and social change [90] (Tab. 1.3). Neurotechnology, the application of

scientific knowledge to the practical purpose of understanding, interacting and/or repairing

the brain or, in a broader sense, the nervous system, will play an important role in prevent-

ing neurological diseases, in reducing the economic and social impact of disability, and in

promoting the recovery of lost motor function.

The future of neurotechnology and its impact on human welfare, with regard to motor dis-

ability, will strongly depend on advances in these three areas: imaging, enhancing, restoring.

This triad will accompany the reader throughout this Thesis, whose intent is to capitalize

on current state-of-the-art in neuroimaging, transcranial stimulation and neural interfaces

to demonstrate how neurotechnology might disrupt the future of restorative medicine. The

translational studies presented in this document share the use of low health risk, low cost
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Table 1.1: Global burden of Disease 1990-2020. The Global Burden of Disease study [105]
demonstrates that, between 1990 and 2020, there will be a remarkable change in the rank order
of disease burden globally. The 15 leading causes of disease burden in 2020 for developed
regions are shown here.
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Table 1.2: Severity of disability. Relative severity of 22 “indicator conditions” selected to
represent distinct severities of disability, weighted between 0.00 (perfect health) and 1.00
(equivalent to death). The disorders selected as indicator conditions were identified by the
readily achieved consensus on weights among health workers from all regions of the world,
despite diverse cultural backgrounds. Data from [105].

procedures and devices – namely electroencephalography (EEG), transcranial direct-current

stimulation (tDCS), brain-computer interfaces (BCI), neuromuscular electrical stimulation

(NMES, often called functional electrical stimulation, FES) – on real end-users, and they were

designed as to meet the requirements of current clinical practice.

The document is articulated in three core chapters on imaging, enhancing, and restoring

human motor function: Chapter 2 presents the use of single-trial decoding of motor tasks

from stable EEG topographies as an imaging modality, with a methodological validation on

healthy subjects and an exploratory pilot sub-acute stroke patients; Chapter 3 introduces a

pilot study on the effect of tDCS on electroencephalographic (EEG) features normally used

to control a BCI system in chronic spinal cord injured and able-bodied individuals; Chapter

4 presents a sham-controlled phase 1 clinical trial evaluating the effects of brain-controlled

neuromuscular electrical stimulation (NMES) for upper limb motor recovery in chronic stroke

patients. Finally, results presented in each of the chapters are framed and discussed under the

broader perspective of neurotechnology in the Discussion & Conclusions Chapter.

Below, a short description introduces each of the core Chapters.

Functional EEG imaging

The development of body imaging techniques is one of the most relevant achievements in

medicine [4], and recent advances in EEG indicate that its insights into neural networks and

3
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Figure 1.1: Brain imaging modalities. Schematic illustration of the ranges of spatial and
temporal resolution of various noninvasive (in blue) imaging techniques and invasive (in red)
experimental techniques. electroencephalography (EEG), magnetoencephalography (MEG),
electromagnetic source imaging (ESI), multi-unit activity (MUA), local field potential (LFP),
single-unit activity (SUA), near infra red spectroscopy (NIRS), functional magnetic resonance
imaging (fMRI), positron emitting tomography (PET), single-photon emission computed
tomography (SPECT). Reproduced from [62].

brain function will have an increasingly important role in medical diagnosis and treatment in

the near future [101]. EEG measures electrical potentials and magnetic fluxes propagated in a

virtually instantaneous time from activated neuronal tissues to the scalp. The instantaneous

nature of EEG indicates an intrinsically high temporal resolution and precision, which make

them well suited for studying brain functions on the neuronal time scale, even though the

collective nature suggests low spatial resolution and specificity, which impede mapping brain

functions in great regional details [62]. Fig. 1.1 clusters available brain imaging modalities by

spatial and temporal resolution.

Efforts to decode neural activity from EEG fostered the naissance of BCI technology [152], even

though the idea of decoding brain function from electrical currents recorded from the scalp

has accompanied EEG since its discovery [8]. BCI systems widely demonstrated the potential

of EEG, especially as a new communication and control channel for disabled people [12, 82].

Current BCI algorithms overcame several limitations coming from the fact that the EEG is

an ever-changing, complex signal with statistical properties which depend on both time and

space [89]. These developments were made possible by a growing interest in single-trial

analyses of event-related potentials (ERP) in neuroscience [64, 88, 28] and by consistent
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advances in machine learning [98, 96, 56, 103].

Time-locked changes in the activity of neuronal populations, such as those induced by the

execution of a motor action, were traditionally described in terms of average event-related

potentials (ERPs) or by means of single-trial analyses of frequency-specific event-related syn-

chronization (ERS) and desynchronization (ERD) patterns at specific scalp locations [118].

However, these a-priori assumptions and ambiguous single channels waveform analyses limit

the physiological interpretability of the results [95], especially for pathologies where assump-

tions on EEG analyses drawn from healthy individuals, such as space and time-frequency

localization of events, might not be valid [69].

Topographic EEG analysis, based upon the interesting property of the EEG to maintain stability

of voltage topographies for short time periods typically spanning between 50 and 150ms [83],

is inherently neurophysiologically interpretable (a change in topographic is indicative of a

change in the configuration of the underlying sources) and overcomes the limitations of single

waveform analyses by treating entire electrode montage data as a multivariate vector without

any a-priori bias [106]. Topographic EEG information has been used to characterize different

developmental stages during wakeful rest [75] and several neurological disorders including

schizophrenia [86] and stroke [78].

Methodologically, recent studies demonstrated that single-trial EEG topographic analysis can

be used to describe fine temporal aspects of time-locked [143] and non-locked [144] brain

activity, extending the applicability of this technique beyond averaged potentials.

These findings might be especially suited for the monitoring of brain patterns produced by an

impaired brain. Despite recent advances in science and prevention, stroke is the first cause

of disability, involving around 20 million people worldwide per year and represents the third

most common cause of death. 75% of this population will survive the vascular accident, but

approximately 5 million individuals will be disabled by their stroke [91]. Consequently, the

development of new techniques to support efficient functional rehabilitation as well as to

monitor the progression of the disease ranks among the primary interests of current research.

A growing body of literature suggests that similarities exist in terms of neural activity between

the state in which a motor action is imagined and the state of execution, resulting in the

benefits seen in mental practice for rehabilitation[68]. Indeed, several studies provide hints

on the positive effects of mental practice in adjunction to physical practice [109].

BCI protocols involving executed or attempted movements or motor imagery might in fact

be used to monitor and encourage plasticity phenomena occurring after stroke (or more

generally after brain injury) [97]. Several factors affecting the production of EEG patterns

need to be taken into account, including: the extent to which patients have detectable brain

signals that can support training strategies; which brain signal features are best suited for

use in monitoring and restoring motor functions and how these features can be used most

effectively; and what are the most effective approaches for BCI aimed at improving motor

functions (for instance, what guidance should be provided to the patient to maximize training
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that produces beneficial changes in brain signals). Preliminary findings suggested that event-

related EEG activity time-frequency maps of event-related EEG activity and their classification

are proper tools to monitor MI related brain activity in stroke patients and to contribute to

quantify the effectiveness of MI [133]. Pilot studies and case reports on stroke patients using a

BCI system found that the best signals appear over the ipsilateral (unaffected) hemisphere

[19]. Finally, the idea that BCI technology can induce neuroplasticity has received remarkable

support from the community based on invasive detection of brain electrical signals [97].

BCIs normally monitor variations in specific frequency bands of spectral power associated

with different tasks, such as motor imagery or attempted movements, to generate an output

that can be used for communication and control of devices such as a virtual keyboard, a

telepresence robot or a powered wheelchair [96, 23]. The use of non-parametric methods,

such as FFT, restricts the frequency analysis of EEG patterns in the time scale of seconds, losing

the good temporal resolution of this recording modality [74]. The use of EEG-Microstates

[85], i.e. stable voltage topographies produced during a certain task, represents an alternative

imaging analysis method that preserves the superb time resolution of EEG down to tens or

hundreds of ms.

Chapter 2 is articulated in two main sections: the first explores the use of stable EEG topo-

graphic maps for single-trial decoding of motor-related potentials; the second presents a pilot

study on chronic stroke patients that evaluates the possibility to use these EEG signatures of

motor tasks for rehabilitation. Section 2.1 provides evidence that comprehensive scalp poten-

tial field analysis is suitable to decode and describe single-trial single-subject motor function

from EEG data with minimal a-priori information and high temporal resolution by applying a

classification procedure normally used in closed-loop BCI systems. Section 2.2 addresses the

issue of tracking brain patterns for BCI–aided stroke rehabilitation by combining standard

EEG time-frequency analysis [119, 55] to EEG topographic analysis. Extracted information

could be used to provide feedback about relevant task–related mental patterns to patients,

practitioners, or clinicians during the therapeutic cycle.

Neuroenhancement and electroceuticals

Neuroenhancement describes the use of neuroscience-based techniques for enhancing cogni-

tive function by directly acting on the human brain and nervous system, altering its properties

to increase performance for a specific cognitive task or set of tasks [30]. Recent studies on

the use of non-invasive transcranial direct-current stimulation (tDCS) to enhance attention,

learning, and memory demonstrated that tDCS guided by neuroimaging can produce large

increases in task performance during behavioral tasks and other signal detection measures

that lasts at least 24 h after stimulation is ended [29, 31, 45]. This appealing concept has been

further extended by a recent statement from a multinational pharmaceutical corporation

(GlaxoSmithKline) on a growing interest in the so-called "electroceuticals" – electrical impulses
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that target individual nerve fibers or specific brain circuits to treat an array of conditions, mod-

ulating the neural impulses controlling the body, repairing lost function and restoring health

[46]. In addition, tDCS has been proposed as a technique for studying motor processes and as

a tool for treating neurological disorders or neurorehabilitation [145, 65, 130]. This technique

modifies neuronal excitability, by shifting the resting potential of cortical neurons [145] (see

Fig. 1.2 for an overview on electrodes montage and resulting cortical areas engaged by the

stimulation), and its effects have been reported to last between 40 and 90 min depending on

the length of the stimulation [110]. Previous experiments suggest that stimulation of brain

area M1 results in a selective increase or decrease of cortical excitability and motor evoked

potentials [100, 125]. Consistently, there is evidence that tDCS also modulates event-related

desynchronization during Motor Imagery (MI) tasks [93].

This is in agreement with previous studies that shows that tDCS modifies neuronal excitability

so as to increase ipsilateral motor-evoked potentials after anodal stimulation of the left M1,

and a decrease after cathodal stimulation [80, 125]. In some cases the effect lasted for about

40 min after the stimulation, although other studies have reported effects lasting up to 90 min

[110]. Bilateral stimulation of motor cortices (i.e. anodal tDCS over the motor cortex and catho-

dal stimulation over the contralateral hemisphere) produces selective increase/decrease of

excitability, respectively [100]. Moreover, DC stimulation has also been reported as influencing

long-term skills motor learning [129]. Consequently, tDCS has been proposed as non-invasive,

low-cost and easy-to use technique for studying motor processes in healthy subjects and as a

facilitating technique for treating neurological disorders [145] or neural rehabilitation [65, 130].

Moreover, influencing the ability of people to produce patterns that can be recognized by a

BCI system might simplify the interaction and augment system reliability, providing a more

effective tool for assistive technology.

Chapter 3 presents a study on 12 spinal cord injured individuals and 13 able bodied controls

whose goal is to quantify the effects of anodal tDCS on the EEG features that are normally used

during brain-computer interaction. We find a shift in discriminable EEG activity in a two-tasks

motor imagery protocol on the stimulated hemisphere, for both groups. Interestingly, anodal

tDCS also has a carry-over effect with respect to sham-tDCS, allowing people to sustain the

production of discriminable patterns for longer periods of time.

The neuroprosthetic era

Despite considerable efforts over the last decades, the quest for novel treatments for arm

functional recovery after stroke remains a top priority [122], as current interventions yield lim-

ited gains [36, 155, 73]. This makes the pursuit of novel principles, devices and interventions

aiming at functional recovery a top research priority relating to life after stroke [122].

In recent years, synergistic efforts in neural engineering and restoration medicine are demon-

strating how neuroprosthetic approaches can control devices and ultimately restore body

function [16]. In particular, after two decades of research, non-invasive brain-computer inter-

8



Figure 1.2: Typical electrodes montage on scalp surface for tDCS. The four figures illustrate
the typical placement of anode and cathode during stimulation of the primary motor cortex
(A), somatosensory cortex (B), primary visual cortex (C), anterior language cortex (D). Note
that in Fig. 1(C) one electrode is placed at the back of the head (see small image of the head),
while the other electrode is placed at the right supra-orbital area. One electrode is placed on
the area of the scalp covering the target structure and the other electrode is typically placed
either over the supraorbital area of the other hemisphere or over the corresponding area of
the contralateral hemisphere. Reproduced from [145].
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face (BCI) systems are reaching their technological maturity [97], and might be used to reliably

translate neural activity into meaningful outputs driving activity-dependent neuroplasticity

and functional motor recovery [33] (see Fig. 1.3). Real-time BCI control consists in learning

to modify the efficacy of spared neural ensembles (representing movement, sensation, and

cognition) through progressive practice with contingent feedback and reward —sharing its

neurobiological basis with rehabilitation [40]. Although invasive BCIs based on neuronal spike

patterns recorded with implanted arrays of microelectrodes may represent the strategy of

choice for most severe cases [13], issues related to safety, low-power and wireless systems,

long-term recording stability, and robust performance without daily retraining still need to be

extensively addressed before they may become therapeutic reality [33, 32].

Preliminary attempts to use non-invasive BCI systems for upper limb rehabilitation after stroke

have illustrated a variety of ways to couple them with other interventions, although not all trials

reported clinical benefits. Most studies involved a few patients who operated a BCI to control

either rehabilitation robots [19, 18, 124, 22, 147] or neuromuscular electrical stimulation

(NMES) [34, 153]. A few works have described changes in functional magnetic resonance

imaging (fMRI) that correlates with eventual motor improvements [22, 147, 153]. Recent

randomized controlled trials showed that BCI-aided robotic therapies provided significantly

greater motor gains than robotic therapies alone [126, 3], although the absolute difference

between the two therapies was moderate. In the former study, involving 30 chronic patients

[126], only the BCI group exhibited a functional improvement, although moderate (3.4 points

in the upper extremity section of the Fugl-Meyer assessment, FMA-UE). In the latter case,

involving a mixture of 14 subacute and chronic patients [3], both groups achieved a higher

improvement (above 7.0 FMA-UE points), probably due to the shorter time after the stroke

and less severity of patients’ motor impairments.

The results of these randomized controlled trials are somehow discouraging. Does this mean

that, despite its promises, BCI interventions will not change the landscape of motor stroke

rehabilitation as they cannot provide clinically relevant improvements to patients as compared

to the therapies they are combined to? We hypothesize that, for BCI to drive activity-dependent

plasticity of spared neural circuits, the associated contingent feedback must not only be

functionally meaningful (e.g., passive movement of the lesioned limb by a robot), but must

also be tailored to reorganize the targeted neural circuits by providing rich sensory inputs

via the natural afferent pathways [140] so as to activate all spare components of the central

nervous system involved in motor control —from the cortex to subcortical areas to spinal

cord. NMES fulfills these two properties of feedback contingent to appropriate patterns of

neural activity: it elicits functional movement and conveys proprioceptive information via the

peripheral nerves it stimulates to contract the target muscles.

To test this hypothesis, the study presented in Chapter 4 aimed at assessing whether five

weeks of therapy BCI-aided NMES (BCI-NMES for short, could yield stronger and clinically

relevant functional recovery than sham-NMES therapy, and whether signatures of neuroplas-

ticity would be associated to motor improvement. To probe the limits of our hypothesis, we

10



Figure 1.3: The BCI loop for rehabilitation. A Brain-Computer Interface (BCI) systems can
translate spared EEG signatures of a motor task, such as an attempted movements resulting in
µ and β rhythms modulations, into meaningful rewarding functional electrical stimulation
(FES) of the affected limb. The repetition of this schema might be used to drive beneficial
cortical plasticity by increased sensorimotor drive.

enrolled chronic patients in their plateau phase of recovery with moderate-to-severe arm

paresis and minimal exclusion criteria. The BCI was calibrated for each subject in order to

monitor individual spatial-frequency EEG features —i.e., sensorimotorµ andβ EEG rhythms—

representing movement attempts as encoded in the activity of spared motor networks. When-

ever a hand-extension attempt was decoded from the EEG, the BCI activated NMES of the

extensor digitorum communis muscle. Surprisingly high and clinically relevant improvements

of affected arm functions were found for subjects in the BCI-NMES group, with signs of reten-

tion after 36 weeks. Also, EEG neuromarkers suggest that the functional recovery is promoted

by changes in cortical excitability and in interhemispheric connectivity.
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2 Imaging Motor Function

A rock pile ceases to be a rock pile the

moment a single man contemplates it,

bearing within him the image of a

cathedral.

Antoine de Saint-Exupery

This Chapter explores the use of stable EEG topographic information and single trial decoding

of motor tasks as a novel tool for brain imaging and rehabilitation. In particular, Section 2.1

presents a study on stable EEG decoding involving 11 able-bodied individuals performing

an actual movement of the hand or resting. Section 2.2 presents an exploratory study on

the combined use of time-frequency and topographic EEG analyses in order to describe fine

temporal aspects of brain engagement in an imagined motor tasks involving 6 chronic stroke

patients.

2.1 Decoding motor attempts from single-trial stable topographic

EEG1

Outlook. Electroencephalography (EEG) offers new insights into neural networks and brain

function, gaining an increasingly important role in medical diagnosis and treatment. Time-

locked changes in the activity of neuronal populations, such as those induced by the execution of

a motor action, were traditionally described in terms of average event-related potentials (ERPs)

or by means of single-trial analyses of frequency-specific event-related synchronization (ERS)

and desynchronization (ERD) at specific scalp locations. However, these a-priori assumptions

1This section was adapted from Biasiucci, A., Chavarriaga, R., Leeb, R., Murray, M.M., Mattia, D., Millán,
J.d.R. (2014) "Decoding single-trial topographic EEG correlates of motor engagement and rest reveals subject-
independent organization", in preparation [10]. Contributions: D.M. designed the protocol and coordinated
data recordings, A.B., R.C., R.L., M.M.M., J.d.R.M. designed the analyses, A.B. developed the methods, A.B., M.M.M.,
J.d.R.M. analyzed the data.
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Chapter 2. Imaging Motor Function

and ambiguous single channels waveform analyses constrain the physiological interpretability

of the results, thus limiting the adoption of EEG as a brain imaging tool in clinical applications.

Here we use state-of-the-art algorithms used in the field of brain computer interfaces (BCI)

to show that comprehensive scalp potential field analysis is suitable to decode and describe

single-trial single-subject motor function from EEG data with minimal a-priori information.

We found that the strength of the potential field across the whole scalp can be used to predict

whether unseen trials contain motor or resting activity with high temporal resolution both

during preparatory and execution phases of single trials. We also found that stable potential field

topographies extracted during preparatory phases resemble those extracted during execution

phases of single trials, and that these patterns are extremely consistent across subjects. Our

results demonstrate that motor function can be accurately decoded from scalp voltage potential

field with superb temporal resolution and that a subject independent structure of stable voltage

topographies emerges from the data. We anticipate these findings to be a starting point for more

sophisticated brain imaging and rehabilitation applications for pathologies where assumptions

on EEG analyses drawn from healthy individuals such as space and time-frequency localization

of events might not be valid.

Experimental protocol

Eleven unpaid volunteers provided written, informed consent to participate in the experiment.

EEG was recorded at the Fondazione Santa Lucia, Rome, Italy. The subjects (five men, six

women, aged 30±7 years) had no current or prior neurological or psychiatric illnesses.

The study was approved by the local Ethics Committee of the Fondazione Santa Lucia and

was conducted according to the Declaration of Helsinki. The data used in this study were

previously published in a study concerning cortical responsiveness in healthy subjects while

operating a sensorimotor rhythm-based BCI [120].

Briefly, subjects sat in front of a screen in a dimly lit room with their arms on a desk. Each

session was divided into runs consisting of 30 trials each. Each trial lasted 9s; with an inter-trial

interval of 1.5s. During rest trials (Fig. 2.1, top) the subject was instructed to watch the cursors

moving on screen. During movement trials (Fig. 2.1 , bottom) a green rectangle appeared on

top of the screen and the subject was asked to start performing the motor task during the 4s

while the cursor crossed the green area of the screen. A recording session was composed of 8

runs; each run included 15 resting trials and 15 motor trials. The motor task consisted in a

tonic complete finger grasping. Trial and run sequences were randomized.
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2.1. Decoding motor attempts from single-trial stable topographic EEG

Figure 2.1: Experimental protocol timeline. Subjects sat in front of a screen, providing visual
instructions about the task to perform. During resting trials (top), a cursor appeared on the
bottom of the screen and started moving vertically towards the top of the screen, at a constant
speed. During movement trials (bottom), a green rectangle appeared on the top half of the
screen, and was displayed for the entire length of the trial, 8s. Then, a cursor appeared on the
bottom of the screen and started moving vertically towards the top of the screen, at a constant
speed. Subjects were instructed to get ready to perform the motor task during the 4s where the
cursor moved on the white part of the screen, and to start executing the motor task with one of
their upper limbs as soon as the cursor reached the green rectangle, sustaining the movement
for the remaining 4s of the trial, until the cursor reached the top of the screen. Subjects were
instructed to watch the cursor without speaking or producing facial movements, blinks or
other types of muscular activity not directly required by the motor task.
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2.1.1 Methods

2.1.2 General Analyses Structure

This aim of this study is to test whether comprehensive scalp potential field analysis can

reliably differentiate the execution of a motor task from rest on single-trials with minimal

a-priori information.

First, the time window yielding most relevant information about the motor task is extracted,

for each subject, by single-trial classification of the global field power (GFP), a reference-free

measure of topographic electric field strength [84]. Second, stable voltage topographies are

extracted in an unsupervised manner from concatenated motor task and rest trials, indepen-

dently for each subject and data fold. Finally, sets of stable topographies are compared across

subjects to quantify their similarity.

We quantify classification performance in terms of single-sample and single-trial classification

accuracy and compare it to the average performance obtained on the same data by repeated

shuffling of task labels, i.e. by a permutation test. Then, we quantify the similarity of stable

topographies extracted across different folds of data to ensure stability of the results. The

same procedure is applied to stable topographies extracted during preparation and action

phases of concatenated single-trials – i.e. concatenating the first or last 4s following the trial-

start cue, independently of the task. Finally we quantify the topographic similarity of stable

topographies extracted during action phases across different subjects.

The use of single-trial analyses of EEG information is suitable to understand the contribution

of individual subjects to a group-analysis and to investigate single subjects’ mechanisms

[64, 119, 143]. In this regard, the use of machine learning methods is essential to highlight

single-subject modulations in the appearance of specific stable topographies across time,

depending on the currently performed task.

Several caveats were considered when designing the classification techniques on EEG data

presented in this section, as to avoid experimental biases and overoptimistic results [87]. To

this purpose, we did not use any global statistic to perform artifact rejection and EEG pre-

processing, and we tested our model in a 5-fold cross-validation procedure, estimating all

parameters solely on training sets.

EEG recordings and pre-processing

Scalp EEG potentials were collected from 61 positions (according to an extension of the 10-20

International System), digitized at 200 Hz and amplified by a BrainAmp, Brainproducts GmbH,

Germany. We discarded the 20 outermost EEG channels (namely FP1, FP2, FPz, AF7, AF8,

F7, F8, FT7, FT8, T7, T8, TP7, TP8, P7, P8, PO7, PO8, O1, O2, Oz) from any further analysis

as they were more likely to carry muscular and other types of artifacts. EEG epochs affected

by artifacts were manually rejected whenever the raw EEG values or the bipolar EOG signals,
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2.1. Decoding motor attempts from single-trial stable topographic EEG

representing horizontal and vertical eye movements, exceeded a threshold of ± 100µV. In

addition, noisy channels were manually identified and spline interpolated [115]. Prior to any

analysis, the EEG was band-pass filtered in 1-40 Hz and re-referenced to the common average

reference (CAR).

2.1.3 Single-trial classification

Single-trial classification was performed by Bayesian filtering, a statistical model that takes

into account the task-specific temporal structure of GFP – i.e. spatial variance across whole-

scalp electrodes montage. Bayesian filtering is a recursive Bayesian estimation method [67]

computing state probabilities at each sampling time step, according to the observations

and the previous state estimations. This method was previously introduced for single- trial

classification of error-related potentials from EEG waveforms recorded at specific electrode

locations [51].

The state to be decoded is a time series St with t = 0..T . We assumed that there were two

possible states at each time t:

St =
1 Movement

0 Resting

At each time t, observations Ot were given by the instantaneous GFP, extracted from single-

trials of data.

In order to model its temporal dynamics, we specified a transition model by a first order

Markov hypothesis for states over time:

P (St |S0:t−1) = P (St |St−1) = 1, t = 0..T (2.1)

where T is a generic time point. The transition model of Eq. (2.1) is equal to the identity matrix

since no state change is allowed within the same trial.

Probability distribution P (Ot |St ), predicts the GFP observations given the state. The two

expressions yield the joint probability:

P (S0:T ,O0:T ) = P (S0)P (O0|S0)
T∏

t=1
(P (St |St−1)P (Ot |St )) (2.2)
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This distribution can be solved recursively through a prediction-estimation procedure [42]. In

the first step, a prediction of the state is calculated with respect to the transition model:

P (St ,O0:t−1) =
T∑

t−1
(P (St |St−1)P (St−1|O0:t−1)) (2.3)

then, we computed the following estimation based on the GFP observations model:

P (St ,O0:t ) ∝ P (Ot ,St )P (St ,O0:t−1) (2.4)

The recursive prediction-estimation formula could then be simplified, given the identity

transition matrix of Eq. (2.1):

P (St = 1,O0:t−1) ∝ P (Ot ,St )P (St = 1,O1:t−1) (2.5)

and correspondingly for P (St = 0,O0:t−1). A trial is then assigned to the class with the highest

probability, for instance to "movement" (St = 1) whenever the logarithm of quotient Qt is

positive:

ln(Qt ) = ln(Qt+1)+ ln(P (Ot |St = 1))− ln(P (Ot |St = 0)) (2.6)

The model of GFP occurrences across time was chosen to be Gaussian with mean µ and

variance σ, i.e. two parameters had to be estimated for each time point. Mean and variance

were learnt with usual estimators within each fold of the data.

2.1.4 Identification of stable topographies

To extract stable topographies, the EEG was band-pass filtered EEG was further normalized it

by the instantaneous GFP. Given the fact that GFP tells the researcher how strong a recorded

potential is on average across the electrode montage, normalizing the EEG signal by its

instantaneous value is a way to make the analysis independent of the response strength, only

focusing the analysis on topographic changes [106].

Stable EEG topographies were extracted unsupervisedly from concatenated pre-processed
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Figure 2.2: Stable topographies identification procedure. First, raw EEG is band-pass filtered
in the 1-40Hz frequency band (a). The identification of stable voltage topographies in the data
is achieved by means of an unsupervised clustering procedure, for example by a Gaussian
Mixture Model: in this example, the temporal observations of two channels are scattered on a
plane disregarding the temporal order of their appearance, and two Gaussian models are fit to
the data (b). For each of the Nµ clusters in the model, an expectation-maximization procedure
computes the parameter of the Gaussian models that best describe the data. In the case of
concatenated single-trials of EEG data having five stable clusters, means of each Gaussian
model are shown in (c). Each of the prototypes can be associated by any distance measure to
each time instant of EEG values, a procedure called "segmentation". Segmented single trials
during rest (green) or the motor task (blue), with respect to the third template map in ( c), are
shown in (d).
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resting and movement trials. We only considered the 8s per trial during which subjects were

instructed to fixate the moving cursor and not to produce any muscle activity (either in prepa-

ration to perform, i.e. 0-4s, or during task execution, i.e. 4-8s). The stable topographies

extraction process consists in applying a clustering method to the concatenated signal of

individual subjects so that each stable topography represents one of the Nµ natural clusters of

the data, where Nµ = 5 is chosen a-priori. Fig. 2.7 provides a justification of this choice based

on decoding performance, i.e. Nµ is chosen according to the model that yields the highest

single-trial accuracy in discriminating the two types of tasks. Even though any data clustering

technique could be used to extract these features, literature focused on three core methods:

k-means clustering [113], hierarchical agglomerative clustering [142] and Gaussian Mixture

Models (GMM) [143]. Here, we choose a GMM, whose parameters are estimated through

an expectation-maximization (EM) procedure [99]. This choice is justified by the fact that

GMM has been already validated in the context of single-trial topographic analysis, as initially

proposed in [143].

2.1.5 Topographic correlations

Similarities between two sets M1 and M2 containing an equal number of stable topographies

were quantified by means of a pair-wise correlation coefficients R i , j between the stable topog-

raphy i belonging to M1, i = 1..5, and the stable topography j belonging to M2, j = 1..5. In this

study, where five stable topographies were extracted, R is a 5 by 5 matrix of correlation coeffi-

cients (shown in Fig. 2.4). The matrix R can be collapsed in a single value γs by considering,

for each row of R , the highest correlation value between two stable topographies belonging to

M1 and M2, respectively. In the case of two stable topographies belonging to M1 having their

maximum correlation with the same stable topography of M2, the second maximum value

is considered, so that no repetition is allowed - i.e. each stable topography belonging to M1

is uniquely associated to a stable topography in M2 depending on their mutual correlation.

Finally, these unique values for each of the five stable topographies can be averaged to provide

a measure γs of similarity between the two sets M1 and M2. Correlation coefficients R i , j

and γs can be compared to the values computed with randomly shuffled topographies as to

identify the likelihood of getting a certain correlation value by chance [20].

2.1.6 Results

GFP is consistently modulated on single trials

Here, we test whether GFP - i.e. the spatial variance across the electrodes montage - conveys

task-specific information. In other words, we exploit the fact that during a movement we

expect a more ordered topographic organization, resulting in a more stable variance across

electrode montages, than in rest. The classification performance of each is compared to
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chance level estimated from data repeating the classification procedure 100 per fold with

randomly shuffled task labels, and statistical differences are tested by means of two tails,

unpaired ttest. This type of randomization test has been previously applied to brain imaging

in EEG and fMRI and it represents a conservative and rigorous assessment of statistical

properties of observed data [20]. Fig. 2.3a and b show the average classification performance

across time in preparation and action time periods of single trials. Single trial classification

results are computed within a 5-fold cross-validation procedure – i.e. 80% of the data is used

to train the model and 20% to compute performance, iteratively for all data partitions. The

performance is calculated as the average accuracy across folds of stable topographies, further

averaged across subjects. Eight of the subjects present a classification accuracy significantly

above chance in the same time frame of movement execution, but not during the preparation.

These results provide strong evidence that subjects consistently modulate GFP during move-

ment, with respect to resting. This modulation happens on single trials and can be used to

decode whether an unobserved trial belongs to the motor or rest ensemble. Interestingly,

statistically significant changes occur at a similar timing with respect to well known µ and

β rhythms synchronization and desynchronization accompanying movement generation

[24]. Interestingly, the fact that some spatial patterns identified during resting can also be

found during the execution of a movement, where they become prominent has been already

extensively documented in functional magnetic resonance imaging resting state networks

(fMRI-RSN) [35].

Stable topographies are consistent across same-subject data folds

To ensure that stable topographies are consistently representing cortical engagement in the

motor task, we quantified the similarity of those extracted from independent folds of same

subject’s data. This property is crucial both from a machine perspective and for the inherent

physiological interpretability of the patterns [87]. In general, being the number of rest and

movement trials in the training set not necessarily equal across different folds, and given

the intrinsic non-stationarity and variability of EEG [71], one might expect to see slightly

different stable topographies extracted from different data partitions, but nonetheless these

differences should be very limited. Fig. 2.4a shows the correlation coefficients computed on

stable topographies belonging to two different folds.

Table 2.1 reports the average topographic correlation value across folds, for each subject. All

subjects show a significant correlation with respect to values obtained by correlating randomly

shuffled topographies, with extremely consistent stable topographies extracted from different

data folds (AVG γs = 0.88). Importantly, these results imply that classification on different

folds refers to nearly identical stable topographies.
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Figure 2.3: Classification performance. For each time point, the curve shows the average
single-trial decoding performance averaged across subjects for data belonging to the prepara-
tion of the movement (a) or to the execution of the movement (b). Accuracy value of 1 would
imply that, at a certain time point t, 100% of trials could be decoded by the Bayesian filter.
The filer uses stable topographies occurrences up to time t, for all the subjects. Panels (c) and
(d) show the amount of subjects that present a statistically significant classification accuracy
across time, assessed by uncorrected repeated wilcoxon tests. Classification performance at a
certain time point across folds is considered to be significantly different from chance resulting
p < 0.05.
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Figure 2.4: Topographic correlation analysis. Correlation of stable topographies extracted
from different data folds (a) and different phases of trials, i.e. preparation vs action (b).
Correlation between topographies is quantified in terms of a matrix R of R i , j correlation
coefficients. For each line of R , the highest, unique, correlation value between two templates
is selected, and the set of five correlation values is then averaged, providing the topographic
similarity coefficient γs .

Table 2.1: Topographic correlation across folds and phases of single trials (i.e. preparation,
action).γs values comparing the similarity of the set of stable topographies extracted during
the action period of fold 1 against all other folds (column 2) and action and preparation
periods of each fold (column 3). The average correlation coefficient is compared to the
average correlation value obtained correlating random shuffles of the stable topographies
scalp locations 100 times per fold.

Subject Action Fold 1 vs Action Fold N Action Fold N vs Preparation Fold N

1 0.93 (0.04) 0.75 (0.04)
2 0.83 (0.03) 0.74 (0.04)
3 0.87 (0.04) 0.92 (0.03)
4 0.94 (0.04) 0.87 (0.04)
5 0.84 (0.04) 0.69 (0.04)
6 0.91 (0.04) 0.80 (0.04)
7 0.86 (0.04) 0.83 (0.04)
8 0.92 (0.03) 0.97 (0.04)
9 0.78 (0.04) 0.68 (0.04)

10 0.95 (0.02) 0.86 (0.03)
11 0.91 (0.04) 0.84 (0.04)

AVG 0.88 (0.03) 0.81 (0.03)
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Stable topographies during preparation and action yield very high correlation

In addition to the consistency test across folds, we quantified, for each fold of subjects’ data,

the topographic similarity between sets of stable topographies extracted during the 4s of

sustained movement or resting (i.e. “action periods”) and the 4s prior to the cue indicating the

beginning of a motor trial and the respective first 4s of rest trials (i.e. “preparation periods”).

Results of this analysis are reported in Table 2.1. An example of stable topographies extracted

during action and preparation periods of single trials is shown in Fig. 2.4b. Results show that

stable topographies extracted during preparation periods highly resemble those extracted

during action periods (AVG γs = 0.81). All subjects show a significant correlation with respect

to values obtained by correlating randomly shuffled topographies. Furthermore, we tested

whether the distribution of topographic correlation indexes extracted by comparing the action

periods of fold 1 against the action periods of all other folds was statistically different from

the distribution of topographic correlation indexes extracted by comparing the action periods

and preparation periods of each ( Table 2.1). We find that these distributions are statistically

different (two-tailed unpaired ttest, p<0.01).

These findings can be explained by the fact that nearly identical stable topographies appear

during action periods of different data folds and by the fact that stable topographies extracted

during preparation and action periods might reflect the sequential activations of spatially

different brain areas. In this regard, prior neurophysiological investigation demonstrated

the activation of separate cortical areas – i.e. the supplementary motor area (SMA) and the

primary motor area (M1) – during the preparation to perform a motor task up to 2s before task

onset [116, 117]. Summarizing, these results show that preparation and action periods present

a very similar set of stable topographies, even though these patterns are not as similar as we

found by comparing action periods of different data folds.

Stable topographies are shared among subjects

In addition to previous analyses, we tested whether the stable topographies extracted from

single trials are shared among different subjects. To do so, we correlated stable topographies

extracted during action periods across different subjects, fold by fold. Fig. 2.5 shows the

average γs across subjects. Even though all subjects show a significant correlation with at least

one other subject (two tailed unpaired ttest, p<0.01), seven of them show an average γs > 0.85,

implying a very consistent set of stable topographies across different data folds and subjects.

In our knowledge, this is the first time that shared stable topographic patterns are character-

ized on single-trial and single-subject movement-related EEG data. Our results show that

a basic stable topographic codebase is shared across subjects. Interestingly, the scalp dis-

tributions we found in our experiment are consistent with stable topographies previously

characterized for group-averaged data during wakeful rest in a normative study [75] (shown

in Fig. 2.6. Besides, the subject independent structure of stable topographies during the exe-
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Figure 2.5: Subject-independent structure of stable topographies. Stable topographies ex-
tracted during action periods across different subjects were correlated, fold by fold. This figure
shows that average γs values above 0.85 for 7 subjects, representing very similar sets of stable
EEG topographies.
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Figure 2.6: Stable EEG topographies extracted from average resting data. Stable topogra-
phies extracted from 2-s eyes closed resting average data collected from 496 healthy subjects.
Map areas of opposite polarity are arbitrarily coded in red and blue using a linear color scale,
left ear is left, nose is up. Note that the four topographies extend over wide scalp areas and are
likely to represent global brain electric events. Reproduced from [75].

cution of a movement and resting recalls the well documented spatially consistent structure

of fMRI-RSN [35], highlighting the fact that not only similar spatial activation over the cortex

is found for active tasks and wakeful rest, but that these patterns are also well spread across

subjects.

2.1.7 Discussion

In this study, we demonstrate that GFP can be used to discriminate a motor task from rest

on single-subject and single-trial data and that a subject-independent topographic structure

emerges from the EEG through single-trial analysis of stable topographies generated during the

execution of a movement or resting. This evidence is further supported by consistence in the

stable topographies extracted across independent same-subject data partitions. Our results

also demonstrate that the set of stable topographies isolated during action periods of single

trials is essentially preserved, for each subject, during preparatory phases. In other words, we

find that sets of stable topographies extracted from action periods of single trials are shared

among different subjects. The use of multivariate topographic analysis techniques allowed us

to characterize the motor task with no a-priori information concerning the spatial-spectral

location of EEG signatures.

The classification framework we used in this study expands current state of the art methods in

single-trial topographic analysis [143, 144]. In particular, with respect to the method proposed

in [143], few important differences have to be highlighted: first, we use a one-dimensional

signal, the GFP, to classify single trials, assuming that during a motor task a more ordered

topographic structure will timely appear with respect to rest. The hypotheses that drove

us to do so is that stable topographies represent spatially segregated cortical networks, and

that given the high temporal resolution of EEG more information about the task would be

encoded in the temporal appearance of certain topographic patterns, rather than in small

changes in voltage distribution across the scalp. The former of these hypotheses is strongly

supported by multimodal fMRI-EEG research showing that not only rapid fluctuations of
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stable EEG topographies are correlated with some fMRI-RSN, but that networks associated

to stable topographies correspond to a range of previously described RSNs [154]. The latter

of our hypotheses is supported by the classification results shown in Fig. 2.3, showing that

we are able to decode single-trial information from GFP in eight of the subjects with strong

statistical evidence, but even in those where we were not able to achieve a classification

result above chance, we find a single-trial classification accuracy, on average, above 65%.

Furthermore, using GFP has the advantage of not requiring any additional delay due to signal

processing, and it appears suitable for novel BCI applications that might require a reliable yet

fast classification of EEG potentials.

The second difference with respect to state-of-the-art methods concerns the number of stable

topographies extracted from data. As previously mentioned, the number of stable topogra-

phies is chosen a-priori in GMM clustering. The choice of the optimal number of states to

consider is highly dependent on the application of interest. Different approaches have been

proposed, normally by either maximizing signal reconstruction (i.e. the global explained

variance of the reconstructed signal as compared to the original) [113] or by maximizing the

classification accuracy in the case of single-trial topographic analysis [143]. It is important to

highlight a fundamental difference between group average and single-trial analysis procedures:

dealing with individual subjects and trials waveforms instead of averages, grand-averages

or even mean grand-averages introduces a substantial variability in the data that needs to

be taken into account when we look for stable EEG topographies. For these reasons, rather

than looking for the optimal number of clusters for each subjects and condition, we select Nµ

a-priori and justify this choice by post-hoc analysis. Furthermore, the choice of imposing the

same number of stable topographies across subjects simplifies comparability and reduces

the number of free parameters to discuss. We quantified the effects of different number of

patterns Nmu by repeating the whole classification procedure with the occurrences of each

stable template map, instead of GFP. Classification results like the ones presented in Fig. 2.7

are further averaged across subjects as to have a single number to quantify group performance

and a single number obtained by iteratively repeating the classification procedure on data

having randomly permuted condition labels. Fig. 2.7 shows that models with Nµ = 4,5,6 pass

the permutation test. An absolute maximum is obtained for Nµ = 5, justifying our choice of

Nµ = 5 for each individual in this study. We also highlight the fact that the overall performance

is very similar for Nµ = 4,5,6. Finally, the methodology we propose in this study tends to dis-

advantage high numbers of clusters, as the appearance across time is affected by the absolute

number of considered stable topographies.

The use of a 5-fold cross-validation procedure was essential to establish the predictive power

of GFP occurrence across time. The choice of 5 equal folds of data is arbitrary but reasonable,

iteratively using 80% of the data as training set and 20% as test set, as often done in single-trial

brain imaging studies [127, 87]. Still, given the limited amount of available data, it is not obvi-

ous to show consistent results across data partitions both in terms of classification accuracy

and of stable EEG topography. Indeed, one criticism that might arise is that classification
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Figure 2.7: Number of states. Effect of the number of states Nu on the predictive power of
stable EEG topographies occurrences (blue line); this performance is compared to random
shuffling of the data (green line).

performance shown in Fig. 2.3 does not always refer to the same stable topographies and

that repeating the extraction procedure, model training and testing across different fold of

data would lead to arbitrary results. The consistency check reported in Fig. 2.4a and Table

2.1 clears this doubt showing that nearly identical topographies are extracted across different

data folds.

An interesting point of discussion arising from the results reported in Fig. 2.4b and Table

2.1 is that stable topographies extracted during preparation periods of single trials are very

similar to those extracted during action periods. In our opinion, these results might reflect the

sequential activations of spatially different brain areas – i.e. activations of the supplementary

motor area (SMA) and of the primary motor area (M1) – during the preparation to perform a

movement up to 2s before task onset [116, 117]. This type of activation, in other words, would

still differentiate the preparation of a movement from the first 4s of resting trials.

We find worth mentioning that the 5 stable topographies we identified for each of our subjects

consistently appear in several studies about resting EEG, including a seminal multi-center

study involving 496 subjects between 6 and 80 years determining 4 stable EEG topographies

extracted from group-averaged data as the most representative of eyes-closed resting, specify-

ing their average duration and latency of appearance [75]; the choice of 4 stable topographies,

is mostly related to signal reconstruction considerations, and no single-trial analysis is per-

formed. This, observation, together with the topographic consistency during preparation and
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action periods shown in Fig. 2.4b and Table 2.1, supports the idea that a similar topographic

codebase is shared across subjects and task, and that the appearance across time of some of

the members of the codebase is modulated depending on the task, as reported in Fig. 2.3.

On top of the similarity between stable topographies we isolated for each subject and the

four traditional stable topographies isolated during resting [75], reported in Fig. 2.6, we find

that all our subjects present a stable topography having its spatial configuration consistent

with the “motor map” identified through EMG aligned-averaged EEG, described in [21], both

appearing during preparation and action periods of their experiment.

Another interesting discussion point is the fact that the topographic patterns we identified

during action periods of single trials are very consistent with more recent studies concerning

the link between topographic EEG patterns and fMRI-RSNs, greatly speaking about their

physiological meaning. Indeed, an important property of stable EEG topographies suitable to

understand the link with fMRI-RSN is the fact that they have statically self-similar, scale-free

(fractal) dynamics – explaining why statistical correlations between fMRI-RSNs and two order

of magnitude faster stable topographies are preserved [146]. Concerning our study, shared

topographies (reported in Fig. 2.5 greatly resemble those found in [154], reproduced in Fig.

2.8a: qualitatively, our results resemble the patterns presented in their study, having the

patterns of 2 of our subjects consistent with stable topography associated to Sensorimotor2

and Attention fMRI-RSNs (i.e. topographic template 4), and the remaining 9 subjects having

patterns consistent with the topographic template associated to Sensorimotor1 fMRI-RSNs (i.e.

topographies 10, 11, 12). Considered at a group level, many of the topographies of Fig. 2.2c

and their average greatly resemble topographic distributions that were related to structures

playing a critical switching role between default mode and central-executive function [139],

see for example Map 3 described in [17], reproduced in Fig. 2.8b.
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Figure 2.8: Stable topographies as electrophysiological signatures of fMRI-RSN. a) Pair-wise
correlation coefficient (CC) between the time courses of thirteen temporal independent EEG
stable topographies and ten fMRI-RSNs. Note that the relationship between microstates
and RSNs falls into three categories. Topographies 1–6 each correlated with only one or two
RSNs. In contrast, topographies 7–12 are similarly correlated to sensorimotor, visual and
auditory networks. Topography 13 was correlated to several RSNs. Reproduced from [154].
b) EEG stable topographies identified at the group level and BOLD activations revealed by
GLM and ICA. Stable topography 1 group-level template map, BOLD activations revealed
by GLM regression of its time course and the corresponding correlated IC spatial map were
located in bilateral temporal areas. Stable topography 2 group-level template map, BOLD
activations revealed by GLM regression of its time course and correlated IC spatial map were
located in bilateral extrastriate visual areas. Stable topography 3 group-level template map,
BOLD activations revealed by GLM regression of its time course and correlated IC spatial map
were located in the ACC and bilateral inferior frontal areas. Stable topography 4 group-level
template map, BOLD activations revealed by GLM regression of its time course and correlated
IC spatial map were located in right superior and middle frontal gyri as well as the right
superior and inferior parietal lobules. Reproduced from [17].
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2.2. Stable EEG topographies sequencing in stroke survivors

2.2 Stable EEG topographies sequencing in stroke survivors2

Outlook. Non–Invasive BCI systems convey a great potential in the field of stroke rehabilitation,

where the continuous monitoring of mental tasks execution could support the positive effects

of standard therapies. In this study, we combine time-frequency analysis of EEG with the

topographic analysis to identify and track task–related patterns of brain activity emerging

during a single BCI session. Six Stroke patients executed Motor Imagery of the affected and

unaffected hands: EEG sites were ranked depending on their discriminant power (DP) at

different time instants and the resulting discriminant periods were used as a prior to extract the

stable EEG topographies. Results show that the combination of these two techniques can provide

insights about specific motor–related processes happening at a fine grain temporal resolution.

Such events, represented by stable EEG topographies, can be tracked and used both to quantify

changes of underlying neural structures and to provide feedback to patients and therapists.

2.2.1 Experimental protocol

Six Stroke patients suffering from left or right hemisphere lesions participated in the exper-

iment at Fondazione Santa Lucia, Rome, Italy. The subject was comfortably seated in an

armchair placed in a dimly lit room with her/his upper limbs on a desk, visible to her/him,

with hand posture on a side view. A screen is positioned on the desk in front of the patient

and she/he is provided with a visual feedback. Scalp EEG potentials are collected from 61

positions (according to an extension of the 10- 20 International System), bandpass filtered

between 0.1 and 70 Hz, digitized at 200 Hz and amplified by a commercial EEG system. Each

session is divided in runs consisting of 30 trials, temporally determined by a cursor appearing

in the low center of the screen and moving towards the top at constant velocity on a straight

trajectory. Total trial duration is 9 s; inter-trial interval is 1.5 s.

During rest trials (Fig. 2.9; rest trial timeline), the patient is simply asked to watch the cursor’s

trajectory on screen. During motor task trials (Fig. 2.9; ”Movement” trial timeline), a green

rectangle appears on top of the screen (rectangle’s width is 100% of screen width, rectangle

height equals to 57% approximately of screen length, occupying the last 4 s of cursor trajectory)

and the patient is asked to start performing the cued motor task (motor execution/motor

imagery, unaffected/affected hand) when cursor reached the green rectangle and to continue

until the end of trajectory. Each run is dedicated to a different motor task. Two different motor

tasks (A and B) are examined. Task A consists of tonic grasping movement, Task B is a tonic

complete finger extension.Command sequence is randomized. Runs of the the EEG session

include 15±1 rest trials and 15±1 motor trials (total 30). The EEG session starts with the

unaffected hand: in the first run the patient is asked to move his hand (first run - Task A, second

2This section was adapted from Biasiucci, A., Chavarriaga, R., Hamner, B., Leeb, R., Pichiorri, F., De Vico Fallani,
F., Mattia,D., Millán, J.d.R. (2011) "Combining discriminant and topographic information in BCI: preliminary
results on stroke patients.", 5th International IEEE/EMBS Conference on Neural Engineering (NER) [9]. Contri-
butions: D.M. designed the protocol, D.M., F.P., F.d.V.F. coordinated and executed clinical data recordings, A.B.,
R.C., R.L., J.d.R.M. designed the analyses, A.B., B.H. developed the methods, A.B., J.d.R.M. analyzed the data.
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run - Task B); in the following 2 runs the patient is asked to imagine the same movements (1

run - Task A, 1 run - Task B). The second part of the session involved the affected hand: in this

case, if execution is not possible at all, patient is just asked to attempt the movement. In the

remaining of this study we focus only in the motor imagery tasks.

Figure 2.9: Single-trial description. Analysis for this study was constrained to the first 2
seconds of the ”Go” window. ”rest” trials were analyzed in the same time window.

2.2.2 Methods

The techniques provided in this section aim at combining a discriminant analysis with the

topographic analysis of EEG signals. Briefly, discriminant analysis was used to select time

windows within each run when EEG task-specific activity was localized over motor areas.

Then, topographic analysis was performed on the selected window to assess whether the

discriminant activity was reflected on changes in the duration or occurrence of the obtained

stable EEG topographies.

To do so, we first computed EEG Power Spectral Densities (PSD) for all electrodes and then

ranked the contributions of all channels in all frequency bands through Canonical Variate

Analysis (CVA) [55]. Furthermore, we considered different intervals of the spectrogram to

characterize changes of discriminability in time. Then, the most informative time window

was selected for further topographic analysis; we defined this procedure “time–constrained

topographic analysis". EEG signals extracted from the informative window were clustered in

topographic maps whose number of occurrences per second and average durations were then

compared for every task (i.e. MI of the unaffected and affected hands movements – UH and

AH respectively) against rest condition.
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2.2.3 Power spectral density estimation & canonical variate analysis

As a first step the 16 most external electrodes were discarded to avoid muscular contamination

on the data (i.e. electrodes FPZ, AF7, AF8, F7, F8, FT7, FT8, T7, T8, TP7, TP8, P7, P8, PO7, PO8,

Oz), then EEG signals were down-sampled to 128 Hz and referenced to the Common Average

Reference (CAR) before estimating their power spectral density (PSD) in the band 4–28 Hz

with 4 Hz resolution over a window of 2 seconds from trigger onset. The PSD was computed

every 50 ms using the Welch method with 5 overlapped (25 %) Hanning windows of 500 ms.

Following previous studies, we computed the Discriminant Power (DP) of each feature using

Canonical Variate Analysis [55]. For this study, we were interested in using this frequency

analysis to determine when salient motor–related EEG features were more likely to appear

in time. Consequently, we extracted the DP information of non–overlapping spectrogram

blocks lasting 500ms. For every block, we computed the most discriminant electrodes for all

frequency bands as the ones having a value equal or greater than 70% of the DP maximum

and checked whether activity in the motor areas (i.e. electrodes FC5, FC3, FC1, FCz, FC2, FC4,

FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, CP6) was highly discriminant.

We then picked the most discriminant electrodes covering motor areas from every time frame

and we compared which of those showed the highest DP value. The time window associated

with this most discriminant activity was finally selected for the topographic analysis.

2.2.4 Stable EEG topographies

Epochs were extracted from each subject depending on the salient time window selected

through the discriminant analysis described above. In the case of no discriminant pattern

covering motor areas epochs were extracted in the interval from 0 to 2s after trigger onset.

Stable topographies were computed from concatenated epochs of MI condition and resting

with a modified version of the k-means clustering algorithm [113]. To extract k stable EEG

topographies, this algorithm used the time-domain EEG signal, took each time instant as a 64-

dimensional vector, and then clustered the time instances based on their vector orientations.

It is initialized with k 61-dimensional unit vectors of random orientation, and then alternates

between a cluster-assignment phase and a dictionary-update phase until convergence is

reached. In the cluster-assignment phase, each time instance was assigned to the dictionary

element with the maximal magnitude cosine similarity. In the dictionary-update phase, for

each dictionary element, the sum of the self-outer products of the associated time signals was

taken, and the dictionary element was updated to the normalized dominant eigenvector of

this matrix. We extracted a number of k = 5 maps per subject and condition.

Once the set of stable topographies was learned, the time-domain signal was clustered with

an additional penalty to encourage smoothness of the resulting signal. Following previous

studies[113], we used values of the window size b = 3 and smoothness penalty λ = 5. The

smooth signal allowed for measurements of the occurrences and duration of the stable to-

pographies that were not corrupted by random fluctuations in the EEG signal.
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The number of map occurrences per second and mean duration (ms) of each topographic

template were calculated and compared to the occurrences and duration of those from the

respective rest trials. Percentage variations (MI vs rest), were computed as follows:

(ΛM ap,M I −ΛM ap,r est )/ΛM ap,r est ·100, (2.7)

whereΛ represents either map occurrences or mean duration.

Obtained maps for one of the subjects are shown on Fig. 2.10. EEG Stable EEG topographies

provide physiologically relevant maps [106] that range from a motor–related lateralization

(Fig. 2.10 - map 3) to muscular artifacts such as eye blinks (Fig. 2.10 - map 4).

1 2 3 4 5

Figure 2.10: Exemplary topographic template in a Stroke Patient. Extracted topographic
templates for chronic stroke patient S6 (lesion on left hemisphere) performing MI of grasping
movements (Task A) of the affected hand.

2.2.5 Results

The discriminant analysis identified different combinations of electrode locations and fre-

quencies as the peak of most discriminant activity in the four considered time frames from

0 to 2s. Table 2.2 provides, for every subject and condition, the electrode, frequency and

time frame containing the most discriminant information. Reported spatial locations and

frequency are compatible with current BCI literature for MI tasks. In four of the analyzed

conditions (namely S1 - AH A, S4 - AH B, S6 - AH A, S6 UH B), no discriminant activity was

found over motor areas. It is worth noticing that three of these cases correspond to motor

imagery of the affected hand.

Concerning the time–constrained topographic analysis, Table 2.3 provides the percentage

variation in terms of occurrences per second and average map durations, for every subject

and condition. Note that, since stable topographies are extracted independently for every

condition, no comparison can be made column-wise. Variations in map occurrence were

consistently larger than changes in average map duration. The maps associated with the

two strongest variations in occurrence for every conditions are highlighted on Table 2.3.

Remarkably, maps that exhibit the largest occurrence variation show a common lateralized

trend in at least one of the two selected with this simple rule, and this was observed for most

of the subjects. Values “N/A” refer to maps that, after the smoothing described in Section 2.2.2,
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Table 2.2: Discriminant analysis results (Affected and Unaffected Hand: AH, UH respec-
tively)

Sub.(Lesion Site) Task Electrode Freq. [Hz] Time Win. [s]

S1(L)

AH – B - - -
AH – A CPz 16 0.5-1
UH – B CP2 16 0.5-1
UH – A C3 12 0-0.5

S2(R)

AH – B CPz 12 0-0.5
AH – A C6 28 1-1.5
UH – B C2 24 0-0.5
UH – A FC6 28 0-0.5

S3(L)

AH – B C5 4 0-0.5
AH – A FC6 16 0-0.5
UH – B CPz 4 1.5-2
UH – A C3 20 0-0.5

S4(R)

AH – B - - -
AH – A FC4 16 0-0.5
UH – B FC2 4 0.5-1
UH – A C2 28 0.5-1

S5(R)

AH – B FCz 8 0-0.5
AH – A Cz 16 0.5-1
UH – B C1 12 0-0.5
UH – A CPz 16 1-1.5

S6(L)

AH – B C1 4 0.5-1
AH – A - - -
UH – B - - -
UH – A C3 28 0-0.5

do not occur at all in the selected window.

Since the topographic analysis was performed on the time windows obtained from the dis-

criminant analysis, this suggests that the maps that exhibit large variations are related to

task-specific EEG topographies. This is particularly important for the case of stroke rehabilita-

tion, since it is possible to continuously monitor the generation of topographic maps with a

fine temporal resolution.

2.2.6 Discussion

This study aims at combining standard BCI discriminant analysis with stable topographies

extraction in order to identify potential EEG topographies related to motor imagery. The use

of a discriminant framework allows us to constrain the analysis on a relevant time window

related to motor imagery only. Furthermore, the use of stable EEG topographies can capture

short, transient and stable voltage configurations on the scalp, thus providing insights on
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Table 2.3: Topographic analysis - Occurrences (Duration)

Task % Variation, MI vs rest

Map 1 Map 2 Map 3 Map 4 Map 5

S1(L)

AH – B 41 (34) -11 (-23) 81 (30) -77 (-29) N/A
AH – A 0 (-8) -24 (-5) 18 (10) 35 (14) N/A
UH – B -6 (-17) -88 (-48) 417 (191) 33 (-7) N/A
UH – A 1 (-49) 15 (21) 404 (42) 100 (11) N/A

S2(R)

AH – B 45 (66) -32 (-19) 16 (-3) 22 (50) -38 (-35)
AH – A -13 (11) 12 (-8) 53 (15) -57 (-39) 200 (36)
UH – B 6 (-18) -8 (-22) 22 (3) 71 (-6) 0 (-1)
UH – A 8800 (100) -60 (-57) -36 (-1) 44 (15) 800 (108)

S3(L)

AH – B 0 (30) -1 (10) 8 (-13) -48 (-22) -87 (-18)
AH – A 2 (-32) 34 (98) -99 (-89) N/A N/A
UH – B -19 (-9) -35 (-30) 63 (12) 53 (1) 205 (29)
UH – A 40 (42) 9 (12) -66 (-28) -2 (4) -56 (-12)

S4(R)

AH – B -4 (308) -58 (-18) -80 (-44) -62 (-31) N/A
AH – A 3 (-27) 7 (-3) 73 (37) -10 (-25) N/A
UH – B 0 (14) 29 (7) 131 (35) -36 (-27) -57 (-23)
UH – A -13 (49) -51 (-17) -17 (0) 17 (-3) 51 (6)

S5(R)

AH – B 46 (32) -6 (7) 19 (25) 89 (43) -78 (-45)
AH – A 27 (50) 14 (-8) 90 (14) -80 (-51) 165 (37)
UH – B -3 (9) 9 (15) -45 (-2) -5 (-5) N/A
UH – A 11 (9) 70 (48) -48 (-18) 3 (-14) -53 (-27)

S6(L)

AH – B 3 (0) 61 (12) -48 (-18) 28 (4) -2 (-11)
AH – A -10 (-32) -7 (-7) 159 (44) -39 (-11) 110 (9)
UH – B -33 (-39) -12 (-17) 94 (40) 42 (15) 124 (15)
UH – A 73 (37) 5 (9) -23 (-2) -25 (-14) -59 (-24)
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underlying mental processes.

Given the fact that selected topographies have been extracted and analyzed in the most

discriminant time frame in terms of modulation of motor–related rhythms [119], they are

very likely to be related to the short and transient mental processes associated with the motor

imagery of the affected and unaffected hand. We believe that the results we present in this

study strongly motivate further analysis in this direction, especially correlating functional

recovery to BCI performance.

This time–constrained topographic analysis shows that changes in maps occurrence, rather

than in their average duration, are more significant when comparing MI against rest. This

suggests that the frequency of appearance of particular maps may be a good indicator of

proper execution of the rehabilitation tasks. Consequently, it could be possible to use this

measure to provide online feedback for therapists supporting the rehabilitation process. This

will be particularly suited for the applications related to stroke treatments.

As previously proposed [132], the use of combined sessions of standard therapy and BCI-

aided rehabilitation can serve as a way to facilitate recovery through mental rehearsal. In

addition, proposed techniques represent an imaging modality to monitor long-term changes

in produced patterns representing cortical reorganization.
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Figure 2.11: Stable EEG topographies associated to the motor task. Stable EEG topographies
associated with strongest changes in occurrences during motor imagery with respect to rest
(see Table 2.3 for details) for Subjects S2 (top) and S6 (bottom).
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3 Enhancing Motor Function1

There are two ways of being happy: we

must either diminish our wants or

augment our means - either may do - the

result is the same and it is for each man

to decide for himself and to do that

which happens to be easier.

Benjamin Franklin

Outlook. Recent studies demonstrated that transcranial Direct Current Stimulation (tDCS)

induces selective modulation of cortical excitability. This technique could be used to specifically

enhance people’s capacity to produce sensorimotor rhythms, normally used by Brain–Computer

Interfaces (BCIs). Here we show evidence that tDCS modifies people’s ability to generate discrim-

inable patterns during a two-tasks motor imagery protocol, both in spinal cord injured (SCI)

patients and able-bodied control subjects. Our results show that discriminant spectral activity

is shifted towards the stimulated hemisphere after tDCS, with respect to sham stimulation. Also,

we find an interesting carry-over effect of anodal tDCS lasting 60 to 90 minutes after stimulation,

resulting in prolonged features discriminability in the stimulated hemisphere in both groups.

These findings show that tDCS might be incorporated in BCI systems to achieve more reliable,

efficient brain control, and could be used to have more usable BCI-aided assistive technology

and neurorehabilitation.

1This section was adapted from Chavarriaga, R., Biasiucci, A., Creatura, M., Carrasco C., León, V. S., Campolo,
M., Oliviero, A., Millán, J.d.R. (2014), "Selective Enhancement of Sensorimotor Rhythms for Brain Computer
Interaction by Means of tDCS.", In preparation [27]. Contributions: R.C., J.d.R.M., A.O. designed the study, A.B.,
C.C., V.S.L., M.C. recorded the data, A.B. provided support for the recordings and managed the data, A.B. developed
the methods, A.B., R.C., M.C., J.d.R.M. analyzed the data. Preliminary results on a subset of patients are presented
is reported in Chavarriaga et al. (2013), "tDCS Modulates Motor Imagery-Related BCI Features." In Converging
Clinical and Engineering Research on Neurorehabilitation [26].
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3.1 Methods

3.1.1 Experimental protocol

The study has a 2x2x2 factorial design, wherein factors are spinal cord lesion (presence or ab-

sence), stimulation type (anodal or sham tDCS), and time (we recorded data immediately after

the stimulation and approximately 60 minutes after). Furthermore, the study was designed as

a Consideration-of-Concept study (phase 1 or stage 1 according to the progressive staging of

clinical trials proposed by Dobkin and colleagues in 2009 [41]) testing the effect of tDCS on the

ability of people to produce discriminable EEG features while performing two different motor

imagery tasks. One center in Spain (Hospital Nacional de Parapléjicos, Toledo) was involved

in recruitment and therapy.

Twelve subjects with chronic spinal cord injuries (SCI group; 2 women; age 36.4 ± 5.4; lesions

site ranged from C4 to C7) took part in the experiment. The lesion levels of these subjects

is shown in Table 3.1. Thirteen able-bodied subjects also participated in the experiment as

a control group (Control group; 7 women; age 33.2 ± 7.7). All patients have impaired or no

residual hand functionality. None of them had any prior experience with BCI. The experiment

consists of two recordings days separated by at least one week. At the beginning of each

recording day, either sham or anodal tDCS was applied during 15 min. Then, subject performs

one session of Motor Imagery (MI)-based BCI training (S1). After a pause, a second BCI session

(S2) is performed at least one hour after the end of the stimulation (shown in Fig. 3.2). The

type of stimulation (i.e. sham or anodal) is different on each day, and the order is randomly

selected and counterbalanced within each group.

Subject Age Time since lesion (months) Type of lesion
A 31 163.5 C5-C6
B 35 206.6 C7
C 36 209.9 C5-C6
D 41 198.8 C6-C7
E 28 105.3 C5
F 31 97.6 C5-C6-C7
G 42 108.1 C5-C7-D1
H 44 163.3 C3-C5
I 33 6.9 C4
J 40 95.6 C6-C7

AA 43 2.6 C4
AB 33 141.4 C3-C4-C5

Avg ± SD 36.4 ± 5.4 125.0 ± 69.9

Table 3.1: Patients information, time since lesion, and lesion level.

During each BCI session the subject is asked to perform MI of both hands. Each session is
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3.1. Methods

Figure 3.1: tDCS and EEG montage. Left, tDCS setup covering the supraorbital region and the
primary motor cortex, in order to have anodal stimulation of the primary motor cortex [145].
Right, EEG montage covering premotor and motor areas of the underlying cortex.

composed of 4 runs, where each run contains 15 trials per motor task (i.e left, right MI); plus 5

trials of resting where the subject is asked not to perform any motor task. Each trial starts with

a cue signaling the task to be performed and a cursor moving towards the target is presented

on the screen (refresh rate 4 Hz), the trial order is randomly selected. The length of one trial is

8s and a time-varying pause is added in between two consecutive trials. The total duration of

the session is about 30min.

3.1.2 tDCS stimulation

tDCS (HDCstim, Newronika, Milan) was applied through saline-soaked electrodes (size 50

x 70 mm2) placed over the left motor cortex (anode, C3 position on 10/20 system) and the

supraorbital area (cathode). The stimulation current was set to 1mA and the ramp time was 7s.

For sham stimulation sessions, the current was applied for 30 seconds at the beginning of the

stimulation and then turned off (20 seconds linear down-ramping until 0 mA was reached).

Using this placebo stimulation technique subjects are not able to distinguish between real

and sham stimulation [57].

3.1.3 EEG acquisition and processing

EEG (g·tec gUSBamp, Guger Technologies OG, Graz, Austria) was recorded at 512 Hz with 16

active surface electrodes: positions Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1,

CPz, CP2 and CP4 of the 10/20 system (reference: right mastoid; ground: AFz). The signal was

filtered in the [0.1 100] Hz range plus 50Hz notch filter, and spatially filtered with a Laplacian

41



Chapter 3. Enhancing Motor Function

(a)

(b)

Figure 3.2: Experimental protocol. (a) Recording session. During each BCI session the subject
is asked to perform motor imagery of both hands. Each session is composed of 4 runs, where
each run contains 15 trials per motor task (i.e left, right hand motor imagery) and 5 trials of
resting where the subject is asked not to perform any motor task. The total duration of the
session is about 30min. (b) Training trial. Each trial starts with a cue signaling the task to be
performed and a cursor moving towards the target is presented on the screen (refresh rate 4
Hz), the trial order is randomly selected. The length of one trial is 8s and a time-varying pause
is added in between two consecutive trials.

derivation. For each channel we estimate its power spectral density (PSD) in the band 6-28 Hz

with 2 Hz resolution over the last second. This process yields per each time sample a total of

192 features (i.e., 16 channels x 12 frequencies) .

The PSD was computed every 62.5ms using the Welch method with 5 overlapped (25%)

Hanning windows of 500ms. These PSD features are often used in BCI applications, such as

assistive technology [23] and rehabilitation [82]. Another application of BCI for rehabilitation,

namely BCI-aided Neuromuscular Electrical Stimulation for Stroke rehabilitation, is presented

in Chapter 4 of this Thesis.

Discriminant analysis of EEG features

We assessed the ability of each feature (16 channels x 23 frequencies) to differentiate between

left and right hand motor imagery by computing a score on their discriminant power (DP).

This score computed using canonical variate analysis [55]. Changes in the DP are then used to

quantify the effect of the stimulation on specific, localized brain activity.

To quantify the effects of the stimulation on specific features, we compared the cumulative

DP per feature; i.e., the sum of DPs across subjects of the same group and session. Statistical

differences were assessed using Wilcoxon rank-sum test (p<0.05).
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3.1. Methods

We also analyzed the effects of group (SCI vs Control), stimulation type (tDCS vs Sham); and

order (Day 1 vs day 2). The last condition aims at identifying any learning effect.

The most discriminant features (i.e., highest DP) were selected for further analysis. For the

purpose of classification, the number of selected features has to be high enough to capture the

process of interest, but it is in turn limited by the number of available trials. In the following

analysis we used the 20-top ranked features based on previous experience and preliminary

studies (See below).

In order to evaluate whether tDCS resulted in more stable discriminant patterns than sham

stimulation, we compared the selected features for the two BCI sessions recorded on the same

day (i.e., performed immediately after the stimulation and about one hour after, respectively).

For this purpose we compute a stability index that reflects the consistency of the two feature

sets [77]. This index, defined in equation 3.1, is equal to 1 if the discriminant features are

exactly the same in both sessions, while a value of -1 corresponds to non-overlapping feature

sets. Independently drawn feature sets will have values close to zero.

I = r n −k2

k(n −k)
(3.1)

Classification analysis

We also evaluated whether tDCS produces observable changes in the brain activity patterns by

performing single-trial classification on the different conditions. As mentioned above, the 20

most discriminant features were selected and used as input for a Gaussian. Classification of the

reduced PSD feature vectors is achieved using a Gaussian mixture model (GMM) framework,

commonly used in BCI studies [82]. Briefly, the classifier outputs a conditional probability

distribution ~pt = [p1
t , p2

t , ..., pC
t ] at time t over the C mental tasks given each feature vector~xt

[96]. Whereby, t = 0 refers to the output timings of the feature extraction and classification

which operates at 16 Hz. Therefore,t = 0 would be the arrival of the first sample in a trial

and t = 1 (62.5 ms later in real time) the arrival of the second sample, and so one. t will

increase within a trial until a decision is made (threshold reached). Each mental class is

represented by a number of Gaussian units (usually N = 4 ). The class-conditional probability

distribution function of class i is a superposition of N Gaussian prototypes. Equal priors

for the classes and mixture coefficients are assumed, as well as shared, diagonal covariance

matrices. The centroids of the Gaussian units are initialized by means of a self organizing map

(SOM) clustering and their covariance matrices are subsequently computed as the pooled

covariance matrices of the data closest to each prototype. Finally, the distribution parameters

are iteratively re-estimated through gradient descent so as to reduce the mean square error

(MSE). The training of the Gaussian classifier stops, if the MSE change after each iteration is

43



Chapter 3. Enhancing Motor Function

not improving, or after 20 iterations at maximum [96].

Two types of analysis were performed. The first one aims at assessing how separable the two

conditions are within a specific session. To this end, we trained the classifier using 70% of the

data, and tested it on the remaining 30%. The temporal order of the data was preserved, so as

to test on the last part of the session.

Furthermore, the stability of elicited patterns was also evaluated by computing the classifica-

tion accuracy across sessions. To this end, we used a classifier trained on the first session and

tested on the second session.

In both cases the classification accuracy was assessed using the area under the receiver operat-

ing condition curve (AUC)[48]. This provides a measure of performance where 1 corresponds

to perfect classification, and a value of 0.5 corresponds to chance level.

3.2 Results

Discriminant analysis of EEG features

With respect to the spectral features produced by both groups, we find that the able bodied

control group shows higher capability, during both anodal and sham tDCS, to produce highly

discriminant activity in the µ band (9-11 Hz), as shown in Fig. 3.3a. This observation does not

apply to the β band, where groups exhibit similar features, shown in Fig. 3.3b.

Although small in absolute value, discriminant activity is consistently shifted under the stimu-

lated hemisphere in SCI patients and healthy controls in the µ band Fig. 3.4, top. After sham

stimulation, on the contrary, SCI patients show no discriminant activity under the stimulated

side Fig. 3.4, bottom. In addition, we report a reduction in frontocentral-midline discriminant

activity in the β (11-19Hz) for the SCI group, further documented through the statistical tests

comparing tDCS and sham reported in Fig. 3.6.

An interesting carry-over effect seems to be present in both groups after actual tDCS, with

no visible effect in the β band Fig. 3.3. In particular, the control group showed a significant

effect in µ (5-13Hz) and low β (15-17Hz) bands over the stimulated hemisphere. This effect is

pronounced during S2 – i.e. approximately 1 hour after stimulation – and might represent a

facilitation in the production of stable EEG activity.

Fig 3.7 shows the stability index computed on the 20 most discriminant features for BCI

sessions S1 and S2. Overall, control subjects exhibited more stable features after anodal tDCS

stimulation, although no significant difference were found. The SCI group showed lower

stability than controls in both conditions. Only two subjects in this group have a considerably

higher K after sham than anodal stimulation. K-index have similar range values on sham
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condition for both SCI and control. In contrast, higher range is shown for control subjects

after tDCS.

Classification analysis

Fig. 3.8 shows the classification performance in terms of the area under the ROC curve (AUC),

reporting large variability across subjects in both groups (i.e. SCI and control). Control subjects

perform significantly better than than SCI subjects (p<0.001, Wilcoxon). Overall, we didn’t find

a direct effect of anodal tDCS on off-line classification accuracy with the metric we proposed.

3.3 Discussion

We report modulation of motor imagery BCI features by anodal tDCS on motor areas. Both SCI

and control subjects showed localized discriminant activity under the stimulated areas that

lasts for at least 90 minutes. Contrary to the sham condition, SCI subjects present discriminant

activity over motor areas immediately after stimulation. These preliminary results suggest

that tDCS may selectively enhance activity of targeted areas so as to produce patterns that can

be better recognized by a BCI system, thus improving the potential role that BCI can play in

supporting neurorehabilitation.

Remarkably, SCI subjects show bilateral discriminant activity on the first BCI session (S1,

immediately after the stimulation), and features under the stimulated hemisphere remained

discriminant during the second session. Although small in absolute value, discriminant activ-

ity is consistently shifted under the stimulated hemisphere in SCI patients and healthy controls

in the µ band. After sham stimulation, on the contrary, SCI patients show no discriminant

activity under the stimulated side. An interesting carry-over effect seems to be present in both

groups after anodal tDCS. No effect is visible in β band. In contrast, after sham stimulation

activity in motor areas was less discriminant on the first session. Similarly, in control subjects,

tDCS resulted in strongly localized discriminant information on the stimulation site over the

two sessions.

Concerning features stability, feature sets consistency between the two sessions (S1 and S2)

show that anodal tDCS has a limited effect in modifying features stability in the SCI group

with respect to sham tDCS. It also appears that anodal tDCS might have a stronger impact on

the control group, probably representing a facilitation in the production of discriminable EEG

features for prolonged periods.

Our results might reflect the modulation of event-related synchronization and desynchro-

nization, as explained by a recent experiment comparing event-related desynchronization of

sensorimotor rhythms before and after anodal, cathodal and sham tDCS, as well as the resting
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and active motor thresholds of the right first dorsal interosseous muscle [93]. Stimulation

lasted 10 min (10 s for sham) with electrodes (50 mm x 70 mm) located on the left M1 (found

through transcranial magnetic stimulation (TMS)) and right supraorbital area. Event-related

desynchronization increased after anodal stimulation and decreased after cathodal stimula-

tion. No change was observed in the sham condition. Positive correlation was found between

the desynchronization and the resting motor threshold of the right FDI muscle, but with no

significant correlation with the active motor threshold. They recorded 6 healthy subjects

and each subject performed 20 trials per session, 6 sessions per day (3 sessions before and

3 sessions after tDCS). The experiment was performed over 3 days separated by at least one

week and the order of the stimulation types was balanced across subjects.

Overall, the effects of tDCS have modest size in SCI patients and they appear to be stronger in

healthy controls (although not significant in terms of discriminability). This study extends

current knowledge about the effect of tDCS on event-related synchronization and desynchro-

nization on spinal cord injured individuals [81], and could be used as a basis to investigate the

role of afferences in the generation of µ EEG rhythms. On this regard, it might well be that the

effect on healthy controls is driven by the presence of actual subliminal muscle contractions

during motor imagery. Unfortunately, this study does not allow us to draw conclusions on this

point, and further research should address this question explicitly.

Concerning the absence of an effect of tDCS on off-line classification accuracy, another study

on the effect of tDCS-aided stroke rehabilitation involving a BCI system found no effect on

off-line accuracy but an effect on on-line performance [6], providing a hint that an increase

in cortical excitability results in enhanced ability to generate EEG patterns. Under the same

rationale, our results might provide a starting point for further investigation on the use of

tDCS to improve on-line control of assistive technology devices in SCI individuals.
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(a) f=10 Hz. Left: SCI. Right: Ctrl

(b) f=26 Hz. Left: SCI. Right: Ctrl

Figure 3.3: Cumulative Discriminant Power (DP) in µ and β bands. (a) Topographical local-
ization of discriminant features in the µ band (9-11 Hz) (Top view, Nose up). Left, SCI subjects.
Right, Control subjects. Top, first BCI session (right after tDCS). Bottom, Second BCI session
(>1hr after stimulation). Left, SCI patients. Right, Control subjects. (b) Same as (a), but in
the β band (25-27Hz). Although small in absolute value, discriminant activity is consistently
shifted under the stimulated hemisphere in SCI patients and healthy controls in the µ band.
After sham stimulation, on the contrary, SCI patients show no discriminant activity under
the stimulated side. An interesting carry-over effect seems to be present in both groups after
actual tDCS. No effect is visible in β band.
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tDCS condition

Sham condition

Figure 3.4: Cumulative Discriminant Activity - SCI group Topographical localization of dis-
criminant features (nose left) in frequency bands between 5 and 29 Hz. We report a reduction
in frontocentral-midline discriminant activity, further documented through the statistical
tests comparing tDCS and sham reported in Fig. 3.6.
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tDCS condition

Sham condition

Figure 3.5: Cumulative Discriminant Activity - Control group Topographical localization of
discriminant features (nose left) in frequency bands between 5 and 29 Hz. First, we report that
discriminant EEG activity is distributed over the scalp in a more bilateral fashion and centered
on electrodes C3 and C4 with respect to the SCI group data shown in Fig. 3.6, representing
the activation of contralateral areas during right or left hand motor imagery. Overall,it seems
that tDCS effects on healthy subjects allows them to produce stable discriminant patterns for
longer time.
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Control group

SCI group

Figure 3.6: Significant changes in Discriminant Activity due to tDCS Discriminant activity
characterizes left vs right hand motor imagery. Statistical differences were computed by
uncorrected pairwise ranksum test (white>0.05) between tDCS and Sham conditions. Control
group (top) shows a significant effect in µ (5-13Hz) and low β (15-17Hz) bands over the
stimulated hemisphere. This effect is pronounced during S2 – i.e. approximately 1 hour after
stimulation – and might represent a facilitation in the production of stable EEG activity. The
SCI group (bottom) presents a reduction in frontocentral-midline discriminant activity, with
some smaller effect on the stimulated areas in the β (11-19Hz) band.
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(b)

Figure 3.7: Discriminant EEG features stability. We tested whether tDCS resulted in more
stable discriminant patterns than sham stimulation, by comparing features for the two BCI
sessions (S1 and S2) recorded on the same day (i.e., performed immediately after the stimu-
lation and about one hour after, respectively). The stability index reflects the consistency of
the two feature sets: when its equal to 1 discriminant features are exactly the same in both
sessions, while a value of -1 corresponds to non-overlapping feature sets. Independently
drawn feature sets will have values close to zero.Left SCI group. Right Control group. While
tDCS has a limited effect in modifying features stability in the SCI group, it appears to have a
stronger impact on the Control group, which might represent a facilitation in the production
of discriminable EEG features for prolonged periods.
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Figure 3.8: Classification analysis. Within-session Classification performance (AUC) for both
tDCS and Sham conditions (left and right, respectively). Top, SCI subjects. Bottom, Control
subjects. Bars represent the performance for each subject. Boxplots at the right end of each
plot show the population distribution for each session.
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4 Restoring Motor Function1

You were sick, but now you’re well again,

and there’s work to do.

Kurt Vonnegut

Outlook. Brain Computer Interfaces (BCI) might be used in rehabilitation to decode motor

attempts from brain signals and deliver Neuromuscular Electrical Stimulation (NMES) of the

paralyzed limb, temporarily restoring motor function. Unfortunately, the added value of closed-

loop neural control for motor recovery is still disputed. In this study, we aimed to assess the

effect of NMES therapy triggered by a sensorimotor rhythm BCI over sham NMES therapy. We

enrolled 15 chronic patients (>10 months from stroke) with moderate-to-severe arm paresis.

Eight patients received BCI-NMES therapy, and seven matching patients received sham-NMES

therapy consisting in identical instructions and random delivery of NMES at similar rates and

timing as for the BCI-NMES group. Both interventions targeted fingers extension recovery, twice

a week for five weeks. Surprisingly high and clinically relevant improvements of affected arm

functions were found for subjects in the BCI-NMES group, and retained 36 weeks after therapy

end. Only one patient receiving sham-NMES reported functional gains. Despite small group

size, we show that feedback training of EEG sensorimotor rhythms, reinforced by the use of body

natural pathways through NMES, modifies neural tissue properties both at a local and at a

network scale, also in plegic patients and several years after stroke.

1This section was adapted from Biasiucci, A., Leeb, R., Al-Khodairy, A., Zhang, H., Schnider, A., Schmidlin,
T., Vuadens, P., Guggisberg, A., Millán, J.d.R. (2014) Brain-Controlled Neuromuscular Electrical Stimulation
Promotes Permanent Upper Limb Functional Recovery after Stroke, In review [11]. Contributions: A.B., R.L.,
and J.d.R.M. designed and coordinated the study. A.A.K., A.S., T.S., P.V., and A.G. enrolled patients. A.B., R.L., A.A.K.,
T.S., and A.G. collected data. A.B., R.L., H.Z., and J.d.R.M. analyzed the data.
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4.1 Methods

4.1.1 Study design and participants.

This sham-controlled, parallel group trial was designed as a Consideration-of-Concept study

(phase 1 or stage 1 according to the progressive staging of clinical trials proposed by Dobkin

and colleagues in 2009[41], Fig. 4.10) testing the added value for motor recovery of BCI-aided

neuromuscular electrical stimulation (NMES) over sham NMES. Two centers in Switzerland

(SUVACare - Clinique Romande de Réadaptation, Sion; University Hospital of Geneva, Geneva)

were involved in recruitment and therapy. Inclusion criteria were first ever cerebrovascular

accident resulting in chronic impairment (minimum 10 months from stroke), and moderate-

to-severe disability. We used chronic patients because we wanted to isolate effects that are only

induced by the rehabilitation therapy, excluding any effect due to spontaneous recovery[41].

All patients were in their plateau phase of recovery, and they all received conventional physical

therapy in addition to BCI-NMES or sham-NMES in order to filter out potential effects due to

non-use and atrophy. Patients were ineligible if they presented any concomitant neurological

pathology.

The institutional ethical committees approved the study protocol and each participant gave

written informed consent prior to their eligibility assessment. The trial was performed in

accordance with the Declaration of Helsinki. Sensitive data was collected and protected on

the servers of the École Polytechnique Fédérale de Lausanne, Switzerland.

4.1.2 Lesion Analysis

Information concerning stroke type (ischemic or hemorrhagic) and location (cortical or sub-

cortical) are reported in Table 4.1.

4.1.3 Randomization and masking.

Participants were enrolled sequentially and randomly assigned to either receive conventional

therapy + BCI-NMES or conventional therapy + sham-NMES. If eligible for the study (provided

informed consent and met all inclusion criteria), participants were sequentially given unique

patient identification numbers and assigned to a group. Patients were initially enrolled at

SUVACare Sion, Switzerland, to the BCI-NMES group. Relevant metrics concerning brain

control were extracted from these first four subjects and used to simulate brain control in

the sham group (i.e. average time to deliver a brain command, average number of detected

commands, average number of repetitions per session). Then, three additional patient re-

ceived sham-NMES and three more BCI-NMES at SUVACare Sion. The same procedure was

replicated at the University Hospital of Geneva, Switzerland, where four patients received
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Table 4.1: Patients information, stroke type, and etiology.

patient sex age
(y)

diagnosis lesion site lesion
side

time since
stroke (m)

BCI-NMES group

E1 M 64 ischemic subcortical right 10
E2 M 71 ischemic cortical right 14
E3 M 49 ischemic subcortical right 10
E4 F 50 ischemic cortical right 19
E5 F 49 ischemic cortical & subcortical left 13
E6 F 67 ischemic subcortical left 176
E7 F 41 ischemic subcortical left 39
E8 M 48 ischemic cortical & subcortical right 14

Sham-NMES group

C1 M 40 hemorrhagic cortical & subcortical right 18
C2 M 58 ischemic cortical & subcortical right 23
C3 M 75 hemorrhagic subcortical left 15
C4 M 53 ischemic subcortical left 21
C5 M 65 hemorrhagic subcortical left 38
C6 M 57 ischemic cortical & subcortical left 62
C7 F 62 — missing — — missing — left 121

sham-NMES and one additional patient received BCI-NMES. This procedure is frequently

used in animal studies concerning brain controlled interfaces[60] and was essential to build

a conservative sham intervention where the only key therapeutic factor missing is direct

brain control (by providing comparable sham therapy). Hardware equipment used during the

therapy by both groups was identical, and software tools were developed as to hide whether

they would implement actual or sham brain control. Patients and caregivers were masked

to treatment allocation throughout the study. Treatment assignment was known only by

investigators and data analysts at the École Polytechnique Fédérale de Lausanne, Switzerland.

4.1.4 BCI-aided and sham therapy procedures.

Both groups received therapy two times per week for a period of 5 weeks, directly in the

centers (10 sessions in total). We rescheduled missed session and for none of the patients

training duration exceeded 6 weeks. Each session lasted approximately 60 min, including

preparation and device setup time. We used a commercial EEG amplifier (g·tec gUSBamp,

Guger Technologies OG, Graz, Austria), recording at a sampling frequency of 512 Hz with

16 active surface electrodes placed on Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3,

CP1, CPz, CP2 and CP4 of the 10/20 system (reference: right mastoid; ground: AFz). We also

recorded 4 bipolar EMG of the biceps, triceps, extensor digitorum communis (target muscle),
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Figure 4.1: BCI-NMES montage and actors. During the experiment, the stroke patient wears
a 16-channels EEG system and NMES electrodes are placed on his/her forearm as to stimulate
the paralyzed extensor digitorum communis muscle. During the whole session, a physical
therapist monitors the performance and motivates the patient, avoiding abnormal and com-
pensatory movements. In addition, an engineer expert in BCI provides technical support to
calibrate the system and fix problems that might arise at run-time, either on site or remotely.

and flexor digitorum communis muscles.

During each therapy session, patients were asked to perform 3 to 7 series of 15 movement

attempts, and they were encouraged to do as many series as they could. Timing of each trial

(i.e. movement attempt) was determined by a cursor moving on a screen (Fig.4.2g). A physical

therapist monitored the cursor and gave verbal instructions to patients and avoided abnormal

compensatory strategies; an engineer would provide technical support to calibrate the device

and fix malfunctioning on site, or remotely (Fig.3.1).

Whenever the cursor reached a pre-defined threshold on the screen, a BCI command was de-

tected and NMES was activated, accordingly. Possible visual cues and timing were: preparation

56



4.1. Methods

(for 3.5s), attempt movement (1s). If no mental command was detected in the 7s after “Start”

cue, trial was terminated. Two patients in the BCI-NMES group required longer time-outs to

be able to deliver a BCI commands, so maximum trial length was set to 15s. Each trial was

started by the therapist through a key press. For the Sham-NMES therapy, patients received

identical instructions and wore identical equipment to that worn by subjects in the BCI-NMES

group. The data of first 4 patients in the BCI-NMES group was used to provide an estimate of

the real time behavior of the neural interface. This resulted in pre-setting an average time to

deliver an NMES of 3.5 to 4.5s, and a command delivery rate of 60 to 70% of single trials.

NMES was performed through a commercially available neuromuscular electrical stimulator

(Krauth & Timmermann MotionStim8), with a single bipolar channel applied on the affected

limb in order to inject a current (having a pulsed, square waveform) into the extensor digito-

rum communis muscle. Electrical stimulation parameters such as current amplitude (ranging

between 10 and 25mA), pulse-width (500µs), and stimulation frequency (ranging from 16 to

30Hz), as well as electrodes placements were setup at each session by an expert therapist.

Therapists were asked to give regular therapy at the end of each session for additional 45

min, usually including mobilization, and activities of daily living. The same occupational and

physical therapists within each clinical site, having at least 4 years of experience, provided

training to patients in both groups.

4.1.5 Electromyography data analysis.

An objective quantification of voluntary muscle contraction was performed by means of EMG

analysis. Raw EMG signal recorded through bipolar montages around the extensor digitorum

communis and flexor digitorum muscles were band-pass filtered between 50 and 200 Hz,

and the EMG envelope was extracted by squaring the bandpass-filtered EMG signal and by

applying a moving-window smoothing filter having a window length of 125ms.

In addition, we tested whether changes induced by the therapies resulted in objective changes

in the distributions of EMG potentials generated during an attempted movement. To do so, we

extracted and compared the probability density functions of EMG potentials recorded from

the extensor digitorum communis muscle (target muscle of the therapy) in the 2s following

the ”Start” cue.

4.1.6 Clinical indexes of recovery.

Before starting the therapy, patients underwent a neurological baseline assessment of their

upper limb functionality (Fig. 4.10). The primary outcome was change in the Fugl-Meyer

assessment for the upper extremity (FMA-UE) score [54]. This motor impairment test involves

33 items that assess voluntary movement, reflex activity, grasp, and coordination by ranking
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Figure 4.2: Brain-controlled neuromuscular electrical stimulation. During the therapy, par-
ticipants were comfortably sit and they were asked to concentrate on their affected limb for
the whole time of the experiment (a). For the BCI-aided neuromuscular electrical stimulation
group (BCI-NMES), a brain-computer interface (BCI) system (b) was calibrated to distinguish
motor attempts from resting during an initial dedicated session by identifying subject-specific
EEG features representing spared motor networks activated during motor attempts (c) and
building a statistical classifier (d) for each of the possible tasks – i.e. attempt to move and
resting. Closed-loop control of NMES was performed through the BCI by accurately decoding
user’s attempts to open the affected hand or resting, resulting in low false positive classifica-
tion rates (e). The BCI computed probabilities from EEG features 16 times per second, and
accumulated this evidence until a confidence threshold was reached (f); probabilities and the
threshold were visualized to the patient and the therapist by a cursor moving on the screen
and updated according to current probabilities (g). If the threshold was reached, the system
delivered NMES of the affected extensor digitorum communis muscle (h), causing muscular
contraction, fist lifting, and fingers extension, providing a reward signal for patients. Patients
in the sham-NMES group wore exactly the same hardware as patients in the BCI-NMES group,
but no BCI system detected motor attempts. NMES, instead, was delivered in 60 to 70% of
each run’s trials following the same timing of the BCI-NMES group. Both therapies lasted 10
sessions.
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actual performance from 0 (no function) to 66 points (normal function). The threshold for

the minimum clinically important difference in patients with minimum to moderate chronic

impairment after stroke is about 5 points [138]. Our secondary outcome measures targeted

spasticity (Modified Ashworth Scale), strength (Medical Research Council strength test), and

overall status (European Stroke Scale). The same tests were repeated immediately after the

end of the therapy to quantify the outcomes.

4.1.7 EEG markers of neuroplasticity and related signal processing.

In addition to the clinical functional indexes, patients participated to a pre- and post-treatment

high-density EEG imaging session, where they were asked to perform 45 attempts of affected

hand opening or resting, in random order. 64 EEG channels covering the whole scalp were

recorded with a Biosemi ActiveTwo system with a sampling frequency of 2048 Hz. In order

to uniform data among patients and have comparable results, EEG data of patients with a

lesion in the right hemisphere were flipped in order to have the lesion over the left hemisphere

for all subjects – i.e. electrode C3 covers the lesioned hemisphere, electrode C4 the intact

hemisphere. For this reason, electrode notation in the text is presented as C3*/C4*.

4.1.8 Effective EEG connectivity.

Data were bandpass filtered using a 4th order causal Butterworth filter between 1 and 40

Hz and used to compute brain connectivity through the short time direct directed transfer

function (SdDTF) [76]. This method is a modification of the directed transfer function (DTF)

using multi-trials to increase the temporal resolution and adopting partial coherence to avoid

indirect cascade influences [70]. The brain connectivity was transferred to frequency domain

by FFT to reflect the causal influences in different bands. The SdDTF was computed with a

sliding window of 500ms for 41 EEG channels (excluding peripheral channels) with overlapping

450ms in order to obtain smooth modulation. Epochs of 10s data were used: 5s before and 5s

after the onset of the “Start” cue. For each dataset (i.e. a recording session), all motor attempt

and rest trials were used to compute the SdDTF. Then, for each of the electrodes SdDTF results

computed between all pairs of electrodes were referenced to the baseline level, computed

from 4s to 1s before “Start” cue onset. SdDTF results were averaged for movement attempt

and resting trials, then a relative measure of connectivity was extracted as

ηRel = ηMotor −ηRest

where ηMotor is the average SdDTF during motor attempts, and ηRest is the average SdDTF

during resting trials. Negative values of ηRel show that the SdDTF is higher during resting

trials, positive values of ηRel is higher during motor attempts, and close to 0 values show that
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the average SdDTF is similar during both conditions. Time-frequency blocks of the SdDTF

were further averages in the [0 2.5]s time window after the visual cue and in the [25 40]Hz

frequency band (shown in Fig. 4.7a-b).

After swapping electrodes to have the lesion on the left hemisphere for all patients, two

hemispheres were defined by clustering together the information coming from electrodes

FC5, FC3, FC1, C1, C3, C5, CP5, CP3, CP1 (left hemisphere) and FC6, FC4, FC2, C2, C4, C6,

CP6, CP4, CP2 (right hemisphere), we computed the average relative measure of connectivity

between/within the two hemispheres (shown in Fig. 4.7c-d).

4.1.9 Slow motor-related potentials

Slow components of the EEG were isolated by applying a 5th order causal Butterworth filter

in the [0.3 1] Hz frequency band in order to identify movement-related potentials reflecting

cortical reorganization after stroke [63] and changes in cortical excitability [44]. The filter

settings were chosen in order to maximize single trial information [58]. Trials with potentials

exceeding ±100 µV were discarded before averaging. Single trials recorded from electrode C3*

(lesional hemisphere) were averaged by group before and after therapy.

All trials were aligned on EMG onset before averaging. To extract the EMG onset, raw bipolar

derivations recorded from the extensor digitorum communis muscle were band-pass filtered

between 50 and 200 Hz, squared, and smoothed with a moving average filter having a window

length of 125 ms. Onset of a trial is defined as the time when the processed EMG values

exceeded the mean EMG value computed between 1 and 0.5 s before the “Start” cue by twice

its standard deviation.

In order to validate the presence of modulations in slow movement-related activity, multivari-

ate topographic analysis was performed by computing the global dissimilarity (DISS) of the

entire EEG topography between pre- and post-intervention group-averaged slow potentials,

for the two groups separately [106]. Topographic ANOVA (TANOVA) consists in a permuta-

tion test that preserves the temporal structure of the signal and shuffles the topographies

belonging to each of the conditions. Statistical significance was assessed by considering a

95% confidence interval. Stable template maps were further extracted from concatenated

group-averaged slow EEG potentials, and the number of templates was chosen through a

cross-validation criterion [113]. Finally, single-subject fitting of extracted topographies was

performed on the time windows identified by TANOVA [106], ensuring that windows had a

minimum length of 100 ms in order to remove isolated statistically significant time points

arising from the permutation procedure.

Qualitatively, a slow motor-related potential (SMRP) would appear as a slow negative deflec-

tion of the EEG preceding the muscular onset (time 0), and none of the groups presented
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normal SMRPs before the therapy (Fig. 4.3a,b). A consistent negative deflection preceding

the muscular onset appears in the BCI-NMES group after therapy (Fig. 4.3a), but not in the

sham-NMES group (Fig. 4.3b). TANOVA shows that statistical significance was reached in the

BCI-NMES condition in the time window [-830 -460] ms (Fig. 4.3c), but not in the sham-NMES

(Fig. 4.3d). The number of stable template maps for the BCI-NMES group was 4, yielding a R2

value with original signal of 0.87 (Fig. 4.3e). Within the statistically significant window, two

stable topographic voltage templates appeared consistently modulated, after single subject

fitting after the therapy in the BCI-NMES group: a frontal pattern became more frequent, and

a posterior pattern occurred less frequently (Fig. 4.3f). Both patterns appear to be located

over the lesioned hemisphere.

4.1.10 Brain Computer Interface calibration and real time control.

For the BCI-NMES therapy, the BCI classifier was calibrated to classify brain activity into

“motor attempts” and “resting” for each patient during a low-density EEG session not included

in the therapy time. During the calibration session patients were asked to attempt opening

the affected hand or to rest; patients were comfortably sit in front of a screen providing

information concerning current task and timing by means of moving visual cues. These data

were analysed offline and most discriminant EEG features between resting and motor attempts

were extracted through state of the art machine learning techniques [82] and manually selected

by BCI experts. As a general principle, BCI experts selected discriminant EEG features in the

ipsi- and contra-lesioned hemispheres in frequency bands normally associated to voluntary

movements, i.e. in the mu and beta bands.

EEG Features used for the procedure described above were the power spectral densities (PSDs)

of the signal, computed through a sliding window every 62.5ms over last 1s of data. These

features were used to train a Gaussian Mixture Model composed of two prototypes per task,

assuming equal variances of each Gaussian [96].

Finally, the BCI system decoded motor attempt by computing the probability of each PSD

value to belong to either class “Motor Attempt” or “Resting”, and integrating probabilities

through exponential smoothing. Whenever integrated probabilities reached a pre-set con-

fidence level, a BCI command was detected, and NMES of extensor digitorum communis

muscle was delivered, accordingly. This threshold was adjusted at each therapy session as to

allow stroke patients to deliver BCI commands, i.e. shaping of task complexity was performed

in order to have a hard but feasible task [141].

On-line accuracy was computed by dividing the average number of BCI commands over the

total number of attempts in a run.
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Figure 4.3: Modulations of slow cortical movement-related potentials. Group-averaged
EEG waveforms at electrode C3* (all data were flipped in order to always have the affected
hemisphere on the left side of the head), representing movement-related potentials (MRP)
before and after the therapy (a and b). All trials were aligned on EMG onset before averaging,
and slow components were extracted in the [0.3 1]Hz frequency band. A consistent negative
deflection preceding the muscular onset appears in the BCI-NMES group after therapy (a),
but not in the sham-NMES group (b). In order to validate this observation, multivariate
topographic analysis was performed by computing the global dissimilarity (DISS) of the
entire EEG topography between pre- and post-intervention group-averaged event related
potentials, for the two groups separately (c and d). Topographic ANOVA (TANOVA) consists
in a permutation test that preserves the temporal structure of the signal and shuffles the
topographies belonging to each of the conditions. After applying a smoothing filter of 10ms
to remove glitches, statistical significance was reached only in the BCI-NMES condition in
the time window [-830 -460]ms (c). Stable template maps were extracted from concatenated
group-averaged ERPs, and the number of templates was chosen through a cross-validation
criterion, resulting in 4 template maps for the BCI-NMES group (yielding a R2 value with
original signal of 0.87) (e). Within the statistically significant window, two stable topographic
voltage templates appeared consistently modulated, after single subject fitting, after the
therapy in the BCI-NMES group (f). Both patterns appear to be located over the affected
hemisphere.

62



4.1. Methods

Electrodes

Fr
eq

ue
nc

y 
(H

z)

E1

C3* Cz C4*

8
12

28

40

Electrodes

E2

C3* Cz C4*

8
12

28

40

Electrodes

E3

C3* Cz C4*

8
12

28

40

Electrodes

E4

C3* Cz C4*

8
12

28

40

Electrodes

Fr
eq

ue
nc

y 
(H

z)

E5

C3* Cz C4*

8
12

28

40

Electrodes

E6

C3* Cz C4*

8
12

28

40

Electrodes

E7

C3* Cz C4*

8
12

28

40

Electrodes

E8

C3* Cz C4*

8
12

28

40

a

b c d

2 4 6 8 10
0
1
2
3
4
5
6
7

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

S
in

gl
e 

tri
al

 a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1
Offline performance Online performance Time to deliver

S
in

gl
e 

tri
al

 d
ur

at
io

n 
(s

)

Session Session
Classifier accuracy
Rejection

Figure 4.4: BCI features and performance. EEG features used for closed-loop control, pre-
sented for all subjects of the BCI-NMES group by their frequency and electrode location (a).
For each patient, the white area of the plot represents all electrodes located on the lesioned
hemisphere (surrounding C3*), while the dark gray area represents all electrodes located on
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classification performance across all subjects (c), and average time required by the BCI to
detect a motor attempt from the EEG across all subjects (d).

63



Chapter 4. Restoring Motor Function

4.1.11 Statistical analyses.

All tests for clinical scores were done with SPSS. We used a significance level 0.05 for all

analyses. Effects of the treatment over the entire course of the study were assessed by means of

mixed-design repeated measures ANOVA having session (pre- and post-therapy; i.e., 2 levels)

as within-subject factors and the allocation group as the between-subject factor.

For missing data, we used the last recorded value (last observation carried forward). For

missing EEG data, if no former session data was available, we used data recorded in the next

session (next observation carried backward).

4.2 Results

In this study, we aimed at assessing whether five weeks of therapy involving BCI-aided NMES

(later called BCI-NMES, whose functioning is described in Fig. 4.2) could elicit stronger func-

tional recovery than sham-NMES therapy, and whether signatures of neuroplastic changes

would be detectable from the EEG.

NMES is a rather common therapeutic approach in rehabilitation[37], it is safe and affordable

by the healthcare system[114], its application to post-stroke hemiplegia has shown benefits

for patients [123], and its use has the general advantage of directly engaging body’s natural

pathways - the muscles and nerves[25].

Between September 18, 2012, and January 31, 2014, 18 individuals were clinically tested for

eligibility, of whom 15 were eligible and agreed to participate. One patient withdrew and

did not participate to the follow-up assessment. Ten participants from SUVACare - Clinique

Romande de Réadaptation, Sion (seven assigned to BCI-NMES, three assigned to sham-NMES)

and five from University Hospital of Geneva (four assigned to sham-NMES, one to BCI-NMES)

participated to the study. One patient in the sham-NMES group had fewer than 10 therapy

sessions.

The BCI was calibrated for each subject in order to monitor time-frequency EEG features,

i.e. sensorimotor µ and β EEG rhythms, (Fig. 4.2c) representing the activity of spared motor

networks. Whenever a movement attempt was decoded from the EEG (Fig. 4.2d-f), the BCI

activated NMES of the extensor digitorum communis muscle (Fig. 4.2g-h). Patients that

received sham-NMES therapy wore identical hardware and received identical instructions as

patients who received BCI-NMES, but NMES was not connected to specific neural activity and

it was instead delivered randomly with similar timings and amount of stimulation.

Off-line accuracy (on calibration data) is >90% for each of the patients who received BCI-

NMES, with an average single sample rejection of 58% (Fig. 4.4a). On-line (i.e. single trial)

accuracy is approximately 75% across sessions (see Fig. 4.4b), with an average time to deliver
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an online command shown in Fig. 4.4d.

The primary clinical outcome metric of the study was the Fugl-Meyer assessment for the upper

extremity (FMA-UE) [54]. Secondary outcomes included modified Ashworth scale (MAS) for

the evaluation of spasticity, Medical Research Council (MRC) score for muscle strength and

European stroke scale (ESS) score for general disability. Clinical evaluation was performed

before the beginning and after the end of the intervention. An additional evaluation of pri-

mary outcome metric was carried on 6 to 12 months after the end of the intervention (later

indicated as 36 weeks). Clinical scores are reported in Fig. 4.5a-b.Fig. 4.5c shows baseline

characteristics of the two groups, including age, time since stroke, baseline FMA-UE score,

number of patients per group, gender and affected hemisphere. No statistical significant

difference between groups could be found at baseline.

We assessed whether two groups received a comparable amount of therapy by computing

the mean number of detected commands (i.e. NMES of the extensor digitorum communis

muscle) per run, the number of runs per session and the average time to deliver a command

per run. No statistical difference was found. Despite small group size, changes in FMA-UE

scores (Fig. 4.5a) exhibited a significant sessi on × g r oup interaction (F(1,13)=17.71, p<0.01).

BCI-NMES patients improved by 9.0±3.4 points, whereas sham-NMES did by 1.7±3.3 points.

Mean difference between groups is 7.3 points, above the threshold of 5 points considered to

be clinically important [112]. Remarkably, all BCI-NMES patients improved, what was not the

case for the sham-NMES group. Furthermore, seven BCI-NMES patients (87.5%), but only

one sham-NMES patient (14.2%), gained at least 5 points after 5-week therapy. Subjects who

already completed the follow-up clinical evaluation (4 BCI-NMES, 4 sham-NMES, average

36 weeks after end of therapy) retained functional improvements. Fig. 4.9 documents two

case reports of BCI-NMES patients who were completely paralyzed and regained voluntary

muscle contraction after intervention. One of the patients was plegic for 15 years. Despite

small group size (N=15), between-group differences in the primary outcome metrics were

unexpectedly high and statistically relevant (average increase of 9 FMA-UE points, with seven

patients showing more than 5 points increase in the BCI-NMES group against an average

increase of 1.4 points, with only one patient improving more than 5 points in the sham-NMES

group).

Figure 4.5b shows changes in secondary clinical outcomes. For the MRC score (strength of the

target muscle extensor digitorum communis), we also found a significant sessi on × g r oup

interaction favoring the BCI-NMES group (F(1,13)=6.26, p<0.03). Sham-NMES patients im-

proved their spasticity of wrist extensor and flexor muscles (MAS score), while BCI-NMES

did not. The sessi on × g r oup interaction was significant (F(1,13)=9.04, p<0.02). ESS score

increased for six of the eight BCI-NMES patients (75%), with one patient recovering 21 points.

Three sham-NMES patients (43%) also improved. Nevertheless, changes were not significant.
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Figure 4.5: Clinical indexes of functional recovery. Fugl-Meyer assessment for the upper
extremity (FMA-UE), measuring motor function (a); Secondary outcome scores: Modified
Ashworth Scale (MAS), measuring spasticity, Medical Research Council Scale (MRC), mea-
suring muscle strength, and European Stroke Scale (ESS), measuring the overall motor and
cognitive state (b). Changes in the primary outcome metric (FMA-UE, a) are presented with
respect to baseline value recorded immediately before patients received the intervention,
immediately after it ended (6 weeks after) and at a 6 - 12 months follow-up session (on av-
erage 36 weeks after). Seven of the eight patients in the BCI-NMES group recovered more
than 7 FMA-UE points, showing clear signs of a clinically significant recovery driven by the
restoration of voluntary contraction of the extensor digitorum communis muscle; only one
patient in the sham-NMES recovered more than 7 FMA-UE points and nearly no change
was observed on the other patients, despite they received NMES. Secondary outcomes are
presented in absolute values at baseline and at the end of the therapy (b). Both groups show
a similar decrease in spasticity that one would expect as one of the effects of NMES. Muscle
strength recovery, though, appears moderately stronger in the BCI-NMES group than in the
sham-NMES group, but this difference is not statistically significant. The recovery of motor
function is also reflected in the increase of the general patient status having a stronger, but
not statistically significant, magnitude in the BCI-NMES than in sham-NMES.
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Due to logistic needs, we were not able to balance the number of patients recorded at each

clinical site. For this reason, we ensured that patients received the same treatment across

site by providing standard conventional therapy to all patients included in the study. Another

problem that might affect our results concerns inter-rater variability in clinical tests[149]. Still,

the magnitude of the effect on the primary outcome metrics can rule out this possibility[112].

In addition to clinical indexes, a quantitative measure of muscle contraction was extracted

through the analysis of EMG patterns of extensor digitorum communis (target muscle) (Fig.4.8a-

b) and flexor digitorum communis muscles (Fig.4.8c-d). Extensor digitorum communis mus-

cle activity appears highly increased in the BCI-NMES group, but not in the sham-NMES group

(as shown in Fig.4.8a and c from 0 to 3s). This increase results in a shift of the distribution of

EMG envelope time points during the contraction towards higher values for the BCI-NMES

group, but not for the sham-NMES group Fig. 4.8e-f.

High-density EEG sessions were held before the beginning and after the end of the intervention

in order to quantify group-specific neuroplastic effects affecting cortical excitability, reflected

by changes in slow movement-related potentials[44], and interhemispheric connectivity, re-

flected by changes in directed EEG functional connectivity[70].

Group-averaged slow EEG potentials, aligned on the EMG onset, recorded from electrode

C3* show no sign of motor-related potentials (MRP) in any of the groups before the therapy

(Fig.4.6a). A MRP, consisting in a negative deflection starting around 1s before the movement

and having its maximum negativity at the muscular onset (0s), is restored in the BCI-NMES

after therapy. Multivariate topographic analysis of variance (TANOVA)[106] reveals that pre-

and post- group-averaged EEG topographies yield statistically significant differences in global

dissimilarity (DISS) from 830 to 460ms before EMG onset and only for the BCI-NMES group

(Fig.4.6b). Stable topographies that were modulated in this time window showed a more

frontal pattern and a more posterior pattern, and single subject fitting reveals significant

modulations that increase the occurrence of frontal pattern and decrease the occurrence of

posterior pattern, after the intervention (Fig. 4.6c). Further details on the topographic analysis

can be found in Fig. 4.3.

Effective EEG connectivity provides a measure of the information flowing from one hemi-

sphere to the other during a specific task[76]. We quantified motor-related information flowing

from and to the affected and unaffected hemispheres before and after the therapy, for the

two groups. Results show that a significant reduction of directed interhemispheric connec-

tivity occurs when considering the direction factor (F(1,8) = 5.463, p = 0.048) with an effect

on the session x allocation group interaction (F(1,8) = 7.308, p = 0.027), shown in Fig.4.6d-e.

Even though pre- and post-intervention data of patients who received BCI-NMES shows a

consistent decrease of connectivity in any direction, the effect appears to be driven by the

directional change from the unaffected to the affected hemisphere. Further information on

EEG connectivity analysis can be found in Fig. 4.7.
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4.3 Discussion

In this study, we provide evidence that closed-loop BCI-aided NMES therapy induces consis-

tent and clinically important recovery of upper limb function, and we show that direct BCI

control is the key therapeutic factor underlying motor recovery. The parallel group experi-

mental design also allowed us to identify a possible mechanism underlying these changes,

consisting in a reduction of abnormal inter-hemispheric connections [104], reflected by the

strong decrease in directed inter-hemispheric EEG connectivity, and in an increase of cortical

excitability over the affected hemisphere [136], reflected by the significant change in pre-post

stable topographies and associated to slow movement-related potentials.

Beneficial neuroplasticity underlying the restoration of motor function after stroke should

meet three critical assumptions: that the mechanism of neural repair inherently involve cellu-

lar and circuit plasticity; that brain plasticity is fundamentally a synaptic phenomenon that is

largely stimulus-dependent; and that brain repair must incorporate biological interventions

replacing or augmenting some lost brain tissue through carefully tailored interventions involv-

ing specific brain circuits[138]. The use of spared EEG sensorimotor rhythms to control the

electrical stimulation of nerves and muscles meets these three assumptions, thus explaining

the strong recovery we observed in the BCI-NMES group.

It is important to highlight the fact that NMES, per se, can provide motor gains and limited

functional gains[38] by lessening the excitability of spinal reflex pathways, strengthening

muscles, augmenting sensorimotor integration for the task at spinal and supraspinal levels,

and augmenting the cortical sensory drive for activity-dependent plasticity[37]. Despite the

fact that recent meta-analyses have shown a potentially beneficial effect of electrostimulation

on upper limb functional recovery [79], national guidelines for clinical practice indicate that

this type of therapy should not be performed on a routine basis [128].

Interestingly, motor recovery was present in the BCI-NMES group disregarding paralysis sever-

ity: all patients presenting hand plegia regained voluntary muscular contraction resulting in

fist lifting and signs of fingers extension (see Fig. 4.9 for two anecdotal case reports on the

topic). None of the plegic patients that received sham-NMES showed any sign of recovery.

One of the limitations of the study is that patients were evaluated in different clinical sites

by different therapists, and that patients in each group were not balanced across sites. Two

arguments speak in favor of the validity of our conlusions: the first is that the primary outcome

metric, namely the Fugl-Meyer Assessment for the Upper Extremity, has shown inter-tester

reliability in quantitative studies [134]; the second is that the large effect size in the BCI-NMES

group and large difference across groups provide hints of a phenomenon that occurred at

both clinical sites.
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Figure 4.6: EEG markers of cortical plasticity. Group-averaged slow EEG potentials recorded
from electrode C3* showing no sign of movement-related potentials in both groups before the
therapy (a top and bottom, dashed lines) and showing a strong negative deflection aligned to
the muscular onset (a top, red line, time 0) in the BCI-NMES group, but not in the sham-NMES
(a bottom, blue line). TANOVA of global dissimilarity between pre- and post-intervention
ERP topographies reveals stable statistically significant difference only for the BCI-NMES
group in the [-830 -460]ms time window (b). Stable topographies that were modulated in this
time window, in the BCI-NMES group, showed a more frontal pattern and a more posterior
pattern, and single subject fitting reveals significant modulations that increase the occurrence
of frontal pattern and decrease the occurrence of posterior pattern, after the intervention (c).
Effective EEG connectivity shows that before therapy very strong connections could be found
between electrodes belonging to different hemispheres whenever patients were engaged in a
motor task, and these connections vanish after therapy; interhemispheric connections appear
rather stable during resting trials (d). Average directed interhemispheric connectivity reveals
that after therapy normalized relative SdDTF has a very strong increase in negativity, showing
that the overall connectivity is stronger during resting than during the motor attempt (e).
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Chapter 4. Restoring Motor Function

In conclusion, we propose a 5-weeks therapy based on a BCI system that decodes spared neu-

ral motor networks activity to trigger NMES of the paralyzed limb. The system is non-invasive

and is personalized depending on patient’s representation of hand movements. We believe

that the use of EEG feedback training in conjunction with sensorimotor stimulation through

body’s natural pathways might represent a new frontier for neuroprosthetics and rehabilitation

medicine, opening the way for novel systems providing purposeful modulation of excitability

in motor regions of intact and affected hemisphere overall contributing to improvements in

motor function[72].

Future research on BCI-NMES should therefore focus on two directions: first, increasing the

population size while keeping the active sham intervention, and possibly stratifying the popu-

lation by age and level of disability, also quantifying potential synergistic effects on cognitive

disability; second, investigating the mechanisms underlying the strong motor recovery, in

particular the relation between closed loop control of NMES via spared neural motor networks,

reduction of interhemispheric inhibition and increase of cortical excitability over the ipsi

lesioned hemisphere.
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Figure 4.7: Topological changes in directed EEG connectivity. Topological changes in di-
rected connectivity between electrodes in the BCI-NMES group (a) and in the sham-NMES
group (b). Normalized SdDTF was obtained by grouping all electrodes on each hemisphere
and calculating the average connectivity for each direction. Then, SdDTF extracted during
resting trials was subtracted from that obtained during movement attempts, providing a
measure of normalized relative SdDTF. Changes are statistically significant in the BCI-NMES
group, and appear to be driven by a strong decrease in unaffected to affected hemisphere
connectivity during movement attempts (c). A similar trend having less statistical power is
present in the sham-NMES group (d), and might represent benefits for patients deriving from
the therapy but not sufficient to translate in functional improvements.

71



Chapter 4. Restoring Motor Function

−2 0 2
0

200

400

−2 0 2
0

20

40

−2 0 2
0

200

400

−2 0 2
0

20

40

−2 0 2
0

200

400

−2 0 2
0

20

40

−2 0 2
0

200

400

−2 0 2
0

20

40

0.02
0 100 200 300

0

0.01

0.02
Sham−pre
Sham−post

BCI−pre

0 100 200 300
0

0.01

0.02
0 100 200 300

0

0.01

0.02
Sham−pre
Sham−post

BCI−pre
BCI−post

Extensor digitorum communis (target) Flexor digitorum communis 

Time (s) Time (s)

Time (s) Time (s)

E
M

G
  e

nv
el

op
e 

(m
V

²)
E

M
G

  e
nv

el
op

e 
(m

V
²)

Distribution of EMG potentials Distribution of EMG potentials

EMG potentials EMG potentials

P
ro

ba
bi

lit
y 

de
ns

ity

a b

c d

e f

BCI-Pre
BCI-Post

Sham-Pre
Sham-Post

Figure 4.8: Objective evaluation of voluntary contraction recovery. Squared EMG envelope
of extensor digitorum communis muscle appears highly increased after therapy in the BCI-
NMES group (a) but not in the sham-NMES (b) groups. Squared EMG envelope of flexor
digitorum communis for the BCI-NMES group has comparable values before and after therapy
(c), while its activity shows a reduction for the sham-NMES (d) group. This increase in the
muscle targeted by the therapy results in a shift of the distribution of EMG envelope time
points during the contraction towards higher values for the BCI-NMES group (e), but not for
the sham-NMES group (f).
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Figure 4.9: Anecdotal case reports. Patient E5 (woman, 48 years old) presented an ischemic
stroke of cryptogenic origin in the territory of the right middle cerebral artery. Despite inten-
sive inpatient and outpatient rehabilitation, her left upper extremity remained completely
paralyzed. After the therapy, she presented voluntary muscle contractions of the extensor
digitorum (left) and spasticity reduction in the flexor digitorum (right). Red traces indicate
EMG activity after BCI-NMES therapy, while orange traces correspond to EMG activity before.
Patient E6 (woman, 51 years old) suffered from a right lenticular ischemic stroke with hemor-
rhagic transformation, leading to persistent left sided hemiparesis in 1999. After BCI-NMES
therapy she recovered voluntary muscle contractions of the extensor digitorum muscle (left)
and presented a strong reduction of flexor digitorum spaticity (right). Color traces: black refers
to pre-treatment EMG, red refers to post-treatment EMG.
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Figure 4.10: Trial Profile. Structure of the parallel-group clinical trial. BCI=Brain-computer
interface; NMES=Neuromuscular electrical stimulation.
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5 Discussion & Conclusion

Simplicity is the ultimate sophistication

Leonardo da Vinci

The goal of this Thesis is to provide the conceptual framework, scientific rationale, technical

details and clinical evidence supporting translational Neurotechnology that improves, opti-

mizes and disrupts current medical practice in the treatment of upper limb motor disability.

The studies presented in previous Chapters capitalize on state-of-the-art in EEG imaging

(Chapter 2, "Imaging Motor Function"), transcranial direct-current stimulation (Chapter 3,

"Enhancing Motor Function"), and brain-computer interfaces (Chapter 4, "Restoring Mo-

tor Function") to demonstrate how Neurotechnology might play a key role in the future of

restorative medicine.

This Chapter summarizes the main findings of the Thesis and discusses their significance

with respect to the state-of-the-art, also proposing a road-map for the prosecution of the

investigation on Imaging, Enhancing, Restoring motor function. A brief summary of the

state-of-the-art, of the main findings, and of the contribution of this Thesis to the cause of

Neurotechnology for brain repair is presented in Fig. 5.1.

Guiding diagnostics and rehabilitation through functional EEG imag-

ing

Even though EEG has a nearly 100 years old history [8], its potential as a low-cost, precise and

reliable diagnosis system has been addressed only in recent years [95]. Due to its inherent

properties such as low signal-to-noise ratio and non-stationarity, voltage potentials recorded

at the scalp were know as a ”tough signal” to interact with. Recent advances in computational
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power, basic neurophysiological understanding, and the rise of data analysis techniques might

suggest that the next big thing in medical practice might be the adoption of closed-loop

systems for diagnosis, monitoring and rehabilitation based on EEG. Chapter 2 of this Thesis

covers and extends current knowledge about single-trial EEG signatures of motor actions, i.e.

actual, imagined or attempted movements.

In Section 2.1, we demonstrate that GFP can be used to discriminate a motor task from rest

on single-subject and single trial data and that a subject-independent topographic structure

emerges from the EEG through single trial analysis of stable topographies generated during

the execution of a movement or resting.

These results might provide the basis for building a novel family of BCI systems requiring

minimal a-priori information (we only used a broad band-pass filter and common average

referencing). With an analogy, we might think the property we demonstrated as a common

sequence of “brain letters”, shared among subjects. During rest, these letters appear in a

pseudo-random fashion, while an order in the generation of certain topographies emerges

during a motor task, composing ordered “brain words”. Detecting these words of the brain

should be the focus of future research in this topic. Also, future studies applying this method-

ology should focus on overcoming current limitations – i.e. the effects of artifacts on decoding

accuracy – and characterize single trial topographic information on a clinically relevant homo-

geneous group of patients.

One of such groups was tested in Section 2.2, where we combined standard BCI discriminant

analysis with stable topographies extraction in order to identify potential EEG topographies

related to motor imagery in chronic stroke patients. The use of a discriminant framework

allowed us to constrain the analysis on a relevant time window related to motor imagery only.

The use of stable EEG topographies captured short, transient voltage configurations on the

scalp, thus providing insights on underlying mental processes.

Given the fact that selected topographies have been extracted and analyzed in the most

discriminant time frame in terms of modulation of motor–related rhythms [119], they are

very likely to be related to the short and transient mental processes associated with the motor

imagery of the affected and unaffected hand. These results strongly motivate further analysis

in this direction, especially correlating functional recovery to BCI performance.

This time–constrained topographic analysis shows that changes in maps occurrence, rather

than in their average duration, are more significant when comparing MI against rest. This

suggests that the frequency of appearance of particular maps may be a good indicator of

proper execution of the rehabilitation tasks. Consequently, it could be possible to use this

measure to provide online feedback for therapists supporting the rehabilitation process. This

will be particularly suited for the applications related to stroke treatments.
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Chapter 5. Discussion & Conclusion

As previously proposed [132], the use of combined sessions of standard therapy and BCI-

aided rehabilitation can serve as a way to facilitate recovery through mental rehearsal. In

addition, proposed techniques represent an imaging modality to monitor long-term changes

in produced patterns representing cortical reorganization.

In conclusion, we show a possible methodology to decode single-trial information about

functional states of the brain while performing a motor task or resting. Further studies

are required to evaluate the diagnostic value of single-trial topographic information and its

impact on motor rehabilitation. For example, one might characterize the stable topographies

generated by groups of stroke patients at different stages of their recovery, then clustering

results depending on the outcome: subjects could then be trained through a BCI system as to

generate specific topographies associated to better outcomes.

Improving brain-computer interaction by means of tDCS

Transcranial direct current stimulation (tDCS) induces selective modulation of cortical ex-

citability [110]. Several studies suggested that this technique could be used to specifically

enhance people’s capacity to produce sensorimotor rhythms. In Chapter 3, we show that

modulation of MI-related BCI features by anodal tDCS on motor areas can be induced by

means of tDCS in spinal cord injured individuals (SCI) and healthy control subjects. Both

groups show localized discriminant activity under the stimulated areas that lasts for at least

90 minutes. Contrary to the sham condition, SCI subjects present discriminant activity over

motor areas immediately after stimulation.

Our results reproduce part of the tDCS effects in modulating motor imagery that were pre-

viously reported in healthy volunteers, namely polarity-dependent modulation effects of

tDCS on the µ-rhythm, i.e. - anodal tDCS led to µ synchronization [81]. A recent study on

the facilitating effect of tDCS on BCI control for stroke patients showed that there were no

significant difference in the accuracies of the calibration session when comparing it to sham

tDCS, but the online accuracies of the evaluation part of 10 rehabilitation sessions of the

tDCS group were significantly higher than the sham-tDCS group [6]. Our data show similar

accuracies between groups and conditions, and an interesting research venue would try to

replicate findings regarding online performance.

Further, our results on SCI individuals show no behavioral gain in residual function (subjective

reports from subjects, data not shown here). On the other hand, stroke appears to be a more

suited pathology, as our knowledge in basic neurobiology of tDCS expands [111] from initial

models of interhemispheric competition [52].

The preliminary results reported in this Thesis suggest that tDCS may selectively enhance

activity of targeted areas so as to produce patterns that can be better recognized by the BCI in
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SCI individuals, with a very interesting carry-over effect that appears to facilitate the motor

imagery task – or at least its recognition by a machine. Thus, tDCS can have beneficial effects

for BCI control, and could be applied to have more reliable BCI-aided assistive technology,

such as a brain-controlled wheelchair [23] or telepresence robot [96] by the severely disabled,

and neurorehabilitation.

Restoring upper limb function through BCI-aided NMES

In Chapter 4, we provide evidence that closed-loop BCI-aided NMES therapy induces consis-

tent and clinically important recovery of upper limb function in chronic stroke patients, and

we show that direct BCI control is the key therapeutic factor underlying motor recovery. A very

important aspect of these results is that the parallel group experimental design also allowed

us to identify a possible mechanism underlying these changes, consisting in a reduction of

abnormal inter-hemispheric connections [104], reflected by the strong decrease in directed

inter-hemispheric EEG connectivity, and in an increase of cortical excitability over the affected

hemisphere [136], reflected by the significant change in pre-post stable topographies and

associated to slow movement-related potentials.

Beneficial neuroplasticity underlying the restoration of motor function after stroke should

meet three critical assumptions: that the mechanism of neural repair inherently involve cellu-

lar and circuit plasticity; that brain plasticity is fundamentally a synaptic phenomenon that is

largely stimulus-dependent; and that brain repair must incorporate biological interventions

replacing or augmenting some lost brain tissue through carefully tailored interventions involv-

ing specific brain circuits[138]. The use of spared EEG sensorimotor rhythms to control the

electrical stimulation of nerves and muscles meets these three assumptions, thus explaining

the strong recovery we observed in the BCI-NMES group.

It is important to highlight the fact that NMES, per se, can provide motor gains and limited

functional gains[38] by lessening the excitability of spinal reflex pathways, strengthening

muscles, augmenting sensorimotor integration for the task at spinal and supraspinal levels,

and augmenting the cortical sensory drive for activity-dependent plasticity[37]. Despite the

fact that recent meta-analyses have shown a potentially beneficial effect of electrostimulation

on upper limb functional recovery [79], national guidelines for clinical practice indicate that

this type of therapy should not be performed on a routine basis [128].

Interestingly, motor recovery was present in the BCI-NMES group disregarding paralysis sever-

ity: all patients presenting hand plegia regained voluntary muscular contraction resulting in

fist lifting and signs of fingers extension (see Fig. 4.9 for two anecdotal case reports on the

topic). None of the plegic patients that received sham-NMES showed any sign of recovery.

In conclusion, we propose a 5-weeks therapy based on a BCI system that decodes spared neu-

ral motor networks activity to trigger NMES of the paralyzed limb. The system is non-invasive

and is personalized depending on patient’s representation of hand movements. We believe

that the use of EEG feedback training in conjunction with sensorimotor stimulation through
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body’s natural pathways might represent a new frontier for neuroprosthetics and rehabilitation

medicine, opening the way for novel systems providing purposeful modulation of excitability

in motor regions of intact and affected hemisphere overall contributing to improvements in

motor function[72].

Future research on BCI-NMES should therefore focus on two directions: first, increasing the

population size while keeping the active sham intervention, and possibly stratifying the popu-

lation by age and level of disability, also quantifying potential synergistic effects on cognitive

disability; second, investigating the mechanisms underlying the strong motor recovery, in

particular the relation between closed loop control of NMES via spared neural motor networks,

reduction of interhemispheric inhibition and increase of cortical excitability over the ipsi

lesioned hemisphere.

Neurotechnology for future restorative medicine

The translational nature of the studies presented in this document provides a seminal demon-

stration of "bench-to-bedside" Neurotechnology. The modularity of the techniques shown in

this Thesis give a measure of the extraordinary potential of this field for the future of restorative

medicine. It is with great excitement that we envision non-invasive or minimally invasive

systems able to provide affordable and effective restoration of lost function: a further step

towards the eradication of physical disability.

Some of the principles and techniques presented in this Thesis went beyond pure scientific

investigation, and were adopted with great success in clinical practice. The most striking

example is the Stroke rehabilitation framework introduced in the Introduction and presented

in Chapter 4, that allowed us to restore voluntary contraction of the extensor digitorum

communis muscle in the participants that received our BCI-aided NMES therapy. To our

surprise, this was also the case for plegic patients and several years after stroke.

Beyond the clinical value of our findings, we were able to provide an early quantification of

the acceptance of Neurotechnology in the clinical setting by patients, therapists, clinicians.

The Appendix of this Thesis contains two integral interviews we were able to provide to the

first two patients involved in the BCI-aided neurorehabilitation framework. Even though

their words reflect an extreme optimism towards the future developments of this technology,

probably driven by their relatively good outcome, a lot has still to be done before we can

consider current systems ready to become commercially available solutions [82]. Overcoming

these technological limitations in usability, understanding the basic mechanisms underlying

beneficial outcome driven by neural interfaces as well as establishing their efficacy for motor

recovery in large clinical studies should be a research priority in the coming years.
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A An appendix

This chapter collects additional material concerning my doctoral research at the Defitech

Chair in Non-Invasive Brain-Machine Interface (CNBI) of the École Politechnique Fédérale de

Lausanne (EPFL), during the period between 2009 and 2014.
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A.1 Two end-users interviews on BCI-aided NMES (French)
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Appendix A. An appendix

A.2 Media Coverage

When the mind controls the machines (EPFL Mediacom, full text availabel here.)

23.01.13 - More than a hundred patients suffering from severe motor impairments have

voluntarily participated in the development of non-invasive brain-machine interfaces. The

main purpose of these machines is to allow the patients either regain some of their mobil-

ity or improve their social relationships. Today, three presentations took place in Sion dur-

ing the closing seminar of the TOBI European research program (www.tobi-project.org),

which has been coordinated by EPFL for approximately four years.

Stroke survivors, as well as patients suffering from other serious conditions, may have to deal

with the partial or complete inability to move one or more of their limbs. In the most severe

cases, the sufferer may become fully paralyzed and in need of permanent assistance.

The TOBI project (Tools for brain-computer interaction) is financed by the European Commis-

sion under the Seventh Framework Programme for Research (FP7) and is coordinated by EPFL.

Since 2008 it has focused on the use of the signals transmitted by the brain. The electrical

activity that takes place in the brain when the patient focuses on a particular task such as

lifting an arm is detected by electroencephalography (EEG) through electrodes placed in a cap

worn by the patient. Subsequently, a computer reads the signals and turns them into concrete

actions as, for instance, moving a cursor on a screen.

Tests involving more than 100 patients

Based on this idea, researchers from thirteen institutions together with TOBI project partners

have developed various technologies aimed at either obtaining better signal quality, making

them clearer, or translating them into useful and functional applications. During the research,

more than 100 patients or handicapped users had the opportunity to test the devices. Three

of the technologies developed within the framework of TOBI were publicly presented at the

closing seminar of the research program that took place in Sion from 23 to 25 January 2013.

1. Robotino, for helping rebuild social ties when bedridden. Combining EEG, signal

recognition, obstacle sensors and the internet, researchers have been able to develop a

small robot equipped with a camera and a screen that can be controlled remotely by

physically disabled people. Thanks to this device, the patient can take a virtual walk in a

familiar environment, meet her/his relatives and talk to them, even if they are thousands

of miles away from each other.

2. Braintree, for writing texts and internet surfing. Researchers have also developed a

graphical interface specially adapted for web browsing by severely disabled people.

By thinking, the patient is able to move a cursor in a tree structure in order to type a

character or choose a command. Depending on the specific situation, the sensors can
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A.2. Media Coverage

Figure A.1: EPFL News - When the mind controls the machines. Youtube video describing
the basic functioning of the BCI-aided NMES system presented in this Thesis. Link to video
content here.

also detect residual muscular activity to complement the management of the device.

3. Functional electrical stimulation, to restore some basic mobility. Coupling EEG with

electrical muscle stimulation can allow a patient to voluntarily control the movement of

a paralyzed limb. In some cases, intensive training using this system has allowed the

patients to regain control of the limb and keep it without assistance. A report on this

technique can be seen in the video above.

The results of the TOBI research program have restored patients’ hope. They will constitute

the basis of subsequent developments to be conducted among the research partners or at

industrial level. As for EPFL, such results will be the core of its health research chairs at the new

EPFL Valais Wallis academic cluster, which can also count on the participation and support of

the SuvaCare rehabilitation clinic in Sion.

"Our results are already very promising," says José del R. Millán, professor at the Centre for

Neuroprosthetics (CNP) at EPFL, holder of the Defitech Foundation Chair in Non-Invasive

Brain-Machine Interface and TOBI project coordinator. Nevertheless, he adds: "The road is

still long before the “turnkey” product is made available to physicians and patients. Each brain

has its own way of transmitting its signals and the devices’ calibration requires the investment

of significant resources. However, we have paved the way for a new critical approach to the

physical and social rehabilitation of patients."

EPFL implantée à la Suva: les chercheurs sont déjà actifs (Canal9 en continu, full text avail-

abel here.)

Ils sont cinq et travaillent dans le domaine de la rééducation des personnes cérébro-lésées.

Ce sont les premiers chercheurs installés en Valais dans le cadre du projet d’implantation de
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Appendix A. An appendix

Figure A.2: Canal 9. .Link to video content here.

l’EPFL à la clinique SUVA. Sur quoi travaillent-ils et avec qui? C’est le sujet de notre reportage.
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