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Abstract

Solute strengthening of twin dislocation motion along an existing twin boundary in Mg-X (X=Al,

Zn) is investigated using a new Labusch-type weak pinning model. First, the (101̄2) twinning dis-

location structure is computed using first-principles methods. Second, the interaction energies of

Al and Zn solutes with the twin boundary and twin dislocation are computed. Interaction energies

are computed for all solute positions for Al and a subset of sites for Zn, and it is shown that the

interaction energies of Zn solutes scale with the Al solute energies in propotion to the misfit volume

plus an additional “chemical” interaction piece and this scaling is used to compute the Zn solute

interactions at all other sites around the twin dislocation. Third, the solute/dislocation interaction

energies are used in a new Labusch-type model to predict the overall solute strengthening of the

twinning dislocation. New features emerge in the application of the model to twinning because

of the very small Burgers vector of the twin dislocation, leading to a new functional form for the

dependence of the strengthening on concentration, temperature, and strain rate. Fourth, applica-

tion of the model leads to parameter-free predictions that agree well with available experimental

data on various Mg-Al-Zn alloys. The predicted strengthening is not large, e.g. ≈ 10 MPa for the

AZ31 alloy at room temperature, but is larger than the strengthening of basal slip by the same

solutes. Overall, this work contributes to a growing quantitative understanding of alloying effects

on various deformation modes in Mg.
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I. INTRODUCTION

The high strength-to-weight ratio of magnesium alloys makes them good candidates

for lightweight structural metals. The automotive industry, in particular, has been fo-

cused on potential applications of wrought magnesium alloys to achieve lighter-weight, more

fuel-efficient vehicles. However, limited room temperature formability has prohibited the

widespread use of Mg alloys. This limitation is caused by the anisotropic plastic response

due to the underlying hexagonal closed packed (hcp) structure; the stress required to operate

basal slip is much lower than that for non-basal (pyramidal and prism) slip and somewhat

less than that for twinning. The von Mises criterion for strain compatibility requires the

operation of at least five independent systems (slip and twinning), and these are not avail-

able at low temperatures due to the very high stresses needed to operate non-basal modes;

fracture thus precedes significant plastic deformation, resulting in low ductility. The addi-

tion of alloying elements capable of modifying the strengths of various deformation modes

holds promise as a means to promote non-basal deformation modes and, in principle, reduce

the critical stress differential between basal and non-basal deformation modes to increase

ductility at moderate temperatures.

Recent computational work, based on first-principles calculations, has begun to establish

a quantitative, theoretical basis to predict the effects of solutes on basal slip[1, 2] and the

thermally activated basal to prism cross slip behavior in Mg[3, 4]. Despite great advance-

ments, a quantitative study of solute effects on major non-basal deformation modes (〈c+ a〉
slip and twinning) does not exist yet. In this paper, we use first-principles methods to

compute the twin dislocation structure and the twin dislocation/solute interaction energies

for Al and Zn solutes. We then use these energies to predict the effects of these solutes on

the finite-temperature, finite-strain-rate strengthening of (101̄2) twinning, which is the only

active deformation mode in c-axis tension of single crystals and is the most dominant twin

mode in Mg[5]. The models predict that, at room temperature, alloying shows a significant

strengthening effect on the twin dislocation glide in comparison to the strengthening of basal

slip. The stresses resisting twin growth are not large (≈ 10 MPa) but are larger than the

“Peierls barrier” in pure Mg (≈ 3 MPa), and so make a distinct contribution. However, the

strengthening must be compared to stress levels required for twin nucleation, which may be

controlled by other defects or dislocation interactions; this issue is beyond the scope of the
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present paper. The rest of this paper is organized as follows. In Section II, we present the

computational methods and the computed twinning dislocation structure and interaction

energies with solutes. In Section III we present the strengthening model and its application

to the present problem involving the tension twin dislocation. In Section IV, we show the

predictions of the model, compare with experiments, and draw implications from the model.

We summarize this work in Section V.

II. TWINNING DISLOCATION STRUCTURE AND INTERACTION WITH SO-

LUTES

We use density functional theory (DFT) to study the structure of the Mg (101̄2) twin

boundary, the corresponding twinning dislocation, and the twin/solute interaction energies

for Al and Zn substitutional solutes. The DFT calculations are performed with the VASP

code [6, 7], a plane-wave based density functional theory code using Vanderbilt-type ultrasoft

pseudopotentials and the generalized-gradient approximation[8] for the exchange-correlation

potential. The 3s states of Mg are treated as valence electrons. A plane-wave energy cut-off

of 138 eV is used throughout the calculations with pure Mg. The cut-off energy is increased

to 169 eV and 272 eV in calculations involving Al and Zn respectively. A 16 × 16 × 12

k-point mesh with Methfessel-Paxton smearing of 0.5 eV is used for a Mg unit cell and is

adjusted for the supercells accordingly.

We start with the coherent twin boundary structure. The initial geometry is constructed

by applying a mirror symmetry operation to the perfect Mg lattice on the (101̄2) plane. Two

twin boundaries with a separation of 14 atomic layers are created and periodic boundary

conditions are applied in all directions. This corresponds to a 7.58Å × 3.19Å × 54.20Å

supercell with 56 atoms. All atomic positions and the supercell dimension perpendicular to

the boundary are allowed to relax until the forces are smaller than 5 meV/Å. We compute

a twin boundary energy of 114 mJ/m2. For solute/twin-boundary interaction energies, the

dimensions of the supercell are doubled along the directions in the twin boundary plane

to avoid nearest-neighbor interactions between a solute atom and its periodic images. Our

reference configuration is taken to be a system with one solute atom at a bulk-equivalent site

(half way between the two twin boundaries in the supercell. Eight unique solute sites in and

near the twin boundary are identified and numbered according to their distance from the
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twin boundary, as shown in Figure 1. The solute/twin-boundary interaction energy at each

site is then defined by the difference between the energy of the system with a solute atom at

that site and the reference energy at the bulk-equivalent site. The interaction energies are

shown in Figure 1a. With increasing distance from the boundary, the interaction energy

reduces rapidly to zero. Table I shows the numerical values of the interaction energies at the

selected sites for the Al and Zn solutes. These calculation are similar to those reported in [9]

for interaction of Zn and Gd with Mg (101̄2) twin boundary; the Zn interaction energies in

that work are consistent with the present work. The solute misfit volume ∆v is calculated

with DFT following the method described in [10] and we find ∆v −8.22 Å3 and −10.65 Å3

for Al and Zn solutes respectively. The solute/twin interaction energies in the twin boundary

generally scale with the solute misfit volumes, due to the positive and negative pressures in

the two different atomic sites in the twin, respectively.
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FIG. 1: Twin/solute interaction energy map for Al solutes: (a) energies at geometrically unique

sites in and around the coherent twin boundary, labelled based on their distance from the twin

boundary for later use; note that the strongest interactions occur at the twin boundary with

opposite signs (attractive and repulsive); (b) twin dislocation structure and the solute interaction

energies computed by direct substitution of Al atoms at sites in the twinning dislocation core as

indicated by sites outlined in bold.

The twinning dislocation (disconnection) is a line defect with both dislocation and step

characters [11–13]. In the case of (101̄2) twin, the twinning dislocation step involves two

atomic planes. As the twinning dislocation glides on the twin plane, it transforms the crystal

structure on one side to the corresponding mirror structure, advancing the twin boundary by
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TABLE I: Twin/solute interaction energies (eV) for Al and Zn solutes placed near the twin bound-

ary. Site numbers are explained in Figure 1a.

Site Al Zn

1 -0.150 -0.220

2 +0.105 +0.080

3 -0.002 -0.029

4 -0.023 -0.045

5 -0.058 -0.092

6 +0.020 +0.026

7 +0.009 +0.004

8 -0.008 -0.008

the step height. The Burger’s vector character of the twinning dislocation is geometrically

related to the twinning shear and is defined as a fraction of the perfect lattice vector along

the twinning shear direction as

~bt = s[101̄1̄]

where s = 0.064 is determined by the shear necessary to create a two-layer-thick twin lamella

and is computed using the DFT-computed c/a ratio of 1.623 for Mg [14]. The twinning

dislocation in the simulation cell is constructed following the procedure given in Appendix

A. The simulation cell contains 858 atoms embedded in a surrounding vacuum, with the ions

within 10 Å of the outer boundaries being held fixed. Periodicity along the dislocation line

is used with a repeat distance of a0. This structure is then relaxed using the DFT-derived

ionic forces while fixing the atomic positions near the edges of the simulation cell. Such a

large fixed cell is viable for the twin dislocation because of the very small burgers vector,

and compact structure, which together minimize spurious interactions with the outer cell

boundary. The final predicted dislocation geometry is shown in Figure 1b, and consists of

a compact core around the step while maintaining two well-defined twin boundaries away

from the step. The atomic coordinates in the relaxed twinning dislocation geometry are

provided in the supplementary materials. The DFT-predicted structure of the Mg tension
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twin dislocation is the first main result of this paper.

The relaxed twinning dislocation geometry is used to directly compute the Al solute/twin-

dislocation interaction energies. The periodic dimension along the dislocation line is doubled

for the solute calculations. On the other hand, since the defect core is compact, we use

smaller dimensions in the other two dimensions, resulting in a super cell containing 1271 Mg

and 1 Al atom. Figure 1b shows the twinning dislocation/solute interaction energy map for

a single Al atom placed at each of the various sites around the dislocation core indicated by

the bold outlines. The solute/twin-dislocation interaction energies in the core are generally

less than the solute/twin-boundary interaction energies, so that the twin boundary domi-

nates the energetics in this problem. Outside the dislocation core where DFT energies have

been computed, the interaction energy can be approximated by the sum of the solute/twin-

boundary interaction energy (Table I) plus an elastic interaction energy −p(xi, yj)∆v due

to the interaction of the dislocation pressure field p(xi, yj) and the solute misfit volume ∆v,

as shown in Figure 1b. The pressure field is calculated using the continuum expression

p(xi, yj) = − 1+ν
3π(1−ν)µb

yi
x2i+y

2
j

for a point dislocation; since the Burger’s vector is very small,

we do not spread the core as in the Peierls-Nabarro model and the contribution due to the

pressure field is small. In general, placing the solute near the twin dislocation core of the

does not have a strong effects on the defect core structure[1]. We have also computed

the solute/dislocation interaction energies for Zn solutes at selected sites around the twin

dislocation core. The results are shown in Figure 2a where the DFT results are indicated

by the bold-outlined sites. The determination of solute/twin-dislocation interaction energies

by DFT is the second main result of this paper.

Because direct DFT calculations of the solute/twin-dislocation interaction energy are

computationally very expensive, we now describe and validate a computationally-tractable

[1] The exception is for a solute at site 5 in the core immediately ahead of the dislocation, for which the

system lowers its energy by displacing the atoms around the solute so that site 5 (with respect to the

left twin boundary) becomes a site 1 in the right twin boundary (note the dark blue sites in the core

region shown in Figure 1b). This migration is driven by the large energy difference between sites 5 and

1 (-0.092). To compute an interaction energy at this site, we therefore place two Al atoms at equivalent

site 5 positions relative to the core, one on each twin boundary, which exert equal and opposite forces on

the twin dislocation and prevent migration. The twin-dislocation/solute interaction energies at these two

sites should be equal, and so the site 5 energy is one-half of the computed energy and is the value shown

in the figure; the interaction energy at this site is higher than that at site 1 in the coherent boundary by

0.034 eV and lower than that of site 5 in the coherent boundary by -0.059 eV.
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FIG. 2: Zn/Twin interaction energies. (a) interaction energies are calculated with DFT at selected

sites indicated by bold-outlined circles. The energies are obtained by scaling Al interaction energies

at the remaining sites. (b) DFT-computed solute/twin-dislocation interaction energies for Zn versus

the energies computed for Al at the same atomic sites; solid line demonstrates the validity of the

scaling relation of Equation 1 based on solute misfit volumes plus a small “chemical” interaction.

method to accurately estimate the interaction energies without full DFT calculations using

the twin core and considering all possible sites around the core; this method can then be

used for many other solutes in future work. We propose that the interaction energies are

proportional to the solute misfit volume plus a (small) “chemical” contribution specific to

the solute. In other words, for a solute of type i, we postulate that Ui(x, y) = A∆vi + Bi

where A is a function of the matrix material only. Then, given the interaction energies

UAl(x, y) for Al, we can express the interaction energies for any other solute as

Ui(x, y) = UAl(x, y)∆vi/∆vAl + ∆Bi (1)

where ∆Bi = Bi −BAl∆vi/∆vj.

Operationally, we simply take ∆Bi as a fitting parameter. To validate Equation 1, we

compare our direct DFT results for Zn to the values predicted by using the DFT results for

Al scaled according to Equation 1. The results are shown in Figure 2b, and the agreement is

very good over a wide range of Zn/twin interaction energies with the “chemical” contribution

of ∆BZn ≈ -0.043 (eV). Note that inclusion of the “chemical correction” introduces an error
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away from the twin in the bulk material and so should only be used inside the core and

close to the twin boundary. Using this validated scaling relation, we can now obtain the

Zn/twin interaction energies at sites not computed via direct DFT, and we apply these

scaled energies at sites within a vertical distances of 5Å from the center of the twinning

dislocation. The elastic interaction energy of −p(xi, yj)∆vZn is used for further sites, thus

recovering the proper bulk limit. The overall computed energies for Zn solutes around the

dislocation core are shown in Figure 2a. We note that the scaling method allows calculation

of interaction energies for arbitrary solutes from the direct Al interaction energies using

simple DFT calculations of misfit volumes and solute/twin boundary interaction energies

(e.g. as shown in Table I) to determine the “chemical” contribution. This new strategy is

the third main result of this paper.

III. SOLUTE STRENGTHENING MODEL

Strengthening models for substitutional solutes are broadly divided into two classes:

strong pinning (Friedel) where individual solutes act as point obstacles to dislocation motion

and weak pinning (Labusch) where collective interaction of many solutes with the dislocation

results in strengthening in regions of favorable statistical fluctuations in the solute configu-

ration. Each model has characteristic scalings with solute concentration and temperature.

However, Ref [15] shows that the energy barriers for the Friedel model are those of the indi-

vidual solutes, and the solute interaction energies shown above are easily overcome at finite

temperatures so that no strengthening is predicted above ≈ 100 K. Here, we thus use only

a new Labusch-type model[16], which has been shown to be predictive for strengthening in

fcc Al and basal slip in Mg, to quantify the solid solution strengthening on twin growth.

The weak pinning Labusch-type model is based on the collective effect of solutes rather

than individual solute/dislocation interactions [17]. A straight dislocation bows out in the

glide plane towards favorable environments of the random solute distribution to minimize

the potential energy. However, bowing has a cost in elastic energy. Therefore, the favorable

configuration of a dislocation is that which minimizes the total energy as a function of the

dislocation bowing segments of length ζ and the amplitude of the bowing w. In the new

quantitative and predictive Labusch-type model introduced by Leyson et al.[16], the char-

acteristic segment length ζc and amplitude wc are obtained by minimizing the total energy
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of the fluctuating dislocation line with respect to both ζ and w.

In the model, the total energy (potential+elastic) as a function of roughening amplitude

w and segment length ζ is given by

Etot(ζ, w) =

[(
Γ
w2

2ζ

)
−
(
cζ

a0

)1/2

∆Ẽp(w)

]
L

2ζ
(2)

where L and a0 are line length and periodicity along the line direction (lattice parameter)

respectively and Γ is the dislocation line tension. We approximate the line tension as γ =

0.040 eV/Å, consistent with the defect core energy (dominated by the step) calculated using

the EAM Liu potential[18], which predicts the twin boundary and twinning dislocation

geometry in good agreement with DFT[19]. The quantity ∆Ẽp(w) is given by

∆Ẽp(w) =

[∑
ij

(U(xi, yj)− U(xi − w, yj))2
]1/2

(3)

with U(xi, yj) being the solute/dislocation interaction energy for a solute at position (xi, yj)

in the plane perpendicular to the dislocation line and relative to a dislocation at the origin

(x = 0, y = 0). Minimizing the total energy with respect to ζ gives a characteristic segment

length ζc as a function of w and the total energy at this characteristic segment length

as a function of w only. The characteristic roughening wc is then obtained by numerical

minimization of Etot/L. From this mininum energy, the energy barrier ∆Eb and the zero

temperature yield stress τLy0 controlling motion of the segments of length ζc can be expressed

in terms of the characteristic material parameters as

∆Eb = α

(
Γw2

c∆Ẽ
2
p(wc)c

a0

)1/3

(4)

and

τy0 = β

(
c2∆Ẽ4

p(wc)

Γa20w
5
c

)1/3

(5)

where the prefactors α and β in Equation 4 and Equation 5 contain all the numerical

coefficients determined by the geometry of the lattice and the specific slip systems, and for

the twin dislocation in Mg are α = (4
√

2 − 1)/25/3 and β = π
2b

(4
√

2 − 1)/27/3. The finite

temperature, finite strain rate flow stress follows again from standard thermal activation

theory. The stress-dependent energy barrier takes the form

∆E(τ) = ∆Eb

[
1−

(
τ

τLy0

)]3/2
. (6)
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In general, at sufficiently high temperatures relative to the energy barrier (and corresponding

to low applied stresses), the energy barrier can have additional contributions from long-range

solute/dislocation interactions [20]. Since the interaction energy here is dominated by solutes

in the core (the far-field interaction due to the pressure field is small because the burgers

vector is small), these additional contributions are negligible for the twin dislocation in Mg

and are thus neglected here. The finite temperature yield stress τy is expressed as

τ (yT, ε̇) = τy0

[
1−

(
T

T0

)2/3
]

(7)

where T0 = ∆Eb/(kB ln(ε̇/ε̇0)) is the characteristic temperature for the Labusch mechanism.
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FIG. 3: Normalized energy per unit length vs. roughening amplitude normalized by the periodicity

of the coherent twin boundary L1 = 7.58Å for Al and Zn solutes interacting with twinning disloca-

tion in Mg. The Zn interaction energies are obtained by direct DFT calculations at selected sites

and scaling Al interaction energies elsewhere. Use of the scaled energies everywhere introduces an

error of ≈ 0.001 meV/Å in the normalized total energy.

Using the solute/twin dislocation interaction energies obtained from DFT and dislocation

pressure field, we compute the total energy per unit length of dislocation Etot(w)/L for

various values of the roughening amplitude w as shown in Figure 3. Unlike in the previous

applications to fcc Al and basal slip in Mg, a clear minimum in the total energy does

not emerge from the analysis; this is unique to the twin because the interaction energies are

dominated by the solute/twin-boundary energies rather than the solute/dislocation energies.

In the Mg twin, the interaction energy is nearly periodic with respect to the twin periodicity

L1 so that U(xi + nL1, yj) = U(xi, yj) for any integer n multiple of L1. Therefore, except
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around the core where a change in periodicity occurs, various roughening amplitudes, given

by multiples of L1, have nearly equal contributions to ∆Ẽp(w) and thus affect the total

energy by comparable amounts. The existence of multiple roughening amplitudes of nearly

identical energy distinguishes the weak pinning of twinning dislocation from that of lattice

dislocations, which have well-defined wc values. The analysis of strengthening for the twin

dislocation is thus more complex than outlined above. For fixed values of temperature,

concentration, and strain rate, there are now many possible configurations available for

the twinning dislocation to optimize its energy. i.e. the dislocation line may bow out by

multiples of L1 towards favorable solute distributions. Among all of these configurations, the

one requiring the highest stress to achieve the desired strain rate at any given temperature is

the configuration that controls the strengthening. Thus, a prediction of the yield stress versus

temperature and concentration requires calculation of the strength for all possible roughening

amplitudes w and then a determination of the maximum strength among all these strength

values. The strength versus temperature at a given c and strain rate is then constructed

as the “envelope” of the strength vs. T curves for each integer w = nL1. Creation of the

envelope is straightforward but unwieldy. Since Etot/(Lc
2/3) is essentially constant for all the

integer values of w = nL1 (see Figure 3), we can develop an analytic model by considering

w as a continuous variable for w ≥ L1, and carrying out the maximization analytically. Such

an analysis is presented in detail in the Appendix B; here we present the final result for the

finite-T, finite strain-rate yield stress as (for w ≥ L1)

τy(T, ε̇) =
2π(33− 8

√
2)

25
√

5b

[−Etot/Lc2/3]3/2
√

Γc

kBT ln ε̇0/ε̇
(8)

where Etot/(Lc
2/3)) is the computed constant value for w ≥ L1 shown in Figure 3 for the

given solute. Moreover, this model can be generalized to alloys with multiple solutes (see

Appendix B) as

τy(T, ε̇) =
2π(33− 8

√
2)

25
√

5b

√
Γ
∑

i ci[−Etot/Lc2/3](i)3/2
KbT ln ε̇0/ε̇

(9)

where i ranges over the number of alloying elements. As an example, Figure 4 shows the

predicted numerical yield stress envelope (discrete integer values of w from n = 1 − 4 only

are shown) as a function of temperature for 1 at.% Al along with the analytical model

(continuous w). The two predictions are in excellent agreement. The differences at low T

are simply due to using w as a continuous variable below w = L1; other differences reflect
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the fact that Etot/(Lc
2/3)) is not perfectly constant as a function of w for w > L1. At low

temperatures (near T = 0K), the roughening amplitude w = L1 controls the strengthening.

At T ≈ 27K, w = 2L1 becomes the controlling roughening amplitude, and transitions to

larger roughening amplitudes continue as T increases. The abrupt changes in slope in the

discrete model are artifacts of the restriction that only one single amplitude is relevant

at any one temperature. As T increases, the dislocation can roughen to larger and larger

amplitudes and therefore there is always some w that will give a finite (although perhaps very

small) yield stress, and this is embedded in the analytical stress envelope. In addition, the

analytical relation for the yield stress allows for quantifying the sensitivity of the predictions

to the value of Etot/(Lc
2/3) value. For instance, Figure 3 shows that using the scaled energy

values for Zn solutes at all sites around the core instead of a mixture of direct DFT+ scaled

energies introduces a change of ≈ 0.001 meV/Å in Etot/(Lc
2/3)) which introduces an error

of ≈ 10% in final τy predictions. The new model of Equation 8 for solute strengthening of

the twin dislocation in Mg is the fourth main result of this paper.

T (K)1 

2 
3 
4 

Numerical stress envelope 

Analytical stress envelope 

⌧y(MPa)

FIG. 4: Yield stress versus temperature for 1at.% Al concentration as predicted as the upper

envelope (solid line) among the strengths for successive discrete roughening amplitudes w = nL1

(dashed lines, only n = 1-4 shown) and as predicted by the continuous analytical model of Equa-

tion 8 (blue line). Agreement between the discrete and continuous analytic models is excellent.
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FIG. 5: Yield stress for twin dislocation motion τy at T=300 K as a function of solute concentration

for Al and Zn solutes. The yield stress for basal slip is shown for comparison (Al results in [2]; Zn

results unpublished).

IV. PREDICTIONS FOR Mg ALLOYS AND COMPARISONS WITH EXPERI-

MENTS

Figure 5 shows the predicted yield stress τy at T=300 K due to solute strengthening as

a function of solute concentration for Al and Zn solutes. In these predictions, we use a

reference strain rate of γ̇ = 105/s and values of Etot/(Lc
2/3)) = −0.009 meV/Å for Al and

−0.014 meV/Å for Zn, corresponding to the average values shown in Figure 3. Also shown

for reference are the predictions of strengthening of basal slip from earlier applications of the

Labusch-type model [2]. We predict that Al and Zn strengthen twinning more strongly than

basal slip, and therefore promote anisotropy in the plastic deformation modes. In addition,

the twinning yield stress scales linearly with solute concentration c, which is stronger than

the nominal c2/3 dependence for basal strengthening [2]. This difference is due to the fact that

the roughening amplitude for the twinning dislocation can vary because the burgers vector

is very small, and consequently the line tension Γ is an order of magnitude smaller for the

twinning dislocation compared to the basal dislocation, and the strengthening is controlled

mainly by the solute/twin-boundary interactions; all these features lead to a critical wc that

depends on concentration as c−1/3 (see Equation B5). The different physical behavior also

leads to scalings with concentration, temperature, and strain rate that differ from those

found for the strengthening of lattice dislocations (basal slip in hcp Mg, and slip in fcc Al),

and these features are reflected in the analytic result of Equation 2. The magnitude of the
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strengthening is moderate; at a few % solute concentration, the CRSS is on the order of 10

MPa, which is generally smaller than the CRSS for prism slip and expected values for 〈c〉
and/or 〈c + a〉 slip modes. Thus, the solute strengthening of twinning increases the plastic

anisotropy between basal and twinning, while only slightly decreasing the plastic anisotropy

between twinning and other harder modes of deformation.

We now discuss our results with respect to available experimental data. Twinning in

pure single-crystal Mg was studied by Kelly and Hosford [21], who obtained a strength of

3 MPa at room temperature; this value represents the “Peierls stress” for twinning and

this value must be added to our prediction of the solute contributions to strengthening to

make any comparison with experiments. Direct and systematic experiments measuring the

strengthening effect of solutes on twinning in Mg alloys have not been reported. However,

there is significant stress-strain data on textured polycrystals with either controlled solute

concentrations or commercial compositions, and these studies have been used to estimate

the stresses needed to drive twinning. Estimates of the CRSS required for twin growth

in Mg AZ31 alloys (2.7 at.% and 0.3 at.%) are reported to be in the range of 6-14 MPa

by performing loading-unloading tests [22]. An average of 10 MPa for the CRSS has been

reported through twin aspect ratio measurements [23]. Our analysis is readily generalized

to predict the yield stress in a multicomponent alloy (Appendix B) and applying the model

to Mg AZ31 we predict the total strength (solutes plus Peierls barrier) to be τy = 14

MPa at T = 300K and a strain rate of ε̇ = 10−3s−1 which was used in the experiments;

this is in good agreement with the experimental estimates in [22] and [23]. Stanford and

Barnett [24] studied the solute strengthening of various deformation modes in binary Mg-Zn

polycrystals and found that the CRSS for twinning is independent of Zn concentration up to

1 at% (2.8 wt% ); this is in some disagreement with our prediction that the strength should

increase from the Peierls stress of 3 MPa to ≈ 8 MPa at 1 at% Zn. On the other hand,

in spite of different apparent scalings with concentration, the predicted ratio of twin/basal

CRSS τtwin/τbasal is in excellent agreement with [24] as shown in Figure 6. Note that, the

experimental reports of Peierls stress for basal slip is in the range of 1-1.5 MPa. We added

an average value of 1.2 MPa to the theoretical solute strengthening predictions. In addition,

Ref [24] contains an analysis of previous experimental data for AZ31 [25–28], AZ61 and

AZ80 [26]. We extracted the twinning yield stress for these alloys by extrapolating the data

to a (large) grain size of 100 µm and applying the appropriate Schmid factor (m = 0.37)
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from Figure 10.b of [24]. These experimental values are compared to our predictions for the

total twin yield stress (CRSS) including the Peierls barrier in Table II. Given the fact that

these experiments are preformed on polycrystals, from which the CRSS must be deduced

by correcting for Hall-Petch effects and texture effects, we consider the agreement between

prediction and these experiments to be very good. In general, the sources of uncertainty

in our predictions are threefold. First, the value of Γ is only from a (good) EAM potential

but our results scaling only as
√

(Γ) so quantitative effects are small. Second, the value of

Etot/(Lc
2/3)) is not exactly constant versus w, but the variations are again small. Third,

using estimated values for the solute/twin interaction energies leads to small (10%) errors in

Etot/(Lc
2/3)). These uncertainties are thus expected to have minimal effects on the quality

of our predictions relative to the experiments.
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FIG. 6: Ratio of twinning to basal yield stresses (CRSS) as a function of Zn concentration, as

predicted by the current model and as measured experimentally.

TABLE II: Twinning yield stress in (MPa) for commercial Mg alloys, as measured and as predicted

by the present model. The compositions used in the theoretical model are also presented.

Alloy c (at%) Ref. [24] Present work

AZ31 Al:2.7, Zn:0.37 18 14

AZ61 Al:5.47, Zn:0.37 22 23

AZ80 Al:7.28, Zn:0.187 33 28

Overall, the theory cannot resolve the discrepancies between two different experiments.
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Barnett et al. [24] conclude that there is no solute strengthening for low Zn concentrations,

and attribute the strengthening found by Bohlen et al. [26] to the possible presence of

precipitates in the commercial alloys. Our present model considers only solute strengthening

yet agrees well with the CRSS values deduced from the Bohlen et al. [26] data. Thus,

the present theory suggests that precipitate strengthening in the commerical alloys is not

present to any appreciable degree. However, we are unable to obtain close agreement with

the entirely different results of Barnett et al [24]. The issue of strengthening of twinning

by solutes will be resolved experimentally only through designed tests on single-crystal Mg

alloys, although such studies may also be complicated by the need to nucleate twins.

V. CONCLUSION

We have computed the structure and solute interaction energies of the (101̄2) twinning

dislocation in Mg by first-principles methods. We have proposed and validated a scaling

concept that can be used to estimate solute/twin dislocation interaction energies for other

solutes. We have used the solute/twin-dislocation interaction energies as input to a Labusch-

type solute strengthening models previously used with success for Mg-Al and Zn basal slip.

Due to the small twin dislocation burgers vector and the presence of the adjacent twin bound-

aries, new feature unique to twins emerge from the theory. In particular, the theory predicts

that twin dislocations can have a range of roughening amplitude, and that the strengthening

at a given temperature and strain rate is controlled by the roughening amplitude with the

highest barrier (maximum stress). Incorporating this feature, we have developed an ana-

lytic model of the strength as a function of the solute/twin-dislocation interaction energies

and all other materials parameters. The model predicts a larger strengthening of twinning

as compared to basal slip at room temperature and various solute concentrations, and the

predcited ratio of twin/basal strengthening agrees with experimental observations in [24].

We predict solute strengthening of twin growth of ≈ 14 MPa in AZ31 alloy, consistent with

experiments in [22] and [23], and our predictions for strengthening in other commercial Mg-

Al-Zn alloys are in good agreement with experiments. We do not address twin nucleation

in this paper. In forthcoming work, we will show, however, that twin growth (thickening) is

possible starting from a microscopic twin nucleus and that the stresses needed to control twin

growth (thickening) and twin strain accumulation are controlled by the solute strengthening
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model developed here. Broadly speaking, the present work continues an emerging theme in

the field of computational metallurgy in which the development of mechanistic models for

strengthening coupled with first-principles based input for crucial chemically-specific ener-

getics of the problem yields quantitative and predictive models of alloying effects on various

deformation modes in Mg.
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Appendix A: Construction of the twinning dislocation geometry

Figure 7 shows the process of building the twinning dislocation geometry. We start with

a dislocation-free, coherent twin boundary as shown in Figure 7a. The right half of the

initial geometry is then shifted in Figure 7b by the corresponding translation vectors ~tλ

and ~tµ on each side of the twin boundary. This process creates a step while breaking the

coherency at the shifted boundary. To restore the coherent boundary structure, a dislocation

with Burger’s vector ~bt = ~tλ−~tµ is introduced and the final twinning dislocation geometry is

shown in Figure 7c . This defect has both dislocation and step characters. Note that Figure 7

is schematic and the translation vectors are exaggerated to highlight the Burger’s vector. In

practice, ~bt=0.49Å which is very small compared to Mg lattice parameter a0=3.193Å. Glide

of the twinning dislocation along the twin plane results in twin growth.
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FIG. 7: Schematic of steps required for construction of the twinning dislocation geometry. (a) a

dislocation-free, coherent twin boundary with solid blue lines showing the direction of basal planes,

and outlines of an hcp cell are shown in the top and bottom lattices along with the translation vec-

tors ~tλ and ~tµ. (The right half of initial geometry is shifted in (b) by the corresponding translation

vectors at each side of the twin boundary. This process creates a step while breaking the coherency

at the shifted boundary. To restore the coherent boundary structure, a dislocation with Burger’s

vector ~bt = ~tλ −~tµ should be introduced. (c) shows the geometry after introducing the dislocation

giving a defect with both dislocation and step characters. This twinning dislocation geometry is

then relaxed while fixing the atomic positions near the edges of the box shown by solid blue walls.

Appendix B: Analytical calculation of τ(T, ε̇)

In the Labusch strengthening model modified by Leyson et al., the total energy from

Equation 2 is first optimized with respect to the segment length ζ, yielding the characteristic

segment length

ζc = (
4a0w

4Γ2

c∆Ẽ2
p(w)

)1/3.

Substituting the above equation in Equation 2 gives the total energy change

Etot = − 3

8× 21/3
(
c2∆Ẽ4

p(w)

a20w
2Γ

)1/3L (B1)

as a function of w only. We note that for the twinning dislocation, Etot/(c
2/3L) is nearly

constant at various values of the roughening amplitude as shown in Figure 3. We define

En = −Etot/(c2/3L)

which is a positive constant. Rearranging Equation B1 yields:

∆Ẽp(w) =
25/2

33/4
a
1/2
0 w1/2Γ1/4E3/4

n . (B2)

19

This is a pre-print of the following article: Ghazisaeidi, M.; Hector, L.G.; Curtin, W.A. Acta Materialia 2014, 80, 278--287.. The formal
publication is available at http://dx.doi.org/10.1016/j.actamat.2014.07.045

http://dx.doi.org/10.1016/j.actamat.2014.07.045


Next, we substitute the above equation in Equation 4 and Equation 5 to write the energy

barrier ∆Eb and zero temperature yield stress τy0 in terms of the constant En as follows:

∆Eb =
4
√

2− 1√
3

√
ΓEnwc

1/3 (B3)

and

τy0 =
π4
√

2− 1

3b

Enc
2/3

w
. (B4)

Substituting Equation B3 and Equation B4 into Equation 7 and optimizing with respect to

w yields the critical roughening amplitude

wc =
5
√

5

12
√

2− 3

kBT log ε̇0/ε̇

c1/3
√

ΓEn
(B5)

and τy(T, ε̇) evaluated at this amplitude

τy(T, ε̇) =
2π(33− 8

√
2)

25
√

5b

E
3/2
n

√
Γc

kBT ln ε̇0/ε̇
. (B6)

Moreover, this model can be generalized to cases with more than one solute. The above

analysis then applies with c∆Ẽ2
p(w) replaced by

∑
i ci∆Ẽ

(i)2
p (w) where i ranges over the

number of components. Equation 4 is then rewritten as

∆E3
b = α3(

Γw2

a0
)
∑
i

ci∆Ẽ
(i)2
p (w).

On the other hand, ∆Ẽ
(i)
p (w) are obtained from Equation B2. Therefore, the effective

energy barrier for the alloy will be given by

∆Eb =
4
√

2− 1√
3

√
Γw

[∑
i

ciE
(i)3/2
n

]1/3
.

Similarly

τy0 =
π4
√

2− 1

3b

[∑
i ciE

(i)3/2
n

]2/3
w

and

τy(T, ε̇) =
2π(33− 8

√
2)

25
√

5b

√
Γ
∑

i ciE
(i)3/2
n

KbT ln ε̇0/ε̇
(B7)
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