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Abstract TORPEX is a flexible device dedicated to investigating basic plasma physics phenomena of importance 

for fusion. It can feature a simple magnetized toroidal (SMT) configuration with a dominant toroidal magnetic 

field and a small vertical field component, or accommodate closed field-line configurations of increasing 

complexity. Among these are simple plasmas limited by the vessel on the low field side, single or double-null X-

points, and even advanced divertor configurations like snowflakes. Using an extensive set of diagnostics, 

systematic studies of plasma instabilities, their development into turbulence and meso-scale structures, and their 

effects on both thermal and suprathermal plasma components are performed. The impact of the experimental 

results obtained on TORPEX is enlarged by their systematic application to model validation, performed using 

rigorous methodologies for quantitative experiment-theory comparisons. In the past two years, we conducted 

investigations of suprathermal ion-turbulence interaction on SMT plasmas. These investigations reveal that the 

transport of suprathermal ions is generally non-diffusive and can be super- or sub-diffusive depending on two 

parameters: the suprathermal ion energy normalized to the electric temperature and the electric potential 

fluctuations normalized to the electron temperature. The orbit averaging mechanism predicted to reduce the effect 

of turbulence on the suprathermal ions in burning plasmas has been clearly identified, both for gyro- and drift-

orbits. To better mimic the SOL-edge magnetic geometry in tokamak, we have installed a current-carrying 

conductor suspended in the center of the chamber to produce magnetic configurations that creates closed-field line 

configurations. First experiments are devoted to the characterization of the background plasma and fluctuation 

features in the presence of quasi circular-shaped flux surfaces. Measurements of toroidal and poloidal wave 

numbers indicate field aligned modes. Further studies are under way to compare the experimental measurements 

with the simulation results and assess the main instability driving mechanism. 

1. Introduction 

In recent years, fusion research has been advanced not only by activities on medium-size and 

large tokamaks but also by combining theoretical/numerical studies of fundamental phenomena 

with experiments on basic plasma physics devices, which offer full diagnostic access and 

freedom in control parameters. On TORPEX, a basic plasma physics device at the Center for 

Plasma Physics Research (CRPP) in Lausanne, Switzerland [1], research focuses on advancing 

our understanding of plasma turbulence by bridging the gap between experiments and 

simulations. With a continuously improving set of diagnostics, of theoretical and modeling 

tools together with a detailed methodology for validating them, research on TORPEX has 

attained a level at which quantitative comparisons between theory and experiment can now be 

performed. Here, we review recent progress in understanding fundamental aspects of the 

interaction between turbulent structures and suprathermal ions. We also report on first 

measurements aiming at identifying the nature of the instabilities in closed-field line 

configurations, and at investigating the blob dynamics in the presence of an X-point.  

2. The TORPEX device: simple magnetized torus (SMT) and closed field lines 

configurations 

TORPEX (R = 1 m, a = 0.2 m) is  a toroidal device in which a small vertical magnetic field 

Bz~4 mT is superposed on a toroidal magnetic field BT~100 mT to form helical magnetic field 

lines whose both ends terminate on the vessel. A picture of TORPEX with the main elements 

and an example of helical field line are shown in Fig. 1. This configuration, usually referred to 

as simple magnetized torus (SMT), is a simplified paradigm of a tokamak scrape-off layer, since 
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FIG. 1. View of the TORPEX device with the main elements (vacuum vessel, toroidal and poloidal coils) 

together with the suprathermal ion source and one gridded-energy analyzer (GEA) detector. A helical 

magnetic field line of a SMT configuration is shown in violet. The suprathermal ion source is mounted 

on the toroidal moving system. Examples of simulated suprathermal ion trajectories computed for 30 

eV ions are shown in red. Simulated plasma potential profiles at two toroidal positions are shown. These 

are obtained from numerical simulations using the GBS code [6]. 

it features open field lines, B and magnetic field curvature. Plasmas of different gases are 

produced by microwaves in the electron cyclotron frequency range (2.45 GHz) injected either 

from the low-field side or the bottom of the device. Here, we focus on hydrogen plasmas, which 

are characterized by electron temperatures Te~5-15 eV and densities ne ~ 1-51016 m-3. 

Extensive sets of Langmuir probes (LP) are used to characterize electrostatic fluctuations in 

terms of linear dispersion relation, statistical properties, and non-linear wave-wave interactions. 

An example of a 2D array of LPs, dubbed 2DSSLP, is shown in Fig. 2. In particular, full spatio-

temporal imaging of electrostatic fluctuations is performed using HEXTIP, an array of 85 LPs, 

providing a complete coverage of the poloidal cross section. 

To better mimic the SOL-edge magnetic geometry in tokamak, we have installed a new system 

[2] that creates twisted field line configurations, consisting of a 1 cm radius toroidal copper 

conductor suspended inside the vacuum vessel by an electrical coaxial feed-through and by 

three vertical stainless steel wires. Four further horizontal supports stabilize the conductor and 

allow placing it at different vertical positions so that SMT configurations can be recovered by 

pulling it up to the top of the vacuum vessel. A picture of the system with the main elements is 

shown in Fig. 2. Different configurations can be obtained in conjunction with a set of toroidal 

coils for the vertical magnetic field. Among these are simple plasmas limited by the vessel on 

the low field side, single or double-null X-points, and even advanced divertor configurations 

like snowflakes. A current up to 1kA flows in the conductor. The maximum slew rate of the 

power supply is 1400A/sec, which allows reaching the maximum current in 700ms. We 

currently use a power supply capable of driving 1.1 kA. The power supply is floating and is 

remotely controlled using an electronic module with its ground decoupled from the ground of 

the toroidal conductor circuit. For simplicity, water-cooling is used only for the portions of the 

conductors embedded in the coaxial feed-through. The flat top current duration (~1 s) is limited 

by the Ohmic heating of the wire with almost pure radiative cooling in vacuum. 
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3. Investigations of suprathermal ions transport in SMTs 

In the past two years, we conducted investigations of suprathermal ion-turbulence interaction, 

a basic issue for burning plasmas. A miniaturized source is used, which produces Li6+ ions with 

energies in the range 25eV-1keV, which is much larger than the background plasma energy 

(Te~2-10 eV). A motorized system moves toroidally the ion source continuously over a distance 

of ~50 cm. The suprathermal ion detection is performed by double-gridded energy analyzers 

(GEAs) that utilize differential measurements between two collectors to cancel thermal plasma 

contributions to the signal. Each detector has small dimensions relative to the plasma size (inlet 

diameter of 8mm), and is able to measure ion currents as small as 0.1μA. Synchronous detection 

is used to increase the signal-to-noise ratio by modulating the emitter bias voltage at a given 

frequency (~1 kHz). Two GEAs are available and are mounted on 2D motorized positioning 

systems that can move them at almost any point of the poloidal cross-section. A CAD drawing 

of the source together with one GEA is shown in Fig. 1. This system allows reconstructing the 

three-dimensional profile of the suprathermal ion beam, which can then be compared with 

numerical simulations [3-5]. 

For the present experiments, the suprathermal ions are injected at two energies (30 eV and 70 

eV) in a SMT plasma dominated by ideal-interchange turbulence, which is characterized by the 

presence of radially propagating blobs. Two examples of 3D measurements of the current 

profiles are shown in Fig. 2 for suprathermal ions of 70 eV (top) and 30 eV (bottom). 

 
FIG. 3. Poloidal suprathermal ion current profiles at different toroidal distances for two injection 

energies. 

 

FIG. 2. Wide-angle view of the toroidal conductor installed inside TORPEX. Visible are the feed-

through together with the vertical and horizontal supports. 
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To gain insight into the experimental data, trajectories of tracer Li6+ ions are obtained by 

numerically integrating the suprathermal ion equation of motion in the SMT turbulent fields. 

These are computed using a 2D version of the Global Braginskii Solver (GBS) code, which 

implements a model based on the drift-reduced Braginskii fluid equations, previously validated 

against TORPEX data [6]. To compute the ion tracer trajectories, the source parameters are 

based on measurements done without magnetic fields; 1.5x105 particles are launched with 

initial parameters modeled with Gaussian distributions. Examples of suprathermal ion 

trajectories are shown in Fig. 1. Using a synthetic diagnostic on the simulated data, which takes 

into account the phase-space acceptance of the detector, 3D profiles of the fast ion current beam 

are reconstructed and their radial width is computed. The corresponding comparison between 

experiments and simulations is shown in Fig. 4. 

 

FIG. 4. Radial width of the beam, computed as the standard deviation of the suprathermal ion current 

profiles, as a function of the toroidal distance traveled by the ions. Red squares and blue circles 

represents experimental measurements for ions having an energy of 30 eV and 70 eV respectively. The 

continuous bands represents the results of numerical simulations done with ions of 30 eV (red) and 70 

eV (blue) and are obtained with the synthetic diagnostic. 

The experimental measurements are shown on top of the results obtained from the synthetic 

diagnostic, revealing a good agreement. Close to the source, the profiles have a similar size for 

the two energies. As the distance is increased, the radial width of the 30 eV ion beam grows 

much faster than that of the 70 eV ions. This indicates, as already suggested by Fig. 2, that the 

interaction with the plasma turbulence results in a larger spreading for ions with lower energy. 

To quantify the ion dispersion, we model the time evolution of the radial variance of particle 

displacements by a power law (t) ~ t. In order to compute the value of the radial transport 

exponent, R, the evolution of (t) is computed from the numerical simulations matching the 

experimental measurements. The results are shown in Fig. 5. Different transport regimes are 

observed, depending on the ion energy. After a brief ballistic phase, in which the fast ions do 

not interact significantly with the turbulence, a turbulence interaction phase follows, which 

shows the entire spectrum of fast ion spreading: super-diffusive (R>1), diffusive (R=1), or sub-

diffusive (R<1), depending on particle energy and turbulence amplitude. In the interaction 

phase, an exponent of R=0.51±0.01 is found for ions of 70 eV and R= 1.20±0.04 for ions of 

30 eV, indicating that the transport varies from a sub-diffusive to a super-diffusive regime as 

the energy of the ions is decreased. For 30 eV ions, after the super-diffusive phase, a third phase 

is visible in which the transport is close to diffusive (R=0.92±0.04). These results are consistent 

with numerical studies showing different transport regimes in the interaction phase depending 

on the suprathermal ion energies and turbulence fluctuation levels, which determine the relative 

sizes of the ion orbits and the turbulent structures. These results are also interpreted by using a 
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generalization of the classical model of diffusion, the so-called fractional Lévy motion, which 

encompasses power-law statistics for the displacements and correlated temporal increments [4]. 

 

FIG. 5. Variance of the ion radial positions as a function of time (normalized to the ions gyroperiod) 

obtained from the numerical simulations matching the experimental data, for ions having an energy of 

30 eV (red) and 70 eV (blue). Fits of the different phases, shown in dashed lines, provide the transport 

exponent R. 

The existence of different non-diffusive transport regimes should naturally be accompanied by 

different signatures in the time traces of the detected suprathermal ions, which could be the sole 

method to reveal different transport regime less easily diagnosed in fusion-grade plasmas. 

Initial results on TORPEX indicate a clear transition in the intermittency properties from the 

case corresponding to sub-diffusion to that characterized by super-diffusion [7]. For the 30 eV 

case, Fig. 6 displays the time-evolution of the GEA signals with the GEA detector located at 

the position of maximum time-averaged ion current, indicated in Fig. 7 by the cross. Due to the 

low signal-to-noise level, the suprathermal ion source was modulated at 30 Hz to detect 

differences in the statistical features of the signals. During the on-phase, the signal is clearly 

intermittent, Fig. 6-(a), and is characterized by a positively skewed probability distribution 

function, Fig. 6-(b), which is suggestive of a process associated with intermittent blobs. 

 

FIG. 6. (a) Time evolution of the GEA signal and (b) its probability distribution function during periods 

in which the suprathermal ion source is switched on and off. 

Figure 7 shows the poloidal profile of the skewness for the two energies. While the skewness 

profile for the 70 eV ion beam is flat, Fig. 7-(b), the profile for the 30 eV ions reveals a region 
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of high skewness around the peak of the time-average current. This indicates that the 

broadening of the 30 eV suprathermal ion beam is due to intermittent bursts perturbing the 

gyromotion of the ions. This pattern is not visible on the skewness profile for 70 eV ions. This 

implies that, in the surrounding of the profile, where the time traces have a low time-averaged 

current compared to the center of the profile, the intermittency is more important. Using 

conditionally-averaged measurements, we show that the observed intermittency is caused by 

the interaction of the suprathermal ions with blobs [7]. Conditionally-averaged measurements 

prove that the intermittency in the superdiffusive ions is due to their higher sensitivity to 

intermittent blobs, which move the ions through their electrical field both inwards and 

outwards, depending on the their relative location. 

 

FIG. 7. The skewness profile for the 30 eV ions (a) reveals an annular region of high skewness around 

the peak of the time-averaged profile. This suggests that the broadening of beam is due to intermittent 

blobs perturbing the ion gyromotion. This pattern is not visible for 70 eV ions (b). Gray circles show 

the positions of measurements and the black the positions corresponding to the time traces. 

4. Turbulence investigations in configurations with closed-field lines 

First measurements of the plasma properties in the presence of a current in the toroidal 

conductor of the order of 600 A are shown in Fig. 8. This figure displays the profiles across the 

plasma cross section of the time-averaged density (a) and its fluctuations (c) (standard deviation 

of the signal up to the system Nyquist frequency, i.e. in the range 0-125kHz) during the current 

flat-top. The measurements clearly indicate the creation of circular symmetric profiles centered 

on the magnetic axis. 

 

 

 

 

 

FIG. 8 HEXTIP data in closed-field 

line configuration. (a) Electron 

density time-averaged profile; (b) 

spectra of ion saturation signals  

from probes located around the 

region of strong mode activity; (c) 

profile of the standard deviation of 

the probe filtered signals in the 

frequency band between 16.1 and 

22.7 kHz; (d) mode structure from 

conditionally sampled ion saturation 

data. 
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Plasma fluctuations feature a clear ballooning character with the presence of quasi-coherent 

modes between 15-30 kHz, Fig. 8-(b). The conditional sampling data in Fig. 8-(d) reveal the 

spatial structure and localization of the coherent mode. The first characterization of the mode 

spectral properties was performed in terms of toroidal and poloidal wave numbers. A dominant 

toroidal mode number n~1 is found together with a poloidal mode numbers m that are related 

to safety factor by the relation q=m/n. This indicates that the modes are field-aligned as 

expected for interchange-driven instabilities. Further studies are foreseen to compare the 

measurements with the simulations of the CRPP theory group to assess the main driving 

mechanism of the observed modes [8]. 

5. Conclusion and Outlook 

In TORPEX, several advances have been achieved in the basic comprehension of turbulence in 

simple magnetized toroidal configurations. The recently developed internal toroidal conductor 

system opens new avenues for research of direct relevance for magnetically confined plasmas 

for fusion, allowing the production of magnetic geometries with single and double magnetic 

null-lines, as well as snowflake divertor configurations. These more complex magnetic 

configurations will be the starting point of our future investigations. We intend to identify the 

instabilities from which turbulence is generated, to study their nonlinear development (wave-

wave and wave-particle interactions) and saturation mechanisms, and the generation of 

macroscopic structures. Different external control parameters will be sought to affect the 

fluctuation behavior, including the vertical magnetic field, the microwave power, and the 

neutral gas pressure. 

 

FIG. 9 X-point geometry: (a) time-averaged electron density and (b) skewness profiles. (c, d) 

Conditionally sampled data showing the blob generation and propagation around the X-point. 

An example of a single-null X-point configuration is shown in Fig. 9. The presence of 

fluctuations around the X-point is revealed, Fig. 9(b), as well as the generation of intermittent 

blobs, Fig. 9(c, d), which propagate towards the LFS. More complex geometries with multiple 
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fully 3D X-points and/or magnetic ergodic/chaotic surfaces could also be generated by 

additional ad-hoc coils installed inside the TORPEX vessel. 

On the theory side, starting from the simulations of the TORPEX device, the GBS code has 

been recently upgraded and the physics of the tokamak SOL in the limited configuration has 

been the subject of a number of detailed investigations. Future development include the 

implementation of a flexible numerical algorithm to describe more complex geometries, in 

particular the presence of an X-point, and of a kinetic solver for the neutral atoms. TORPEX 

will continue to provide an ideal validation testbed for the future developments of GBS. 

Applying the same techniques on numerical and experimental data allows testing the accuracy 

of these techniques, and provides a basis for a benchmark of the numerical simulation, which 

is necessary to determine the complexity of the numerical model needed for a realistic 

description not only of TORPEX data but especially for fusion devices. 

This work was partly supported by the Fonds National Suisse pour la Recherche Scientifique.  
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