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Abstract. In this work we show some results about the reduced basis approxima-
tion of advection dominated parametrized problems, i.e. advection-diffusion prob-
lems with high Péclet number. These problems are of great importance in several
engineering applications and it is well known that their numerical approximation
can be affected by instability phenomena. In this work we compare two possible
stabilization strategies in the framework of the reduced basis method, by showing
numerical results obtained for a steady advection-diffusion problem.

1 Introduction

We show here some recent results about stabilized reduced basis methods for
the approximation of parametrized advection-diffusion problems with high
Péclet number, which expresses the ratio between the advection term and
the diffusion one.

Advection-diffusion problems are effectively employed to model a wide
range of physical phenomena. Just to give an example, we can recall heat
transfer phenomena (with conducion and convection) [11] or diffusion of pol-
lutants in the atmosphere [2,9]. These equations can depend on several pa-
rameters, typically the Péclet number, the advection field direction and the
geometry of the domain.

Moreover, parametrized advection-diffusion equations are often used in
engineering applications which require very fast evaluations of the solution,
given particular values of the parameters. The reduced basis method [8,12]
can effectively provide a rapid approximation of the solution, as well as rig-
orous error bounds, which guarantee the reliability of the solution. A very
important feature of the reduced basis method is its decomposition in two
computational stages. In the first expensive stage, called Offline stage, some
high-fidelity solutions of the problems are computed, which will become the
basis functions for the Galerkin projection performed in the second inexpen-
sive stage, called Online stage.
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Some applications of the reduced basis method to advection-diffusion
problems, such as the Graetz problem or the “thermal fin” problem, can
be found in literature, especially the case in which the Péclet number is mod-
erate (i.e. ∼ 102) [3,5,8,11,13].

When the Péclet number takes higher values, the finite elements (FE) ap-
proximation of advection-diffusion problems can show significant instability
phenomena (see e.g. [10]). To overcome this problem, one can resort to some
classical stabilization method, like the Streamline/Upwind Petrov Galerkin
(SUPG) method [1]. In this way, it is possible to compute a stable approxi-
mated solution suitable to be considered as the truth one, i.e, the reference
high-fidelity solution for the RB method. A first investigation of the coupling
between the stabilized FE formulation and the RB method has been done
in [2,9]. We now base our work on some more recent results given in [6].
Following the latter work, we want to compare two possible strategies of sta-
bilization, by comparing some numerical results in the steady case. The first
one, that we will call Offline-online stabilized method consists in “stabilize”
both the Offline and the Online stages, i.e. using the same stabilized bilinear
form in both stages. This method has been actually applied in [2,9]. The other
method, calledOffline-only consists in “stabilizing” only the Offline stage and
then perform the Online stage using the standard advection-diffusion opera-
tor. To explain the underlying idea, first of all we recall that the RB solution
is actually a linear combination of few reduced basis (i.e. the high-fidelity
solutions computed during the Offline stage) [12]. It can then be reasonable
to expect that if our reduced basis are stable, the reduced solution obtained
using the non-stabilized advection-diffusion operator will be stable too. Af-
ter this brief introduction, in Section 2 we recall the stabilized reduced basis
method, in Section 3 we show some numerical tests and, finally, in Section 4
we draw some conclusions.

2 Stabilized reduced basis method

We take now into account a general parametric advection diffusion problem:

−ε(µ)∆u(µ) + β(µ) · ∇u(µ) = 0 on Ω. (1)

given a parameter value µ in the parameter domain D and suitably chosen
Dirichlet, Neumann or mixed boundary conditions. We consider a domain
Ω which is an open subset of R2. As regards the coefficients, we consider
sufficiently regular functions ε(µ) : Ω → R and β(µ) : Ω → R

2. The bilinear
form associated with the advection-diffusion problem is:

a(u, v;µ) =

∫

Ω

ε(µ)∇u · ∇v + β(µ) · ∇u v ∀u, v ∈ H1(Ω). (2)

Given a triangulation Th defined on Ω, with maximum element diameter h,
we can set up a FE approximation of the advection-diffusion problem [7].



Stabilized reduced basis method 3

We denote with XN the space of piecewise-linear finite elements. It is very
well known in literature (see e.g. [7,10]) that the FE approximation can show
instability phenomena when the advective terms dominates the diffusive one.
More precisely, we say that a problem is advection dominated in K ⊂ Ω if
the following condition holds:

PeK(µ)(x) :=
|β(µ)(x)|hK

2ε(µ)(x)
> 1 ∀x ∈ K ∀µ ∈ D, (3)

where hK is the diameter of K.
In order to obtain an approximated solution which does not show insta-

bilities, we can resort to some stabilization method. We decided to exploit the
classical SUPG method [1]. This consists in substituting, in the FE formu-
lation, the standard advection-diffusion bilinear form (2) with the following
one

astab(w
N , vN ;µ) =

∫

Ω

ε(µ)∇wN · ∇vN + (β(µ) · ∇wN )vN

+
∑

K∈Th

δK

∫

K

LµvN
(

hK

|β(µ)|
Lµ

SSv
N

) (4)

with wN , vN chosen in XN . In (4) Lµ is the advection-diffusion operator
LµvN = −ε(µ)∆vN + β(µ) · ∇vN , while Lµ

SS is its skew-symmetric part.
Note that in the case of a divergence free advection field β(µ), it holds that
Lµ

SS = β(µ) · ∇vN [10]. The weights δK have to be properly chosen in order
to ensure the stability and convergence of the SUPG method [7,10].

We can now consider the RB approximation of the problem (1). As regards
the Offline stage, we decided to consider only the stabilized bilinear form (4)
and thus we considered as truth solution the SUPG stabilized one, that is to
find usN (µ) ∈ XN such that

astab(u
sN , vN ;µ) = fstab(v

N ;µ) ∀ vN ∈ XN . (5)

where the right-hand side functional f can be a forcing term or can depend
on the imposition of boundary conditions. Considering problem (5), we can
set up the Offline stage of the RB method, which produces a reduced space
XN

N ⊂ XN with dimension N such that N ≪ N .
For the Online stage, we propose two different strategies. The first one,

which correspond to the Offline-Online stabilized method, consists in using
the stabilized bilinear form also during the Online stage. Then the Online
problem turns out to be: find us

N(µ) ∈ XN
N such that

astab(u
s
N (µ), vN ;µ) = fstab(vN ;µ) ∀ vN ∈ XN

N . (6)

On the contrary in the second method we propose, the Offline-only stabilized
method, the Online stage is performed using the original advection-diffusion
bilinear form (2). The Online problem is then: find uN (µ) ∈ XN

N such that

a(uN(µ, vN ;µ) = f(vN ;µ) ∀ vN ∈ XN
N . (7)



4 Paolo Pacciarini and Gianluigi Rozza

The right-hand side functional f can in general be different from the one of
the stabilized problem, because it does not contain, for example, contribu-
tions given by the stabilization term and the lifting of Dirichlet boundary
conditions.

3 Numerical test: advection-diffusion problem with a

boundary layer.

We consider now the following advection-diffusion problem, whose domain
Ωo(µ) is sketched in Fig. 1,















− 1
µ1

∆u(µ) + β · ∇u(µ) = 0 in Ωo(µ)

u(µ) = 0 on Γo,1(µ) ∪ Γo,2(µ)
1
µ1

∂u
∂n

(µ) = 0 on Γo,3(µ)
1
µ1

∂u
∂n

(µ) = 1 on Γo,4(µ)

(8)

where µ = (µ1, µ2) belongs to D = [100, 1000] × [2, 6]. We choose β =
(y,−0.1). In order to effectively perform a RB approach, we need to choose
a reference domain Ω, as described [8,12]. We thus set Ω = Ωo(µ2 = 3) on
which we define the FE triangulation. We also define an affine transformation
Tµ : Ω → Ωo(µ) which maps the reference domain onto the parametrized one,
which is Tµ(x, y) = (µ2 x/3, y).

(0, 1)

(0, 0) (µ2, 0)

(µ2, 1)

Ωo(µ)

Γo,2

Γo,4

Γo,3Γo,1

Fig. 1: Domain of problem (8). The boundary conditions are: homogeneous
Dirichlet on the bold sides, homogeneous Neumann on the dotted side and
non-homogeneous Neumann on the dashed side.

Using the transformation Tµ we can track back to the reference domain
all the bilinear forms defined on the parametrized domain. The transformed
advection-diffusion bilinear forms turns out to be:

a(wN , vN ;µ) =
3

µ1 µ2

∫

Ω

∂xw
N ∂xv

N +
µ2

3µ1

∫

Ω

∂yw
N ∂yv

N

+

∫

Ω

y ∂xw
N vN −

µ2

30

∫

Ω

∂yw
N vN ,

(9)
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for all wN , vN in XN . Note that the bilinear form (9), satisfies the affinity
assumption

a(wN , vN ;µ) =

Qa
∑

q=1

Θq
a(µ)a

q(wN , vN ) ∀µ ∈ D, (10)

where Θq
a, q = 1, . . . , Qa, are functions D → R while aq, q = 1, . . . , Qa,

are µ-independent bilinear forms on XN . Assumption (10) is crucial for the
efficiency of the Offline/Online decomposition of the RB method [8,12].

As regards the stabilization term, we point out that for piecewise lin-
ear approximation we do not have particular restriction on the choice of the
weights δK [10]. We then set δK = 1 for each element K. As piecewise lin-
ear functions have null Laplacian inside each element, the stabilization term
becomes:

s(wN , vN ;µ) =

√

1 + µ2
2

10

[

3

µ2

∑

K∈Th

hK

∫

K

y2∂xw
N ∂xv

N

+
∑

K∈Th

hK

∫

K

2 y (∂xw
N ∂yv

N + ∂yw
N ∂xv

N )

+
µ2

3

∑

K∈Th

hK

∫

K

∂yw
N ∂yv

N

]

.

(11)

for all wN , vN in XN . The term
√

(1 + µ2
2)/10 has been inserted to keep

into account the transformation of the element diameter. In order to ensure
the affinity assumption (10) also for the stabilization term, with Qa ≪ N ,
we assumed that each element diameter transforms as the diameter of the
whole domain. Considering the exact transformation for each element diame-
ter would have implied a number of affine terms of the order of N (one affine
term per element).

Having defined forms (9) and (11), we can define the stabilized bilinear
form astab = a+s. Now we can set up the Offline stage of the RB method, to
be performed with respect to the stabilized bilinear form astab. We applied
the Successive Constraint Method (SCM) [4,12] to build computationally
inexpensive lower bounds for the parametric coercivity constants and then
we applied the standard RB Greedy algorithm [8,12].

In our computations, the Offline stage required 311 s (237 s for the SCM)
and produced a reduced space with N = 26 basis. The tolerance on the
Greedy algorithm was ε∗tol = 10−3. This means that we can guarantee that

|||us
N(µ)− usN (µ)|||µ,stab ≤ ε∗tol ∀µ ∈ Ξ (12)

where Ξ is a sufficiently large subset of D with finite cardinality (see [12]).
In (12), ||| · |||µ,stab is the norm induced by the symmetric part of the bilinear
form astab.
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We can now compare the Offline-Online stabilized method and theOffline-
only stabilized method. In Fig. 2 we show some Offline-Online approximated
solutions, while in Fig. 3 we show some Offline-only approximated solu-
tions. It is evident that the solutions produced with the Offline-only sta-
bilized method can show significant instabilities, as shown in Fig. 3b. We
have actually shown that a Galerkin projection on a subspace spanned by
stable functions does not guarantee that the solution does not show instability
phenomena. On the contrary, we observe that the Offline-Online stabilized
method always produces stable solutions.
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(a) µ = (200, 3)
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(b) µ = (900, 3)

Fig. 2: Offline-Online stabilized method. Solutions for some representative
values of the parameter.
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(b) µ = (900, 3)

Fig. 3: Offline-only stabilized method. Solutions for some representative val-
ues of the parameter.

In order to understand the bad behaviour of the Offline-only stabilized
method for our problem, the following upper bound can been proven using
the same arguments of [6],

Proposition 1 (Upper bound for the Offline-only method). The fol-
lowing estimate of the error between the Offline-only stabilized approximation
uN (µ) and the stabilized FE approximation usN (µ) holds:

|||uN (µ)− usN (µ)|||µ ≤ |||us
N(µ)− usN (µ)|||

+ hmax

√

µ1
1+µ2

2

10 ‖β · ∇(us
N (µ) + gh)‖L2(Ωo(µ))

(13)
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where us
N (µ) is the Offline-Online stabilized solution, gh is the lifting of the

Dirichlet boundary condition and |||·|||µ is the norm induced by the symmetric
part of the bilinear form a. The value hmax is the maximum element diameter
of the reference mesh Th.

In Fig. 4 we show a comparison between the Offline-Online approximation
error, the Offline-Online approximation error and the upper bound (13),
having fixed µ2 = 3. The reasonable sharpness shown by the upper bound
suggests that in general the Offline-Only stabilized method is not a good
approximation strategy. We can also highlight that a major component of
the Offline-only error can be the streamline derivative term in (13). This is
also suggested by the fact that, when the streamline derivative term in (13)
is “small”, e.g. when the advection field and the boundary layer are almost
parallel and both the advection field and the gradient of the solution have
relatively small modulus, then the Offline-only stabilized method can produce
satisfactory results too, as shown in [6] for a Graetz problem.
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Fig. 4: Approximation errors and upper bound as functions of µ1, for µ2 = 3
fixed.

4 Conclusions

We have investigated the RB approximation of advection dominated RB
problems, comparing two possible strategies anOffline-Online stabilized method
and an Offline-only stabilized one. Numerical results have shown that the
former gives better results, while the latter produces reduced solutions with
strong instability effects, even if the reduced basis functions are stable. We
have shown that the numerical results obtained are in accordance with the
theoretical estimates proven in [6].
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