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Abstract. MIBS is a 32-round lightweight block cipher with 64-bit
block size and two different key sizes, namely 64-bit and 80-bit keys.
Bay et al. provided the first impossible differential, differential and lin-
ear cryptanalyses of MIBS. Their best attack was a linear attack on the
18-round MIBS-80. In this paper, we significantly improve their attack
by discovering more approximations and mounting Hermelin et al.’s mul-
tidimensional linear cryptanalysis. We also use Nguyen et al.’s technique
to have less time complexity. We attack on 19 rounds of MIBS-80 with a
time complexity of 274.23 19-round MIBS-80 encryptions by using 257.87

plaintext-ciphertext pairs. To the best of our knowledge, the result pro-
posed in this paper is the best cryptanalytic result for MIBS, so far.

Keywords: multidimensional linear cryptanalysis, lightweight block ciphers, MIBS,
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1 Introduction

MIBS [ISSK09] is a lightweight block cipher suitable for constraint environments,
such as RFID tags and sensor networks. MIBS was proposed by Izadi et al. in
2009; it has a simple Feistel structure and an SPN round function. The first and
detailed cryptanalysis of reduced-round MIBS was realized by Bay et al. [BNV10]
and they gave linear, differential and impossible differential cryptanalyses of
MIBS. The best attack among them was the linear attack on the 18-round MIBS-
80 with the time complexity of 278.62 18-round MIBS encryptions.

Linear cryptanalysis was proposed by Matsui and firstly applied to FEAL
cipher [MY93] and subsequently to DES [Mat94b]. It is a known-plaintext at-
tack and the adversary assumes that the plaintexts are independent and linearly
distributed over the message space {0, 1}n. Essentially, the attack exploits linear
(or affine) relations of plaintext, ciphertext and the key bits. Afterwards, Mat-
sui [Mat94a] discovered that using two linear approximations together helps to
reduce the data complexity of linear cryptanalysis. Simultaneously, Kaliski and
Robshaw [JR94] introduced multiple linear cryptanalysis to reduce data com-
plexities of Matsui’s algorithms by using several approximations, but each linear
approximation involves the same key bits. Then, Biryukov et al. [BCQ04] fur-
ther improved this technique by using several linear approximations involving
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different key bits. However, both in Kaliski-Robshaw’s and Biryukov et al.’s tech-
niques, the statistical independence of each linear approximations is assumed. It
is shown by Murphy in [Mur06] that this assumption may not hold in general.
Biryukov et al. [BCQ04] is also added an enhancement heuristically to its method
by using more approximations which are linearly and statistically dependent.

Afterwards, Baignères et al. [BJV04] proposed a statistical linear distin-
guisher, such that statistical independence of linear approximations is not needed
anymore. In their technique, the attack is modeled as a hypothesis testing prob-
lem based on the log-likelihood ratio (LLR). They showed that the efficiency of a
multidimensional distinguisher is measured by the distance of its distribution to
the uniform distribution. This distance is then called the capacity (see Definition
1) which is directly related to the number of samples N needed for the attack.

Hermelin et al. further analyzed this technique for extending Matsui’s Algo-
rithm 1 and Matsui’s Algorithm 2 to multiple dimensions by using some statis-
tical techniques [HCN08,CHN09,HCN09,HN10,Her10,HN11,HN12]. They stud-
ied on the goodness-of-fit problem solved by the χ2-statistic, the LLR-statistic
method and the convolution method. They showed how to use correlations of
one-dimensional linear approximations to determine multidimensional probabil-
ity distributions (see Lemma 2), and to compute the capacity (see Lemma 3).
They verified the new techniques on the AES candidate Serpent.

Table 1. Key recovery attacks on reduced-round MIBS

#Rounds Data Time Memory Cipher Reference Attack type

12 259 CP 258.8 262 MIBS-80 [BNV10] ID
13 261 CP 240 224 MIBS-64 [BNV10] DC
13 261 CP 256 224 MIBS-80 [BNV10] DC
14 240 CP 237.2 240 MIBS-64 [BNV10] DC
14 240 CP 240 240 MIBS-80 [BNV10] DC
17 258 KP 269 258 MIBS-80 [BNV10] LC
181 263.47 KP 278.62 263.47 MIBS-80 [BNV10] LC
19 257.87 KP 278.22 276 MIBS-80 Section 4 MLC
19 257.87 CP 274.23 272 MIBS-80 Section 5 MLC

Time complexity is number of reduced-round encryptions; DC: Differential Cryptanal-
ysis; ID: Impossible Differential Attack; CP: Chosen Plaintext; KP: Known Plaintext;
MLC: Multidimensional Linear Cryptanalysis

In this paper, we present a multidimensional linear attack on the 19-round
MIBS-80 which outperforms the previous linear attack in terms of the number of
rounds, time and data complexities. See Table 1 for the comparison of our results
with the existing ones. We exploit Bay et al.’s attack by finding/using more linear
approximations to reduce the data complexity. Moreover, we use Nguyen et al.’s

1 We put the corrected complexities compared to [BNV10] by fixing a flaw in the
attack.
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approach to decrease time complexity of the attack, which enables us to attack
on one more round.

The rest of the paper is organized as follows. We give a brief description of
MIBS in Section 2. Some mathematical background and the detailed description
of the linear attack in multiple dimensions are given in Section 3. Section 4 gives
our multidimensional linear attack on the 19-round MIBS-80. Section 5 proposes
a chosen-message version of the attack given in Section 4 on the 19-round MIBS-
80. Finally, Section 6 concludes the paper.

2 Description of MIBS

MIBS [ISSK09] is a block cipher using the conventional Feistel structure (see Fig.
1). MIBS has a 64-bit block size supporting 64-bit and 80-bit keys and iterates
32 rounds for both key sizes. The round function F of MIBS is an SPN composed
of an XOR layer with a round key, a layer of 4 × 4-bit S-Boxes (S layer), and
a linear transformation layer (P layer), in this order. The components of the
encryption process involved in F are explained as follows. Note that all internal
operations in MIBS are nibble-wise, that is, on 4-bit words.

⊕F

Li Ri

Ri−1Li−1

Fig. 1. The ith round of MIBS

Key addition: In each round i, 1 ≤ i ≤ 32, the 32-bit input state si to the
F function is XORed with the round key Ki, that is s′i = si ⊕Ki, where “⊕”
denotes XOR.

S-Box layer S : After key addition, the state s′i is split into eight nibbles
and identical 4× 4 S-Boxes (see Table 2) are applied in parallel.
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Table 2. The S-Box of MIBS in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 4 f 3 8 d a c 0 b 5 7 e 2 6 1 9

Linear transformation layer P : The input (y1, y2, y3, y4, y5, y6, y7, y8) is
transformed into its output (y′1, y′2, y′3, y′4, y′5, y′6, y′7, y′8) by

y′1 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8;

y′2 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7;

y′3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8;

y′4 = y2 ⊕ y3 ⊕ y4 ⊕ y7 ⊕ y8;

y′5 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y8;

y′6 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6;

y′7 = y1 ⊕ y2 ⊕ y3 ⊕ y6 ⊕ y7;

y′8 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8,

where yi’s and y′i’s are 4-bit words.

Key Schedule: For our attack purposes, we mention only the 80-bit version
of the key schedule generating 32-bit round keys Ki, for 1 ≤ i ≤ 32. Let statei

denote the ith round key state and let state0 denote the 80-bit secret key. Con-
sidering bit numbering in right-to-left, 80-bit key schedule is formalized in Algo-
rithm 1. In these algorithms, “≫” means bitwise rotation to right, “‖” means
string concatenation, and “∼” indicates a sequence of bit positions. In addition,
S denotes the S-Box which is the same as the S-Box (see Table 2) in the round
function. In the rest of this thesis, we denote by MIBS-80 (resp. MIBS-64) the 80-
bit key (resp. 64-bit key) version of MIBS. Note that the input to the ith round
is denoted by (Li−1, Ri−1), with (Li, Ri) = (Ri−1⊕F (Ki, Li−1), Li−1) ∈ {0, 1}32
denoting the round output. Let (L0, R0) and (L32, R32) denote a plaintext block
and a ciphertext block, respectively.

Algorithm 1 The 80-bit key schedule of MIBS.

1: for i = 1 to 32 do
2: statei = statei−1 ≫ 19
3: statei = S[statei[80 ∼ 77]]‖S[statei[76 ∼ 73]]‖statei[72 ∼ 1]
4: statei = statei[80 ∼ 20]‖statei[19 ∼ 15]⊕ RoundCounter‖statei[14 ∼ 1]
5: Ki = statei[80 ∼ 49]
6: end for
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3 Preliminary

3.1 Mathematical Background

We denote by F2 the field with two elements and Fm2 denotes the m-dimensional
vector space over F2. Let X be a discrete random variable in Fm2 and p =
(p0, p1, . . . , p2m−1) be the probability distribution of X such that pη = Pr(X =
η), where η ∈ Fm2 . The function f = (f1, . . . , fm) : Fn2 → Fm2 is called a vectorial
Boolean function, where fi : Fn2 → F2 is a Boolean function.

Definition 1. Let p = (p0, p1, . . . , pη) and q = (q0, q1, . . . , qη) be two discrete
probability distributions with sample space S. Then, the capacity between p and
q is

C(p, q) =
∑
η∈S

(pη − qη)2

qη
·

In the case where q is the uniform distribution θ, the capacity is denoted by
C(p). Let Y be a Bernoulli(p0)-distributed random variable which takes values
in {0, 1} such that Pr(Y = 0) = p0. Then, the correlation of Y with zero is
defined as

c(Y ) = 2 Pr(Y = 0)− 1 = 2p0 − 1. (1)

The bias of Y , denoted as ε is equal to c(Y )/2. Let X be an m-bit random
variable with probability distribution p and a ∈ Fm2 . Then, we have

c(a ·X) =
∑
η∈Fm

2

(−1)a·ηpη. (2)

The following lemma proves that the probability distribution p of m-bit ran-
dom variable X, taking values from Fm2 , is computed by the correlations of a ·X,
where a ∈ Fm2 .

Lemma 2. ([HCN08]) Let X be an m-bit random taking values from Fm2 variable
with probability distribution p, then

pη = 2−m
∑
a∈Fm

2

(−1)a·ηc(a ·X), ∀η ∈ Fm2 .

Lemma 3. ([HCN08]) Let X be an m-bit random variable taking values from
Fm2 and p be its probability distribution. Then, the capacity of p is

C(p) =
∑

a∈Fm
2 −{0}

c(a ·X)2.
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3.2 Matsui’s Algorithm 2 in Multidimensional Linear Cryptanalysis

Let f : Fn2 → Fn2 be a vectorial Boolean function and binary vectors wi ∈ Fn2 and
ui ∈ Fn2 be the binary masks such that the pairs (ui, wi) are linearly independent.
Each one-dimensional approximation of f is defined as a function gi such that

gi(X) = wi · f(X)⊕ ui ·X, ∀X ∈ Fn2 ,

where all gi’s are the base approximations for i = 1, . . . ,m. Let ci be the corre-
lation of gi, i = 1, . . . ,m, and g = (g1, g2, . . . , gm) be an m-dimensional vectorial
Boolean function. Let p = (p0, p1, . . . , p2m−1) be the probability distribution of
g. This p can be computed from all possible one-dimensional correlations by
Lemma 2.

For an n-bit block cipher of r rounds, Rr denotes the last round of the cipher
with its inverse R−r, and Kr ∈ F`2 denotes the last round key. Kr is also called
the outer key. Let x and y′ be the plaintext and ciphertext, respectively. The
(r− 1)-round m-dimensional linear approximation of the block cipher is written
by

Ux⊕Wy ⊕ V K1,..,r−1,

where, y = R−r(y′,Kr), K1,..,r−1 is inner key bits, U = (u1, u2, . . . , um)T , V =
(v1, v2, . . . , vm)T and W = (w1, w2, . . . , wm)T are the matrices of the masks for
the texts and the inner key bits, respectively. The matrix V splits the inner key
bits into 2m equivalent classes such that z = V K1,..,r−1 ∈ Fm2 . Furthermore, if
Ux⊕Wy is distributed with p, then Ux⊕Wy ⊕ V K1,..,r−1 is distributed with
pz, where all pz’s, z ∈ Fm2 , are the permutations of each other. That is,

pzη⊕α = pz⊕αη , ∀z, η, α ∈ Fm2 .

This implies that C(p) = C(pz), for all z ∈ Fm2 . Now, we denote by K̃r and
z̃ the right rth round key and the right inner key class, respectively. The aim
of Matsui’s Algorithm 2 for multidimensional linear attacks is to find K̃r as
well as z̃. Note that we only attack on the last round key, but recovering more
round keys is doable. The attack is mainly composed of four phases, namely, the
distillation phase, the analysis phase, the ranking phase and the search phase.

In the distillation phase, we collect N plaintext-ciphertext pairs (x1, y
′
1),

. . . ,(xN , y
′
N ), where x1, . . . , xN are taken independently from the uniform dis-

tribution. By Algorithm 2, we compute the empirical probability distributions
q[Kr, ·] for eah key candidate Kr which are

q[Kr, η] = N−1#{t : Uxt ⊕WR−r(y′t,Kr) = η}, ∀η ∈ Fm2 .

In the analysis phase, we choose the convolution method [HN10,Her10], as
it is efficient in terms of both time and data complexities. Let p and q be the
probability distributions of two m-bit random variables, X and Y , respectively.
The ith component of the convolution of p and q is defined as

(q ∗ p)i =
∑
η∈Fm

2

qηpi⊕η.
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Algorithm 2 Distillation phase

1: procedure Compute q((x1, y
′
1), . . . , (xN , y

′
N ), g1, g2, . . . , gm)

2: for t = 1→ N do
3: for Kr = 0→ 2` − 1 do
4: partially decrypt y′t and obtain yt = R−r(y′t,Kr)
5: for i = 1→ m do
6: compute ηi = ui · xt ⊕ w · yt
7: end for
8: increment the counter q[Kr, η] corresponding to η = (η1, . . . , ηm)
9: end for

10: end for
11: update q[Kr, η] as q[Kr, η]/N
12: end procedure

Algorithm 3 Analysis phase

1: procedure Compute Convolution(q,p)
2: for Kr = 0→ 2` − 1 do
3: compute q[Kr, ·] ∗ p using Fast Fourier Transform (FFT)
4: store G(Kr) = maxz∈Fm2 (q[Kr, ·] ∗ p)z and z′ which is the index of the

maximal component of (q[Kr, ·] ∗ p).
5: end for
6: end procedure

Using the convolution method, the mark of each key candidate Kr is defined by

G(Kr) = max
z∈Fm

2

(q[Kr, ·] ∗ p)z.

For each possibleKr, we find the maximal component of the convolution (q[Kr, ·]∗
p), and record this maximal component as G(Kr) together with its corresponding

index z′. Because, the right key K̃r is supposed to have the highest mark G(Kr)

and the right inner key z̃ is recovered corresponding to G(K̃r). The detailed
process of the analysis phase is mentioned in Algorithm 3.

In the ranking phase, we rank the key candidates by G(Kr), and the keys are
sorted in a decreasing order according to their ranking values. Under a prede-
termined advantage a, the right key candidate K̃r should be within the position
of 2`−a, where ` is the number of targeted key bits.

Then, the search phase, where the remaining key bits are searched and the
correctness of the ranking result is verified, can be done by a number of trial
encryptions according to the sorted candidate list.

3.3 Complexities of Multidimensional Linear Attacks (by the
Convolution Method)

The advantage of the convolution method can be computed from the following
Theorem.

7



Theorem 4. [Her10] To distinguish the uniform distribution from the distribu-
tions of pz which are close to the uniform one (z ∈ Fm2 ), the advantage of the
convolution method for finding the last round key Kr is given by

a = (
√
NC(p)− Φ−1(PS))2/2−m,

where PS(> 0.5) is the success probability, N is the amount of data required for
the attack, Φ is the cumulative distribution function of the normal distribution,
C(p) is the capacity of p and m is the dimension of the linear approximation.

From Theorem 4, the data complexity N of the convolution method is ap-
proximated to

N =
a+m

C(p)
,

where C(p) is the capacity of p, a denotes the advantage, and m is the dimension
of the linear approximation.

The time complexity of the analysis phase is m2m+` operations. In the rank-
ing phase, sorting can be done within `2`. In addition, the time complexity of
the search phase depends on the advantage, i.e. 2k−a, where k is the master key
size. Algorithm 2 computes the empirical probability distributions for all keys Kr

with O(mN2`) time complexity, in a conventional way. However, this complexity
can be reduced to O(N+λ2m+`) in [NWW11], where λ > 0 differs by the attack
cases. That is, if only the last round(s) keys are attacked, then λ = 4m+3`, and
if both first and last rounds keys are attacked, then λ = 3m + 3`. This is not
somewhat different from the extension of the Collard’s method for reducing the
time complexity of the Matsui’s Algorithm 2 [CSQ07].

However, in [NWW11], they consider linear approximations having the same
output masks and they compute the empirical probability distribution for both
cases. In our attack, linear approximations have different input and output
masks, we slightly modify their strategy to use and present as follows. Note
that in our case the active S-boxes in the first and last rounds are the same for
all linear approximations even with different masks.

Lemma 5. Let ga = fa1 (x, y′) ⊕ fa2 (x,K1) ⊕ fa3 (y′,Kr) be all linear approxi-
mations involved in an attack, and fa1 , fa2 and fa3 be boolean functions, for all
a ∈ Fm2 . Assume w.l.o.g. that gi’s, for i = 1, . . . ,m, constitute m base linear
approximations which linearly span the rest of approximations. Let K1 and Kr

denote the respective key bits in the first and last rounds. Let x and y′ be the
plaintext and ciphertext, respectively. Then, in the distillation phase, the proba-
bility distribution q[k, η] of g = (g1, g2, . . . , gm), where η ∈ Fm2 and K contains `
bits from both K1 and Kr in total, is computed with O(mN+(2m+3`)2`+m+2`)
time complexity and O(2m+`) memory complexity.

Proof. For the details of this proof please refer to Appendix A. The proof can
also be implied by the attack procedure explained in Section 4.
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4 Multidimensional Linear Cryptanalysis of
Reduced-Round MIBS-80

In this section, we apply a 12-dimensional linear attack on the 19 rounds of
MIBS-80 by using the convolution method [Her10].

4.1 Previous 16-round Linear Approximations

Bay et al. [BNV10] found a set of six 16-round linear approximations with 31
active S-boxes. Namely, these linear approximations are due to the six possible
instantiations from the linear approximation table (LAT) (see Appendix B) of
MIBS, (w, z) ∈ {(2x, 6x), (6x, 2x), (4x, ex), (ex, 4x), (8x, dx), (dx, 8x)}, where the

symmetry w
S-Box→ z and z

S-Box→ w (both with the same bias 2−2) is exploited.
Each of these 16-round linear approximations has a bias ε = 2−31. Since c = 2|ε|,
their correlations are c = 2−30. The set of 16-round linear approximations can be
found in Appendix C. Note that the input mask to the ith round is denoted by
(ΓLi−1, ΓRi−1). The (i+ 1)th round input mask is the ith round output mask.
Values subscripted by “x” are in hexadecimal base.

4.2 Our set of 16-round Linear Approximations

We exploit the 16-round linear approximations mentioned in Section 4.1 with
31 active S-boxes. We find 594 more by using different combinations of non-
zero masks in the last round of them. Strictly speaking, we cut the first 15
rounds of these linear approximations. The total bias of each is 2−29. Since the
last round input mask to the function F is free to choose, there are ten pos-
sible nonzero input masks with nonzero biases for each w, that is, there are
two nonzero input masks with a bias of 2−2 and eight input masks with a bias
of 2−3. The values of w’s and their corresponding ȳ’s and z̄’s (here, w, ȳ and
z̄ form the masks together) are given in Table 3 in a group manner. Hence,
we take all possible combinations of all values for (ȳ, z̄) and obtain 600 lin-
ear approximations2 depicted in Table 4. Note that the last pair of bit masks
in Table 4 stands for the output masks after the swapping of half blocks in a
round. These approximations are indeed generated by twelve base linear approx-
imations. For example, one set of twelve base approximations is (w, ȳ, z̄) ∈ B =
{(2x, 6x, 6x), (2x, 6x, bx), (2x, bx, 6x), (4x, 9x, ex), (4x, 9x, 9x), (4x, ex, 9x), (8x, bx, dx),
(8x, bx, bx), (8x, dx, bx), (dx, 8x, 8x), (dx, 8x, cx), (dx, cx, 8x)}. In detail, 24 of 600
linear approximations have biases 2−31, 192 of them have biases 2−32 and 384
of them have biases 2−33. Since, c = 2|ε|, they have respective correlations
c1 = 2−30, c2 = 2−31 and c3 = 2−32. The capacity of the 12-dimensional system
is lower bounded by

24× (2−30)2 + 192× (2−31)2 + 384× (2−32)2 = 2−53.415.

Note that we ignore the rest of 212− 601 approximations as they have negligible
correlations.
2 These approximations contain the previous ones mentioned in Section 4.1.
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Table 3. Possible values for w, ȳ and z̄.

w ȳ, z̄ bias

2x 6x, bx 2−2

2x, 3x, 4x, 5x, 8x, 9x, ex, fx 2−3

4x 9x, ex 2−2

2x, 3x, 4x, 5x, ax, bx, cx, dx 2−3

6x 1x, 2x 2−2

8x, 9x, ax, bx, cx, dx, ex, fx 2−3

8x bx, dx 2−2

1x, 3x, 5x, 7x, 8x, ax, cx, ex 2−3

dx 8x, cx 2−2

2x, 3x, 6x, 7x, ax, bx, ex, fx 2−3

ex 4x, cx 2−2

1x, 3x, 5x, 7x, 9x, bx, dx, fx 2−3

4.3 A 12-dimensional Linear Attack on the 19 rounds of MIBS-80

We use all possible 212 − 1 (dependent and independent) linear approximations
generated from the base approximations mentioned in Section 4.2. We attack on
19 rounds of MIBS-80 by using the convolution method [Her10] together with
the (modified) Nguyen et al.’s approach [NWW11] (see Section 3.3). We recover
some key bits from the last round key as well as the first and the second rounds’
keys, by considering them as a combined `-bit key. Note that the 600 linear
approximations that we found in Section 4.2 are useful to compute the (lower
bound of) capacity of the system which is used for finding the required number
of the data for the attack.

We perform a key-recovery attack on 19 rounds of MIBS-80 by placing the 16-
round linear approximations of 12-dimension between rounds 3 and 18. Because
the capacity of the 12-dimensional linear approximation is 2−53.415, according
to Theorem 4, the data requirement is N = 257.874 plaintext-ciphertext pairs by
taking 10 bits of advantage, i.e. a = 20. According to Theorem 4 our attack’s
success probability is PS = 0.9. We recover some part of the key bits from the
first, second and the last rounds. We guess K1 (except K1,3), K2,6, K19 (except
K19,3), which make 60 round key bits in total. Notice that the third S-Box of the
first round is not active due to the fact that its output is not needed to compute
the input to the first and the sixth S-Boxes in the second round. All four phases
of the attack are explained as follows.

We call T = P ⊕ S, composed of the S and the P layers of MIBS. Let
α = 0w0w000w, β = 00ȳ0000z̄, where w, ȳ and z̄ take their values from the set
B. Notice that any set of base approximations is acceptable. According to the
set B, the combined coefficients (represented as 12-dimensional vectors) of the
212 − 12− 1 approximations are also known.

Let K ′ = (K1,K2,K19) contain 96 bits, v = (L0, R0, R19) and K ′ ⊕ v =

(K1⊕L0,K2⊕R0,K19⊕R19). Let us define b1 : {0, 1}2
96

→ {0, 1}2
32

such that
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Table 4. A set of 16-round linear approximations, where ”∗” can be 2−3, 2−4 or 2−5,
and w and z take the values as we mentioned in Section 4.1.

Round i ΓLi−1 ΓRi−1 Number of active S-Boxes Bias

1 0w0w000w 00000000 0 2−1

2 00000000 0w0w000w 2 2−3

3 0w0w000w 00z0000z 3 2−4

4 00z0000z w0ww000w 2 2−3

5 w0ww000w z0zz000z 2 2−3

6 z0zz000z 00w0000w 3 2−4

7 00w0000w 0z0z000z 2 2−3

8 0z0z000z 00000000 0 2−1

9 00000000 0z0z000z 2 2−3

10 0z0z000z 00w0000w 3 2−4

11 00w0000w z0zz000z 2 2−3

12 z0zz000z w0ww000w 2 2−3

13 w0ww000w 00z0000z 3 2−4

14 00z0000z 0w0w000w 2 2−3

15 0w0w000w 00000000 0 2−1

16 00000000 0w0w000w 2 ∗
17 0w0w000w 00ȳ0000z̄ - -

b1(K ′⊕ v) = K1⊕L0. Similarly, define b2(K ′⊕ v) = K2⊕R0, and b3(K ′⊕ v) =
K19 ⊕R19. Then, the base and combined approximations are

ha(P,C)⊕ ga(K ′, (P,C)`),

where

ha(P,C) = αa · L0 ⊕ αa ·R19 ⊕ βa · L19,

and

ga(K ′, (P,C)`) = ga(K ′ ⊕ v) =

g′a(b1(K ′ ⊕ v), b2(K ′ ⊕ v), b3(K ′ ⊕ v)) =

g′a(K1 ⊕ L0,K2 ⊕R0,K19 ⊕R19) =

αa · T (T (L0 ⊕K1)⊕R0 ⊕K2)⊕ βa · T (R19 ⊕K19)

Here, (P,C)` denotes the ` text bits interacting with the `-bit attacked key
bits. According to αa and βa, we know only 64 bits of K ′ ⊕ v involved in the
computation of ga. Thus, hereafter when we mention ga(K ′ ⊕ v), we mean that
the function ga acts directly on these 64 bits. That is, K ′ ⊕ v actually denotes
the 64 active bits. Here, K ′ includes the 64 active key bits in K1, K2 and K19

and v is the 64 bits of texts.
The base approximations are denoted as ha(P,C) ⊕ ga(K ′, (P,C)`), where

a = 1, . . . , 12. After examining the key schedule of MIBS-80, it can be verified
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that K1 and K2 share four attacked bits in common, that is K2[3 ∼ 0] =
K1[22 ∼ 19], where “∼” indicates a sequence of bit positions. Therefore, while
K ′ denotes the 64 key bits interacting with the text bits, K denotes the 60 key
bits considering the key schedule.

Distillation Phase:

1. Collect N = 257.874 plaintext-ciphertext pairs (Pt, Ct), for t = 1, . . . , N .
2. The table containing all empirical correlations r[a,K] for each 60-bit key K

can be computed as follows.

(a) Construct T 212×264 in a way that for all a ∈ F12
2 , for all (Pt, Ct) =

(L0
t‖Rt0, Lt19‖Rt19), t = 1, . . . , N , if ha(Pt, Ct) = 0, increment the counter

T [a, (Pt, Ct)l], otherwise decrement it. Afterwards, update T [a, (Pt, Ct)l] =
T [a, (Pt, Ct)l]/N . The time complexity of this is N × 212 computations
of ha. The memory complexity for T is 2m+l = 276 block units, and here-
after each block unit denotes a size of log2N bits3. However, this table

can be generated by constructing another table E212×264 in the next step
to reduce its time complexity.

(b) Build another table E212×264 by

E[z1, z2] = #{(Pt, Ct), t = 1, ..., N |(h1(Pt, Ct), ..., h
12(Pt, Ct)) = z1,

and (Pt, Ct)l = z2},where z1 ∈ F12
2 , z2 ∈ F64

2 .

The time complexity of this step is 12×N ≈ 261.459 computations of ha,
i.e. two XOR operations. As one-round encryption is equivalent to more
than seven XOR operations including the cost of S-Boxes, the above
complexity can be regarded as 12 × N × 2/7 = 259.652 one-round en-
cryptions. The required memory complexity for E is 2m+l = 276 block
units.

(c) Now, build the table T from tables E and H. Let H212×212 be a matrix
such that H[i, j] = (−1)i·j , ∀i, j ∈ F12

2 . For each fixed v, (that is, for
each column vector in T ), we can compute

T [a, v] =

212−1∑
z1=0

(−1)a·z1E[z1, v]

by the relation
T [·, v] = HE[·, v],

with the time complexity 12 × 212 multiplications. As there are 264

columns in T , the total time complexity is 12×264+12 ≈ 279.585 multipli-
cations, which is equal to 3/7×279.585 ≈ 278.363 one-round encryptions4.
The memory complexity for H is 222 bytes5.

3 Each entry in T is at most N , thus at most log2N bits are needed.
4 We assume that three XORs correspond to one multiplication.
5 Each entry in H is either 1 or −1.
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(d) We can now construct the matrix r2
12×264 having entries r[a,K ′] from

table T as

r[a,K ′] =

264−1∑
v=0

(−1)g
a(K′⊕v)T [a, v].

Again, the memory complexity for r is about 212+64 = 276 block units.
Then, for each a ∈ F12

2 , compute Sa from ga. Here, Sa has the size of
264 × 264 and Sa[i, j] = Sa[K ′, v] = (−1)g

a(K′⊕v). The time complexity
of constructing each Sa is 3× 264 one-round MIBS encryptions. We will
compute

r[a, ·] = SaT [a, ·].
Note that each Sa is a circulant matrix. Thus, vector r[a, ·] is calculated
with 3×64×264 multiplications. The total time complexity of computing
r is 212 × 3× 64× 264 = 283.584 multiplications, that is, 3/7× 283.584 ≈
282.362 one-round encryptions. Due to the fact that Sa is a circulant
matrix, only the first row is needed to be stored. Hence, the memory
complexity is 257 bytes.

(e) According to the common key bits in K ′ brought by the key schedule,
K ′ actually has only 60 bits required to be guessed. Thus, we select the
possible 260 keys in r and eliminate the wrong keys based on the key
schedule. We update r[a,K ′] to r[a,K] which only contains the columns
for possible keys.

3. Finally, find q[K, ·] for only key bits K ∈ F60
2 from the empirical correlations

r[a,K], by using Lemma 2. Hence, we have

q[K, ·] = 2−12Hr[·,K],

where H212×212 is exploited again, i.e. H[i, j] = (−1)i·j . The time complexity
of computing the row vector of q[K, ·] is 12× 212 multiplications. The total
time complexity of this step is 260 × 12 × 212 ≈ 275.585 multiplications, i.e.
3/7×275.585 ≈ 274.363 one-round encryptions. Also, 212+60 = 272 block units
are needed for storing q.

The total time complexity is computed by summing up all above steps. 1/19×
(259.652 + 278.363 + 282.362 + 274.363) ≈ 278.207 19-round MIBS encryptions. The
total memory complexity is 276 block units.

Analysis Phase: We use the convolution method [Her10] explained in Section
3.2. As mentioned before, the necessary number of data for the attack is 257.874

plaintext-ciphertext pairs. Since we obtain the empirical probability distribution
from the observed data, and we can compute the theoretical probability distri-
butions from 600 linear approximations by Lemma 2, we can directly apply the
convolution method described in Algorithm 3. Then, we obtain the right key and
the right inner key class by sorting their marks. The time needed for this phase is
about m2m+` = 275.585 multiplications, equivalently 3/7×1/19×275.585 ≈ 270.115

19-round encryptions, where m = 12 and ` = 60.
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Ranking and Search Phases: As we get a 10-bit advantage, and 260−10 =
250 candidate keys kept from the analysis phase are ranked according to their
maximal marks with 265.907 time complexity. Thus, we make 250+20 = 270 trial
encryptions to find the correct 80-bit secret key.

To sum up, the total time and memory complexities of the attack are the sum
of complexities of all phases (the complexity of the ranking phase can be ignored),
namely 278.207 + 270.115 + 270 + 265.907 = 278.217 19-round MIBS encryptions and
276 block units, respectively.

5 The Chosen-Plaintext Version of the Attack

The time and memory complexities of the attack on the reduced-round MIBS-80
detailed in Section 4 can be reduced by fixing some plaintext bits corresponding
to the active S-Boxes like in [KM01]. The main reason is that we do not need
to guess the key bits corresponding to the fixed data, as any output parity of
the S-Box will always be fixed, that is, it is always 0 or 1. Due to the fact that
we need 257.874 number of plaintext-ciphertext pairs for the attack, we have the
freedom of fixing 4-bits of plaintexts corresponding to the one S-box. Let us
consider 4 fixed plaintext bits for the first active S-Box of the first round. Hence,
the number of guessed key bits becomes ` = 56 bits instead of ` = 60 bits.
By updating the previous attack according to this method with using the same
number of data, we obtain 274.228 19-round encryptions of time and 272 block
units of memory.

6 Conclusion

This paper proposes a multidimensional linear cryptanalysis on the reduced-
round MIBS-80. The attack is faster than the previous linear attack, also requires
less data complexity thanks to exploiting many linear approximations. As far as
we know, the result proposed in this paper is the best cryptanalytic result for
MIBS-80, so far.
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A Proof of Lemma 5

For the sake of understanding, we use the same notations as that of Nguyen’s
paper [NWW11].

Proof. According to Lemma 2, we can compute the empirical probability dis-
tribution of m-dimensional linear approximations from their one-dimensional

empirical correlations. We now define a matrix r2
m×2` composed of the corre-

lations of all ga’s, for a ∈ Fm2 and K ∈ F`2. Notice that r[a,K] = 1, for all
K ∈ F`2 if a = (0, . . . , 0). Otherwise, we compute r[a,K] by constructing a table

T 2m×2` . This table T is built as follows: for all a ∈ Fm2 , we increment the counter
T [a, (xt, y

′
t)`], where (xt, y

′
t)` denotes the `-bits of plaintexts and ciphertexts in-

teracting with attacked key bits from K1 and Kr, if fa1 (xt, y
′
t) = 0, otherwise

decrement it. Then, update T [a,K] = T [a,K]/N .

However, the table T can be built in a more efficient way by providing another

table E2m×2` which is

E[h1, h2] = #{(xt, y′t), t = 1, . . . N |(f11 (xt, y
′
t), ..., f

m
1 (xt, y

′
t)) = h1, (xt, y

′
t)` = h2},

for all h1 ∈ Fm2 , for all h2 ∈ F`2. The time complexity of building E is mN .
The memory complexity required for E is 2m+l block units, here the size of each
block unit is log2N , as the possible biggest value stored in E is N . Now, we
build the table T from tables E and H, where H2m×2m is a Hadamard matrix
such that H[i, j] = (−1)i·j for i, j ∈ Fm2 . Hence, T [·, v] = HE[·, v], for each fixed
v, we have

T [a, v] =

2m−1∑
h1=0

(−1)a·h1E[h1, v].

As H is a Hadamard matrix, for each column v ∈ F`2, T [·, v] is obtained by m2m

time complexity. Thus, for the whole T , the time complexity is m2`+m. The
memory complexity for H is 22m−7 bytes.

We now write

r[a,K] =

2`−1∑
v=0

(−1)f
a(K⊕v)T [a,K], a ∈ Fm2 .

Here, fa = fa2 ⊕ fa3 . We note that only ` bits from x and y′ are used in fa. Now,
we define another 2` × 2` table Sa depending on a for all i, j ∈ F`2 such that
Sa[i, j] = (−1)f

a(i⊕j). The time complexity of constructing all Sa is 2` because
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Sa is a circulant matrix and the active S-Boxes in our case are the same. Hence,
we get

r[a, ·] = SaT [a, ·].

Due to the fact that Sa is a circulant matrix (see [CSQ07]), r[a, ·] is computed
in 3`2` operations with 2` bytes to store the first row of Sa. The total time
complexity of computing r is 3`2`+m multiplications. Finally, by using Lemma
2, we get q[K, ·] = 2−mHr[·,K] with m2m time complexity. The total time
complexity of computing q is m2`+m. The memory complexity for q is 2m+`

block units.
By summing up all above steps, the time complexity is O(mN + (2m +

3`)2`+m + 2`). Here, we use O notation because the exact value depends on
the detailed time unit. According to the size of the used matrices, the memory
complexity is 2m+` block units.
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B Linear Approximation Table (LAT) of the S-Box in
MIBS

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x aX bx cx dx ex fx
0x 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1x 0 -2 0 2 0 -2 -4 -2 2 0 -2 0 2 0 2 -4

2x 0 0 -2 -2 -2 2 -4 0 0 4 2 -2 -2 -2 0 0

3x 0 2 2 0 2 0 0 2 -2 4 0 2 0 2 -2 -4

4x 0 -2 -2 4 -2 0 0 2 0 -2 2 0 -2 0 -4 -2

5x 0 0 -2 2 2 -2 0 0 2 2 0 4 -4 0 2 2

6x 0 -2 4 2 0 -2 0 -2 0 2 4 -2 0 2 0 2

7x 0 4 0 0 0 -4 0 0 -2 -2 2 -2 -2 -2 2 -2

8x 0 2 2 4 0 2 -2 0 -2 0 0 2 2 -4 0 2

9x 0 0 2 -2 -4 -4 -2 2 0 0 -2 2 0 0 -2 2

ax 0 -2 0 -2 -2 0 2 -4 -2 0 2 4 0 -2 0 -2

bx 0 0 4 0 -2 2 2 2 4 0 0 0 -2 -2 2 -2

cx 0 0 0 0 2 -2 2 -2 2 2 -2 -2 0 -4 -4 0

dx 0 2 0 -2 2 0 -2 0 4 -2 4 2 2 0 -2 0

ex 0 4 -2 2 -4 0 2 -2 2 2 0 0 2 2 0 0

fx 0 2 2 0 0 2 -2 -4 0 -2 -2 0 -4 2 -2 0
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C Previous 16-round Linear Approximations

Round i ΓLi−1 ΓRi−1 Number of active S-Boxes Bias

1 0w0w000w 00000000 0 2−1

2 00000000 0w0w000w 2 2−3

3 0w0w000w 00z0000z 3 2−4

4 00z0000z w0ww000w 2 2−3

5 w0ww000w z0zz000z 2 2−3

6 z0zz000z 00w0000w 3 2−4

7 00w0000w 0z0z000z 2 2−3

8 0z0z000z 00000000 0 2−1

9 00000000 0z0z000z 2 2−3

10 0z0z000z 00w0000w 3 2−4

11 00w0000w z0zz000z 2 2−3

12 z0zz000z w0ww000w 2 2−3

13 w0ww000w 00z0000z 3 2−4

14 00z0000z 0w0w000w 2 2−3

15 0w0w000w 00000000 0 2−1

16 00000000 0w0w000w 2 2−3

17 0w0w000w 00z0000z - -
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