
An Enhanced Interpolated-Modulated Sliding DFT
for High Reporting Rate PMUs

Paolo Romano, Mario Paolone
Distributed Electrical System laboratory (DESL)

Swiss Federal Institute of Technology of Lausanne (EPFL)
Lausanne, Switzerland

paolo.romano@epfl.ch, mario.paolone@epfl.ch

Abstract—The field of application of Phasor Measurement
Units (PMUs) might be limited by the PMU measurements re-
porting latencies and achievable reporting rates, particularly with
respect to power system protection applications that typically
require very low latencies. A way to speed-up synchrophasor
estimation algorithms based on the use of the Discrete Fourier
Transform (DFT) refers to the usage of stable and accurate
recursive processes for the DFT estimation. In this respect, this
paper presents a synchrophasor estimation algorithm, called
Interpolated-Modulated Sliding DFT (IpMSDFT), characterized
by high accuracies and reduced latencies, enabling reporting rates
up to thousands of synchrophasor per second. It is composed
by two stages: (i) a guaranteed-stable technique for sample-by-
sample DFT computation; (ii) an enhanced version of the classical
IpDFT algorithm for synchrophasor estimation. The algorithm
is analytically formulated and its digital design tailored to allow
a feasible deployment on an FPGA-based PMU. The IpMSDFT-
based PMU is finally validated with respect to the numerical
stability of the proposed solution, its reporting latencies and the
achievable reporting rates.

I. INTRODUCTION

The Phasor Measurement Unit (PMU) technology is con-
stantly evolving and already composes the backbone of the
most advanced metering systems in power networks.

One of the applications that might take major advantages
from the availability of PMU data is power system protection.
In this respect the literature already contains several contri-
butions related to real-time fault identification and location
processes using synchrophasors (e.g., [1]–[4]). The majority
of these methods assumes a centralized approach where PMUs
stream data to a Phasor Data Concentrator (PDC), that pro-
cesses them in order to identify and locate the fault with the
minimum possible latency.

If the centralized approach is adopted, in order to keep, at
least, the same latencies characterizing existing relay-based
protection schemes, the involved PMU technology has to
satisfy additional requirements compared to those introduced
by the IEEE Std. C37.118.1-2011 [5] and its latest amend-
ment C37.118.1a-2014 [6]. In particular, it needs to estimate
and report real-time synchrophasor-data with sufficient time-
determinism, lower time-latencies and higher refresh rates
without sacrificing their accuracy that has, at least, to keep
the same levels dictated by [5] and [6]. Since the time spent
in estimating the synchrophasor usually represents one of
the main burden within the whole PMU-based measurement

chain, it is definitely necessary to develop faster synchrophasor
estimation algorithms.

Most of the synchrophasor estimation algorithms that can be
found in literature are based on the Discrete Fourier Transform
(DFT). The accuracy of this category of methods has been
widely discussed in the literature and several variations of this
approach have been proposed, each one with its advantages
and disadvantages. A specific technique combining the use
of time-windows with the well-known Interpolated-Discrete
Fourier Transform (IpDFT) technique has been first proposed
in [7], [8] and further developed in [9]–[12]. This technique
has demonstrated to be characterized by a relatively low
computational complexity, and, above all, to be capable of
achieving an optimal trade-off between the estimation accu-
racy and response-time.

Based on the adopted method to update the DFT estimation,
IpDFT algorithms can be separated into two main categories:
recursive and non-recursive algorithms.

Within the group of non-recursive algorithms the well
known Fast Fourier Transform (FFT) algorithm [13] is widely
used. Tipically, this implementation is adopted to perform
harmonic analysis over an extended portion of the spectrum
even though its deployment on embedded system is usually
onerous. When, on the other hand, only a subset of the
overall DFT spectrum is used to estimate the synchrophasor
(see for instance [8]), the classic DFT theory turns out to
be very effective. In both cases, the measurement reporting
latencies are proportional to the adopted window length. As a
consequence, the algorithm throughput can only be improved
at the cost of reducing the window length, i.e., deteriorating
the PMU accuracy levels [11].

In order to increase the throughput without decreasing the
precision of the adopted IpDFT synchrophasor estimation
algorithm, DFT can be calculated via recursive algorithms that
are usually characterized by a lower number of operations to
update the values of a single DFT bin (e.g., [14]). Despite
this evident advantage with respect to the class of non-
recursive DFT algorithms, the two categories do not generally
have identical performances. In particular, the majority of
the recursive algorithms suffers of errors due to either the
approximations made to perform the recursive update, or the
accumulation of the quantization error produced by the finite
word-length of computers [15].

978-1-4799-5643-2/14/$31.00 ©2014 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148008323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A very effective method for sample-by-sample DFT bins
computation, is represented by the so-called Sliding-DFT
(SDFT) technique presented in [16]. This reference demon-
strates the efficiency of this method in comparison with the
popular Goertzel algorithm and its computational advantages
over the more traditional DFT and FFT, but also its drawbacks.
In particular, the approach proposed in [16] is only marginally
stable. In case the filter coefficient numerical rounding error is
not severe, the SDFT is bounded-input, bounded-output stable.
Otherwise, the algorithm suffers from accumulated errors
due to numerical rounding and is, consequently, potentially
unstable. Whereas common approaches found in literature
[16], [17] face this problem compromising results accuracy for
guaranteed stability, the method proposed in [18] and called
Modulated Sliding DFT (MSDFT) is guaranteed stable without
sacrificing accuracy.

In the framework of the above-listed literature, the paper fo-
cuses on the challenge of defining a high-speed synchrophasor
estimation algorithm characterized at the same time by high
accuracy, high throughputs and low-computational complex-
ity. This algorithm, hereafter called Interpolated-Modulated
Sliding DFT (IpMSDFT), besides maintaining the accuracy
levels first shown by the authors in [19], aims at achieving
reporting rates in the range of thousands of synchrophasors
per seconds. In this respect, the aim of the paper is threefold:
(i) extend the MSDFT approach described in [18] to the
case of synchrophasor estimation; (ii) couple this approach
with the enhanced interpolated-DFT method proposed by the
Authors in [19]; (iii) validate the proposed approach on a Field
Programmable Gate Array (FPGA) based PMU prototype.

The structure of the paper is the following: Section II
and III present the analytical formulation and a possible
digital design of the IpMSDFT algorithm respectively; Section
IV experimentally validates the IpMSDFT algorithm when
deployed into a PMU prototype. Finally Section V concludes
the paper with the remarks and conclusions.

II. SYNCHROPHASOR ESTIMATION ALGORITHM
FORMULATION

Any IpDFT algorithm is characterized, at least, by 3 sequen-
tial stages represented by: (i) the signal windowing, (ii) the
DFT calculation and (iii) the DFT interpolation. Since signal
windowing can be applied either in time or frequency domain
[20], stages (i) and (ii) can be equivalently exchanged. In this
respect, the following Section is arranged in 2 parts: the first
part presents the MSDFT algorithm and adapts it to the case of
synchrophasor estimation; the second one couples the MSDFT
method with the enhanced IpDFT approach presented by the
Authors in [19].

A. MSDFT for Synchrophasor Estimation

A power system quantity (branch current or node voltage)
can be modeled as a signal characterized by a main tone
fluctuating around the rated frequency of the system f0 (i.e., 50
or 60 Hz). The signal is sampled by the PMU each Ts = 1/Fs
(being Fs the PMU sampling rate), and collected over the

sliding window of length M sufficiently short so that the signal
can be assumed stationary within it:

x(m) = A cos(2πfmTs + ϕ), m ∈ [0,M − 1] (1)

where A, f and ϕ are the amplitude, frequency and phase of
the main tone of the spectrum that are supposed to be constant
over the observation interval of length M .

At every time-step n, the DFT can be potentially
updated based on the most recent set of samples
{x(n−M + 1), x(n−M + 2), . . . , x(n) }:

Xk(n) =

M−1∑

m=0

x(q +m) ·W−km
M (2)

being k the DFT-bin index, q = n −M + 1 and W−km
M =

e−j2πkm/M the DFT complex twiddle factor.
As demonstrated in [16], the so-called Sliding-DFT (SDFT)

formula can be derived from (2) as:

Xk(n) =

M−1∑

m=0

x(q +m) ·W−km
M

=

M−1∑

m=0

x(q +m− 1) ·W−k(m−1)
M +

− x(q − 1) ·W k
M + x(q +M − 1) ·W−k(M−1)

M

=W k
M ·

M−1∑

m=0

x(q +m− 1) ·W−km
M +

− x(q − 1) ·W k
M + x(q +M − 1) ·W−k(M−1)

M

=W k
M · (Xk(n− 1)− x(q − 1) + x(q +M − 1))

=W k
M · (Xk(n− 1)− x(n−M) + x(n)) (3)

The recursive DFT calculation described by (3) is poten-
tially unstable and might suffer from accumulated errors due
to numerical rounding. However, as shown in [18], it is easy
to observe that, when k = 0, the recursive formula for the
computation of Xk expressed by Equation (3) does not involve
the complex twiddle factor and is, therefore, by definition
stable:

X0(n) = X0(n− 1)− x(n−M) + x(n) (4)

By taking advantage of this property, and making use of the
so-called Fourier modulation property [21], the generic k-th
DFT-bin can be shifted to the position k = 0 multiplying the
input signal x(n) by the complex twiddle factor W−km

M :

X0(n) = X0(n− 1)+

− x(n−M) ·W−k(m−M)
M + x(n) ·W−km

M

= X0(n− 1)+

+W−km
M · (−x(n−M) + x(n)) (5)

where equation (5) is obtained thanks to the intrinsic period-
icity of the modulating sequence W−km

M .
The twiddle factor modulation only introduces a phase shift

that is changing with index m: it is equal to zero for m = 0,

it increases by the ∠W−k
M factor at each iteration and is

periodically reset to 0 every M samples. In view of this, the
k-th bin of the DFT can be derived from equation (5) as:

Xk(n) =W
k(m+1)
M ·X0(n) (6)

where W−k(m+1)
M compensate for the phase-shift due to the

modulating sequence.
Equations (5) and (6) define the MSDFT method for the

update of the value of a single bin of the entire DFT spectrum.

B. Enhanced-IpMSDFT Algorithm

During power-system dynamics, the spectral leakage effects
decrease the accuracy levels of the majority of DFT-based
synchrophasor estimation algorithms well above the IEEE
Standard C37.118.1 limits. IpDFT algorithms try to reduce
this bias by sequentially applying specific windowing func-
tions and DFT interpolation schemes but still suffer of errors
when the frequency of the signal drifts from the rated one.
Indeed, every IpDFT algorithm is based on the assumption
that Fs � f0. As a consequence the positive and negative
image of the main tone are typically very close in the DFT
spectrum and the tails of their envelop might eventually corrupt
the neighboring image. In this respect, the enhanced-IpDFT
(e-IpDFT) scheme presented in [19] extends the classical
IpDFT approach by compensating the spectral interference
produced by the negative image of the spectrum. It can be
described in terms of the following simplified procedure:

1: procedure E-IPDFT(x(m),m ∈ [0,M − 1])
2: apply Hanning window
3: compute DFT
4: estimate signal parameters via 2-points IpDFT
5: for i← 1, P do
6: estimate spectral interference
7: compensate for spectral interference
8: estimate signal parameters via 2-points IpDFT
9: end for

10: return signal parameters
11: end procedure

In [19] it has been shown that, by adopting a time window T
containing 3 exact periods of a signal at the rated power system
frequency (i.e., 50 or 60 Hz) and a sampling rate Fs of some
tens of kHz, the IpDFT algorithms performs well under most
of the conditions dictated by [5]. In particular the developed
e-IpDFT-based PMU prototype is capable of passing every
test defined by [5] for both PMU classes P and M except the
out-of-band ones.

The measurement reporting latencies and achievable re-
porting rates of the e-IpDFT algorithm are mainly limited
by the time needed to compute the relevant portion of the
DFT spectrum. In particular, as shown in [19], the e-IpDFT
algorithm only needs to compute the 3 DFT bins associated
to indices kmax+{−1, 0, 1}, where kmax ∈ N is the index of
the DFT maximum that is fixed for typical PMU operating

conditions and equal to kmax = df0M/Fsc, being dc the
nearest integer function.

In this respect the MSDFT seems to fit well in the e-IpDFT
scheme that might benefit from its fast refresh rates without
disrupting the previously defined procedure. The only opera-
tion that needs careful consideration is the signal windowing
(i.e. step 2 of the e-IpDFT procedure), since its application in
time-domain would compromise the whole MSDFT formula-
tion. As a consequence it needs to be moved after the MSDFT
update, and replaced by a frequency-domain convolution that
results into a linear combination of adjacent Xk(n) values. In
the case of the Hanning window, the windowed k-th bin can
be computed as:

Xk(n) = −0.25 ·Xk−1(n)+0.5 ·Xk(n)−0.25 ·Xk+1(n) (7)

From Equation (7), it is clear that, in order to compute 3
windowed DFT bins, we need to compute 5 MSDFT bins,
namely those associated to indices kmax + {−2,−1, 0, 1, 2}.
Therefore, we can expect that the MSDFT would not modify
the precision of the e-IpDFT algorithm but only improve
its measurement reporting latencies and achievable reporting
rates.

III. E-IPMSDFT DIGITAL DESIGN

The MSDFT assumes that for each new sample, every DFT
bin is updated in order not to compromise the next DFT
estimations. This computation must be performed before the
acquisition of the next sample, over the whole set of PMU
input channels, in order to correctly estimate the corresponding
synchrophasors. Since the PMU technology has to provide
estimations with a very high degree of confidence, the platform
that will host the IpMSDFT algorithm need to guarantee a
certain level of determinism.

In this respect, the FPGA technology currently represents
the best solution to host such a sample-by sample DFT calcula-
tion for several reasons: (i) the high-speed clock characterizing
such a platform and allowing millions of operation per second;
(ii) its intrinsic parallelism and determinism that guarantee
constant latencies with any input condition; (iii) the increased
size and complexity of the logical blocks composing the FPGA
that nowadays embeds a significant set of DSP block.

In what follows we will present the deployment of the
IpMSDFT algorithm in a PMU prototype based on the Xilinx
Artix-7 FPGA embedded into the Xilinx Zynq 7020 System
on a Chip (SoC). In particular, in the coming tests, the window
length and the sampling rate are set to 60 ms (3-periods of a
signal at a rated frequency of 50 Hz) and 10 kHz respectively
(i.e., M = 600). The analysis will focus on 2 major items:
(i) the FPGA resources allocation and (ii) the UTC time
synchronization of the IpMSDFT algorithm.

A. FPGA resources allocation

A minimum set of FPGA logical blocks needed to imple-
ment the MSDFT algorithm for the update of a single DFT bin
is shown in Fig. 1 together with the relevant interconnections.

x(t)

ADC

�

x(n) x(n�M)

⇥

+z�1

z�1

counter

⇥

m

address

Re
⇥
W km

M

⇤

RAM Re RAM Im

+

⇥

z�1

Im
⇥
W km

M

⇤

z�1

Im [Xk(n)]Re [Xk(n)]

k

FIFO

⇥

Fig. 1. Logical blocks needed to compute a single DFT bin by means of
the MSDFT algorithm.

The analog signal x(t) is digitally converted by an A/D
converter to provide the digital sequence of samples x(n).
As shown in equation (5), the MSDFT has to keep memory
of the last M samples in order to compute the difference
x(n)− x(n−M). This can be done by means of a FIFO
(First-In-First-Out) memory. In parallel, every time a new
sample comes, a modular counter increments the value of the
index m ∈ [0,M−1]. This, together with the value of the DFT
bin to be computed, returns the address of the memory location
of the a pre-allocated RAM that contains the instantaneous
values of the twiddle factor W km

M , expressed in terms of its real
and imaginary part. Rather then recomputing the twiddle factor
at every iteration, such a solution has two main advantages:
(i) it saves execution time by sacrificing the occupation of the
available blocks of RAM inside the FPGA; (ii) the twiddle
factor computation does not suffer of any accumulated errors.
Once the above listed operations completed, the k-th DFT
bin Xk(n) can be updated based on equations (5), and (6)
separately for real and imaginary part.

Based on the block scheme of Figure 1, the MSDFT method
for the estimation of a single DFT bin was deployed in the
FPGA. As it can be noticed from the compilation results shown
in the first row of Table I, only with the allocated resources
for the update of a single DFT bin via MSDFT, the number of
used DSP blocks raises up to 41. Since we need to compute 5
bins of the DFT spectrum, by replicating 5 times the previously

TABLE I
FPGA OCCUPATION OF THE E-IPMSDFT COMPONENTS

Logical blocks Flip-Flops LUTs DSP1 RAM2 latency [μs]

MSDFT (1-bin) 16,200 17,090 41 7 0.5
MSDFT (5-bins) 17,966 19,041 41 7 2.5

e-IpDFT (SE only) 15,236 16991 81 0 19.2

Total available 106,400 53,200 220 140 -

1 One DSP contains a 18x25 multiplier.
2 One block RAMs can store up to 32 kbits of data.

designed block we would get very close to the FPGA physical
limits and would not be able to add on top of that the e-IpDFT
algorithm. Hence the calculation of the 5 DFT bins needs to
be serialized by sharing the portion of the FPGA dedicated to
the MSDFT computation with every DFT bin and sacrificing
the algorithm latencies for the FPGA area requirements. Since
the latency of the proposed MSDFT implementation is very
small (0.5 μs) this choice would not add much in term of
measurement reporting latency.

The compilation results of a 1-channel MSDFT that com-
putes the DFT bins associated to the DFT indices kmax +
{−2,−1, 0, 1, 2} based on the above explained logic are
shown in the second row of Table I. As expected, the usage
of FPGA logic blocks does not significantly change compared
to the single DFT update, whereas the latency increases by
exactly a factor of 5. As a consequence the proposed solution
allows to estimate 5 DFT bins of a maximum possible number
of 37 channels at a sampling rate of 10 kHz. To be noticed that
the extension to more than 1 input channel will only increase
the amount of used RAM needed to keep memory of the latest
M samples for each input channel. On the other hand, the
amount of memory needed to store the pre-computed twiddle
factor will not change, as well as the amount of used DSP
blocks.

The MSDFT calculation and the e-IpDFT synchrophasor
estimation algorithm can be decoupled and run in two sep-
arated processes. The one that estimates the synchrophasor
will be activated based on the reporting rate settings and after
the MSDFT has been updated. The compilation results of
the portion of the e-IpMSDFT algorithm that estimates the
synchrophasor based on the most recent set of DFT bins are
also shown in Table I for a PMU equipped with a single
input channel. The characteristic latency of this portion of the
FPGA is of only 19.2 μs. Therefore the PMU can estimates
synchrophasor at a maximum reporting rate equal, for the
current setup, at the adopted sampling rate Fs.

B. UTC-synchronization of the e-IpMSDFT estimations

The MSDFT needs to run continuously to correctly update
the values of a set of DFT bins, and therefore potentially obtain
a new estimation every time a new raw sample is acquired. In
order to align the PMU estimations with the UTC time, some
specific considerations must be made.

As shown in Figure 2, the synchronization of the PMU
estimations to UTC-time can be performed by internally
synthesizing a square waveform, hereafter called subPPS,

su
bP

PS

T/2T/2

tsubPPS

t(n−M) t(n−1) t(n)

dT(n)

si
gn

al

time

 ts(n)

last acquired sample MSDFT support old samples

Fig. 2. An intuitive representation of the approach used to synchronize the
e-IpMSDFT estimations to the UTC-time.

aligned to the UTC-PPS (Pulse-Per-Second) but shifted back
by half of the window length T and characterized by a
frequency equal to the PMU reporting rate. The rising edge
of the subPPS waveform triggers the e-IpDFT synchrophasor
estimation algorithm, that uses the second last MSDFT update
(i.e. the one based on the set of samples centered around the
reporting time) to provide the most recent PMU estimation.

In practice, if we assume that the latest acquired sample
x(n) is characterized by a UTC time-stamp value t(n), based
on the above-described procedure, the synchrophasor’s time-
stamp ts(n) is the time corresponding to the middle of the
time window of length T that contains the set of samples
{x(n−M), . . . , x(n− 1)} that can be computed as:

ts(n) = t(n− 1) + Ts − T/2 (8)

where Ts is the PMU sampling time.
In the case of the proposed e-IpMSDFT algorithm, the

PMU sampling process can be either synchronized to an
absolute and stable time reference like the one provided by
the Global Positioning System or free-running. In the first
case, the above explained logic stands well alone: since the
sampling process is synchronized to the subPPS rising edges,
the time-stamp value computed using equation (8) corresponds
to the PMU reporting time and the e-IpMSDFT estimations are
automatically aligned to the UTC-time.

On the other hand, if the sampling process is free-running,
based on the environmental conditions, it will drift and the 1st

sample of the window will be rarely aligned to the subPPS
(see Figure 2). As demonstrated in [19], in order to correct
the effects of the free-running sampling process, 2 main
countermeasure must be taken:

• the time-stamp value, together with the estimated phase,
must be compensated for the following time difference:

dT (n) = t(n−M)− (tsubPPS − T) (9)

otherwise their accuracy will be proportional to the
sampling time Ts (see Figure 2);

• in order to improve the frequency (and therefore the
phase) estimations, the window length needs to be mea-
sured in real time and, as the sampling process drifts,
opportunely compensated in the e-IpDFT scheme.

0 6 12 18 24
−2

−1

0

1

2
x 10−4

Am
pl

itu
de

 e
rro

r [
p.

u.
]

0 6 12 18 24
−2

−1

0

1

2
x 10−4

Ph
as

e
er

ro
r [

ra
d]

time [hours]

Fig. 3. e-IpMSDFT numerical stability over 24 hours.

0.03000 0.03002 0.03004 0.03006
0

0.2

0.4

0.6

0.8

1

latency [sec]

C
D

F

avg = 0.03006964
std = 2.89e−05
max = 0.03011963
min = 0.03001965

Fig. 4. Cumulative distribution function of the measurement reporting
latencies for the proposed e-IpMSDFT algorithm.

IV. E-IPMSDFT EXPERIMENTAL VALIDATION

In this Section the e-IpMSDFT algorithm and the relevant
implementation are experimentally validated with respect to:
(i) the e-IpMSDFT stability over time, (ii) its measurements
reporting latencies and (iii) the achievable reporting rates.

The validation has been carried out using a National In-
struments PXI system opportunely synchronized to GPS as a
reference waveforms generator (see [19] for further details).

A. Numerical stability

During this test the e-IpMSDFT was left running for 24
hours with a reporting rate of 1 frame per second. The
PXI-based reference signal generator was set to synthesize a
GPS-aligned 50 Hz waveform. During the test the estimated
amplitude and phase values were collected and compared with
the reference phasors. Figure 3 shows the errors over the 24
hour test. As it can be noticed the estimations do not show any
instability and the proposed MSDFT design can be considered
correct.

B. e-IpMSDFT measurement reporting latencies

The measurement reporting latency is defined as the time-
delay from when an event occurs in the power system to the
time that it is reported in the data and can be computed as the
time interval between the data time-stamp and the time when
the data becomes available to the PMU outputs (see [5]).

Figure 4 shows the cumulative distribution function, com-
puted over 10,000 consecutive estimations, of the measured
latencies of a IpMSDFT-based PMU that was running at a
reporting rate of 50 estimations per seconds (i.e., the test
covers a time interval of more than 3 minutes). As it can be
noticed the distribution of the measurement reporting latencies

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0.9

0.92

0.94

0.96

0.98

1

Am
pl

itu
de

 [p
.u

.]

time [sec]

5000 [fps]
50 [fps]
true

Fig. 5. Estimated amplitude profiles during an amplitude step by PMUs
characterized by reporting rates of 50 and 5000 [fps] respectively.

is uniform with an average value of 0.030069 seconds, in
agreement with the expected one:

Tm = T/2 + Tproc (10)

being T the windows length that, as a recall, is set to 60 ms and
Tproc the processing time. Note that Tproc is slightly larger than
the sum of the synchrophasor computation latencies shown in
Table I, in view of the communication delays between the
MSDFT and synchrophasor estimation processes.

C. e-IpMSDFT reporting rates

As demonstrated in Section III-A the e-IpMSDFT-based
PMU prototype built on the proposed design, can achieve
reporting rates up to the PMU sampling rate Fs. In this test the
advantages brought by this outstanding characteristic of the
proposed PMU prototype are verified during a step change
in the amplitude of the input signal. In particular, Figure 5
shows the estimated amplitude during such a sudden change by
two different PMUs: the first one (grey-continuous line) runs
the e-IpDFT algorithm presented in [19] that is characterized
by a maximum reporting rate of 50 frames-per-second; the
second one (gray-dashed line) runs the proposed e-IpMSDFT
algorithm at a reporting rate of 5000 estimated synchrophasors
per second. As it can be noticed the e-IpMSDFT algorithm
offers a time-resolution proportional to the reporting rate.
Obviously, the MSDFT does not affect the PMU response
times during the step tests that will maintain the same values
demonstrated in [19].

V. CONCLUSIONS

The paper has presented an efficient method based on
MSDFT capable of accelerating the reporting rates of any
DFT-based synchrophasor estimation algorithm up to the limits
of the PMU sampling rate. In particular, the MSDFT method
was combined with the e-IpDFT synchrophasor estimation
algorithm, previously proposed by the authors in [19]. The
novel algorithm has been formulated and its deployment into
an FPGA-based PMU prototype illustrated. The validation of
the proposed method has demonstrated the reduced report-
ing latencies and extremely high reporting rates that the e-
IpMSDFT algorithm can achieve.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7-ICT-2011-8 under grant agreement no 318708
(C-DAX).

REFERENCES

[1] C.-S. Chen, C.-W. Liu, and J.-A. Jiang, “A new adaptive PMU based
protection scheme for transposed/untransposed parallel transmission
lines,” Power Delivery, IEEE Transactions on, vol. 17, no. 2, pp. 395–
404, 2002.

[2] C.-S. Yu, C.-W. Liu, S.-L. Yu, and J.-A. Jiang, “A new PMU-based fault
location algorithm for series compensated lines,” Power Delivery, IEEE
Transactions on, vol. 17, no. 1, pp. 33–46, 2002.

[3] J.-A. Jiang, J.-Z. Yang, Y.-H. Lin, C.-W. Liu, and J.-C. Ma, “An adaptive
PMU based fault detection/location technique for transmission lines. i.
theory and algorithms,” Power Delivery, IEEE Transactions on, vol. 15,
no. 2, pp. 486–493, 2000.

[4] J.-A. Jiang, Y.-H. Lin, J.-Z. Yang, T.-M. Too, and C.-W. Liu, “An
adaptive PMU based fault detection/location technique for transmission
lines. ii. PMU implementation and performance evaluation,” Power
Delivery, IEEE Transactions on, vol. 15, no. 4, pp. 1136–1146, 2000.

[5] “IEEE standard for synchrophasor measurements for power systems,”
IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pp.
1–61, 2011.

[6] “IEEE standard for synchrophasor measurements for power systems
– Amendment 1: Modification of selected performance requirements,”
IEEE Std C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-2011),
pp. 1–25, April 2014.

[7] V. K. Jain, W. L. Collins, and D. C. Davis, “High-accuracy analog
measurements via interpolated FFT,” Instrumentation and Measurement,
IEEE Transactions on, vol. 28, no. 2, pp. 113–122, 1979.

[8] T. Grandke, “Interpolation algorithms for Discrete Fourier Transforms
of weighted signals,” Instrumentation and Measurement, IEEE Transac-
tions on, vol. 32, no. 2, pp. 350–355, 1983.

[9] D. Belega and D. Dallet, “Multifrequency signal analysis by interpolated
DFT method with maximum sidelobe decay windows,” Instrumentation
and Measurement, IEEE Transactions on, vol. 42, no. 3, pp. 420–426,
2009.

[10] M. Paolone, A. Borghetti, and C. A. Nucci, “A synchrophasor estimation
algorithm for the monitoring of active distribution networks in steady
state and transient conditions,” in Proc. of the 17 th Power Systems
Computation Conference (PSCC 2011), Stockholm, Sweden, Aug, 2011.

[11] D. Belega and D. Petri, “Accuracy analysis of the multicycle syn-
chrophasor estimator provided by the interpolated DFT algorithm,”
Instrumentation and Measurement, IEEE Transactions on, vol. 62, no. 5,
pp. 942–953, 2013.

[12] D. Belega, D. Macii, and D. Petri, “Fast synchrophasor estimation by
means of frequency-domain and time-domain algorithms,” Instrumenta-
tion and Measurement, IEEE Transactions on, vol. PP, no. 99, 2013.

[13] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The Fast Fourier Transform
and its applications,” Education, IEEE Transactions on, vol. 12, no. 1,
pp. 27–34, 1969.

[14] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and
their applications. Springer, 2008.

[15] H. A. Darwish and M. Fikri, “Practical considerations for recursive DFT
implementation in numerical relays,” Power Delivery, IEEE Transactions
on, vol. 22, no. 1, pp. 42–49, 2007.

[16] E. Jacobsen and R. Lyons, “The sliding DFT,” Signal Processing
Magazine, IEEE, vol. 20, no. 2, pp. 74–80, 2003.

[17] S. Douglas and J. Soh, “A numerically-stable sliding-window estimator
and its application to adaptive filters,” in Signals, Systems & Com-
puters, 1997. Conference Record of the Thirty-First Asilomar Conference
on, vol. 1. IEEE, 1997, pp. 111–115.

[18] K. Duda, “Accurate, guaranteed stable, sliding discrete fourier transform
[DSP tips & tricks],” Signal Processing Magazine, IEEE, vol. 27, no. 6,
pp. 124–127, 2010.

[19] P. Romano and M. Paolone, “Enhanced interpolated-DFT for syn-
chrophasor estimation in FPGAs: Theory, implementation, and valida-
tion of a PMU prototype,” Instrumentation and Measurement, IEEE
Transactions on, no. 99, pp. 1–13, 2014.

[20] F. J. Harris, “On the use of windows for harmonic analysis with the
Discrete Fourier Transform,” Proceedings of the IEEE, vol. 66, no. 1,
pp. 51–83, 1978.

[21] A. V. Oppenheim, R. W. Schafer, J. R. Buck et al., Discrete-time signal
processing. Prentice-hall Englewood Cliffs, 1989, vol. 2.

