A new robust and efficient estimator for ill-conditioned linear inverse problems with outliers

Marta Martinez-Camara¹, Michael Muma², Abdelhak M. Zoubir², Martin Vetterli¹

¹School of Computer and Communication Sciences École Polytechnique Fédérale de Lausanne (EPFL)

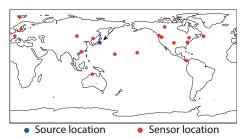
> ²Signal Processing Group Technische Universität Darmstadt

> > 23 April, 2015

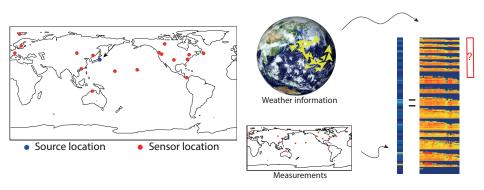
Outline

- 1. Motivation
- 2. Problem formulation
- 3. Background on robust estimators
- 4. New regularized τ -estimator
- 5. Algorithm
- 6. Results
- 7. Conclusions

Motivation



Motivation



Problem formulation

Consider the following linear inverse problem

$$y = Ax + e$$

- ▶ y: measurement vector
- ▶ A: known deterministic matrix
- ▶ e: error term
- x: unknown parameter vector

Problem formulation

Consider the following linear inverse problem

$$y = Ax + e$$

- ▶ y: measurement vector
- ► A: known deterministic matrix
- ▶ e: error term
- x: unknown parameter vector

Typical assumptions

- ► A is well conditioned
- Distribution of e is Gaussian

Problem formulation

Consider the following linear inverse problem

$$y = Ax + e$$

- ▶ y: measurement vector
- ► A: known deterministic matrix
- ▶ e: error term
- x: unknown parameter vector

Typical assumptions

- ► A is well conditioned
- Distribution of e is Gaussian

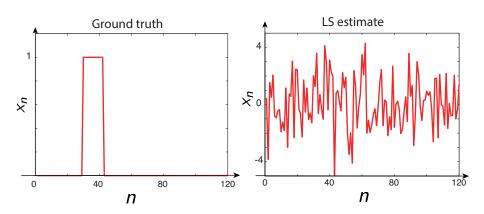
Standard estimator: least-squares (LS)

$$\widehat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$$

Difficulty 1

Ill-conditioned problem:

 \boldsymbol{A} has a large condition number $\to LS$ estimate fails

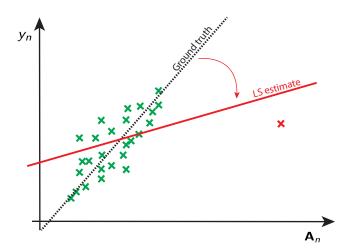


 $(\mathbf{A} \in \mathbb{R}^{300 \times 120}$, condition number = 1000, Gaussian errors $\mathsf{SNR} = 10~\mathsf{dB})$

Difficulty 2

Impulsive noise and outliers

e contains outliers \rightarrow LS estimate breaks down



Goals of this work

- 1. Design an estimator that is simultaneously
 - robust against outliers,
 - near optimal with Gaussian errors, and
 - can handle A with a large condition number.

Goals of this work

- 1. Design an estimator that is simultaneously
 - robust against outliers,
 - near optimal with Gaussian errors, and
 - ► can handle **A** with a large condition number.
- 2. Develop a fast and reliable algorithm to compute the estimates.

Goals of this work

- 1. Design an estimator that is simultaneously
 - robust against outliers,
 - near optimal with Gaussian errors, and
 - ► can handle **A** with a large condition number.
- 2. Develop a fast and reliable algorithm to compute the estimates.

Proposed approach: regularized au-estimator

- ▶ A robust and efficient loss function.
- ► A penalty term for regularization.

Background: robust estimation

$$\widehat{\mathbf{x}}_{LS} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \sum_{n=1}^{N} (r_n(\mathbf{x}))^2$$

- $ightharpoonup r_n(\mathbf{x}) = y_n \mathbf{A}_n \mathbf{x}$
- $ightharpoonup A_n$ is the n-th row of A

Background: robust estimation

$$\widehat{\mathbf{x}}_{LS} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \sum_{n=1}^{N} (r_n(\mathbf{x}))^2$$

- $ightharpoonup r_n(\mathbf{x}) = y_n \mathbf{A}_n \mathbf{x}$
- $ightharpoonup A_n$ is the n-th row of A
- ▶ Optimal in the sense that the variance of the estimate $(\sigma_{x_{LS}}^2)$ is minimised with Gaussian noise.

Background: robust estimation - M estimation

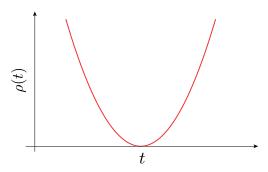
$$\widehat{\mathbf{x}}_{LS} = \underset{\mathbf{x}}{\operatorname{arg \, min}} \sum_{n=1}^{N} \rho(r_n(\mathbf{x}))$$

- $ightharpoonup r_n(\mathbf{x}) = y_n \mathbf{A}_n \mathbf{x}$
- \triangleright **A**_n is the n-th row of **A**
- ▶ Optimal in the sense that the variance of the estimate $(\sigma_{x_{LS}}^2)$ is minimised with Gaussian noise.

Background: robust estimation - M estimation

$$\widehat{\mathbf{x}}_{LS} = \underset{\mathbf{x}}{\operatorname{arg min}} \sum_{n=1}^{N} \rho(r_n(\mathbf{x}))$$

- $ightharpoonup r_n(\mathbf{x}) = y_n \mathbf{A}_n \mathbf{x}$
- $ightharpoonup A_n$ is the n-th row of A
- Optimal in the sense that the variance of the estimate (σ²_{xLS}) is minimised with Gaussian noise.

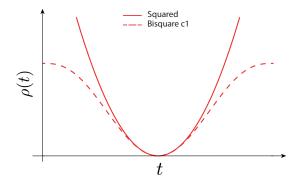


Background: robust estimation

M estimation

$$\widehat{\mathbf{x}}_{LS} = \underset{\mathbf{x}}{\operatorname{arg \, min}} \sum_{n=1}^{N} \rho(r_n(\mathbf{x}))$$

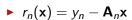
- $r_n(\mathbf{x}) = y_n \mathbf{A}_n \mathbf{x}$
- $ightharpoonup A_n$ is the n-th row of A



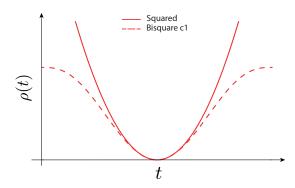
Background: robust estimation – M estimation

M estimation

$$\widehat{\mathbf{x}}_M = \underset{\mathbf{x}}{\operatorname{arg min}} \sum_{n=1}^N \rho(r_n(\mathbf{x}))$$



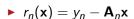
 $ightharpoonup A_n$ is the n-th row of A



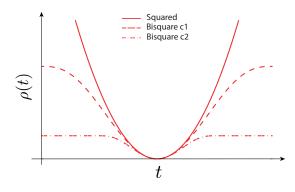
Background: robust estimation – M estimation

M estimation

$$\widehat{\mathbf{x}}_M = \underset{\mathbf{x}}{\operatorname{arg \, min}} \sum_{n=1}^N \rho(r_n(\mathbf{x}))$$



 $ightharpoonup A_n$ is the n-th row of A

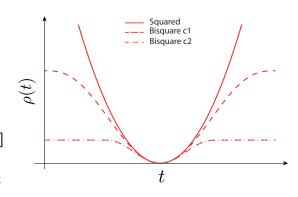


Background: robust estimation - M estimation

M estimation

$$\widehat{\mathbf{x}}_{M} = \underset{\mathbf{x}}{\text{arg min}} \ \sum_{n=1}^{N} \rho \left(\frac{r_{n}(\mathbf{x})}{\widehat{\sigma}_{M}(\mathbf{r}(\mathbf{x}))} \right)$$

- $ightharpoonup r_n(\mathbf{x}) = y_n \mathbf{A}_n \mathbf{x}$
- \triangleright **A**_n is the n-th row of **A**
- $\hat{\sigma}_M(\mathbf{r}(\mathbf{x}))$: residual scale M-estimate
- ho(x): Symmetric, positive and non-decreasing on $[0,\infty]$
- ► If $\frac{\sigma x_{LS}}{\sigma x_M}$ close to 1 with Gaussian errors, efficient



Background: robust estimation – τ estimation

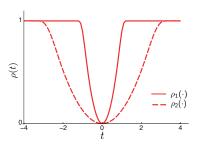
• Choosing $\rho(x)$ based on the data

Background: robust estimation – τ estimation

- ▶ Choosing $\rho(x)$ based on the data
- Asymptotically equivalent to an M-estimator

$$\rho(\cdot) = w(\cdot) \underbrace{\rho_1(\cdot)}_{\textit{robust}} + \underbrace{\rho_2(\cdot)}_{\textit{efficient}}$$

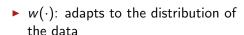
• $w(\cdot)$: adapts to the distribution of the data

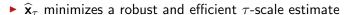


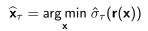
Background: robust estimation – τ estimation

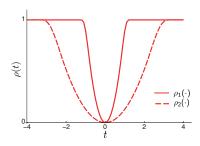
- ▶ Choosing $\rho(x)$ based on the data
- Asymptotically equivalent to an M-estimator

$$\rho(\cdot) = w(\cdot) \underbrace{\rho_1(\cdot)}_{\textit{robust}} + \underbrace{\rho_2(\cdot)}_{\textit{efficient}}$$









Recap

_	Robust	Efficient	III posed
M estimator robust	/	~	×
M estimator efficient	*	/	×
auestimator	/	/	~

New regularized au-estimator

Proposed estimator

$$\widehat{\mathbf{x}}_{ au} = \operatorname*{arg\,min}_{\mathbf{x}} \, \widehat{\sigma}_{ au}(\mathbf{r}(\mathbf{x})) + \lambda \|\mathbf{x}\|_{2}$$

- $\hat{\sigma}_{\tau}(\mathbf{r}(\mathbf{x}))$: τ -estimate of the scale
- $\lambda \geq 0$: regularization parameter

New regularized au-estimator

Proposed estimator

$$\widehat{\mathbf{x}}_{ au} = \operatorname*{arg\,min}_{\mathbf{x}} \, \widehat{\sigma}_{ au}(\mathbf{r}(\mathbf{x})) + \lambda \|\mathbf{x}\|_{2}$$

- $ightharpoonup \hat{\sigma}_{\tau}(\mathbf{r}(\mathbf{x}))$: τ -estimate of the scale
- $\lambda \geq 0$: regularization parameter

Key difficulty: How to compute the regularized τ estimate?

- ► Non-convex function
- ▶ No guarantees of finding the global minimum

Steps:

- 1. How to find local minima
- 2. How to find the global one
- 3. Speeding up the algorithm

Step 1: finding local minima

► Equivalent to Iterative Reweighted Least Squares (IRLS)

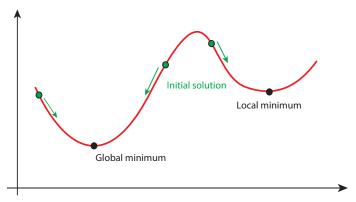
$$\widehat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{x}} \| \mathbf{W}(\mathbf{x}) (\mathbf{y} - \mathbf{A}\mathbf{x}) \|_2^2 + \lambda^2 \| \mathbf{x} \|_2^2$$

 \blacktriangleright **W**(**x**): data adaptive term that we derive from

$$\frac{\partial (\hat{\sigma}_{\tau}^2(\mathbf{r}(\mathbf{x})) + \lambda \|\mathbf{x}\|_2^2)}{\partial \mathbf{x}} = 0$$

Step 2: finding the global minima

▶ We take many different initial solutions...



... and we hope to find the correct valley!

Step 3: speeding up the algorithm

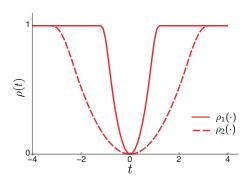
- ▶ For each initial solution, make only a few IRLS iterations.
 - \rightarrow fast convergence
- Pick the N best solutions.
- Use them as new initial solutions.
- Iterate IRLS until convergence.

Results

Experimental setup

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}_G + \mathbf{e}_o$$

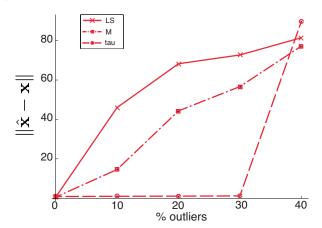
- $ightharpoonup \mathbf{A} \in \mathbb{R}^{300 imes 120}$: random iid Gaussian
- ▶ x: piecewise constant
- ightharpoonup e_G: Gaussian noise
- e_o: sparse vector, entries with large variance (outliers)
- \triangleright λ : determined experimentally



Results – with previous estimators

Non-regularized LS-estimator, M-estimator, and au-estimator

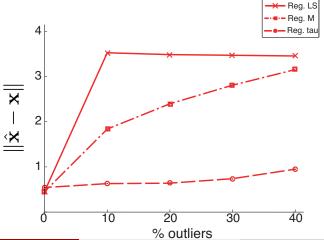
- ▶ A with a condition number of 50.
- ▶ $\|\hat{\mathbf{x}} \mathbf{x}\|$: Monte Carlo average.



Results – with new estimator

Regularized LS-estimator, M-estimator, and au-estimator

- ▶ A with a condition number of 1000.
- ▶ $\|\hat{\mathbf{x}} \mathbf{x}\|$: Monte Carlo average.



Conclusions

- New regularized robust estimator
 - highly robust against outliers
 - highly efficient in the presence of Gaussian noise
 - stable when the mixing matrix has a large condition number

Conclusions

- New regularized robust estimator
 - highly robust against outliers
 - highly efficient in the presence of Gaussian noise
 - stable when the mixing matrix has a large condition number
- Current research
 - Study the interrelation of robustness and regularization
 - ▶ Develop Lasso-type regularized τ -estimator
 - Derivation of influence function
 - Application to real data

Conclusions

- New regularized robust estimator
 - highly robust against outliers
 - highly efficient in the presence of Gaussian noise
 - stable when the mixing matrix has a large condition number
- Current research
 - Study the interrelation of robustness and regularization
 - ▶ Develop Lasso-type regularized τ -estimator
 - Derivation of influence function
 - Application to real data
- Reproducible Results
 - https://github.com/LCAV/RegularizedTauEstimator

Thank you for your attention.

Thank you for your attention.

Questions?