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Problem formulation

Consider the following linear inverse problem

> y: measurement vector
y=Ax e » A: known deterministic matrix
> €: error term

> x: unknown parameter vector
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Problem formulation

Consider the following linear

y=Ax+e

Typical assumptions

» A is well conditioned

» Distribution of e is
Gaussian

Martinez-Camara et al.

inverse problem

> y: measurement vector
» A: known deterministic matrix
> e:. error term

> Xx: unknown parameter vector

Standard estimator: least-squares (LS)

X = arg min|ly — Ax|3
X
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Difficulty 1
[ll-conditioned problem:

A has a large condition number — LS estimate fails

, Ground truth LS estimate
4
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(A € R300x120 " condition number = 1000, Gaussian errors SNR = 10 dB)
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Difficulty 2

Impulsive noise and outliers

e contains outliers — LS estimate breaks down
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Goals of this work

1. Design an estimator that is simultaneously

» robust against outliers,
» near optimal with Gaussian errors, and
» can handle A with a large condition number.
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Goals of this work

1. Design an estimator that is simultaneously

» robust against outliers,
» near optimal with Gaussian errors, and
» can handle A with a large condition number.

2. Develop a fast and reliable algorithm to compute the estimates.

Proposed approach: regularized 7-estimator
» A robust and efficient loss function.

» A penalty term for regularization.
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Background: robust estimation

Least Squares estimator

N

X5 = argxmin z:(r,,(x))2

n=1

> rp(x) = yn — Apx
» A, is the n-th row of A
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Background: robust estimation

Least Squares estimator

N

X5 = argxmin z:(rn(x))2

n=1

> rp(x) = yn — Apx

» A, is the n-th row of A

» Optimal in the sense that
the variance of the estimate

(UELS) is minimised with

Gaussian noise.

ICASSP'15 TS



Background: robust estimation — M estimation

Least Squares estimator

N
Rus = argmin' > plrn(x))
X

n=1

> rn(x) =Yn— A,x

» A, is the n-th row of A

» Optimal in the sense that
the variance of the estimate
(02 ) is minimised with
Gaussian noise.
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Background: robust estimation

M estimation
N

X5 = argxmin Zp(rn(x))

n=1

—— Squared
——— Bisquare c1

> rn(x):.)/n_Anx =
» A, is the n-th row of A
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M estimation

—— Squared
——— Bisquare c1
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Background: robust estimation — M estimation

M estimation

N
X = arg min E p(ra(x))
n=1
—— Squared
——— Bisquare c1
—.--.- Bisquare c2

> rn(x):_)/n_Anx N

» A, is the n-th row of A
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Background: robust estimation — M estimation

M estimation

Xy = argmin zN:p <&I\;r&(r)((’)‘))>

X

n=1
> r,,(x) = V¥Yn— AnX — Squared
; ——— Bisquare c1
» A, is the n-th row of A - —.- Bisquare c2
> Gpm(r(x)): residual scale
M-estimate =
» p(x): Symmetric, N

positive and
non-decreasing on [0, co]

v

If ZXLs close to 1 with
UXM. . -
Gaussian errors, efficient
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Background: robust estimation — 7 estimation

» Choosing p(x) based on the data
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Background: robust estimation — 7 estimation
» Choosing p(x) based on the data

» Asymptotically equivalent to an
M-estimator

p(:) = w(:) pr(-) + p2(-)
—~—

=
—~ — n()
robust  efficient \ / —— ()
\, 4
. . . 0. ° ’
» w(-): adapts to the distribution of - -2 ¢ 2 4
the data
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Background: robust estimation — 7 estimation
» Choosing p(x) based on the data

» Asymptotically equivalent to an
M-estimator

p(-) = w() pr() + pa(’)
—~—

X
. — ()
robust  efficient \ / —— ()
\, 4
0 \ /
» w(-): adapts to the distribution of & & 0 2 z
the data
» X, minimizes a robust and efficient 7-scale estimate
X; = arg min 5-(r(x))
X

Martinez-Camara et al.
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Recap

Robust Efficient [l posed

M estimator

robust / % %
M et < v L

T estimator / / 5(
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New regularized 7-estimator

Proposed estimator

X, = arg min 6,-(r(x)) + A||x]|2
X

» 5,(r(x)): T-estimate of the scale

» X\ > 0: regularization parameter
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New regularized 7-estimator

Proposed estimator
X, = argmin &,(r(x)) + Al[x]2
X
» 5,(r(x)): T-estimate of the scale
» X\ > 0: regularization parameter

Key difficulty: How to compute the regularized 7 estimate?
» Non-convex function

» No guarantees of finding the global minimum
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Algorithm

Steps:
1. How to find local minima
2. How to find the global one

3. Speeding up the algorithm
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Algorithm

Step 1: finding local minima
» Equivalent to Iterative Reweighted Least Squares (IRLS)

x = arg min [[W(x)(y — Ax)|3 + X||x|3
X

» W(x): data adaptive term that we derive from

AE2(r(x)) + AlIxIB) _
ox
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Algorithm

Step 2: finding the global minima

» We take many different initial solutions...
A

Initial solution

Local minimum

Global minimum

Y

» ... and we hope to find the correct valley!
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Algorithm

Step 3: speeding up the algorithm

» For each initial solution, make only a few IRLS iterations.
— fast convergence

» Pick the N best solutions.
» Use them as new initial solutions.

> |terate IRLS until convergence.
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Results

Experimental setup
y=Ax+e;+e,

> A ¢ R300x120: random iid Gaussian
> Xx: piecewise constant
» e¢: Gaussian noise

> e, sparse vector, entries with large
variance (outliers)

v

A: determined experimentally
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Results — with previous estimators

Non-regularized LS-estimator, M-estimator, and T-estimator

» A with a condition number of 50.
> ||X — x||: Monte Carlo average.
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Results — with new estimator

Regularized LS-estimator, M-estimator, and 7-estimator

» A with a condition number of 1000.
> ||Xx — x||: Monte Carlo average.
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Conclusions

> New regularized robust estimator
» highly robust against outliers
> highly efficient in the presence of Gaussian noise
» stable when the mixing matrix has a large condition number
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Conclusions

> New regularized robust estimator
» highly robust against outliers
> highly efficient in the presence of Gaussian noise
» stable when the mixing matrix has a large condition number

» Current research

Study the interrelation of robustness and regularization
» Develop Lasso-type regularized 7-estimator

» Derivation of influence function

» Application to real data

v

» Reproducible Results
> https://github.com/LCAV/RegularizedTauEstimator

EF4E
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Thank you for your attention.
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Thank you for your attention.

Questions?
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