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1. Introduction

Aluminum alloys continue to serve as the primary material system for many critical components in aircraft structures.
Accordingly, a key aspect of aircraft safety involves the prediction of fatigue crack growth in these materials. This techno-
logical motivation has spurred the growth of a vast library of experimental and theoretical studies on fatigue crack growth
over the past decades. Nonetheless, one critical aspect of the phenomenon has remained particularly unclear, i.e. the atom-
istic mechanism by which the crack tip propagates forward under cyclic subcritical loadings.

Considering the atomic nature of crack tip processes, modeling must be atomistic in nature. However, interpreting atom-
istic modeling results relative to fatigue crack growth in real alloys involves many significant challenges. One of the largest
challenges is the limited spatial domain that is typical of atomistic models. Simulations having a small spatial domain can
artificially influence the movement of dislocations away from the crack tip and ultimately bias crack tip behavior [1-8]. Dis-
crete dislocation (DD) dynamics simulations are not generally plagued by this problem as they can accommodate a much
larger spatial domain, while still explicitly modeling every dislocation. However, DD models do not explicitly represent
the atomic scale complexities that occur at a crack tip [9-13], and thus cannot illuminate the atomic mechanisms by which
a crack tip propagates.

In this work, a concurrently coupled atomistic-discrete dislocation multiscale method (CADD) is used to resolve the
shortcomings of tradition atomistic and DD simulations with the specific goal of illuminating the atomic scale mechanisms
that occur at a crack tip during fatigue crack growth. The model consists of an aluminum crystal with a crack, loaded in mode
I. Upon loading, dislocations nucleate at the crack tip in the atomistic region of the model. In most cases, the dislocations
then glide into the nearby DD region, where their motion is inhibited by an imposed glide resistance (friction force). The
imposed glide resistance is the primary variable studied in this work, and is the sole feature of the model that connects it
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Nomenclature

F atomic force vector

X,¥,2 coordinate axes

Yo maximum damping coefficient

d(x,y) distance between an atom and an interface
Xmin minimum x value in atomistic region

Xmax maximum x value in atomistic region

Yimin minimum y value in atomistic region

Vmax maximum y value in atomistic region

E¢ total energy of continuum region

6 stress solution from finite element analysis

€ strain solution from finite element analysis

u displacement solution from finite element analysis

¢ stress from infinite medium dislocation fields

€ strain from infinite medium dislocation fields

u displacement from infinite medium dislocation fields

Qc continuum domain

0Qr boundary to continuum domain

To traction boundary condition applied to continuum domain

r position vector of dislocation

B mobility factor

f Peach Koehler force

b Burgers vector

n vector normal to dislocation glide plane

Ci1,Cq2,Cy4 elastic constants of model aluminum

R load ratio, minimum load divided by the maximum load

da/dN  Change in crack length per loading cycle

AK; Mode I stress intensity range, maximum Mode I stress intensity minus the minimum Mode I stress intensity
Ath threshold Mode I stress intensity, below this value no crack growth is observed

to aluminum alloy response, i.e. no alloying elements are included in the atomistic region and thus direct interactions be-
tween the crack tip and alloying elements and precipitates are not considered. By studying the relationship between dislo-
cation glide resistance and crack tip response under cyclic loading, this work aims to illuminate the effect of aging on fatigue
crack growth, something for which experimental results exist.

The manuscript focuses on two key components of the results emerging from our models. The first is the identification of
the atomistic mechanisms by which a crack tip propagates forward in a ductile metal subjected to cyclic loading. The second
is the dependence of the crack tip mechanisms on dislocation glide resistance, which gives insight into the mechanism by
which experimentally observed near threshold fatigue crack growth rates are influenced by the aging of alloys.

2. Methods

A concurrent multiscale simulation approach is used to connect an atomistic region encompassing an aluminum crack tip
with a discrete dislocation region capable of capturing dislocation pileups microns in length. In this way, the detailed atom-
istic processes occurring at the crack tip can be simulated under the presence of a realistic stress filed created by a distribu-
tion of dislocations. Dislocations on the primary slip plane are restricted from gliding freely away from the crack tip by a
friction force applied homogeneously throughout the discrete dislocation portion of the simulation.

2.1. CADD concurrent multiscale method

The underlying theory of the multiscale method is built upon the coupled atomistic-discrete dislocation (CADD) frame-
work of Shilkrot et al. [14,15]. The CADD coupling methodology consists of solving two distinct problems, involving an atom-
istic and continuum region that are coupled by self-consistent displacement boundary conditions. The atomistic region is
composed of a set of atoms bounded by a set of interface atoms/nodes as seen in Fig. 1. The DD continuum region is approx-
imated by finite elements and thus the fields associated with it are a function of the corresponding nodes. The interatomic
force, F, experienced by each atom within the atomistic region and at the interface results from interactions not only within
the atomistic region and its bounding interface, but also interactions with pad atoms that extend into the continuum. The
forces are then used to dynamically relax the atomic positions. Unlike the atoms in the atomistic and interface regions,
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Fig. 1. A schematic diagram of a CADD model. (a) The continuum problem with applied far-field boundary conditions. In this case an edge crack. (b) The
coupling of the continuum and atomistic regions at a boundary of coincident points, i.e. interface atoms (black). The pad atoms (white) exist in the
continuum region and their displacement is controlled by the continuum displacement field. (c) The atomistic problem with the interface and pad atoms
held fixed to apply the correct, non-local boundary conditions.

the positions of the pad atoms are controlled by the continuum solution. Thus the pad atoms provide the necessary non-local
boundary conditions across the interface to the atomistic and DD regions. While the CADD methodology is not specific to any
particular interatomic force model [16,17], this work utilizes embedded atom empirical potentials to model interatomic
forces [18].

The response of the continuum region is local, and therefore, it is only a function of the boundary conditions and the
resulting deformation within that region. The continuum region is modeled to be constantly in static equilibrium, such that
the energy functional associated with the region is always minimized,

—2 [ G+a): (é+é)dvf/ To(u + @)dA, (1)
Qc

0Qr

EC

where Q. represents the continuum domain and 9Qr represents the boundary of the continuum domain on which a traction
boundary condition, Ty, eXists. 6, €, and u, represent the infinite medium stress, strain, and displacement fields, respectively,
for the discrete dislocations at their distinct locations. &, €, and  represent the solution fields from an anisotropic linear elas-
tic boundary value problem that when superimposed with the dislocation fields satisfy the overall boundary conditions. 6, €,
and u are obtained using a standard displacement based finite element approach, while &, €, and u are well known analytic
fields [19]. The position of the dislocations within continuum domain evolve following

) , b
Ty =Ty + Bl f'— 2
con{r ) .

where i is the new position of dislocation i,ri , is the position of dislocation i from the previous update step, b’ is the Bur-

gers vector of dislocation i, B is the mobility factor, and f is the Peach Koehler force of dislocation i given by

N
fi=(mi)" <6 + Z&f) b’ (3)
I

where n' is the normal vector to the glide plane of dislocation i,  is the stress field calculated from the boundary value prob-
lem, and & is the stress field generated by dislocation i. Eq. (2) is used only when the Peach Koehler force is greater than the
friction force. Otherwise, the dislocation is not moved at all. When a dislocation approaches the atomistic-DD interface (from
the atomistic or the DD region), dislocations are passed across it via the insertion of a dislocation dipole. The insertion of a
symmetric dislocation dipole that spans the interface and lies on the plane of the dislocation to be passed effectively moves
the dislocation to the other side of the interface. The details of this procedure are given by Shilkrot et al. [15].

The CADD algorithm used here can be summarized as follows:

1. The forces on the atoms belonging to the interface and atomistic region are calculated and their positions are updated
following a dynamic relaxation algorithm, with the pad atoms remaining fixed.

2. The position of the interface atoms is used to define the displacements of interface nodes which serve as Dirichlet
boundary conditions for the continuum boundary value problem. The energy functional given in Eq. (1) is then
minimized to obtain a solution using standard linear elastic finite element analysis.

3. If the Peach Koehler force acting on the dislocations are greater than the friction force, the position of the dislocations
in the continuum region are updated following Eq. (2).

4. The positions of the pad atoms are updated in accordance with the continuum solution.

5. Return to step 1.
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A significant approximation in the current modeling framework is that the DD region can only accommodate in-plane
displacement fields. This creates an inconsistency between the fully 3D atomistic and 2D DD regions. The effect of the incon-
sistency is that dislocations with a screw Burgers vector component relative to the planar FE region emitted from the crack
tip experience a repulsive image force from the atomistic-DD interface. For the specific geometry and loading considered in
this work, dislocations with screw character play a secondary role and their behavior has been shown to not be significantly
affected by the artificial image forces by examining parametric studies involving the size and shape of the atomistic region.
However, the incorporation of out-of-plane displacements in the DD region is important in general, and as such we plan to
implement this feature in the future.

2.2. Simulation setup

Even though thermal activation is an important factor controlling fatigue crack growth in aluminum alloys [20], the sim-
ulations conducted in this study were performed in the zero temperature athermal limit. We do note that we have previously
attempted to perform crack growth simulations in settings more consistent with ordinary experiments by using a combined
time and spatial multiscale approach [21]. However, the methods employed to extend the timescale of the simulations were
found to be too inefficient to reach ordinary experimental timescales when applied to the complex process of fatigue crack
growth. In general, more reversibility is observed at the crack tip at colder temperatures, leading to higher threshold stress
intensities [22].

The specimen consisted of an FCC crystal with an edge crack. The crystal lattice was oriented such that the horizontal axis
corresponded with [471], the vertical axis with [113], and the out of plane direction with [211]. The crack was created by
removing 3 consecutive planes of atoms. While the initial response of the crack is sensitive to the starting morphology, we
expect the behavior beyond the first few events to be insensitive to the initial structure, as the crack tip configuration
changes significantly as it is loaded. The crack plane was normal to the vertical axis with the crack front aligned with the
[211] direction. The (111) slip plane intersected the crack plane at an angle of 58.5 degrees from the horizontal, with the
[011] slip direction in the x-y plane. The primary slip plane is the (111) plane and the primary slip direction is the [011]
direction. All other slip planes are oblique to the x-y plane, meaning the normal vector to the plane is not in the plane of
the 2D DD region.

This orientation was chosen for three reasons. First, the primary means of slip is due to the nucleation and glide of full
dislocations, even in the absence of thermal activation, making it consistent with general Al crack tip behavior at room
temperature and experimental loading rates [23,24]. Second, the line direction of the full dislocations is normal to the
crack front, meaning that there are no model thickness effects for the principal physical mechanisms. Third, the primary
means of slip involves full dislocations that have pure edge character, consistent with the limitations of the CADD model
used here.

Using CADD, the crack tip at the center of the specimen was embedded into a 3D atomistic region of approximately
150 x 150 x 10 A, which was encompassed by a larger 2D plane strain, DD continuum region spanning 2 x 2 x 0.001 pum.
The atomistic region uses the aluminum potential from Ercolessi and Adams [ 18], while the elastic constants in the continuum
region match the the rotated elastic constants of the atomistic potential, C;; = 0.682,C;; = 0.331,C44 = 0.180 eV/A3.
The 0K lattice constant of 4.03208 A was used. Loads were applied by prescribed displacements at the outer boundary of
the DD region corresponding to the continuum solution for a crack in an anisotropic linear elastic material subjected to mode
I loading. The affect of the far field K| loading on the changing crack tip position is assumed to be small, and less influential on
crack tip evolution than the presence of the closest dislocations. The interface updating in CADD was done in every atomistic
step. The simulation setup was the same for all simulations, with a range ofudzisfferent friction forces used for each loading con-
dition. The simulations include prescribed loads of AK; = 0.4,0.5,0.6 eV/A™~ with R =0, and AK; = 0.2,0.3,0.4,0.5 eV/A™
with R = 0.25. Please refer to the Nomenclature for descriptions of the fatigue parameters.

The effect of alloying was modeled by the dislocation glide resistance in the DD model. As a simplification, a spatially
homogeneous and constant glide resistance was used throughout the course of each simulation. In an actual alloy, the spatial
heterogeneity of glide resistance, its evolution with plastic strain, and the direct interaction of alloying elements with the
crack tip, may all play a role in the fatigue crack growth process. We characterize the simulations having 75.76, 94.33,
110, and 200 MPa glide resistance as having a low friction force. 300, 400, 500, and 600 MPa as having a medium friction
force, and 700, 800, 900, and 1000 MPa as having a high friction force. As a reference, the critical resolved shear stress of
aluminum alloy 2024-T3 is around 115 MPa [25], and the critical resolved shear stress of underaged Al-4% Cu with primarily
GP zone precipitates is around 76 MPa [26], using standard arguments consistent with microscale simulation [27]. While the
simulations with high glide resistances are not consistent with the bulk strengths of any Al alloys, they are applicable to sit-
uations where a fatigue crack is in a region of the material with a very high glide resistance, such as near a large intermetallic
particle or grain boundary.

A single simulation with multiple loading cycles for each combination of load ratio, loading range, and friction force was
performed. However, measurements of the crack growth and observed crack growth mechanisms in samples classified as
high, medium, or low friction force were compiled from simulations of all loading ranges and load ratios for a given friction
force classification.
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3. Results and discussion

The atomic mechanisms associated with fatigue crack extension as well as their dependence on dislocation glide resis-
tance are documented here. As the friction force is increased, dislocations tend to remain closer to the crack tip, which
changes the mechanisms of fatigue crack growth. To illustrate this point, Fig. 2 shows the positions of the discrete dislocation
pileup for different friction forces after the completion of two cycles. Irreversible crack growth is observed for all friction
forces, and is quantified as a function of the cyclic applied load and load ratio. The mechanisms associated with crack exten-
sion are presented below for low, medium, and high friction forces. After that, the crack growth data is presented to show the
influence of the friction force on the near-threshold stress intensity range.

3.1. Low friction force: increasing load

At low friction forces, crack opening is often accompanied by edge dislocation nucleation along the (111) slip plane.
When the opening portion of the loading cycle is started, multiple dislocations are nucleated on the primary slip plane.
The nucleated dislocations break the bonds at the crack tip, causing the crack tip to change shape to a sharper
configuration, as seen in Fig. 3. The sharpened crack then often grows along the (111) slip plane, consistent with
observations of Stage I fatigue crack growth in aluminum alloys. Driven by the applied load, the nucleated dislocations
glide far away from the crack tip and thus do not appreciably change the effective stress intensity at the crack tip.
Accordingly the transition from dislocation emission to brittle cleavage is likely a direct result of the crack tip shape
change. This is consistent with the literature suggesting the importance of crack tip shape on crack tip deformation
mechanisms [28-31].

Most commonly, cleavage crack growth is arrested when the crack tip reaches lattice defects created from previous
cycles, as seen in Fig. 4. Such defects usually correspond to sessile dislocation cores or rows of missing atoms created
by bond shifting at the crack surface. Most vacancy-like defects occur near the crack surface and are formed from the
shifting of bonds in a coordinated manner. The vacancy-like defects observed far from the crack tend to be sessile
dislocation cores.

The crack can also be stopped by emitting dislocations on the (111) plane, which is oblique to both the x-y plane of the
simulation and the original crack plane. These dislocations have low mobility due to the thin periodic structure of the sim-
ulation cell in the [211] direction. This geometry artificially forces these dislocations to form jogs so that they are periodic in
the [211] direction. Dislocation emission on other oblique (11 1) planes was rarely observed. Due to their low mobility, dis-
locations emitted on oblique slip planes, whether at a propagating cleavage crack or a blunted crack tip, do not travel far
from the crack tip. Thus they do not propagate to the atomistic boundary and are unaffected by CADD’s inability to pass them
into the DD region. They often interact with dislocations on the primary slip plane to create dislocation junctions and other
lattice defects. In some cases, dislocations are nucleated on the primary slip plane from the oblique dislocation, a process
which leaves behind a sessile Lomer dislocation at the nucleation site. We note that this mechanism has been observed using
the same interatomic potential in a similar study at finite temperature and thicker sample sizes [21]. Furthermore, the nucle-
ation of oblique dislocations at the crack tip tends to break bonds at the crack tip, and thus can be thought of as an additional
mechanism for extending the crack in the (113) plane by a lattice spacing.

Alternatively, crack growth has also been observed to occur by the breaking of bonds not associated with cleavage or dis-
location nucleation, but the shifting of bonds along the crack surface. This mechanism occurs at high loads, and is most likely
an artifact of the thin specimen size and low temperature. Irregular atomic structures are present in Fig. 5 that have resulted
from atoms shifting near the crack surfaces.
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Fig. 2. Image showing the discrete dislocation positions in the bottom right quadrant of the CADD model, where dislocations glide into the DD region. The
crack tip is at the origin of the image. The dislocation positions correspond to those at the end of the second cycle for various friction forces. The atomistic
region extends to approximately 100 A on the horizontal axis and —100 A on the vertical axis, and is thus not visible in the image due to its scale.
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Fig. 3. Snapshot of simulation with AK; = 0.6 eV/Az'B, R = 0, and friction force = 110 MPa showing crack tip sharpening by multiple dislocation emission in
the first cycle. (a) The initial crack tip before any dislocations have nucleated. (b) The same crack tip after the nucleation of two full dislocations and a
stacking fault. The highlighted area is a stacking fault created by the nucleation of a leading partial dislocation from the sharpened crack tip. The solid lines
on the image show the slip created by the dislocation. The creation of a large stacking fault is rare since trailing partial dislocations are commonly nucleated
in this orientation. All images of the atomistic region are plotted with AtomEye [38].
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Fig. 4. Snapshot of simulation with AK; = 0.6 eV/AZ'S,R =0, and friction force = 700 MPa showing effects of lattice defects near the crack tip in the second
cycle. (a) The crack tip has nucleated a full dislocation that propagates away from the tip, but is stopped by a defect. The defect, circled by a solid line,
contains some increment of slip on an oblique slip plane. The highlighted area is a stacking fault created by the nucleation of a leading partial dislocation.
The solid lines on the image show the slip created by the dislocation. The slip near the defect is difficult to visualize, thus is not shown with guiding lines. (b)
After the dislocation has stopped, the crack tip begins to propagate along the (111) plane. The defect also arrests the crack, which blunts by nucleating
dislocations on oblique slip planes instead of propagating further. (c) After reaching the peak load of the second cycle, the system is unloaded. The snapshot
shows the extended and blunted crack tip, and the lattice defect circled with a solid line.

3.2. Low friction force: decreasing load

When unloading the crack from the deformed configuration at low friction forces, several mechanisms were observed to
lead to irreversible crack growth during a loading cycle. When a propagating crack on the inclined slip plane nucleates dis-
locations on the oblique slip planes, many of the dislocations do not return to the crack, and the crack remains open after the
load is removed. The oblique dislocations do not return because, as mentioned earlier, the dislocations cannot be projected to
a point in the x-y plane. However, since the atomistic region is thin, they create a jog to become periodic in the z direction.
This jog greatly reduces their mobility when gliding away from or towards the crack tip. Furthermore, since oblique dislo-
cations seldom return to the crack, dislocations that are emitted from the primary slip plane may return to a different con-
figuration than they left causing permanent deformation. Also, if a crack propagates into a defect, when the load is removed
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Fig. 5. Snapshot of simulation with AK; = 0.6 eV/AZ'S,R =0, and friction force = 400 MPa showing the crack opening along a lattice defect in the second
cycle. Bond breaking and shifting of the lattice at the crack surface is observable on the lower crack face near the crack tip. (a) The crack has a sharp tip, and
a small void is present near the tip, circled with a solid line. Solid straight lines indicate slip on oblique slip planes. (b) The crack has opened along the slip
plane and connected with the lattice defect. Again, straight lines indicate slip on planes oblique to the crack plane.

the crack will not return to its original configuration, as seen in Fig. 4. At high loads, the bond shifting may not be fully
reversible if the crack nucleates a dislocation or the crack grows after the atoms have shifted. In a few cases the crack tip
returned to its original shape, leaving no permanent deformation. This occurred when a crack on the inclined slip plane
did not nucleate blunting dislocations, or when the crack tip only produced dislocations that returned to the crack after
the load was removed.

3.3. Medium friction force: increasing and decreasing load

At medium friction forces, the crack opening mechanisms are for the most part identical to the low friction force simu-
lations. The major difference is that dislocations nucleated on the primary slip plane eventually shield the tip from further
nucleation. Fig. 6 shows two identical simulations with different friction forces, where one crack tip is shielded and another
is not. If shielding occurs, dislocations on oblique slip systems are nucleated, leading to bond breaking in the original crack
plane, and the creation of numerous defects around the crack tip. The oblique dislocations can produce a high number of
local defects because they rarely return to crack. However, they remain close to the tip and can combine with dislocations
on the primary slip plane to form Lomer locks. In some cases an oblique edge dislocation can nucleate a Lomer lock and full
dislocation on primary slip plane as observed by Baker and Warner [21]. Since dislocations are still emitted along the pri-
mary slip plane, some crack sharpening and cleavage along the slip plane are observed. However, the subsequent crack
growth is influenced by nearby defects. Fig. 5 shows an instance where a nearby defect promoted crack growth while
Fig. 4 is an example where a nearby defect arrested crack growth. Depending on the core structure and burgers vector of
the defect, as well as the position of the crack tip with respect to the defect, crack growth can either be enhanced or inhib-
ited. For example, a crack approaching the compressive lobe of the strain field of a Lomer dislocation might be arrested, while
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Fig. 6. Snapshot of simulation with AK; = 0.6 eV//z\25 and R = 0 showing crack tip shielding by the initial nucleated dislocation in the first cycle. The
subsequent crack tip behavior is controlled by friction force, i.e. the distance of the initial dislocation from the crack tip. (a) Simulation with friction
force = 110 MPa. The initial dislocation has travelled over 1300 A from the crack tip along the slip plane, allowing the crack to nucleate a second dislocation
in the same slip system. Notice that the crack grows by a small increment along the (113) plane by bonds breaking from the nucleation of the dislocation.
The highlighted area is a stacking fault created by the nucleation of a leading partial dislocation from the sharpened crack tip. Like Fig. 3, the creation of a
large stacking fault is rare in comparison to the nucleation of full dislocations at higher loads. The solid lines on image show the slip created by the
dislocation. (b) Simulation with friction force = 500 MPa. The initial dislocation remains close to the crack tip (within 500 A along the slip plane). Instead of
nucleating a dislocation, bonds break at the crack tip extending the crack by a few Angstroms along the original crack plane.
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a crack approaching the tensile lobe may be accelerated. Bond shifting still occurs at high loads, especially when the crack
has several defects in an area of high strains, as in Fig. 5. Upon unloading, the mechanisms causing irreversible crack growth
are the same, but the influence of defects are more pronounced since they are more abundant when the friction force is
raised. Again, reversible closing of the crack is observed if dislocations remaining near the crack are absorbed back into
the crack surfaces.

3.4. High friction force: increasing and decreasing load

At high friction forces, dislocations do not propagate far from the crack, and new dislocations are not nucleated on the
primary slip plane due to dislocation shielding. The nucleation of oblique dislocations is very common and breaking bonds
move the crack forward along the original crack plane, reminiscent of an atomic scale Stage II fatigue crack growth. Defects
and nucleated dislocations remain very close to the crack tip. The amount of crack growth is usually smaller at the highest
friction forces since the deformation does move away from the crack and usually returns to the crack after the load is re-
moved. When unloaded, irreversible deformation is observed only if dislocations or defects are not absorbed back into
the crack.

As mentioned previously, we caution that the mechanisms observed in these simulations must be interpreted with care
when comparing to ordinary materials due to the athermal and near-2D nature of the simulations. The near-2D nature of the
simulations can affect the results in a multitude of ways, two of which we deem worth noting here. First, a single defect near
the crack tip in the simulations will behave as a dense row of defects due to the periodic boundary conditions. Thus, crack tip
interactions with nearby defects are likely magnified relative a fully 3D specimen. Second, dislocations that have a line ori-
entation that is not parallel with the out of plane direction will have a high density of jogs, making dislocation mobility much
lower than it would be in a fully 3D case.

The lack of thermal activation, in the zero temperature simulations, requires higher loads to nucleate dislocation from the
crack tip which would in general increase the stress intensity required for crack growth relative to ordinary experimental
conditions. This conclusion is consistent with experimental observations [22]. It is worth noting that the complex dislocation
reactions observed here, like dislocations changing slip planes to propagate in directions of higher resolved shear stress, are
consistent with observations from thicker specimens at finite temperature [21].
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Fig. 7. Plot of the crack growth per cycle, da/dN, as a function of the stress intensity range, AKj, load ratio, R, and the friction force. The data corresponds to
the average crack growth over as many cycles as were simulated at the given stress intensity range, friction force, and load ratio. The bottom plot includes
crack growth values from all recorded cycles, while the top plot excludes data from the first cycle. The lines through the data are drawn to guide the eye and
are not analytical functions. The downward arrows near data points indicate below-threshold values. The data suggests that the threshold stress intensity
range decreases as the friction force decreases.
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3.5. Crack growth per cycle

The fatigue crack growth averaged over all recorded cycles, and all but the first cycle, is compiled for each AK; and R in
Fig. 7. A single simulation with multiple cycles was performed at each combination of load ratio, loading range, and friction
force. However, the average crack growth per cycle is compiled from all simulations classified as high, medium, or low fric-
tion force. Furthermore, the crack growth is measured along the crack path, not along the horizontal direction as in larger-
scale experiments. The position of the crack tip was determined by inspection. It was defined using the atom on the crack
surface farthest from a fixed reference point on the original crack plane or inclined slip plane. Since the first cycle usually
produces an anomalously large crack growth increment, the averaged data for all but the first cycle is a more representative
value for the average fatigue crack growth per cycle. The average value including the first cycle provides more data and
smoother curves, but it also increases the amount of crack growth recorded. The total number of cycles simulated ranged
from 3 to 10 depending on the total crack growth accumulated over all of the cycles. Once the crack approached the atom-
istic-DD mterface the simulations were stopped. Only three cycles were recorded for AK; = 0.6 eV/A ** with R = O and
AK; =05 eV/A W1th R = 0.25, around 5 cycles were used for AK; = 0. 4 0.5 eV/A w1th R=0and AK; =04 eV/A Wlth
R =0.25, and around 10 cycles were simulated for AK; = 0.2—0.3 eV/A ** with R = 0.25. The most variability occurs in re-
sults averaged over the fewest cycles. Since four individual friction force values were grouped together for low, medium,
and high friction data points, at least 12 (or 8 when not including the first cycle) cycles are included in each data point.

The data shows an expected shift in AK with an increase in R, and an increasing amount of crack growth per cycle as the
stress intensity is raised above AK,rh. The data also indicates that the presence of a higher friction force raises Ath. similar to
increasing R. The trend is clearer when examining the data that includes the first cycle, however, it holds regardless of
whether the first cycle is included. To compare with experimental measurements and other modeling predictions in the lit-
erature, the data can be described with a power law function, log da/dN versus log AK;. The best-fit slope of the curves (the
power law exponent) ranges between 6.4-6.7 for R = 0 and 3.5-5.0 for R = 0.25. For comparison, DD simulations predict
power law exponents of 6.33 for R=0.1, 6.46 for R=0.3 and 8.55 for R=0.5 [10]. The DD simulations in the literature differ
from the simulations performed here in that dislocations are emitted from sources in the former and from the crack tip in the
latter. Additionally, the DD simulations require a crack growth law as input. Fatigue experiments on metals and metallic al-
loys range greatly but are around 3 [32] or 4 [33] for metals and 2 for many alloys [33].

In general, the simulations predict that an increasing resistance to dislocation glide increases the reversibility of the cyclic
crack growth process, and thus reduces the fatigue crack growth rate. This result contradicts experimental data that shows a
decrease in the fatigue crack growth threshold with artificial aging treatment, when the hardness of the alloy is increased
[33]. We hypothesize that this contradiction may result from the absence of two key features in our model. The first is that
increased microcracking may occur with increased aging due to the formation of large precipitates. The microcracking may
facilitate enhanced fatigue crack growth, counteracting of dislocation glide resistance observed in the model. Second, the
spatial heterogeneity of dislocation glide resistance will increase with aging as alloying atoms come out of solution to form
precipitates and precipitates grow by Oswald ripening. While the average dislocation glide resistance can increase with
aging, the glide resistance in local regions of material will decrease as precipitate free regions around each precipitate grow.
Thus, it is possible that the enhanced fatigue crack growth in these regions, due to the increased mobility of dislocations,
dominates the overall change in threshold fatigue crack growth rates. The idea of a decreasing fatigue threshold with
increasing heterogeneity was also put forth by Suresh et al. [34] to describe experimentally observed crack growth rates
in aluminum alloy 7075. In that work, the threshold stress intensity range decreased as the spacing between precipitates
increased as the alloy was aged. Consistent with this idea is the experimental work of Laird and Thomas [35] who have also
observed larger crack growth rates when the size of precipitate-free regions of Al-4% Cu are increased by aging.

4. Summary and conclusions

Using a concurrent multiscale simulation approach combining atomistic simulation and discrete dislocation dynamics,
the atomic scale mechanisms associated with fatigue crack growth have been investigated and the effect of dislocation glide
resistance has been studied. The simulations suggest that dislocation emission along the primary slip plane is the primary
mechanism that occurs during a fatigue load cycle. The dislocation emission can change the crack tip geometry and the near
tip stress field (from nearby dislocations) and ultimately lead to crack growth. Crack growth was observed to occur either on
a low energy crystallographic plane by cleavage, or on the crack plane by individual bond breaking events at the crack sur-
face, as can result from dislocation nucleation. The irreversible character of fatigue crack growth resulted from the interac-
tion of the crack with lattice defects and the emission of dislocations from the crack tip that did not return upon unloading.

The predominant fatigue crack growth mechanisms varied as a function of the prescribed dislocation glide resistance.
When the glide resistance is small, the simulations suggest that sharpening of the crack tip occurs by multiple dislocation
emission on the primary slip plane. The sharpening of the tip eventually induces crack propagation on the primary slip plane,
an observation consistent with the sudden crack growth and shear-band formation observed in copper [4]. Our model pre-
dicts that a propagating sharp crack will arrest when it reaches a region of material where dislocation emission can resume,
blunting the tip. The above two steps can then repeat. The crack tip remains open upon unloading, leading to permanent
crack growth, when the blunting dislocations glide far enough away from the crack tip that they do not return during
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unloading. When no blunting occurs, the crack usually closes in a reversible manner. The model predictions of crack growth
along crystallographic planes (including the dominant planes) is consistent with previous atomistic modeling of magnisium
[7] and copper [6].

When a medium glide resistance is applied in the model, emitted dislocations remained closer to the crack tip, providing
more shielding. This led to the nucleation of dislocations on oblique slip planes or bond breakage at the crack tip. This ex-
tends the crack tip and introduces defects close to the tip, which can block or aid crack growth. Since some defects and dis-
locations remain close to the tip, some deformation is reversible when the applied load is reduced. Crack tip sharpening was
also observed, but is less common. The creation of lattice defects, like vacancies and voids, is very common in the literature
[2-8]. However, no large voids were created in this work as is observed by others [2-8].

At the highest glide resistances, the model suggests that emitted dislocations provide significant shielding of the crack tip.
This leads to crack extension primarily by bond breaking and oblique dislocation emission. It also introduces a large number
of defects that remain close to the crack tip. Since dislocations and defects do not travel far from the crack, much of the defor-
mation is reversible. In all simulations, plasticity is confined to one or two slip systems, creating persistent slip bands, con-
sistent with the literature [2-8].

For all dislocation glide resistances examined, the model predicts that oblique dislocations and lattice defects remain near
the crack tip. These dislocations and defects often interact with dislocations emitted on the primary slip plane and leave per-
manent junctions or lattice defects. In many cases, the model suggests that lattice defects act to promote the extension of the
crack, and when unloaded return to a different configuration, creating permanent crack growth.

The changing crack growth mechanisms indicate that an increasing dislocation glide resistance leads to a transition from
crystallographic crack growth with plasticity occurring on a primary slip system to crack growth on the original crack plane
with plasticity occurring on multiple slip systems. Increasing the dislocation glide resistance increases the proximity of the
nucleated dislocations to the crack tip, and thus, causes the threshold stress intensity to increase. With this result being con-
trary to experimental observations, we suggest that it indicates the importance of features not included in the model, such as
microcracking at large precipitates [36] and the spatial heterogeneity of the dislocation glide resistance [37,34]; thus, pro-
viding sound motivation for future work. Despite these short comings of the present model, we assert that this work repre-
sents a step towards the development of atomistic based fatigue crack growth laws in real materials, which could be used in
mesoscale modeling for the generation of physics based crack growth laws in macroscopic simulation.
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