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Abstract
Parsers are ubiquitous in computing, and many applications
depend on their performance for decoding data efficiently.
Parser combinators are an intuitive tool for writing parsers:
tight integration with the host language enables grammar
specifications to be interleaved with processing of parse re-
sults. Unfortunately, parser combinators are typically slow
due to the high overhead of the host language abstraction
mechanisms that enable composition.

We present a technique for eliminating such overhead. We
use staging, a form of runtime code generation, to dissoci-
ate input parsing from parser composition, and eliminate in-
termediate data structures and computations associated with
parser composition at staging time. A key challenge is to
maintain support for input dependent grammars, which have
no clear stage distinction.

Our approach applies to top-down recursive-descent
parsers as well as bottom-up nondeterministic parsers with
key applications in dynamic programming on sequences,
where we auto-generate code for parallel hardware. We
achieve performance comparable to specialized, hand-written
parsers.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Code generation, Optimization,
Parsing

Keywords Parser combinators; multi-stage programming;
algebraic dynamic programming

1. Introduction
Parser combinators [18, 20, 36] are an intuitive tool for writ-
ing parsers. Implemented as a library in a host language, they
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use the language’s abstraction capabilities to enable compo-
sition. As a result, a parser written with such a library can
look like formal grammar descriptions, and is also readily
executable: by construction, it is well-structured, and eas-
ily maintainable. Moreover, since combinators are just func-
tions in the host language, it is easy to combine them into
larger, more powerful combinators.

However, parser combinators suffer from extremely poor
performance (see Section 5) inherent to their implementa-
tion. There is a heavy penalty to be paid for the expres-
sivity that they allow. A grammar description is, despite its
declarative appearance, operationally interleaved with input
handling, such that parts of the grammar description are re-
built over and over again while input is processed. Moreover,
since parsing logic may depend on previous input, there is no
clear phase distinction between language description and in-
put processing that could be straightforwardly exploited for
optimizations without giving up expressiveness and there-
fore some of the appeal of parser combinators.

For this reason, parser combinators are rarely used in ap-
plications demanding high throughput. This is unfortunate,
because they are so useful and parsing is such an ubiquitous
task in computing. Far from being used only as a phase of
compiler construction, parsers are plentiful in the big data
era: most of the data being processed is exchanged through
structured data formats, which need to be manipulated effi-
ciently. An example is to perform machine learning on mes-
sages gathered from social networks. Most APIs return these
messages in a structured JSON format transferred over the
HTTP protocol. These messages need to be parsed and de-
coded before performing learning on them.

The accepted standard for performance oriented data pro-
cessing is to write protocol parsers by hand. Parser genera-
tors, which are common for compilers, are not frequently
used. One reason is that many protocols require a level of
context-sensitivity (e.g. read a value n, then read n bytes),
which is not readily supported by common grammar for-
malisms. Many open-source projects, such as Joyent/Nginx
and Apache have hand-optimized HTTP parsers, which span
over 2000 lines of low-level C code [1, 34]. From a soft-
ware engineering standpoint, big chunks of low-level code
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are never a desirable situation. First, there may be hidden
and hard to detect security issues like buffer overflows. Sec-
ond, the low-level optimization effort needs to be repeated
for new protocol versions or if a variation of a protocol is
desired: for example, a social network mining application
may have different parsing requirements than an HTTP load
balancer, even though both process the same protocol.

Parser combinators could be a very attractive implemen-
tation alternative, if only they weren’t so slow. Their main
benefit is that the full host language can be used to compose
parsers, so context sensitivity and variations of protocols are
easily supported. To give an example, we show the core of a
combinator-based HTTP parser next.

Parsing Communication Protocols with Combinators The
language of HTTP request and response messages is straight-
forward to describe. Here is an example HTTP response:

HTTP/1.1 200 OK

Date: Mon, 23 May 2013 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2012 23:11:55 GMT

Etag: "3f80f-1b6-3e1cb03b"

Content-Type: text/html; charset=UTF-8

Content-Length: 129

Connection: close

... payload ...

In short, an HTTP response consists of a status message
(with a status code), a sequence of headers separated by line
breaks, a final line break, and the payload of the response.
A header is a key-value pair. The length of the payload is
specified by the Content-Length header. We can express this
structure as follows using the parser combinator library that
comes with the Scala distribution:

def status = (

("HTTP/" ~ decimalNumber) ~> wholeNumber <~ (text ~ crlf)

) map (_.toInt)

def headers = rep(header)

def header = (headerName <~ ":") flatMap {

key => (valueParser(key) <~ crlf) map {

value => (key, value)

}

}

def valueParser(key: String) =

if (key == "Content-Length") wholeNumber

else text

def body(i: Int) = repN(anyChar, i) <~ crlf

def response = (status ~ headers <~ crlf) map {

case st ~ hs => Response(st, hs)

}

def respWithPayload = response flatMap {

r => body(r.contentLength)

}

In the code above:
• the status parser looks for the code in a status message. It

uses the sequential operators ~, ~> and <~. The latter two

combinators ignore parse results on their left and right
sides, respectively. Here, we are only interested in the
status code (wholeNumber). The map combinator is then used
to convert the code to an integer value.

• the headers parser uses the rep combinator to parse a
sequence of headers; header parses a key-value pair. It
uses the flatMap combinator to bind the result of pars-
ing a headerName to a key, which is then passed on to
valueParser. Note that this parser is context-dependent: it
decides whether to parse the subsequent value based on
the key. The map combinator is used to create the pair it-
self.

• the response parser parses a status message followed by
headers: here the map combinator is used to create a
Response structure (case class) from the results.

• Finally, respWithPayload parses and extracts the body of
the message, based on the value of the contentLength field
of the Response structure.

It is easy to see the appeal of parser combinators from the
above example. In less than 30 lines of code we have de-
fined a parser for HTTP responses, and it reads almost like
an English description. Of course a bit more work is needed
to support the full protocol; the complete parser we devel-
oped contains around 250 lines. Here, we have also omit-
ted the definition of simple parsers such as decimalNumber and
wholeNumber: the advantage being that these are implemented
in a standard parser combinator library. Moreover, we can
easily extend our implementation to handle key-value pairs
more precisely by adding cases to the valueParser function,
for example. If these 30 lines of re-usable high-level code
could be made to perform competitively with 2000 lines of
low-level hand-written C, there would be much less incen-
tive for the latter to exist.

Since parser combinators compose easily, a fast imple-
mentation would even have the potential to surpass the per-
formance of hand-written parsers in the case of protocol
stacks: layering independent hand-optimized parsers may re-
quire buffering which can be avoided if the parsers can be
composed directly.

Nondeterministic Parsers and Dynamic Programming A
key performance aspect of parser combinators is that the
usual implementations perform top-down recursive descent
with backtracking, which has exponential worst case per-
formance. Communication protocols do not usually contain
ambiguities, so backtracking will not frequently occur in
this setting and recursive descent is a viable strategy. How-
ever, protocol parsers are not the only use case for parsers
in general and parser combinators in particular. Other im-
portant data processing applications, for example in natural
language processing and bioinformatics, require nondeter-
ministic parsers and highly ambiguous grammars. These ap-
plications involve computing a parse result over a sequence
with respect to some cost function: we are not only looking
for a parse result, we seek the best possible parse result. For
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these use-cases, recursive descent with backtracking is in-
efficient. An efficient implementation comes in the form of
a memoization/dynamic programming algorithm. A general
technique, Algebraic Dynamic Programming (ADP) [10],
can be used to describe sequence structures as grammars in a
parser combinator library. Contrary to recurrence relations,
a grammar captures the structure of a sequence more intu-
itively. ADP uses a grammar for the structure, and an al-
gebra to compute over that structure. The added benefit of
this separation is modularity: we can define multiple alge-
bras (cost functions) for the same sequence structure. Pri-
mary use cases for ADP-style parser combinators are dy-
namic programming problems on sequences, found in the
realm of bioinformatics, such as sequence folding. For very
large sequences, it is beneficial to turn the evaluation strat-
egy into a bottom-up algorithm: this exposes uniform layouts
which are amenable to parallelization.

1.1 Contributions
We present a library of parser combinators that performs
competitively to hand-optimized parsers. Lifting the perfor-
mance level of parser combinators to that of hand-written
parsers removes a key incentive to write parsers by hand,
and enables more developers to reap the productivity bene-
fits of high-level programming. In particular, we make the
following contributions:
• We dissociate static from dynamic computations for

parser combinators using Lightweight Modular Staging
(LMS) [25]. The key insight is to allow static (grammar
level) computation to treat pieces of dynamic (input han-
dling) computation as first class values, but not the other
way around. We leverage the Scala type system to ensure
that no parser combinators can appear in the generated
code. As a result we create a program that, at the first
stage, eliminates the combinator abstraction, and gener-
ates an efficient parser. The first stage can still use the
full host language for parser composition (Section 3).

• The stage distinction is non-obvious, due in particular to
context-sensitive and recursive parsers. The key trade-off
is between inlining code as much as possible vs. when
and where to emit functions in the generated code. We
use a mix of present-stage and future-stage functions
at key junctions to generate efficient recursive descent
patterns (Section 3.2). A similar technique also protects
us from code blowup (Section 3.3).

• Staging alone is not sufficient to remove intermediate
data structures that cross control flow joins in the gen-
erated code. We perform additional rewrites at the inter-
mediate representation (IR) level to remove these data
structures as well. These rewrites involve splitting and
merging data structures at conditional expressions so that
their components can be mapped to local variables (Sec-
tion 3.4).

• We generalize our technique to parsers for ambiguous
grammars. As an extreme case, we consider general dy-

namic programming on sequences, which can be reduced
to a parsing problem through the use of ADP (Section 4).
From a grammar specification of a dynamic program and
a cost function, we generate a CYK style parser. In con-
trast to the recursive descent parsers generated for un-
ambiguous grammars, we impose a bottom-up order for
their ambiguous counterparts. At staging time, we com-
pose iterations over lists (of results) instead of the lists
themselves, and replace recursion by memoization (Sec-
tions 4.1, 4.3, 4.2).

• Imposing a bottom-up order also opens up the possibil-
ity to parallelize processing, as independent intermediate
results can be computed independently [30, 32]. Our use
of staging coupled with generative programming enables
us to generate code that runs on the GPU for dynamic
programs (Section 4.4). The GPU code computes an op-
timal cost function efficiently. In Section 4.5, we discuss
how to retrieve the trace of this optimal cost. This trace
is independent of the cost function itself, and can be ap-
plied to other algebras later. Compared to previous ap-
proaches, we trade extra memory usage in the forward
computation for a better running time complexity for the
backtrace computation.

• We evaluate the performance of our top-down parsers by
comparing to hand-written HTTP and JSON parsers from
the Nginx and JQ projects. Our generated Scala code,
running on the JVM, achieves HTTP throughput of 75%
of Nginx’s low-level C code, and 120% of JQ’s JSON
parser. Other Scala based tools such as Spray are at least
an order of magnitude slower. We evaluate our bottom-up
parsers on two different bioinformatics algorithms. We
compete with hand-written C code for the Nussinov algo-
rithm, and show good scalability for both CPU and GPU
code generated from parser combinators. (Section 5).
Section 6 discussed related work and Section 7 con-

cludes. Before going any further, we give some insight into
the abstraction overhead related to parser combinators in
Section 2.

2. Parser Combinators
The introduction gave us a taste for implementing parsers
with combinators. In this section we give insights on what
causes them to be inefficient. For this, we show how they are
commonly implemented.

Parser combinators are functions from an input to a parse
result. For now we only consider deterministic parsers, in
which case a parse result is either a success or a failure.

Figure 1 shows an implementation for parser combinators
in Scala. The implementation is contained inside a Parsers

module. The abstract Parser[T] class is generic over the the
type of results it can parse. It extends a function type: the
notation T => U is sugar for the class Function1[T, U], which
has an abstract apply method corresponding to function ap-
plication. Creating a new parser is equivalent to creating a
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trait Parsers {

type Input = Int

abstract class ParseResult[T]

case class Success(res: T, next: Input)

extends ParseResult[T] {

def isEmpty = false

}

case class Failure(next: Input) extends ParseResult[T] {

def isEmpty = true

}

def source: Array[Char] //abstract, defined later

abstract class Parser[T] extends (Input => ParseResult[T]) {

def | (that: Parser[T]) = Parser[T] { pos =>

val tmp = this(pos)

if(tmp.isEmpty) that(pos)

else tmp

}

def flatMap[U](f: T => Parser[U]) = Parser[U] { pos =>

val tmp = this(pos)

if(tmp.isEmpty) Failure(pos)

else f(tmp.res)(tmp.next)

}

def map[U](f: T => U) = Parser[U] { pos =>

val tmp = this(pos)

if(tmp.isEmpty) tmp

else Success(f(tmp.res), tmp.next)

}

def ~[U](that: Parser[U]): Parser[(T, U)] =

for(

r1 <- this;

r2 <- that

) yield (r1,r2)

}

def Parser[T](f: Input => ParseResult[T]) = new Parser[T] {

def apply(pos: Input) = f(pos)

}

}

Figure 1. An implementation of parser combinators

new instance of Function1, and providing an implementation
of the apply method. The Parser convenience function simpli-
fies the creation of a parser. We fix the Input type member to
be Int, because we study parsers over character arrays with
integer indices. We create an algebraic data type (or a case

class in Scala terms) to represent a parse result. A ParseResult

is either a success, in which case it contains the result, or a
failure. The flatMap combinator, generic in a type parameter
U, allows to make decisions based on the result of a parser.
Incidentally, this function corresponds to the monadic bind

for parser combinators. The alternation combinator | parses
the right-hand side parser only if the left side parser fails.
The map combinator transforms the value of a parse result.
Finally, the ~ combinator does sequencing, where we are in-
terested in the results of the left and the right hand side. Note
that we use for comprehensions, which are Scala’s equiva-
lent for the do notation in Haskell.

In this paper we use the following combinators, in addi-
tion to those present in Figure 1:
• lhs ~> rhs succeeds if both lhs and rhs succeed, but we

are only interested in the parse result of rhs
• lhs <~ rhs succeeds if both lhs and rhs succeed, but we

are only interested in the parse result of lhs
• rep(p) repeatedly applies p to parse the input until p fails.

The result is a list of successive applications of p.
• repN(n,p) applies p exactly n times to parse the input. The

result is a list of the n consecutive results of p.
• repsep(p,q) repeatedly applies p interleaved with the sep-

arator q to parse the input, until p fails. The result is a list
of the results of p. For example, repsep(term, ",") parses
a comma-separated list of terms, yielding a list of these
terms.

We define two simple parsers which accept a character based
on a predicate:

def acceptIf(p: Char => Boolean) = Parser[Char] { pos =>

if (pos < source.length && p(source(i)))

Success(source(i), i + 1)

else Failure(i)

}

}

def accept(c:Char) = acceptIf { (x: Char) => x == c }

We are interested in only one parse result here. In the more
general case, we could also collect all possible parse results
over an input, that is, a list of results rather than a single
one. In the event of multiple parse results being present, we
are often interested in an optimal parse result based on some
cost function. We will see in section 4 how such problems
relate to dynamic programming. For both use cases, we
still want to preserve the expressiveness and intuition with
which parser combinators can describe these problems. In
particular, it is better to express a parse result and its cost
function independently, even if we would like to compute
them together.

2.1 The Overhead of Abstraction
The above, functional implementation leads to poor perfor-
mance, because:
• The execution of a parser goes through many indirec-

tions. First and foremost, every parser is a function. Func-
tions being objects in Scala, function application amounts
to method calls. A composite parser, composed of many
smaller parsers, when applied to an input, not only con-
structs a new parser at every application, but also chains
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many method calls, which incurs a huge cost due to
method dispatch. The use of higher-order functions in-
curs this cost as well.
One would expect a virtual machine like the JVM to in-
line most of these calls; the JVM’s heuristics are however
geared to optimize hot code paths. We may only be able
to inline a parser that is called very often. With a plug-
gable VM, such as Truffle/Graal [39], we could hint the
virtual machine to inline these code paths. The important
insight here is that we want a more deterministic way of
optimizing the method calls. This will also open up fur-
ther optimization opportunities down the line.

• We construct many intermediate parse results during the
execution of a parser: for every combinator, we box the
parse, plus the position, into a ParseResult object, before
manipulating its fields. Inlining by itself will not rid us
of these intermediate data structures: for one, recursive
parsers are very common, and the control flow of a parser
has many split and join points in the form of conditionals.
With ambiguous grammars and dynamic programming,
the problems are exacerbated further. Because parse re-
sults and cost functions are expressed independently,
many large intermediate results may be created before
the optimal result is eventually computed.

In summary, it is precisely the language abstraction mech-
anisms that enable us to compose combinators that are hin-
dering our performance. In the following sections, we show
how to get rid of the penalty.

3. Staging Parser Combinators
One way to remove composition abstraction in parser com-
binators follows a well known technique, multi-stage pro-
gramming, or staging [35]. The idea is to separate compu-
tation into stages, where at each stage, parts of the program
are partially evaluated, leaving behind a simpler, or faster,
program. When a parser combinator is run on an input, its
control structure is already fixed: it is statically known. The
parsing itself depends on the input. We want to stage the
static parts away, so that all that remains is the core logic of
parsing itself. We perform the staging using the Lightweight
Modular Staging (LMS) framework [25].

Lightweight Modular Staging LMS is a framework for
developing embedded DSLs in Scala, that provides a library
for domain-specific optimizations and code generation. A
program written in LMS is compiled in two stages. During
the first stage, the code is converted into an intermediate rep-
resentation (IR), from which code is generated. We refer to
this step as staging time. This generated code, representing
an optimized version of the original DSL program is then run
during the second stage. The IR is modular in the sense that
it can be easily extended with domain-specific optimizations
using classic programming features like pattern matching.
Sitting atop the Scala Virtualized compiler [24] also enables

domain-specific overriding of basic language constructs like
conditional expressions, loops and object creation.

LMS differentiates between staged and unstaged compu-
tations using the Rep type constructor. An expression of type
T will be executed at staging time, while an expression of
type Rep[T] will be generated. As an example, consider the
following functions:

def add1(a: Int, b: Int) = a + b

def add2(a: Rep[Int], b: Rep[Int]) = a + b

The add1 function gets executed during code generation, pro-
ducing a constant in the generated code, while add2 repre-
sents a computation that will eventually yield a value of in-
teger type, and is represented as an IR node Add(a, b). The
intermediate representation gives the DSL developer a prag-
matic way to specify domain specific optimizations. For ex-
ample, we can pattern match on the parameters of the Add

node to detect when one of the operands is the constant 0,
and rewrite the expression to be the other operand. This way,
add2(a, 0) generates code for a only.

The core LMS library provides interfaces, IR nodes and
code generation for many common programming constructs,
such as conditionals, Boolean expressions, arithmetic ex-
pressions and array operations, among others. These can
therefore be used out of the box.

3.1 Parser Combinators, Staged
Efficient staging of parser combinators is a question of cor-
rectly identifying which computations to stage, and which
computations to evaluate away. Let us look at the signature
for parser combinators once again:

abstract class Parser[T] extends (Input => ParseResult[T])

Clearly, neither the input position nor the contents of the
parse result are known statically; they have to be staged.
However, we know how the parsers will be composed. This
means that we can evaluate function composition at staging
time. We represent a parser as an unstaged function on
staged types:

abstract class Parser[T]

extends (Rep[Input] => Rep[ParseResult[T]])

A function def f: Rep[T] => Rep[U], when applied to a param-
eter of type Rep[T], is evaluated at staging time: at the call
site, the body of the function is generated, instead of a call to
the function. This amounts to inlining the function at the call
site. On the other hand, functions of type Rep[T => U] repre-
sent staged functions; the generated code will contain a func-
tion declaration, as well as a function call, if the function is
applied. The difference between both is clearer by desug-
aring the function type: unstaged functions are instances
of Function1[Rep[T], Rep[U]], while staged functions are in-
stances of Rep[Function1[T, U]].

We stage all composition functions in a similar way. Two
rules drive our systematic staging of parsers:
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• A primitive type T is converted into Rep[T]. By primitive
type, we mean a type that is input dependent: inputs and
parse results.

• A function type T => U is converted into Rep[T] => Rep[U]

This way, higher-order functions also get inlined at call sites.
The interface for staged parser combinators is given in figure
2. The implementations for the combinators follow those of
unstaged parser combinators in section 2. We show the code
for the flatMap combinator as an example:

def flatMap[U](f: Rep[T] => Parser[U]) = Parser[U] { pos =>

val tmp = this(pos)

if (tmp.isEmpty) Failure[U](pos)

else {

val x = f(tmp.get)(tmp.next)

if (x.isEmpty) Failure[U](pos) else x

}

}

To get some insight as to how staging works for parser
combinators, consider the following simple parser, which
accepts the letter ’h’ followed by the letter ’i’:

val hi = (accept(’h’) ~ accept(’i’))

hi(0)

Applying the function to an input will inline the parser. The
generated code we get looks like the following:

val idx = 0

val len = input.length

val p1: ParseResult[Char] = // parsing ’h’

if (idx < len) {

val res = input(idx)

if (res == ’h’) Success(res, idx + 1)

else Failure(idx)

} else Failure(idx)

val p2: ParseResult[(Char, Char)] = // parsing ’i’

if (p1 == Success) {

val idx1 = p1.next

if (idx1 < len) {

val res = input(idx1)

if (res == ’i’) Success((p1.res, res), idx1 + 1)

else Failure(idx1)

} else Failure(idx1)

} else p1

p2

We notice that there are no Parser objects in the generated
code. The body of the accept function is inlined, and so is the
body of the sequence function ~.

3.2 Recursion
Even the most basic parsers have some form of recursion.
Simply using unstaged functions will create infinite loops
during code generation because recursive calls are unfolded
and inlined during staging time. We are forced to stop the re-
cursion by generating a staged function for recursive parsers.
A recursive parser needs to be explicitly declared using the

abstract class Parser[T]

extends (Rep[Input] => Rep[ParseResult[T]]){

def map[U](f: Rep[T] => Rep[U]): Parser[U]

def flatMap[U](f: Rep[T] => Parser[U]): Parser[U]

def filter(f: Rep[T] => Rep[Boolean]): Parser[T]

def ~[U](that: Parser[U]): Parser[(T, U)]

def | (that: Parser[T]): Parser[T]

}

Figure 2. Interface for staged parsers

rec combinator which performs this lifting. The rec combi-
nator works using the classical memoization scheme. The
first time it sees a parser, it stores, in a static map, a staged
version of the parser function. The next time the same parser
is seen, we replace it with a function application, using the
staged function stored before. In the generated code, we have
a function application. The rec combinator is therefore simi-
lar to a fixpoint combinator:

def lift[T, U]: (f: Rep[T] => Rep[U]): Rep[T => U] = ...

val store = new Map[Parser, Sym]

def rec[T](p: Parser[T]): Parser[T] = {

store.get(p) match {

case Some(f) =>

Parser[T] { i => f(i) }

case None =>

val funSym = fresh[Input => ParseResult[T]]

store += (p -> funSym)

val f = (i: Rep[Input]) => p(i)

createDefinition(funSym, lift(f))

store -= p

Parser[T] { i => funSym(i) }

}

}

The Sym type, and the fresh and createDefinition functions are
part of the LMS internals. Sym represents a symbol in the IR
of an LMS program. A new symbol for a specific type is
created using fresh, and createDefinition links a Rep type to a
symbol in the IR tree. Finally, the lift function converts an
unstaged function into a staged one.

3.3 Reducing Code Generation Blow-up
Consider the following parser:

def aParser = (a ~ b | c) ~ d

where none of the parsers are recursive. Following our op-
timizations from above, there is a risk that code generation
blows up: The c parser is tried when either a or b fails: the
code for parser c will therefore be inlined in the fail branches
for both a and b. The code for parser d is then further in-
lined in each of the success branches; it is inlined 3 times.
Aggressive and naive inlining results in an exponential code
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blow-up due to many different branches being created. Once
again, simply staging a parser implementation is insufficient.

The explosion in branches happens because of combina-
tors that offer multiple paths of computation. The alternation
combinator | is the culprit here. We need to maintain a dia-
mond control flow in the generated code in the presence of
alternation. Once again, we use staged functions. We wrap
the left alternative in a function. We also wrap the parser cre-
ated by the alternation into a function. The implementation
of | is a bit more complex this time:

abstract class Parser[T]

extends (Rep[Input] => Rep[ParseResult[T]]){

...

def | (that: Parser[T]) = {

val p = Parser[T] { pos =>

val tmp = lift(this)

val x = tmp(pos)

if (x.isEmpty) that(pos) else x

}

lift(p)

}

}

3.4 Staged Records
So far, we have rid ourselves of the abstraction of combina-
tors, and protected ourselves from recursion and code gener-
ation blowup. The shape of the generated code still needs to
be improved. We still create many intermediate data struc-
tures. Recall the hi parser from above, and the code it gener-
ates.

Each time we use an elementary parser, we create an in-
stance of a ParseResult. Further down, we use field lookups
to inspect this object. There is some overhead due to box-
ing/unboxing.

But we can use staging again! The idea is to represent
parse results as staged record/struct implementation. The
idea is reminiscent of what we did with functions. We staged
function declaration and application away by using unstaged
functions. Similarly, we represent parse results as records,
or structs, but stage the record creation, and field lookups,
away.

For this, we re-use the generic struct interface present in
LMS [26] (Figure 3). The struct interface provides IR nodes
for struct creation and field lookup. During code generation
a record is produced. To optimize struct creation we operate
on the IR level. In a first step, we override conditionals that
produce structs to split the conditional expression among
every field. In a second step, we re-merge the conditional
expressions, with the fields remaining split at the root of the
conditional expression.

As a result of the split and re-merge, the hi parser above
now generates the following code:

val idx = 0

val len = input.length

def Success[T](res: Rep[T], next:Rep[Int]) =

Struct(

classTag[ParseResult[T]],

"res" -> res,

"empty" -> false,

"next" -> next

)

def Failure[T](next: Rep[Int]) =

Struct(

classTag[ParseResult[T]],

"res" -> ZeroVal[T],

"empty" -> true,

"next" -> next

)

override def ifThenElse[T](cond: Rep[Boolean],

left: Rep[T], right: Rep[T])

= (left, right) match {

case (Struct(tagA, elems), Struct(tagB, elemsB)) =>

assert(tagA == tagB)

val elemsNew = elems.zip(elemsB) map { (left, right) =>

if (cond) left else right

}

Struct(tagA, newElems)

}

Figure 3. Using structs for parse results, and splitting

var res: (Char, Char) = null

var next: Int = 0

var empty: Boolean = true

if (idx < len){

val r1 = input(idx)

// parsing ’h’

if (r1 == ’h’) {

val idx2 = r1 + 1

val r2 = input(idx2)

// parsing ’i’

if (r2 == ’i’) {

res = (r1, r2)

next = idx + 1

empty = true

}

}

}

ParseResult(res, next, empty)

Note that we only create the parse result after having parsed
fully, and have inlined the parsing of ’i’ into the success
branch of ’h’.

Top-down, recursive-descent parsing works well for pro-
tocols, because the grammars are deterministic, with limited
backtracking. In general, however, the search for a parse can
be exponentially expensive, and that will dominate the in-
efficiencies due to boxing/unboxing and indirection. This
problem occurs especially with ambiguous grammars. The
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extreme case of ambiguity is when an input sequence has
an exponential number of possible parses. In the next sec-
tion, we see how to deal with non-deterministic, ambiguous
grammars.

4. Staged Parser Combinators for Dynamic
Programming on Sequences

We now consider parser combinators for ambiguous, non-
deterministic grammars. These grammars can yield more
than one parse result per input. Often, we are interested
in one parse result, namely the optimal parse result with
respect to some cost function. This is where techniques
like memoization/dynamic programming come into play.
In this section, we introduce the general method which is
used to describe such grammars, using parser combinators.
This method is known as Algebraic Dynamic Programming
(ADP) [10, 14], and has practical applications in biology.
We then focus on staging combinators for an optimal cost
function. By processing the problem in a bottom-up fashion,
we expose regular structure, which is good for parallelism.
Staging permits, in addition to abstraction and intermediate
data structure removal, to target GPUs as an additional code
generation platform.

Matrix-chain Multiplication Let us start with a simple ap-
plication problem: given a sequence of matrices mi of appro-
priate dimensions, we want to determine the order of mul-
tiplication that minimizes the number of scalar multiplica-
tions. This is a classic case of dynamic programming. The
problem satisfies the Bellman property: optimal solutions are
constructed from optimal sub-solutions. Let M [i, j] denote
the optimal cost of multiplying matrices i to j, the solution
is described by the following recurrence relation:

M [i, j] = 0 if i = j, else

M [i, j] = min
i≤k<j

{
M [i, k] + M [k + 1, j]
+rows(mi) · cols(mk) · cols(mj)

}
We can memoize intermediate results in a matrix, and look
them up when we need them.

Parser combinators for dynamic programming The re-
currence relations above do not capture the structure of the
problem in an intuitive manner. We can express the problem
as a grammar instead:

val chain = tabulate((

singleMatrix map single

| (chain ~ chain) map mult

) aggregate h)

A chain of matrices is made by either a single matrix, or two
consecutive sub-chains. The mult and single functions act on
a parse result, while tabulatememoizes the computation. The
aggregate function, as its name indicates, combines results of
a parse based on a given function.

To achieve this, we need a parser combinator implemen-
tation that produces multiple results. Figure 5 shows this im-

plementation. Now, parsers are functions from a pair of in-
tegers to a list of parse results. The pair of integers represent
the subsequence that we wish to parse. The alternation com-
binator is non-deterministic, so we concatenate results from
the left parser and those from the right parser. The sequence
combinator combines all results on the left side with those
on the right (a cross-product). In essence, monadic opera-
tions on parsers are mapped to monadic operations on the
underlying lists, as shown by Wadler [36].

The mult, single and h functions are customizable: we may
be interested in the optimal cost of multiplication, but we
may also be interested in simply visualizing the result. More
interestingly, we may want to visualize the optimal result.
Algebraic dynamic programming is a formalism allowing
us to specify these possibilities. Formally, ADP decomposes
into four components:
• A signature Σ that defines the input alphabet A, a sort

symbol S and a family of operators ◦ : s1, ..., sk → S
where each si is either S or A.

• A grammar G over Σ operating on a string A∗ that gen-
erates sub-solutions candidates.

• An algebra, that instantiates a signature and attributes a
score to extracted sub-solutions. The sort symbol and the
signature functions have implementations.

• An aggregation function h : S∗ → S∗ retaining sub-
solution with appropriate score (usually optimal ones).

An implementation of a signature and two algebras for the
matrix-chain multiplication problem are given in Figure 4.

The MatMultSig trait defines the signature for the problem.
We define two operations, single representing a single ma-
trix and mult representing the multiplication of two matrices.
The h function is for aggregation. Note that the arguments
to mult are of type S. The CostAlgebra trait provides concrete
types for A and S, as Scala tuples. It also contains concrete
implementations for single, mult and h. These implementa-
tions correspond to the recurrence relation seen above. As
its name suggests, the CostAlgebra looks to minimize the op-
timal cost.

The PrettyPrint algebra, on the other hand, defines a vi-
sualization for the problem. The aggregation function is the
identity function: we want to see all possible tree construc-
tions for chaining matrices.

The MatMultGrammar trait gives the structure for the prob-
lem, as described above. Note that we mix in parser function-
ality (the Parsers trait) with the MatMultSig signature. Finally,
MatMult ties a grammar to a concrete algebra to a grammar
using mix-in composition.

Single sequences The parser combinator library presented
above works on single sequences, just like recursive-descent
combinators. Along with the matrix multiplication problem
above, other dynamic programming problems that benefit
from this approach can be found in the bioinformatics realm,
mostly in sequence folding. From a parsing point of view,
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trait MatMultSig {

type A, S

def single(a: A): S

def mult(l: S, r: S): S

def h(xs: List[S]): List[S]

}

trait CostAlgebra extends MatMultSig {

type A = (Int, Int) // input matrix (rows,columns)

type S = (Int, Int, Int) // product (rows,cost,columns)

def single(a: A) = (a._1, 0, a._2)

def mult(l: S, r: S) =

( l._1,

l._2 + r._2 + l._1 * l._3 * r._3,

r._3 )

def h(xs: List[S]) = List(xs.minBy(_._2))

}

trait PrettyPrint extends MatMultSig {

type A = (Int, Int); type S = String

def single(a: A) = "[" + a._1 + "x" + a._2 + "]"

def mult(l: S, r: S) = "(" + l + "*" + r + ")"

def h(xs: List[S]) = xs

}

trait MatMultGrammar extends Parsers with MatMultSig {

val chain = tabulate((

singleMatrix map single

| (chain ~ chain) map mult

) aggregate h)

}

object MatMult extends MatMultGrammar with CostAlgebra

Figure 4. The matrix chain multiplication problem in ADP

we are indeed trying to find the best structure for a given
sequence.

Another prominent class of dynamic programming prob-
lems in bioinformatics is sequence alignment, with the most
well-known algorithm being the Smith-Waterman algo-
rithm: we want to find the best alignment of two sequences.
While ADP can support dynamic programs on multiple se-
quences [30], state of the art implementations for sequence
alignment face challenges that are orthogonal to its repre-
sentation as a grammar. Not only do the size of the sequence
require a stochastic approach, but there are also a number
of hardware-specific optimizations that can be applied to
accelerate Smith-Waterman even further [28, 29].

We therefore choose to focus on single sequence prob-
lems in this paper; not only are sequence sizes typically
smaller (fit on the GPU), but the expressivity and perfor-
mance gains are also higher for these problems.

4.1 Top-down to Bottom-up Evaluation
Running the chain parser above on an input sequence in with
the argument (0, in.length) will compute the best cost for
the sequence. The parser runs in a top-down manner, calling
rules recursively on smaller subsequences. The advantage of

abstract class Parser[T] extends ((Int, Int) => List[T]) {

def | (that: Parser[T]) = Parser[T] {

(i, j) => this(i, j) ++ that(i, j)

}

def ~[U](that: Parser[U]) = Parser[(T, U)] {

(i,j) => if (i < j) {

for(k <- i until j;

x <- this(i, j);

y <- that(k, j)

) yield (x,y)

} else List()

}

def map[U](f: T => U) = Parser[U] {

(i, j) => this(i, j) map f

}

def aggregate(h: List[T] => List[T]) = Parser[T] {

(i, j) => h(this(i, j))

}

def filter(p: (Int, Int) => Boolean) = Parser[T] {

(i, j) => if (p(i, j)) this(i, j) else List()

}

}

def el(in: Input) = Parser[T] {

(i, j) => if (i + 1 == j) List(in(i)) else List()

}

def tabulate[T](p: Parser[T], mem: Array[Array[T]])

= Parser[T] {

(i, j) => if (mem(i)(j).isEmpty) {

val tmp = p(i, j)

mem(i)(j) = tmp

tmp

} else mem(i)(j)

}

Figure 5. An implementation of parser combinators for dy-
namic programming

this strategy is that unreachable subsequences are not parsed
in sparse problems. For our application cases, however, it
is common that all subsolutions need to be computed. It is
therefore useful to use a bottom-up strategy instead:

def bottomUp(p: Parser[T]) {

val n = in.length

(0 until n).foreach { d =>

(0 until n - d).foreach { i =>

val j = i + d

p(i, j) // call parser between i and j

}

}

}
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abstract class Foreach[T]

extends (Rep[T] => Rep[Unit]) => Rep[Unit] {

def map[U](g: Rep[T] => Rep[U]) = Foreach[U] {

f: (Rep[U] => Rep[Unit]) => this {

x: Rep[T] => f(g(x))

}

}

def filter(p: Rep[T] => Rep[Boolean]) = Foreach[T] {

f: (Rep[T] => Rep[Unit]) => this {

x: Rep[T] => if(p(x)) f(x)

}

}

def flatMap[U](g: Rep[T] => Foreach[U]) = Foreach[U] {

f: (Rep[U] => Rep[Unit]) => this {

x: Rep[T] => g(x)(f)

}

}

def ++(that: Foreach[T]) = Foreach[T] {

f: (Rep[T] => Rep[Unit]) = {

this(f); that(f)

}

}

}

Figure 6. An implementation of Foreach

Here, we are taking advantage of the Bellman’s optimality
principle to process all subproblems of a certain size (d)
before moving to the next size. This evaluation strategy
computes all the results on the same anti-diagonal (also
known as wavefront) and progresses along the diagonal of
the tabulation matrix. All recursive calls to a parser become
simple table lookups.

4.2 Staging and Memoization
With recursive-descent parsers, we introduced the rec combi-
nator for handling recursion. The tabulate combinator plays
an analogous role for memoization with dynamic program-
ming. If a parser has already been seen, a table lookup is
generated. Otherwise, the code for computing the current re-
sult is generated. Once again, evaluation order ensures that
code generation will not loop forever.

4.3 Staging and Lists
As with combinators for recursive-descent parsing, we first
introduce Rep types to stage away composition. Naive staging
will give us a result type of Rep[List[T]]. However, as men-
tioned above, the goal is to return a single optimal solution,
and we would like to avoid the additional boxing overhead of
lists. The key to achieving this goal is to compose iterations
over lists, represented by the type Foreach[T], rather than the

thread 1

thread 2

. . .

firstelem
ent

last element

cell M [i, j] contains
solution for seq(i, .., j)

Figure 7. Threads progress jointly along matrix diagonal.
Dependencies can be reduced to immediately preceding ma-
trix cells.

lists themselves. The signature of Foreach (see Figure 6) mir-
rors that of its namesake combinator: it takes a function f, of
type T => Unit, and applies it to every element of the collec-
tion.

In the implementation of parsers above, we replace
List[T] by Foreach[T], and change the signature of the aggregate
function to return one optimal solution:

abstract class Parser[T]

extends Rep[(Int, Int)] => Foreach[T] {

...

def aggregate(h: Foreach[T] => Rep[T]) = Parser[T] {

(i, j) => h(this(i, j))

}

}

The use of Rep types will inline function calls, as previously.
The end result of the staging step and the use of the bottomUp

function is a tight nested loop over the resulting matrix that
proceeds along the diagonal.

With mutually recursive parsers, production rules need to
be ordered to ensure that a parser is computed only when
all its dependencies are valid (dependency analysis). In ad-
dition, we can make the following observations:
• Referring to the intermediate solution matrix (Figure 7),

all possible dependencies are contained in a sub-matrix.
By induction, it suffices that the immediately preceding
elements in the row and the column are valid for all
other dependencies to be satisfied. Hence elements on a
diagonal can be computed in parallel (wavefront).

• In the presence of multiple grammar rules, we evaluate all
rules on a given subsequence at once; dependency anal-
ysis provides us with a correct evaluation order, assum-
ing that the grammar is correct (satisfies the Bellman’s
property, and has no cyclic rules that would cause infinite
loops in top-down evaluation).

4.4 GPU parallelization
Modern graphic cards1 are powered by massively parallel
processors running hundreds of cores, each able to sched-
ule multiple threads. The threads are grouped by warps (32
threads) and blocks, and scheduled synchronously: a diver-

1 We focus on Nvidia/CUDA features; other frameworks have similar con-
cepts.
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gence in execution path causes both alternatives to be sched-
uled sequentially, thereby stalling some threads. Two levels
of memory are exposed to the programmer: global memory
accessible by any thread, and a faster local memory acces-
sible by threads in the same block. In many applications,
the computational power of GPUs outperforms the memory
bandwidth such that (global) memory accesses is often the
bottleneck.

The key insight is that GPU programs need to be regular,
both in their computation logic (all threads should be kept
busy) and memory accesses (contiguous, or coalesced). In
dynamic programming, the cost function is usually simple
and regular with respect to the combination of sub-solutions.

Since elements computed in parallel are along one diag-
onal, the underlying matrix needs to be stored diagonal-by-
diagonal. To respect the dependency order, threads progress
along the rows of the matrix and synchronize with the
neighboring thread (to validate column dependencies) be-
fore moving to the next diagonal. This synchronization is
done by active waiting on threads between computations of
diagonals [40].

We use the heterogeneous code generation capacities of
LMS to dissociate these hardware-specific decisions from
the parser description. The progress on diagonals is given
by the bottomUp function above. We generate GPU specific
code for the body (p(i, j)) of these loops.

4.5 Computing the Backtrace
In addition to the optimal cost of a dynamic program, one
is typically interested in the corresponding parse result. In
our matrix multiplication example above, we could construct
such results simply by mixing in the PrettyPrint algebra and
the CostAlgebra. This strategy does not extend easily to the
GPU: the cost function is regular, but pretty printing involves
string creation and storage, which adds unnecessary compu-
tation overhead on the GPU. It is better to treat PrettyPrint
as a backtracing algebra, and reconstruct the best parse tree
after the optimal cost has been found. In fact, it is possible
to decouple the costing and backtracing algebras completely,
by precomputing backtraces. The remainder of this section
describes this process.

The cost function of a dynamic program computes its op-
timal cost, which corresponds to one or more optimal parse
trees. A backtrace is a linear representation of an optimal
parse tree. Figure 8 depicts the backtrace for an example in-
stance of the matrix multiplication problem. Given matrix
dimensions in the left third of the figure, there is one op-
timal multiplication order, given in pretty-print form. The
optimal tree is overlaid on the cost matrix. The root of this
tree naturally lies on cell [0, 3], which contains the optimal
cost for multiplying all four matrices. In the final third of the
figure, we show the backtrace of the tree, that is, its in-order
traversal.

The backtrace computation is done in two phases: during
the forward cost computation phase, we store, along with

i:0

i:1

i:2

i:3

j:0 j:1 j:2 j:3
Backtrace:
(i, j), (rule, concats)

(3,3), (singleMatrix,[]),
(2,2), (singleMatrix,[]),
(1,1), (singleMatrix,[]),
(1,2), (chain,[2]),
(0,0), (singleMatrix,[]),
(0,2), (chain,[1]),
(0,3), (chain,[3])

Matrices:
A : 3× 2
B : 2× 4,
C : 4× 2
D : 2× 5

Solution:
(A · (B · C)) ·D

Figure 8. A backtrace for an instance of the matrix multi-
plication problem

the optimal cost, some backtrace-related information, which
we call the paper trail. This trail records what decisions we
have made to reach a given cell. Once the forward phase is
complete, we start from the root of the tree, and reconstruct
the optimal backtrace as the in-order traversal of the tree. We
can then reuse this backtrace and apply it to various algebras.

Computing the paper trail The paper trail is computed
along with the cost function. We need to store, for each cell,
how we got there. The only two combinators that contribute
to this decision are sequencing (~) and alternation (|). Al-
ternation tells us which production rule was chosen, while
sequencing tells us where a subsequence was split. The num-
ber of splits in a subsequence is determined by the number of
concatenation combinators in a given rule, and corresponds
to the number of children of the relevant node in the parse
tree. For the matrix multiplication problem (Figure 4), there
can be at most one split, resulting in a binary parse tree with
leaves and internal nodes corresponding to applications of
the singleMatrix and chain rules, respectively.

Therefore, at every cell, we store a pair (ruleId, concats),
where ruleId corresponds to a chosen alternative, and concats

is a list of splits due to concatenation. We attribute a ruleId

for every alternative in a tabulate combinator in a prior gram-
mar analysis phase.

Backtrace Construction After the forward phase, both the
cost matrix and the backtrace matrix have been filled out.
The actual backtrace corresponding to the optimal tree is
reconstructed by running a simple recursive in-order tree
traversal starting from the root cell [0, n]. This yields a list
representation of the backtrace (List[(ruleId, concats)]). The
final third of Figure 8 depicts this representation.

Reuse of the Backtrace Now that the backtrace is con-
structed, it can be applied to any algebra. By following the
list in order, we apply the score function of the given alge-
bra to the rule specified by the ruleId parameter. Previous
elements are guaranteed to be constructed beforehand.

A Note on Complexity Let t be the number of tabulations,
c be the maximum number of concatenations and r be the
number of rules in a grammar. Since these factors are con-
stant for a given grammar, we will only take them into ac-
count when they appear as exponents in the following com-
plexity bounds.
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The space complexity for the optimal cost matrix O(n2).
Storing the paper trail takes an extra O(n2) of memory. The
running time complexity of the forward computation phase
is not affected by the paper trail, and remains O(n2+c).

The backtrace reconstruction phase is a tree traversal,
where the depth of the tree is n (as the cost matrix is of
size n2). The length of the backtrace is bounded by the size
of this tree, which is O(n). This is also the running time
complexity of the backtrace phase.

Finally, if we want to apply the backtrace to another
algebra, the running time is once again bounded by the
length of the trace.

Previous approaches combining ADP and backtracing al-
low to separate optimal cost computation and other alge-
bras [14, 30]. The difference is that they do not explicitly
compute a backtrace, but reuse the matrix computed in the
forward phase. This saves on memory, but applying a new
algebra has a higher complexity (O(n2)).

5. Evaluation
5.1 Building Staged Libraries
We implemented parser combinator libraries for both recur-
sive-descent parsers and dynamic programming parsers on
top of the LMS framework. The core LMS library provides
functionality that can be, and has been used for implement-
ing many different DSLs [26]. Such functionality includes
support for staged structs, arrays, lists, and strings, which are
relevant to parser combinators. It also includes code gener-
ation support for Scala, C, and CUDA, when relevant. As
mentioned in Section 3, LMS gives us inlining, dead code
elimination and common subexpression elimination for free.
Given the above, we regard the development of LMS itself
as an upfront cost, which has been amortized over the de-
velopment of DSLs on top of it. Arguably, this is analogous
to a general purpose language being an upfront cost to the
development of a library in this language.

The implementation of staged DSLs took a bit more ef-
fort than writing parser combinator libraries, however. This
is expected: in DSL terminology, a library is a shallow em-
bedding, while a staged DSL is a deep embedding. In partic-
ular, the additional development cost with respect to a library
was spent for:
• ensuring that we reuse existing functionality as much as

possible. The danger with code generation frameworks is
that it is easy to generate code for a specific use case;
some optimization patterns risk being repeated for many
cases, which leads not only to bad software practice, but
also to optimization patterns being lost to other DSLs.

• extending the struct functionality with optimizations for
conditional expressions.

• extending the framework with the Foreach abstraction.
• adding CUDA code generation support for the parallel

patterns exposed by dynamic programming problems.

Scala combinators
Staged Scala

NGINX Java port
NGINX / gcc -O2

0 75 150 225 300
274.32

112.58
200.82

0.03

Figure 9. HTTP parser throughput in MB/s

• manually inspecting generated code to ensure that inter-
mediate data structures are indeed eliminated. In addi-
tion to functionality and performance testing, we natu-
rally had to make sure that the performance gains we ob-
tain are due to abstraction overhead removal.

On the plus side, the effort spent on extensions to the LMS
framework is well invested, as the extensions can be used by
future projects as well.

5.2 Recursive-descent Parsers
We evaluated our staged recursive descent parsers, by imple-
menting a HTTP parser and a JSON parser. The benchmark-
ing environment for recursive descent parsers consisted of
an Intel i7 3720-QM with 16GB of RAM, we use Scala 2.10
(-optimise) on Oracle JDK7 and GCC 4.8.2 with the most
efficient optimization for given programs (-O2 or -O3). Our
staged parser combinators generate Scala code for both the
HTTP and JSON parser. We ran our Scala/Java benchmarks
using Scalameter [23], a benchmarking and performance re-
gression testing framework for the JVM. This framework
handles JIT warm-ups as well as running a benchmark till
performance stability.

HTTP Response Parser The first test is a comparison of
the parsing throughput of different implementations of an
HTTP response parser. To do that, we used a dataset of Twit-
ter messages with 100 HTTP responses totaling 8.15 Mb
of data that decompose in 54.2 Kb of HTTP headers and
8.10 Mb of JSON payload. The messages were obtained by
querying the Twitter Search API. The HTTP parsing hap-
pens only on headers.

We compare our staged combinators with both Scala’s
standard parser combinators and the Nginx proxy client, a
hand-optimized, fast, open-source implementation. We also
ported this client to Java, for comparison. Figure 9 shows
the results. As mentioned in the introduction, native Scala
parser combinators are a non-option. The JIT engine of the
JVM seems not able to optimize across functions. We per-
form better than the Java port. We think that this difference
may be due to the JVM performing better speculation for
conditional expressions generated by our code, than on the
state-machine like structure present in the hand-optimized
code. Similarly, the C version is better than staged parser
combinators. We presume that the O2 compiler optimizes
switch/case statements efficiently.
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Figure 10. JSON parser throughput in MB/s

JSON Parser Our second evaluation (Figure 10) compares
parsing of the JSON payload of the previous messages. The
JSON grammar is given as:

val jsonParser = {

def value: Parser[Any] = obj | arr | stringLit |

decimalNumber | "null" | "true" | "false"

def obj: Parser[Any] = "{" ~> repsep(member, ",") <~ "}"

def arr: Parser[Any] = "[" ~> repsep(value, ",") <~ "]"

def member: Parser[Any] = stringLit ~ (":" ~> value)

value

}

This parser looks very similar to a standard parser combi-
nator implementation [21, Chapter 31]. A JSON object is
either:
• a primitive value, such as a decimal, string literal, a

Boolean or the null value.
• or an array of values (the arr function).
• or an associative table of key-value pairs (the obj func-

tion).
We compare with Spray-json, a JSON parser for the pop-

ular Spray web toolkit for Scala. Its JSON parser is written
using a parser combinator library. We also compare with JQ,
a popular, efficient, command line tool implemented in C
to process queries on JSON. Once again, we see that a tra-
ditional parser combinator implementation performs poorly.
On the other hand, staged combinators compete very well
with the C implementation, and even surpass them.

5.3 Dynamic Programming
Dynamic Programming on CPU and GPU Our bench-
marking environment for dynamic programming (CPU and
GPU) consisted of a dual Intel Xeon X5550 with 96GB of
RAM with an Nvidia Tesla C2050 (3Gb RAM) graphic card.
We measured the running time of two different bioinformat-
ics algorithms for RNA sequence folding. RNA folding con-
sists of identifying matching basepairs that produce 2D fea-
tures such as hairpins, bugles and loops in the secondary
structure of RNA molecules [13, 15]. For both algorithms,
we generate C code from staged parser combinators. For par-
allelization, we generate CUDA, additionally.

The Nussinov Algorithm The Nussinov algorithm maxi-
mizes the number of matching basepairs. Its running time
complexity is O(n3). Its grammar is given by:

val s = tabulate(

empty map nil

| el ~ s map left

| s ~ el map right
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Figure 11. Nussinov algorithm running time

| (el ~ s ~ el filter basePair) map pair

| s ~ s map split

) aggregate h

The Nussinov algorithm identifies 4 possible folding alter-
natives:
• an element on the left side is dropped.
• an element on the right side is dropped.
• two elements match according to the basePair filter.
• a fold is split into two smaller folds.

Our results are displayed in Figure 11. We show the
running time for four variants of our generated code, along
with a hand optimized C version, and an ADPfusion version:
• ADPfusion is an embedded Haskell DSL for ADP. It uses

stream fusion [4] to eliminate intermediate list creation,
and performs close to hand-optimized C on the CPU. We
compare ADPfusion’s optimal cost calculation with ours,
omitting the computation of the backtrace.

• The CPU versions of our implementations run on a single
thread. The CPU+BT version fills the backtrace matrix
and runs the procedure to construct the backtrace.

• Similarly, our CUDA implementation is presented both
with and without the backtracing.

The CPU version without backtracing has similar perfor-
mance to hand-optimized C code. Indeed, manual inspec-
tion of the generated code reveals very close implementa-
tions. The ADPfusion version is about 2× slower, which
is in line with some remaining overhead that stream fusion
is unable to completely eliminate [14, Section 7]. For se-
quences larger than 800 elements, the CPU version takes a
slight extra performance hit: this can be attributed to data
overflowing caches. We notice that parallelizing on the GPU
is worthwhile only for significant sequence sizes. Also since
the costing algorithm is fairly simple, we notice a clear over-
head when backtracing is enabled.

The Zuker Algorithm The Zuker algorithm also predicts
the optimal secondary structure of an RNA sequence. In-
stead of maximizing the number of basepairs, it minimizes
free energy. Because the free energy is computed from hun-
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Figure 12. Zuker algorithm running time

dreds of coefficients based on physical measurements, a lot
of memory traffic is generated for each computation. The
grammar for Zuker’s algorithm consists of 4 tabulations with
15 productions and 13 scoring functions. The Zuker algo-
rithm has a complexity of O(n4) but it is commonly ac-
cepted to bound some productions of very rare large struc-
tures to reduce its complexity to O(n3) with a large constant
factor.

In Figure 12, we present results obtained for the Zuker
algorithm. Once again, we show results for both CPU and
GPU generated code, with and without backtracing. We
compare our implementation to ViennaRNA [13], a highly
optimized Zuker algorithm implementation written in C for
CPU. ViennaRNA fares better than our implementation be-
cause it precomputes basepairs matching and stack-pairings
for a sequence before launching the actual computation
phase; our generated implementations do not benefit from
such optimizations.

Compared to the simpler Nussinov algorithm, we can see
that lookup tables introduce significant overhead to the com-
putation. The overhead of computing the backtrace becomes
negligible as a result. In Figure 12 the GPU is slower than
CPU as the length of the sequences has not compensated for
the transfer overhead yet.

Scalability To give an intuition of scalability for both the
GPU and CPU versions, we benchmarked an extensive set
of sequences ranging from 500 to 5000 elements in length
(see Figure 13). The Nussinov algorithm scales better on
GPU, offering speedups from 4× to 40× (respectively for
1000 and 5000 elements sequences). The Zuker lookup ta-
bles hamper GPU performance more significantly, as multi-
ple random memory accesses are required for each scoring,
thereby delivering at best 3.3× speedup on the CPU for this
algorithm.

6. Related Work
Tools for Parsing Parser combinators and their implemen-
tations are popular in functional programming. They were
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Figure 13. Nussinov and Zuker algorithms scalability

initially proposed by Wadler to illustrate monads, and are
of the more general sort, as they produce a list of possi-
ble parses [36]. They have since been incorporated into pro-
gramming languages as libraries, like Parsec [18] in Haskell
and the Scala parser combinator library [20]. These libraries
focus on producing a single result. Koopman et al [17] use
a continuation-based approach to eliminate intermediate list
creation.

On the other hand are parser generators like Yacc [16],
Antlr [22] and Happy [12]. While such tools are good in
terms of performance, they do not easily support context-
sensitivity, which is required in protocol parsing.

The staged parser combinator approach bridges the gap
between both worlds in terms of features for a parser: ease of
use, context-sensitivity, composability, specializability and
performance.

Dynamic Programming/Memoization Parser combinators
and memoization are common knowledge. Frost et al. intro-
duce this technique [7, 8]. In libraries, techniques like pack-
rat parsing [6] are supported. They are also known to support
left recursion [37].

Our work on dynamic programming parsers is inspired by
Algebraic Dynamic Programming [10]. The original imple-
mentation was a Haskell library, and later a external DSL
known as Bellman’s GAP was developed [30]. Bellman’s
GAP also includes analysis techniques for verifying some
soundness properties, and optimizing memory consumption
and running time through yield-size analysis [11]. ADPfu-
sion is a more recent Haskell DSL that uses compiler op-
timizations to remove intermediate data structures (see be-
low).

Bellman’s GAP and ADPfusion both have support for
computing backtraces. Bellman’s GAP has an explicit prod-
uct algebra construct, which the compiler uses to gener-
ate a backtrace for one of the algebras which is specified
to be backtracing. ADPfusion supports a combine operator
<** which combines two algebras, and a backtrace operator
which can be used to apply an algebra on a matrix result-
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ing from the optimal cost (forward) phase. Both these ap-
proaches reuse the matrix computed in the forward phase,
and may recompute some results during the backtrace. Our
approach on the other first creates an algebra-agnostic back-
trace. We trade memory consumption (the paper trail) for an
improved running time complexity. The cost matrix can be
ignored during the backtracing phase: if the matrix is com-
puted on the GPU, we only need to transfer the backtrace
back to the CPU, and not the full resulting matrix.

Other language approaches are StagedDP [33] (programs
are expressed using classic recurrences) and Dyna [5] (a
logic-programming style language prevalent in the field of
NLP/stochastic grammar parsing).

Metaprogramming and Compiler Technology To match
performance of lower-level implementations, high-level lan-
guages require compiler technology. ADPfusion [14] uses
Stream Fusion [4] to optimize away intermediate lists and
generates tight efficient loops. Stream fusion depends on
compiler optimizations performed further down for optimal
performance. Our modular staging approach gives us more
control on which optimizations we can activate.

Staged parser combinators are a specific instance of par-
tial evaluation [9]. We make use of the well known tech-
nique of multi-stage programming [35]. Sperber et al. also
use partial evaluation for optimizing LR parsers which are
implemented as a functional-style library [31].

Cartey et al[2] propose an intermediate DSL for recur-
rence relations, which they analyze and generate GPU pro-
grams from. Their approach is more general as they try to in-
fer a parallel schedule from recurrence relations; we leverage
our domain-specific knowledge to force diagonal progress.

Parallelization Bellman’s GAP supports a parallelization
scheme for the GPU that is similar to ours, based on bottom-
up evaluation and computation following the diagonal [32].
We additionally retrieve the backtrace on the GPU and trans-
fer it to the CPU. The Nussinov and matrix multiplication
problems have also been studied as pure GPU implementa-
tions [3, 38].

Much work on parallelizing dynamic programming has
focused on the Smith-Waterman sequence alignment prob-
lem [19]. CudAlign [27, 28] matches sequences much larger
than the GPU memory size, using a hybrid divide-and-
conquer and dynamic programming approach. We have fo-
cused in this paper on folding problems rather than align-
ment problems.

7. Conclusion and Future Work
In this paper, we have demonstrated an approach for improv-
ing the performance of parser combinators, which removes
the overhead of the composition. This is achieved by com-
bining staging with abstractions that eliminate the creation
of intermediate data structures. We not only retain user ben-
efits (usability, modularity, composition), we also introduce

domain- and architecture-specific optimizations for further
benefits. Our approach is applicable to different classes of
parsers: top-down recursive descent and bottom-up dynamic
programming.

An interesting avenue for future work is the optimization
of more complex parsers that perform interleaving. For ex-
ample, we can interleave the parsing of a chunked HTTP
response with parsing of the underlying payload. The naive
way of parsing the payload is to first buffer all of it, and then
run an underlying parser. If the size of this payload is big, we
will hit memory bottlenecks. Instead, it is possible to parse
the payload upstream. The idea is to compose not only over
parsers, but also over Input. The input, instead of just being
a position in a sequence, will contain additional information
about the sequence, such as the current character/token, and
the rest of the input. The input becomes a representation of
a stream reader over a sequence: type Input = Reader[T].

Such a representation implies that we can compose and
abstract over stream readers. For example, this allows to dif-
ferentiate between lexers and token readers, where for the
latter, the rest of the input is computed by first running a
white space parser over the sequence. In a similar fashion,
chunked parsing can be implemented by feeding a chunked
sequence to a reader which understands how to parse chunk
sizes. From the view point of a parser combinators user, he
can still write the payload parser and the chunking parser in-
dependently. In terms of optimizations, we can view stream
readers as staged records: functions that compute the posi-
tion, current character, and rest of the input can be staged
away and inlined, using our approach.

In the big picture, we can see that parser combinators, be-
yond helping with parsing, are also a nice way of expressing
streaming problems. Our techniques for optimizing compo-
sition can have interesting applications in other streaming-
related applications as well.
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