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Supplementary data 

S.1 Extraction of electroabsorption component from electromodulated differential 

absorption (EDA) data at high pump intensities 

At an excitation intensity of 2 µJ/cm2, the amplitude of pump-induced transient 

absorption (Fig. S1b, blue) is much lower than the EDA amplitude at the same pump 

intensity (Fig. S1a, blue solid curve). Thus, EDA is dominated by ground state 

electroabsorption, and field-induced changes of the population of excited state(s) are of 

minor importance at 2 µJ/cm2. This does not apply to conditions of stronger pump flux. 

Fig. S1a shows EDA spectra at 500 ps at three different excitation intensities 2 µJ/cm2, 

7 µJ/cm2, and 28 µJ/cm2. The shift of the isosbestic point with increasing flux from 

500 nm towards shorter wavelengths implies the appearance of new spectral features. 

EDA kinetics at 540 nm cannot be used for the determination of the electric field 

dynamics at higher excitation intensity as it is done for 2 µJ/cm2 fluence. EDA 

amplitudes for 7 µJ/cm2 and 28 µJ/cm2 excitation are roughly equal at 540 nm, but it is 

obvious that the Stark feature in the EDA spectrum is much weaker at 28 µJ/cm2. There is 

a remarkable similarity between the EDA spectrum and the differential absorption 

spectrum (Fig. S1, red curves) at 500 ps delay time at 28 µJ/cm2 fluence. Our differential 

absorption data of PC61BM films in agreement with reference [1] show flat photoinduced 

absorption in a visible range. A positive EDA signal, which resembles a differential 

absorption spectrum, is most probably the result of the field-stabilized excited state of 

PC61BM. The electric field reduces the relaxation rate to the ground state and this leads to 

the stronger induced absorption in the presence of the external field. It is still possible to 

get information about a decay of the electric field from EDA spectra at higher excitation 

intensities in spite of the appearance of a new spectral band. The whole spectra and not 

just one specific wavelength should be analyzed. The task consists in retrieving the 

ground state electroabsorption (Stark effect) contribution from EDA spectra. Purely 

mathematically, this can be done unambiguously if spectral constituents are orthogonal 

functions. Nevertheless, the unsophisticated procedure may give a result of high 

certainty, since field-induced changes of excited state(s) population and resulting 

absorption of this(ese) state(s) have a rather flat spectrum in the region of 
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electroabsorption. The iterative procedure described below was performed on the EDA 

spectrum for each time delay that gave the amplitude of EA and, consequently, the 

electric field as a function of time. Input data were EDA and EA spectra: 
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Initially residual ierr  was set to zero, ( )ji , tλα  are wavelength-dependent multipliers. 

Index i numerates the number of iteration and index j numerates the delay. The weighted 

average of ( )ji , tλα  over the EA spectrum supposed to reflect the amplitude of EA: 

( ) ( )jweightedji , tEAt ampl=λα        (S.2) 

The last step of iteration calculated residual: 

( ) ( ) ( ) ( )λλλ EAtEAtEDAerrerr ampli ⋅−== jji ,     (S.3) 

The procedure was repeated until δ<−+ i1i errerr , where δ  is the user-defined 

parameter of precision. The value of ( )jtEAampl  obtained at the last iteration for a given 

jt  was used for the estimation of the electric field relying on the square law dependence 

between the EA and the field.  
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Figure S1. a) EDA spectra at 500 ps delay and an applied bias of 6 V; b) differential 
absorption spectra of pristine PC61BM film at different excitation intensities and delays as 
indicated in labels. 
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S2. Steady-state electroabsorption of MD376/PC61BM blend 

Figure S2 shows the EA spectrum of MD376/PC61BM 1:1 blend film. The origin of the 

EA spectrum is not specific or distinctive for the purpose of the electric field and charge 

drift determination. The dependence of the EA amplitude on the electric field is 

significant. Nevertheless, we must clarify the observed phenomenon. The EA spectrum 

pretty much follows the second derivative of the absorption, and the amplitude of the EA 

signal in the visible range is proportional to the square of the electric field (insert in 

Fig. S2). Both features are the signature of the second order linear Stark effect [2,3]. This 

effect requires the non-zero dipole moment of the molecules in a ground state and 

MD376 according to quantum chemical calculations has a strong dipole moment of 6.2 D 

[4,5]. All these facts make the EA spectrum of MD376/PC61BM (1:1) blend evident, i.e. 

arising from the ground state dipole moment of randomly oriented MD376 molecules. 

One might expect contribution of PC61BM to the EA spectrum of the blend. Indeed, 

mismatch between EA and the second derivative of absorption is pronounced in a narrow 

spectral range at about 475÷500 nm, where one of the EA peaks of pristine PC61BM is 

located. It should be noted that the peak amplitude of EA of the blend is by about three 

times higher than that of pristine PC61BM and the effective thickness of PC61BM in the 

1:1 blend by weight is approximately two times less. Thus, it is not surprising that EA of 

PC61BM makes a small contribution to the EA of the blend film. Likely, the EA spectrum 

of MD376/PC61BM blend is the superposition of the quadratic Stark effect in both 

constituents and of the second order linear Stark effect in MD376, where the latter 

contribution dominates. As long as the amplitude of both effects has the same quadratic 

dependence on the electric field it is not necessary to disentangle these two effects in 

order to determine the field dynamics. 
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Figure S2. Steady-state electroabsorption spectrum, absorption spectrum and second 
energy derivative of absorption spectrum of MD376/PC61BM (1:1 ww) blend film. Insert 
shows the electroabsorption amplitude dependence on applied voltage fitted by parabolic 
function. 
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S3. Calculation of the electron-hole separation distance and the average charge 

carrier mobility in MD376/PC61BM blend 

 

 

Figure S3. Time evolution of the electric field strength in MD376/PC61BM (1:1 w/w) 

blend device under an applied voltage of 6 V (1.7 MV/cm) and excitation fluences of 

2 µJ/cm2 (blue), 7 µJ/cm2 (green), 28 µJ/cm2 (red), and 183 µJ/cm2 (black).  

 

Figure S4. Average electron-hole separation distance in the direction of the field as a 
function of time in MD376/PC61BM (1:1) blend device at applied voltage of 6V (1.7 
MV/cm) and excitation intensity of 2µJ/cm2 (blue), 7µJ/cm2 (green), 28µJ/cm2 (red) and 
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183µJ/cm2 (black). Insert shows a separation distance (not affected by screening of the 
field) combined from the measurements at different intensity. 

Figure S3 shows kinetics of the electric field in MD376/PC61BM (1:1 w/w) blend 

obtained at the applied bias of 6 V and identical excitation conditions as in case of 

pristine PC61BM. These kinetics were used to calculate the charge carrier mobility as 

shown below. 

Writing analytical expression, which describes a decay of the field as a function of time, 

requires presumption regarding the drift speed of charge carriers, i.e. mobility. Reduction 

of the field in a film is a result of counteracting electrical dipole that is created by the 

electron-hole separation in a direction parallel to the electric field. Thus, the decay of the 

field might be expressed as a function of the average separation distance )(tl  of the 

electron-hole pair in the direction of the electric field without assuming a mobility as a 

constant. If charge generation is homogeneous, expression, which accounts for charge 

extraction, takes this form: 
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Where d  is the thickness of the active layer. Expressing )(tl  leads to: 

( ) ( )[ ]totalEtΔEdtl Δ−−= /11 .      (S5) 

Figure S3 shows time-dependence of )(tl  obtained from the experimental data of the 

field dynamics according to (S5). We should note that the separation distance presented 

in this figure does not reflect the absolute distance between an electron and a hole. It is 

the average component of the separation in the direction of the applied field. The initial 

charge separation is governed by the disordered morphology of MD376/PC61BM blend. 

The electric field makes only weak influence. As a consequence, the charge pairs 

separate in random directions yielding minor component along the field. Results at a 

different pump intensities are complementary. Low pump intensity data are noisy at early 
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time because the same electron-hole displacement causes a weaker decrease of the 

electric field at low carrier concentration, whereas the separation distance starts to 

saturate because of the space charge screening effect at high intensity. In order to obtain 

)(tl  with reasonable accuracy and unaffected by the field screening in all time domains 

we combined it from data measured at different excitation intensities. Insert in Fig. S3 

shows the obtained result on a linear scale. Time intervals of 0-4 ps, 6-30 ps, 30-80 ps 

and 80-1000 ps are assembled from 183 µJ/cm2, 28 µJ/cm2, 7 µJ/cm2 and 2 µJ/cm2 data, 

respectively. Continuous interconnection of the data confirms the applicability of a linear 

extrapolation of extracted charge as a measure for the photogenerated charge density 

under high excitation conditions. If mobility was time-independent, the separation 

distance would follow a straight line with time before the extraction of substantial 

amount of charge, i. e. while the separation distance is much smaller than the film 

thickness. It is clear that a slope of the curve (insert Fig S3) decreases with time and it is 

not a consequence of the space charge effect because the electric field decreases by less 

than 15 % after 1 ns at excitation intensity of 2 µJ/cm2. This must be a consequence of 

decreasing mobility. Instantaneous mobility averaged over both types of carriers ─ 

electrons and holes ─ can be obtained by calculating temporal derivative of the electron-

hole separation distance. It is not an easy task because of the experimental noise. 

Smoothing procedures or approximations by series of elementary functions have to be 

applied in order to accomplish this task and the result depends on the chosen path. Thus, 

we present running average of the mobility ( ( ) )/( 0
1 ttlEt −Δ⋅= −µ ) in the main text, 

and not an instantaneous mobility dtldE /1 ⋅= −µ . 
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S4. Experimental setup 

 

Figure S5. Scheme of experimental setup for electromodulated differential absorption 
measurement. 
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