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Abstract— Mobile robots suffer from sensory data corrup-
tion due to body oscillations and disturbances. In particular,
information loss on images captured with onboard cameras
can be very high, and such loss may become irreversible or
computationally costly to undo. In this paper, we propose a
novel method to minimize average motion blur captured by
such mobile visual sensors. To this end, we derive a motion
blur metric (MMBM) that can be computed in real-time by
using only inertial sensor measurements and validate it through
comparisons with optic flow computations. The applicability
of MMBM is illustrated through a motion blur minimizing
system implemented on the SensoRHex hexapod robot by
externally triggering an onboard camera based on MMBM
values computed in real-time while the robot is walking straight
on a flat surface. The resulting motion blur is compared to
motion blur levels obtained with a regular, fixed frame-rate
image acquisition schedule by both qualitative inspection and
using a blind blur metric on captured images. MMBM based
motion blur minimization system not only reduces average
motion blur, but also avoids frames with extreme motion blur
before an image gets corrupted by appropriately delaying the
triggering of frame acquisition.

I. INTRODUCTION

All mobile robots, with legged morphologies in partic-
ular, exhibit unpredictable body oscillations due to their
own structure and disturbances from their environment. For
dynamically dextrous legged robots such as RHex platform
instances [1], these body oscillations result from the robot’s
own locomotory behaviors and are hence unavoidable.

These undesirable motion disturbances can degrade the
performance of sensors mounted on the robot. The perfor-
mance of spatial optic sensors such as cameras are partic-
ularly susceptible to ego motion, with angular disturbances
having particularly significant effects on the quality of cap-
tured frames. The most significant distortion for metrological
images is the motion blur. Even though motion blur itself
can be used for useful tasks such as computing the motion,
velocity and orientation of a camera or objects [2], [3], or
identifying whether an image is manipulated [4], it is usually
undesirable for applications requiring precise features to be
extracted from images. It is known that motion blur nega-
tively affects many vision and image processing algorithms,
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particularly those requiring feature extraction and tracking
[5]. In [6], for example, a bipedal robot is occasinally forced
to stop so that frames without motion blur can be obtained
and features can be precisely located.

Fortunately, motion disturbances within certain applica-
tions may exhibit properties that can be exploited. For exam-
ple, dynamic legged robots performing stable locomotion on
flat surfaces exhibit quasi-periodic body oscillations arising
from limit cycles associated with their behavioral primitives.
In fact, many land-based mobile robots are likely to exhibit
such quasi-periodic trajectories in cross-sections of their state
space such as their body orientation and angular velocities.

In this paper, our goal is to reduce motion blur from
images captured by a camera mounted on a dynamic robotic
base by using a system to compute expected motion blur
prior to capturing a frame. We use angular velocity mea-
surements to predict average motion blur, and attempt to
minimize its corruptive effects thereby increasing the per-
formance of computer vision algorithms that require feature
extraction. An important criteria is that such detection and
measurement pre-processing should be computationally inex-
pensive to be implemented in real-time with minimal delay.

Clearly, the exact amount of motion blur on the camera
image plane depends on the camera motion during the
exposure period. Even though external object motion also
contributes to motion blur, our focus in this paper is on
dominant ego motion that corrupts the entire frame with
motion blur. Our hypothesis is that the predictability of
quasi-periodic body oscillations of a legged robot can be
exploited to avoid exposure periods where excessive motion
blur is expected to corrupt the image. Even by incorporating
a simple avoidance strategy on the timings of frame capture,
motion blur can be reduced on the average and excessive
motion blur can be avoided. On favorable surfaces where
body oscillations become more predictable, the benefits can
be increased by signal prediction approaches.

The first step in applying such a technique for improving
motion blur performance for a video stream is to have
a motion blur metric that can be computed in real-time.
Consequently, a primary contribution of our paper is the
derivation of an average motion blur metric, which we call
the Motion based Motion Blur Metric (MMBM), based on
inertial motion measurements obtained through a gyro.

The paper is organized as follows: Section II begins by
presenting relevant literature for our study, followed by Sec-
tion III where our new motion blur metric based on angular
velocity measurements, MMBM, is presented. Section IV
provides the validation of the MMBM, followed by Section
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V where MMBM is further approximated to satisfy real-
time considerations. Finally, an experimental application of
MMBM is presented in Section VI on our the SensoRHex
robot platform to minimize motion blur during walking. Our
experimental results are presented in Section VII.

II. BACKGROUND ON MOTION BLUR
REDUCTION/REMOVAL

There are both hardware and software methods to com-
pensate for motion blur. Hardware methods are widely used
by camera manufacturers. High end commercial cameras use
lens or sensor motion techniques for image stabilization.
Another commonly used hardware solution is mounting
the camera on top of a stabilization platform. Gimballed
platforms, Stewart platforms and their variants are com-
monly used for line-of-sight stabilization [7], [8]. Such
platforms are complex, costly and often require complex
control algorithms. Moreover, robust pose estimation is a
challenging problem for highly dynamic robots due to inertial
measurement drift [9]. It may be difficult to use Stabilization
platforms on small scale robotic platforms due to their size,
weight and effects on robot dynamics. Moving the camera
can also be used to modify Power Spectral Function to in-
crease performance of motion deblurring with deconvolution
[10].

Software based motion blur removal techniques primarily
focus on individual frames only after an image is captured
with motion blur [11]. The downside of single frame software
methods is that the deconvolution operation is ill-defined
since some information is permanently lost due to the nature
of motion blur. Deconvolution techniques are usually com-
putationally costly as well and may be difficult to implement
in real-time applications [12].

Inertial and visual sensors act as competent pairs [13],
with inertial sensors used to obtain extra information on
motion. The Point Spread Function (PSF), whose knowledge
is necessary for deblurring, can be estimated with inertial
measurements [14] or with a complementary camera [15] and
deconvolution is applied for deblurring as a better alternative
to blind deconvolution.

Camera shutter control is also used in certain applications
to compensate for motion blur. The simplest solution is
limiting exposure time, but the image Signal to Noise Ratio
decreases due to the reduced amount of light integration.
Special lighting is usually required for this approach to be
successful. More complex methods also exist. Light integra-
tion pattern can be manipulated to minimize deconvolution
noise [16]. Fusion of frames exposed at different durations on
the same scene can also be used to reduce motion blur [17].
However, the computational complexity is a considerable
burden of these approaches especially when they run on low-
power onboard CPUs of a mobile robot.

In the present study, we focus on deriving a novel real-
time metric using three-axis gyroscope measurements to
predict motion blur that would result from the rotational
motion of the camera. This metric is then used in a simple

approach to reduce average motion blur while capturing a
video sequence.

III. MOTION BASED MOTION BLUR METRIC (MMBM)
DERIVATION

Motion blur caused by rotational camera motion can be
derived when this motion is known. Exact formulation of
motion blur requires the integration of light falling upon an
image pixel over the frame exposure time [18]. Fig. 1 illus-
trates the timing of two successively captured frames whose
exposure times can be identified as te1 and te2. The aim of
MMBM is to approximate camera rotation based average
motion blur that will result from exposure during te1 by
using inertial measurements collected at the time instant ti1.
Deriving the exact motion blur with MMBM is impossible
since it requires knowledge of future. Unless absolute camera
motion is controlled or future camera motion can be precisely
estimated with a motion model, this is impossible. However,
MMBM can still give reasonable results in many applications
since computation and trigger delay td1 and exposure time
te1 can be sufficiently small that robot dynamics would
restrict radical changes in rotational velocity. Furthermore,
many causes of impulsive rotational velocity changes, such
as leg touchdown instants of a legged robot, can be avoided
by modeling them as a function of input and robot states and
predicting their occurrences.

ti1 tt1 ti2 tt2

te1 te2

td1 td2

tf1 tf2

to1,2

tf0... ...

Fig. 1: Timing diagram of MMBM based camera triggering.

MMBM uses 3D rotational velocities of the camera mea-
sured with a gyro and approximately predicts optic flow
at time instant ti1. Since the effect of rotational motion
on motion blur is more pronounced compared to that of
translational motion for reasonable scene distances, MMBM
is expected to be widely applicable.

A. Notation

Fig. 2 illustrates world (X,Y,Z) and image (U,V) coor-
dinate frames; a point on the real world (x,y,z) and its
projection on image plane (u,v); as well as the rotational
velocities wx, wy and wz of the camera.

B. Camera Model

A basic pinhole camera model is used for modeling the
camera. In vector form, this can be written as,[

u
v

]
= f

[
x
z
y
z

]
. (1)

The associated inverse camera model is given byxy
z

 =

z u
f

z v
f

z

 . (2)
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Fig. 2: Illustration of frames and definitions used in the
derivation of the MMBM.

Our formulation assumes that the camera is pre-calibrated
and leaves out intrinsic camera parameters such as distortion
to keep the MMBM derivation as simple as possible.

C. Velocity Relation between World and Image Coordinates

The relation between a real world point and its correspond-
ing projection on the image plane before and after rotational
(R) and translational (T) camera motion is detailed in [19]. A
spatially varying motion blur model that uses time-varying R
and T obtained from inertial measurements during exposure
time is proposed by [15]. Instead of using R, MMBM makes
use of a world point’s projected velocity on image sensor by
using camera rotational velocities. The time derivative of the
camera model is used to yield

d

dt

[
u
v

]
= f

[
ẋz−xż

z2

ẏz−yż
z2

]
=

[
f
z 0 − fx

z2

0 f
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z2

]ẋẏ
ż

 . (3)

A fixed point in world coordinates with the camera rotating
on the origin is analogous to the point itself rotating around
a fixed camera in the same frame of reference. The velocity
of a point when rotated with respect to an arbitrary vector, w,
passing through the origin of the point’s frame of reference
is defined as

Ṗ = W × P (4)ẋẏ
ż

 =

 0 −wz wy

wz 0 −wx

−wy wx 0

xy
z

 . (5)

D. The Definition of the MMBM

Obtaining the averaged optic flow requires the integration
of instantaneous image plane optic flow vector magnitudes
caused by camera rotation at time instant ti1. This leads to
the definition of our MMBM as

µ :=
1

∆u∆v

∫ umax,vmax

umin,vmin

√
u̇2 + v̇2 du, v (6)

where ∆u and ∆v are defined as (umax−umin) and (vmax−
vmin) respectively.

Inserting (3), (5) and (2) respectively into instantaneous
optic flow vector in (6) to be able to explicitly evaluate the

integral, we have[
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]
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The expression of (u̇2 + v̇2) then becomes
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(8)

This expression can be used to compute (6) either numeri-
cally, or through the approximation proposed in Section V.

IV. VALIDATION OF THE MMBM

MMBM calculates the derivative of optic flow at ti1. The
assumption of constant velocity motion from ti1 to the end
of te1 is required for the accuracy of MMBM. Under the
assumption of constant camera rotational velocity, MMBM is
proportional to the average of optic flow vector magnitudes.

In order to validate our metric, a hardware setup consisting
of a camera, a 3D fiber-optic gyro and a PC was built.
Camera and gyro axes were matched with a fixture, but no
calibration was done to obtain further alignment information.
Using handheld hardware, time synchronized image frames
and gyro data samples were collected. The method proposed
by [20] was used to find the optic flow between all successive
frames on the collected images. Two of the successive images
from the data set are shown in Fig. 3.

(a) (b)

Fig. 3: Two successive images from the sequence recorded
to validate the MMBM.

For example, color coded optic flow field between Fig. 3(a)
and Fig. 3(b) is shown in Fig. 4(b). Direction and intensity
of optic flow vectors can be visualized with the help of the
color map in Fig. 4(a).

We first compute the average magnitude of optic flow
(AMOF) for each consecutive image frame. AMOFs are
then compared with MMBM values calculated from gyro
data only. Fig. 1 can be used to be clear on the timing of
comparison. Optic flow algorithms assume that the exposure
times of frames (te1&te2) are infinitesimal. Flow vectors give
velocities of world points projected on to the image plane
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from the beginning to the end of to1,2. Therefore, MMBM
calculated with gyro data taken in the mid point of to1,2
is scaled and compared to AMOF. The relative scales of
MMBM and AMOF are actually different since they are
two different quantities. The main objective of validation
is comparing the time behavior two waveforms since both
give an idea about the magnitude of motion blur under
aforementioned assumptions.

(a) (b)

Fig. 4: Optic flow field from images in Fig. 3: (a) The actual
optic flow field, (b) optic flow color and direction map.

Comparison of MMBM and AMOF with the first data set
is illustrated in Fig. 5. The first data set was collected with
the camera rotating around the yaw axis and rotations on
other axes negligibly small. Note that data sets also include
a small amount of translation movement since they were
collected with handheld hardware. Since the target is at a
reasonable distance, the projection of translational movement
onto the image plane was assumed to be negligible. Our re-
sults show that MMBM and AMOF waveforms have closely
matching behavior. Extremum points on both waveforms are
very close to each other. Note, also, that the sampling rate
of the gyro (approx. 600Hz) and the camera (approx. 12fps)
are very different. This is the reason why the MMBM plot
seems to be continuous and AMOF is not. Red dots on the
AMOF plot correspond to mid points of time durations to1,2
and AMOF data can only be calculated on the red dots, with
the rest being a piecewise linear interpolation in between.
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Fig. 5: Comparison of scaled MMBM and AMOF during
yaw axis camera rotations.

On the second data set, the camera was subjected to
a complex rotational motion with rotation with respect to
each axis changed continuously and arbitrarily in time. It
can be observed that discrepancies in Fig. 6 are more
pronounced. The main reason for this is the slight increase
in the frequency of rotations. Camera data starts to suffer

from low sampling rate and the resulting aliasing. Moreover,
Optic flow algorithms are affected from motion blur and
hence AMOF deteriorates as a result. It is also useful
to remind that, the current comparison is done with the
assumption of constant velocity rotations. The second data
set is hence at the limit of validity for comparing MMBM
and AMOF. However, the general form of the waveforms are
still consistent with each other.
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Fig. 6: Comparison of scaled MMBM and AMOF during
arbitrary camera rotations.

V. REAL TIME EVALUATION OF MMBM
MMBM was evaluated numerically in Section IV since

the analytic evaluation of the integral was not possible.
Numeric integration is usually computationally costly and
cannot be implemented in real-time applications. Conse-
quently, MMBM was approximated with a Riemann sum to
meet real time requirements.

Instead of evaluating the MMBM definition of (6) over
the whole image plane, it was approximated with Riemann
sum using square areas whose values are evaluated only at
middle points shown in Fig. 7. The final MMBM calculation
hence reduces to

µ∗ =
1

n

n∑
i=1

√
u̇i

2 + v̇i
2dA. (9)

where u̇2 + v̇2 is given by Eq. (8) and dA is the region
whose value is approximated with the exact value of a single,
mid point. All summation regions are square and uniformly
sampled from the image plane. Note that multiplication of
dA in (9) can also be ignored since all regions have the same
area and only the waveform of the MMBM is important. This
approximation is reasonable since all image plane motion is
the result of a single camera ego motion and therefore exhibit
significant spatial smoothness.

Numerical evaluation and Riemann sum approximation of
MMBM gives almost the same function form except small
integration errors. The percentage error between numerical
evaluation and Riemann sum approximation, 100 ∗ (µ −
µ∗)/µ, is shown in Fig. 8, with the small percentage errors
justifying our choice of the number of samples used for the
approximation.

VI. APPLICATION OF MMBM: EXTERNAL CAMERA
SHUTTER TRIGGERING TO MINIMIZE MOTION BLUR

Our motion blur prediction and minimization system was
implemented on the SensoRHex hexapod. The system con-
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Riemann sum approximation.
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Fig. 8: Percentage error between the numeric evaluation and
the Riemann sum approximation of MMBM (µ).

sists of a Fizoptika optic gyro, a PointGrey camera, a PIC
based microcontroller board and a 500MHz Pentium class
PC-104 CPU. Connections between hardware components
are illustrated in Fig. 9.

PC-104

μController
BoardRS232

Camera

Digital GPIO

IEEE1394
3D Gyro

RS232

Fig. 9: Hardware structure of motion blur reduction system
implemented on the SensoRHex hexapod.

All hardware components are located on SensoRHex.
The gyro gives rotational velocities in each axis at 600Hz.
MMBM is calculated for each gyro reading by a PC-104
CPU unit in real-time. Fig. 10 illustrates MMBM calculated
during the normal walking mode of SensoRHex. The robot
walks on a flat concrete surface. High MMBM values corre-
spond to time instances where motion blur would be high if
an image acquisition was triggered at that moment. Fig. 10
spans a duration slightly longer than two steps of SensoRHex
and three leg touch down instances can be observed as the
highest MMBM values on the plot. The quasi periodicity of
body oscillations can also be observed. Exploiting such quasi
periodicity, the camera can be triggered only when MMBM
is below a certain threshold.

The camera was configured to work in its external trigger-
ing mode with the exposure time fixed to 70ms. Trigger sig-
nals were given by the PC and directed to the microcontroller
board over a serial port. The microcontroller then generated

21.5 22 22.5 23 23.5 24 24.5
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B
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Fig. 10: MMBM while SensoRHex is walking straight on a
flat concrete surface.

signals to trigger the camera. Finally, captured frames were
transferred to the PC over the IEEE1394 interface.

VII. EXPERIMENTAL RESULTS

SensoRHex was equipped with our proposed motion blur
minimization setup. Two data sets were collected while Sen-
soRHex was walking straight on a flat surface and pointing
to a checkerboard pattern as shown in Fig. 11. The first data
set incorporates frames captured at a fixed rate of 5fps and
the second one uses our motion blur minimization system
to determine capture timings. The camera was setup to have
the same exposure time, 70ms, for both. Our motion blur
minimization system waits at least 200ms between two suc-
cessive frames to ensure a fair comparison with the 5fps fixed
frame rate set. Once 200ms passes, the PC starts to calculate
MMBM for each gyro reading. The trigger command is
applied only if MMBM is below certain threshold.

(a) (b)

Fig. 11: Motion blur minimizing system implementation on
SensoRHex. (a) Experiment area, (b) robot’s point of view.

TABLE I: JNBM averages over frames captured during
straight walk of SensoRHex on flat surface

Image Capture Method JNBM average
Fixed Frame Rate @5fps 0.3564

MMBM Based Motion Blur Minimized Capture 0.4908

In order to quantitatively evaluate improvements on mo-
tion blur, checkerboard patterns were cropped from each
frame and cropped images were evaluated with Just No-
ticeable Blur Metric (JNBM) [21]. However, blur amount
detection within a single frame is an ill-defined problem and
isolated JNBM results may not totally agree with human
visual inspection, JNBM gives consistent results on the
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average. JNBM for both data sets are presented in Table I.
JNBM gives higher results for sharper images. Subjective
inspection of frames also agree with the average JNBM
results. In particular the most blurred frames are clearly
avoided with our proposed system. Fig. 12(a) and Fig. 12(b)
show hand-picked extremely blurred frame examples from
both data sets.

(a) (b)

Fig. 12: Examples of hand-picked excessively blurred frames
from SensoRHex walking: (a) Image from fixed frame rate
capture (b) Image from external triggering with MMBM.

VIII. CONCLUSIONS
In this work, a new metric, MMBM, to evaluate camera

rotation based average motion blur of an image was pre-
sented. MMBM is evaluated by using only gyro data in real-
time. Finally, MMBM was used to minimize motion blur
of captured images from an onboard camera mounted on
the SensoRHex hexapod robot by externally triggering the
camera only when MMBM dips below a certain threshold.
Average motion blur of captured images is hence decreased
and, more importantly, extremely blurred images are avoided.
As a consequence, computer vision algorithms such as lo-
calization can run more efficiently.

In the present paper, a camera was externally triggered,
but, a software trigger such as polling a image frame over
data transmission line could have been applied if external
triggering was not available. Another approach could have
been using a fixed frame rate image acquisition and deciding
whether or not to use an image after capturing it and before
applying any computer vision algorithms on it.

MMBM can be used in many robotics applications that
suffer from motion blur, especially, legged robots in partic-
ular. Quasi-periodicity of a legged robot’s body oscillations
can be exploited to pick up the best instants to capture a
frame. Further improvements can be achieved by incorporat-
ing the motion model of a robot. Unfortunately, SensoRHex
currently does not have any such models, but, optimal shutter
triggering can be obtained with robots having a motion
model. Even though a robot does not have any motion model,
motion blur detection performance can be further increased
by integrating signal prediction methods on MMBM.

Significant amount of motion blur has been avoided before
it corrupts an image by using our method. Rest of the
motion blur can be deblurred using methods available in the
literature. For instance gyro data used to calculate MMBM
can also be used to construct PSF for deconvolution based
motion blur removal.
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