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Abstract

This paper describes a simple framework for
structured sparse recovery based on convex op-
timization. We show that many structured spar-
sity models can be naturally represented by lin-
ear matrix inequalities on the support of the un-
known parameters, where the constraint matrix
has a totally unimodular (TU) structure. For such
structured models, tight convex relaxations can
be obtained in polynomial time via linear pro-
gramming. Our modeling framework unifies the
prevalent structured sparsity norms in the litera-
ture, introduces new interesting ones, and renders
their tightness and tractability arguments trans-
parent.

1 Introduction

Many important machine learning problems reduce to ex-
tracting parameters from dimensionality-reduced and po-
tentially noisy data [26]. The most common data model in
this setting takes the familiar linear form

b= A (%) +w, (1)

where 2 € R? is the unknown parameter that we seek, the
linear operator A : R? — R™ compresses % from p to
n < p dimensions, and w € R™ models noise. In a typical
scenario, we only know A and b in (1).

In the absence of additional assumptions, it is impossible
to reliably learn 2 when n < p, since A has a nontriv-
ial nullspace. Hence, we must exploit application-specific
knowledge on z”. This knowledge often imposes z” to
be simple, e.g., well-approximated by a sparse set of co-
efficients that obey domain structure. Indeed, structured
sparse parameters frequently appear in machine learning,
signal processing, and theoretical computer science, and
have broader generalizations including structure on matrix-
valued 2" based on its rank.

This paper relies on the convex optimization perspective for
structured sparse recovery, which offers a rich set of anal-
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ysis tools for establishing sample complexity for recovery
and algorithmic tools for obtaining numerical solutions [5].
To describe our approach, we focus on the proto-problem

Find the simplest  subject to structure and data. (2)

Fortunately, we often have immediate access to convex
functions that encode the information within data (e.g.,
||Ax — b|| < o for some o € R,) in (2).

However, choosing convex functions that jointly address
simplicity and structure in the proto-problem requires some
effort, since their natural descriptions are inherently com-
binatorial [4, 2, 18, 11]. For instance, sparsity (i.e., the
number of nonzero coefficients) of x? subject to discrete
restrictions on its support (i.e., the locations of the sparse
coefficients) initiates many of the structured sparsity prob-
lems. Unsurprisingly, there is a whole host of useful con-
vex functions in the literature that induce sparsity with the
desiderata in this setting (cf., [2] for a review). The chal-
lenge resides in finding computationally tractable convex
surrogates that tightly captures the combinatorial models.

To this end, this paper introduces a combinatorial sparse
modeling framework that simultaneously addresses both
tractability and tightness issues that arise as a result of con-
vex relaxation. In retrospect, our key idea is quite simple
and closely follows the recipe in [1, 19], but with some
new twists: We first summarize the discrete constraints that
encode structure as linear inequalities. We then identify
whether the structural constraint matrix is totally unimod-
ular (TU), which can be verified in polynomial-time [25].
We then investigate classical discrete notions of simplic-
ity and derive the Fenchel biconjugate of the combinatorial
descriptions to obtain the convex relaxations for (2).

We illustrate how TU descriptions of simplicity and struc-
ture make many popular norms in the literature transparent,
such as the (latent) group norm, hierarchical norms, and
norms that promote exclusivity. Moreover, we show that
TU descriptions of sparsity structures support tight con-
vex relaxations and polynomial-time solution complexity
for (2). Our tightness result is a direct corollary of the fact
that TU inequalities result in an integral constraint polyhe-
dron where we can optimize linear costs exactly by convex
relaxation (cf., Lemma 2).

Our specific contributions are summarized as follows.
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We propose a new generative framework to construct
structure-inducing convex programs (which are not neces-
sarily structure-inducing norms). Our results complement
the structured norms perspective via submodular modeling,
and go beyond it by deriving tight convex norms for non-
submodular models. We also derive novel theoretical re-
sults using our modeling framework. For instance, the la-
tent group lasso norm is the tightest convexification of the
group ¢y-norm [3]; Hierarchical group lasso is the tightest
convexification of the sparse rooted connected tree model
[3]; Sparse-group lasso leads to combinatorial descriptions
that are provably not totally unimodular; Exclusive lasso
norm is tight even for overlapping groups.

2 Preliminaries

We denote scalars by lowercase letters, vectors by lower-
case boldface letters, matrices by boldface uppercase let-
ters, and sets by uppercase script letters.

We denote the ground setby P = {1, - , p}, and its power
set by 27 The i-th entry of a vector « is x;, the projection
of zx overasetS C Pis xgs,ie., (xs); =0,Vi ¢ S. The
vector containing the positive part of « is denoted by ;. =
min{a, 0} (min taken element wise). The absolute value
of |x| is taken element wise. Similarly, the comparison
x > y is taken element wise, i.e., x; > y;,Vi € P. For
g > 1, the £;-norm of a vector € R? is given by ||z||, =
(57, )1/, and [|a]c = max{Je ]}

We call the set of non-zero elements of a vector x the sup-
port, denoted by supp(x) = {i : x; # 0}. For binary vec-
tors s € {0,1}P, with a slight abuse of notation, we will
use s and supp(s) interchangeably; for example, given a
set function F', we write F'(s) = F'(supp(s)). We let 1,
be the vector in R? of all ones, and I, the p x p identity ma-
trix. We drop subscripts whenever the dimensions are clear
from the context. In particular, Tg,ppz) = (1p)supp(a)
denotes the projection of 1,, over the set supp(x).

We introduce some definitions that are used in the sequel.

Definition 1 (Submodularity). A set function F : 27 —
R is submodular iff it satisfies the following diminishing
returns property: ¥S C T C P,Ye € P\ T, F(SU
{e}) = F(S) = F(T U{e}) — F(T).

Definition 2 (Fenchel conjugate). Given a function g :
R? — R U {+cc}, its Fenchel conjugate, g* : RP —
R U {400}, is defined as:

sup  z'y — g(x)
xcdom(g)

g (y) =

where dom(g) := {x : g(x) < +o0}. The Fenchel conju-
gate of the Fenchel conjugate of a function g is called the
biconjugate, and is denoted by g**.

Definition 3 (Total unimodularity). A matrix M € R>™
is totally unimodular (TU) iff the determinant of every
square submatrix of M is 0 or 1.

In what follows, some proofs have been omitted due to lack
of space; see the supplementary material.

3 A generative view of sparsity models

3.1 Foundations

We can describe the simplicity and the structured con-
straints in the proto-problem by encoding them concisely
into a combinatorial set function F' on the support of the
unknown parameter [1, 19]. Hence, we can reduce our task
of finding the tightest surrogate convex function to deter-
mining the convex envelope, i.e., the largest convex lower
bound of F'(supp(x)), which is given by its biconjugate.

Let us first identify a sufficient condition for tractable com-

putation of the convex envelope of F'(supp(x)).

Lemma 1. Given a set function F : 2P — R U {+oc}, let

g(x) = F(supp(z)). If

Al. F admits a proper (dom(f) # 0) lower semi-
continuous (l.s.c.) convex extension f, i.e., f(s) =
F(s),Vs € {0,1}?;

A2. maXge{0,1}r |y|T3 - f(s) = maXsge[o,1]» |?J|T3 -
f(s), Yy € RP;

A3. mingepo,12{f(8)
mized, Vx € RP;

then the biconjugate of g(x) over the unit {,-ball can be

efficiently computed.

: 8 > |x|} can be efficiently mini-

It is also interesting to compute the biconjugate of g(x)
over other unit balls in the Euclidean space, which we will
not discuss in this paper. The proof of Lemma 1 is elemen-
tary, and is provided for completeness:

Proof. [Lemma 1] It holds that

9*(y) = S a’y — F(supp(x))
Z|| oo <1
= sup sup xly — F(s)

s€{0,1}7 lIwloo<t
Lsupp(2) =2

= max |y|Ts— F(s) (by Holder’s inequality)
se€{0,1}»

— max |yl"s— f(s)

(by Al and A2)
s€0,1]p

The conjugate is a discrete optimization problem which, in
general, is hard to solve. Assumption A2 guarantees that its
convex relaxation has integral optimal solutions, otherwise
the last equality will only hold as an upper bound.

g (x) = sup "y — g*(y)
yERP

— sup min_yTz — [y + (s)
yeRp s€[0,1]P

* .
= min  sup y|"(|z| - s)+ f(s)
se[0,1]? yERP
sign(y)=sign(x)
mingep,yr f(s) if € [—1,1]” Nndom(f)
= s>|=|
00, otherwise.
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Given assumption A1, (%) holds by Sion’s minimax theo-
rem [23, Corollary 3.3]. Assumption A3 guarantees that
the final convex minimization problem is tractable. O

Remark 1. It is worth noting that, without assumption A2,
the resulting convex function will still be a convex lower
bound of g(x), albeit not necessarily the tightest one.

Remark 2. Note that in lemma I, we had to restrict the
biconjugate over the box [—c, c|P (with ¢ = 1), otherwise it
would evaluate to a constant. In the sequel, unless other-
wise stated, we assume c = 1 without loss of generality.

In general, computing even the conjugate is a hard prob-
lem. If the chosen combinatorial penalty has a tractable
conjugate, its envelope can be numerically approximated
by a subgradient method [14].

3.2 Submodular sparsity models

In the generative modeling approach, non-decreasing sub-
modular functions provide a flexible framework that is
quite popular. While the best known method for checking
submodularity has sub-exponential time complexity [21],
we can often identify submodular structures by inspection,
or we can restrict ourselves to known submodular models
that closely approximate our objectives.

In the light of Lemma 1, submodular functions (cf.,
Def. 1) indeed satisfy the three assumptions, which al-
low the tractable computation of tight convex relaxations.
For instance, the convex envelope of a submodular non-
decreasing function is given by its Lovasz extension [1],
and optimization with the resulting convex regularizer can
be done efficiently. In fact, the corresponding proximity
operator is equivalent to solving a submodular minimiza-
tion problem (SFM) using the minimum-norm point algo-
rithm [1], which empirically runs in O(p?)-time [1]. How-
ever, recent results show that in the worst-case analysis,
min-norm point algorithm solves SFM in O(p”)-time [6].

3.3 {,-regularized combinatorial sparsity models

In some applications, we may want to control not only the
location of the non-zero coefficients, but also their magni-
tude. In this setting, it makes sense to consider a combina-
tion of combinatorial penalties with continuous regulariz-
ers. In particular, functions of the form uF (supp(x)) +
v||xz||, are studied in [19]. The positive homogeneous
convex envelope of a /,-regularized set function is then

Hysupp(s)H(I

given by the dual of Q7 (y) = max,e(0,1}r,s0 N OLC
which can be computed efficiently, for example, in the spe-
cial case where F' is submodular. However, if we only seek
to enforce the combinatorial structure, using this approach
will fail, as discussed in Section 6.

4 Totally unimodular sparsity models

Combinatorial descriptions that satisfy Lemma 1 are not
limited to submodular functions. Indeed, we can intuitively
model the classical sparsity penalties that encourage the
simplest support subject to structure constraints via basic
linear inequalities [16, 18]. When the matrix encoding the
structure is TU, such models admit tractable convex relax-
ations that are tight, which is supported by the following.
Lemma 2 ([17]). Given a TU matrix M € R™>™, an in-
tegral vector ¢ € 7!, and a vector @ € R™. The linear
program (LP) maxﬁe[oyl]m{OT,B : M3 < c} has integral
optimal solutions.

Let us first provide a simple linear template for TU models:

Definition 4 (TU penalties). We define TU penalties as dis-
crete penalties over the support of x that can be written as

pyp— : T T . p—
gTU(w) T uEI{I})l,Ill}Af{d w+te s: MIB S c, ]lsupp(m) - S}
for all feasible x, and gry(x) = oo otherwise, where

M e R*M+D) js g TU matrix, B = ‘: ,w e {0,1}M s

a vector of binary variables useful for modeling latent vari-
ables , d € RM and e € RP are arbitrary weight vectors,
and c € 7! is an integral vector.

By Lemma 2, it follows that TU penalties satisty the suffi-
cient conditions described in Lemma 1, where the convex
extension is the function itself, and the resulting convex en-
velope is given below.

Proposition 1 (Convexification of TU penalties). The con-
vex envelope of a TU penalty is given by the following LP:

gru(z) = {d"w+els: MB<c,|z| < s}

min
s€[0,1]P,wel0,1]M

for all feasible x, and g%, () = oo otherwise.

Note that when the matrix M in Definition 4 is not TU, the
above LP is still useful, since it is a convex lower bound of
the penalty, despite being non-tight as noted in Remark 1.

Remark 3. The simplicity description does not need to be
a linear function of w and s. We can often find TU descrip-
tions of higher order interactions that can be “lifted” to
result in the linear TU penalty framework (cf., Section 6.3).

Remark 4. A weaker sufficient condition for lemma 2 to
hold is for the system M 3 < c to be total dual integral [9]
(e.g., submodular polyhedra). Then, penalties of the form
described in Definition 4 will again satisfy Lemma 1.

Besides allowing tractable tight convexifications, the
choice of TU penalties is motivated by their ability to cap-
ture several important structures encountered in practice.
In what follows, we study several TU penalties and their
convex relaxations. We present a reinterpretation of sev-
eral well-known convex norms in the literature, as well as
introduce new ones.
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variables
groups

Gi [ Gs Ga Gs

Figure 1: (Left) Bipartite graph representation, (Right) Inter-
section graph representation of the group structure & = {G; =

{2},G2 ={1,3,4},G3 = {2,3,6},G4 = {5,6},Gs = {5,7}}

5 Group sparsity

Group sparsity is an important class of structured sparsity
models that arise naturally in machine learning applications
(cf., [26] and the citations therein), where prior information
on z dictates certain groups of variables to be selected or
discarded together.

A group sparsity model thus consists of a collection of po-
tentially overlapping groups & = {Gy, - -- , Gas } that cover
the ground set PP, where each group G; C P is a subset of
variables. A group structure construction immediately sup-
ports two compact graph representations (c.f., Figure 1).

First, we can represent & as a bipartite graph [3], where the
groups form one set, and the variables form the other. A
variable ¢ € P is connected by an edge to a group G; € &
iff i € G;. We denote by B € {0,1}**M the biadjacency
matrix of this bipartite graph; B;; = 1iff i € G;, and
by E € {0,1}/1x(M+2) jts edge-node incidence matrix;
E;; = 1iff the vertex j is incident to the edge e; € £. Sec-
ond, we can represent & as an intersection graph [3], where
the vertices are the groups G; € &. Two groups G; and G;
are connected by an edge iff G; N G; # (0. This structure
makes it explicit whether groups themselves have cyclic in-
teractions via variables, and identifies computational diffi-
culties.

5.1 Group intersection sparsity

In group sparse models, we typically seek to express the
support of =% using only few groups. One natural penalty
to consider then is the non-decreasing submodular function
that sums up the weight of the groups intersecting with the
support Fn(S) = 3¢, cs.sng, 20 di- The convexification
of this function results in the /.,-group lasso norm (also
known as co-CAP penalties) [12, 27], as shown in [1].

We now show how to express this penalty as a TU penalty.

Definition 5 (Group intersection sparsity).

min {dTw tHB <0, ]lsupp(:v) = 3}

x) =
go.n(®) we{0,1}M

where H is the following matrix:

—Iy, H,
—Iy,Hy 1 ifj=k,jeg

0 otherwise

H = 7Hk(i7j):{

—Iy, H,

Figure 2: Unit norm ball of gg* -, for & = {{1, 2}, {2,3}},
unit group weights d = 1.

and the vector d € Rf\f here corresponds to positive group
weights. Recall that 3 = [‘:], and thus HB3 < 0 simply

corresponds to s; < w;,¥j € G;.

g, (x) indeed sums up the weight of the groups intersect-
ing with the support, since for any coefficient in the support
of x the constraint H3 < 0 forces all the groups that con-
tain this coefficient to be selected.

Here, H is TU, since each row of H contains at most two
non-zero entries, and the entries in each row with two non-
zeros sum up to zero, which is a sufficient condition for
total unimodularity [17, Proposition 2.6].

Proposition 2 (Convexification). The convex envelope of
ge.n(x) over the unit {oo-ball is

ok Y g.co dillzg oo ifxe[-1,1]7
905,0('73) = { i .
00 otherwise

5.2 Minimal group cover

The groups intersections penalty induces supports corre-
sponding to the intersection of the complements of groups,
while in several applications, it is desirable to explain the
support of % as the union of groups in &. In particular, we
can seek the minimal set cover of x:

Definition 6 (Group ¢y-“norm”, [3]). The group {o-
“norm” computes the weight of the minimal weighted set
cover of x with group weights d € Rﬂ\f :

min {dTw : Bw > ]lsupp(w)}a

[ 2 I—
g ,0(x) o

where B is the biadjacency matrix of the bipartite graph
representation of ®.

Note that computing the group {y-“norm” is NP-Hard,
since it corresponds to the minimum weight set cover prob-
lem. gg o(x) is a penalty that was previously considered in
[3, 20, 11], and the latent group lasso was proposed in [20]
as a potential convex surrogate for it, but it was not estab-
lished as the tightest possible convexification.

The group £y-“norm” is not a submodular function, but if
B is TU, it is a TU penalty, and thus is admits a tight
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Figure 3: Unit norm ball of gg*,, for & = {{1,2}, {2,3}},
unit group weights d = 1.

convex relaxation. We show below that the convex enve-
lope of the group £y-“norm” is indeed the /. -latent group
norm. It is worth noting that the ¢,-latent group lasso was
also shown in [19] to be the positive homogeneous con-
vex envelope of the /,-regularized group £y-“norm”, i.e.,
of pg(x)s,0 + vz,

Proposition 3 (Convexification). When the group structure
leads to a TU biadjacency matrix B, the convex envelope
of the group Ly-“norm” over the unit £ ,-ball is

. min,,cpom{d’ w: Bw > |z|} ifx € [-1,1]°
gs,0(T) = ' .

’ 00 otherwise
Thus, given a group structure &, one can check in polyno-
mial time if it is TU [25] to guarantee that the /., -latent
group lasso will be the tightest relaxation.

Remark 5. One important class of group structures that
leads to a TU matrix B is given by acyclic groups, as
shown in [3, Lemma 2]. The induced intersection graph
for such groups is acyclic, as illustrated in Figure 1. In this
case, the . -latent group norm is a tight relaxation.

5.3 Sparsity within groups

Both group model penalties we considered so far only in-
duce sparsity on the group level; if a group is selected, all
variables within the group are encouraged to be non-zero.
In some applications, it is desirable to also enforce sparsity
within groups. We thus consider a natural extension of the
above two penalties, where each group is weighed by the
{y-norm of x restricted to the group.

Definition 7 (Group models with sparsity within groups).

M
s = i i . MB < O, ]lsu x) —
go.s(@) we‘}é{ﬁl}M{;“ g, llo : MB < 0, Loupp(a) = 8}
where M here is either M = H in Definition 5 or M =
[—B, I,] in Definition 6.

Unfortunately, this penalty leads to a non-TU penalty, and
thus its corresponding convex surrogate given by Proposi-
tion 1 is not guaranteed to be tight.

Proposition 4. Given any group structure ®, gg s(x) is
not a TU penalty.

Proposition 5 (Convexification). The convex surrogate via
Proposition 1 for gs s(x) with M = H (i.e., the group
intersection model with sparse groups) is given by

Y (lzglloe + 2] = 1)+

(1,7)€E

9675(.’.6) =

forx € [-1,1]7, and Qg s(x) := oo otherwise. Note that
Qo s(®) < g5, ().

By construction, the convex penalty proposed by Proposi-
tion 5 is different from the sparse group lasso in [22].

Analogous to the latent group norm, we can seek to con-
vexify the sparsest set cover with sparsity within groups:

Proposition 6 (Convexification). The convex surrogate via
Proposition 1 for ge s(x) with M = [—B,1I,] (i.e., the
group £y-“norm” with sparse groups) is given by

min
wel0,1]M

Qo s(x) = { D Witlz|=1)+: Bw > |al}

(1,7)€€

forx € [-1,1]?, and g(x)s,s = 00 otherwise.

5.4 Sparse G-group cover

In this section, we provide a more direct formulation to en-
force sparsity both on the coefficients and the group level.
If the true signal «? we are seeking is a sparse signal cov-
ered by at most G groups, it would make sense to look for
the sparsest signal with a G-group cover that explains the
data in (2). This motivates the following natural penalty.

Definition 8 (Sparse G-group cover).

{]lTs:szs,]lngG,s:]l

gs.c(x) := min supp(w)}

we{0,1}P
where B is the biadjacency matrix of the bipartite graph
representation of ®.

If the actual number of active groups is not known, G
would be a parameter to tune. Note that g ¢ is an ex-
tension of the minimal group cover penalty (c.f., Section
5.2), where instead of looking for the signal with the small-
est cover, we seek the sparsest signal that admit a cover
with fewer than G groups. ge ¢ is a TU penalty whenever

B = [?] is TU [17, Proposition 2.1], which is the case,
for example, when B is an interval matrix.

Proposition 7 (Convexification). When the group structure
leads to a TU constraint matrix B, the convex envelope of
ge,c over the unit {oo-ball is

min {||z|; : Bw > |z|, 17w < G}

k% x) =
9@5,0() we[0 1M

forx € [=1,1], and g3 (x) = oo otherwise.
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Figure 4: Valid selection (left), Invalid selection (right)

Figure 5: Unit norm ball of g7, &x = {{1,2,3},{2}, {3}}

The resulting convex program thus combines the latent
group lasso (c.f., Section 5.2) with the ¢; norm and pro-
vides an alternative to the sparse group lasso in [22], for
the overlapping groups case. In the supplementary mate-
rial we provide a numerical illustration of its performance.

5.5 Hierarchical model

We study the hierarchical sparsity model, where the coeffi-
cients of ” are organized over a tree 7, and the non-zero
coefficients form a rooted connected subtree of 7 (cf., Fig-
ure 4). This model is popular in image processing due to
the natural structure of wavelet coefficients [13, 7, 24]. We
can describe such a hierarchical model as a TU model:

Definition 9 (Tree {y-“norm”). We define the penalty en-
coding the hierarchical model on x as

x ifT1l >0
oro(a) ::{| lo FTLppia) >
00 otherwise

where T is the edge-node incidence matrix of the directed
tree T, ie, Tj; = land Tj; = —1iffe; = (i,7) is an
edge in T. It encodes the constraint Spayen > Schild for
s = Lgupp(x) Over the tree.

This is indeed a TU model since each row of 7 contains at
most two non-zero entries that sum up to zero [17, Propo-
sition 2.6].

Proposition 8. (Convexification) The convexification of the
tree y-“norm” over the unit {,-ball is given by

o x iferc|-1,1°
grta() = {zg% leglloc 1,1

00 otherwise

where the groups G € By are defined as each node and all
its descendants.

Note that the resulting convex norm is the ¢, -hierarchical
group norm [13], which is a special case of ¢.,-group

norm we studied in Section 5.1 as the convex envelope of
ge,(x). In this sense, go () is equivalent to gr o(x),
for the group structure & g (for unit weights).

6 Dispersive sparsity models

The sparsity models we considered thus far encourage clus-
tering. The implicit structure in these models is that coeffi-
cients within a group exhibit a positive, reinforcing corre-
lation. Loosely speaking, if a coefficient within a group
is important, so are the others. However, in many ap-
plications, the opposite behavior may be true. That is,
sparse coefficients within a group compete against each
other [28, 10, 8].

Hence, we describe models that encourage the dispersion
of sparse coefficients. Here, dispersive models still inherit a
known group structure &, which underlie their interactions
in the opposite manner to the group models in Section 5.

6.1 Group knapsack model

One natural model for dispersiveness allows only a certain
budget of coefficients, e.g., only one, to be selected in each
group:
0 ifS=0
Fp(S)=141 ifmaxges|SNG| <1
oo otherwise

Whenever the group structure forms a partition of P,
[19] shows that the positive homogeneous convex enve-
lope of the /,-regularized group knapsack model, i.e., of
wFp(supp(x)) + v||x||4, is the exclusive norm in [28].

In what follows, we prove that Fip(S) is a TU penalty
whenever the group structure leads to a TU biadjacency
matrix B of the bipartite graph representation, which in-
cludes partition structures. We establish that the /(.-
exclusive lasso, is actually the tightest convex relaxation of
a more relaxed version of Fip(supp(x)) for any TU group
structure, and not necessarily partition groups.

Definition 10 (Group knapsack penalty). Given a group
structure ® that leads to a TU biadjacency matrix B,
Fp(supp(x)) can be written as the following TU penalty:

i . pT
gD(aj) = w?}%{ll}{w : B ]lsupp(w) < w]l}
ifBT]lsupp(m) <1, and gp(x) = oo otherwise.

Note that if B is TU, B” is also TU [17, Proposition 2.1].
Groups that form a partition of P are acyclic, thus the cor-
responding matrix B is TU trivially (cf., Remark 5).

Another important example of a TU group structure arises
from the simple one-dimensional model of the neuronal
signal suggested by [10]. In this model, neuronal signals
are seen as a train of spike signals with some refractoriness
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period A > 0, where the minimum distance between two
non-zeros is A. This structure corresponds to an interval
matrix BT = D, which is TU [17, Corollary 2.10].

1 1 -~ 1 1 0 0 - 0
01 1 - 1 1 0 - 0
D:
N R L | PN

Proposition 9 (Convexification). The convex envelope of
gp () over the unit Lo -ball when B" is a TU matrix is
given by

o5 (@) = | Mxgeo lzgly ifee[-1,1, BT |z <1
D 00 otherwise

Notice that the convexification of gp is not exactly the
exclusive lasso; it has an additional budget constraint
B”|z| < 1. Thus in this case, regularizing with the /,-
norm before convexifying lead to the loss of part of the
structure. In fact, the exclusive norm is actually the con-
vexification of a more relaxed version of gp, where the
constraint w € {0,1} is relaxed to w € Z,w > 0.

6.2 Sparse group knapsack model

In some applications, it may be desirable to seek the spars-
est signal satisfying the dispersive structure. This can be
achieved by incorporating sparsity into the group knapsack
penalty, resulting in the following TU penalty.

Definition 11 (Dispersive {p-“norm”). Given a group
structure ® that leads to a TU biadjacency matrix B,
we define the penalty encoding the sparse group knapsack
model on x as

zlo if B 1o <1
oo(z) = {n lo #f B" Luppia
00 otherwise

We can compute the convex envelope of gp o(x) in a sim-
ilar fashion to Proposition 9.

Proposition 10. (Convexification) The convexification of
the dispersive ly-“norm” over the unit {~.-ball is given by

- ||, ifxe[-1,17, BT |z| <1
D,O(w) =

00 otherwise

It is worth mentioning that regularizing with the ¢,-norm
here loses the underlying dispersive structure. In fact, the
positively homogeneous convex envelope of pgp o(x) +
A|z||4 is given by the dual (cf., Section 3.3) of

O* _ max ||ysupp(s) ”q
4 se{0,1}7,5#0,BTs<1 (1Ts)1/a

<

Figure 6: gpg(z) < 1 (left) g5yo(x) < 1.5 (middle)
9po(x) < 2 (right) for & = {{1,2},{2,3}}

which is simply the /;-norm. To see this, note that
()7 = yllc. since Zeg < Pl ys  p
which is achieved with equality by choosing the vector
s having ones where y is maximal, and zeros elsewhere.
Note that this vector satisfies B s < 1. As a result,
the regularized convexification boils down to the ¢;-norm,
since Q,(x) = SUDQ: (y)<1 xTy = ||z||;, while the direct
convexification is not even a norm (cf., Figure 6).

We illustrate the effect of this loss of structure via a numer-
ical example in Section 7.

6.3 Graph dispersiveness

In this section, we illustrate that our framework is not lim-
ited to linear costs, by considering a pairwise dispersive
model. We assume that the parameter structure is encoded
on a known graph G(P, £), where coefficients connected
by an edge are discouraged from being on simultaneously.

Definition 12 (Pairwise dispersive penalty). Given a graph
G(P, &) with a TU edge-node incidence matrix E¢ (e.g.,
bipartite graph), we define the penalty encoding the pair-
wise dispersive model as

gop(x) = Z 5185 where s = lgypp(a)
(@,4)e€

Note that this function is not submodular; in fact, gg p ()
is a supermodular function.

Proposition 11 (Convexification). The convex envelope of
9g,p(x) over the unit {s-ball is

sk Zz j (|.7J,L|+|£L'|—1)+ ifa:E [_171]1)
9gp(x) = { (e ! .
00 otherwise

Proof. We use the linearization trick employed in [15] to
reduce gg p(x) to a TU penalty. Let s = Lgpp(a)

ggp(®)= Y sis;

(i,5)€€
= min { Z Zij %5 > 8i+8; — 1}
=L e
= min zii FEas<z-—1
z€{0,1}|5\{ Z i GS > }
(i,5)€€
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Figure 7: g5*p(x) = 0 (left) g5"p(z) < 1 (right) for £ =
{{1,2},{2.3}} (chain graph)

—BP
—-DBP

[x=x*]l»
[E3B

Error:

01 02 03 0.4
n/p

Figure 8: Recovery error of BP and DBP

Now we can apply Proposition 1 to compute the convex
envelope. The resulting convexification is again not a norm
(c.f., Figure 7). L]

7 Numerical illustration

In this section, we show the impact of convexifying two
different simplicity objectives under the same dispersive
structural assumptions. Specifically, we consider minimiz-
ing the convex envelope of the ¢ -regularized dispersive £-
“norm” [19] versus its convex envelope without regulariza-
tion over the unit ¢,-ball in Section 6.2. To produce the
recovery results in Figure 8, we generate a train of spikes
of equal value for % in dimensions p = 200 with a refrac-
toriness of A = 25 (cf., Figure 11). We then recover x!
from its compressive measurements y = Ax" + w, where
the noise w is also a sparse vector, with 15 non-zero Gaus-
sian values of variance o = 0.01 and A is a random column
normalized Gaussian matrix. Since the noise is sparse, we
encode the data via ||y — Az||; < [|w||; using the true /;-
norm of the noise. We produce the data randomly 20 times
and report the averaged results.

. . . Y
Figure 8 measures the relative recovery error with % ,

as we vary the number of compressive measurements. The
regularized convexification simply leads to Basis Pursuit
formulation (BP), while the TU convexification results in
the addition of a budget constraint B || < 1 to the BP
formulation, as described in Section 6.2. We refer to the
resulting criteria as Dispersive Basis Pursuit (DBP). Since
the DBP criteria uses the fact that 2! lies in the unit £o-
ball, we include this constraint in the BP formulation for

0| 08 o8|

it i
EY 6 = 700 EY 0 750 700 E T = 700
P agp solution appp solution
b b
. x" —x x" —x
relative errors: I gpll2 _ .200 l=f—@pgplla _ .067
[l=% 12 (£8P

Figure 9: Example spike train recovery when n = 0.18p.
The DBP formulation (right) shrinks the competing sparse
coefficients within the A intervals, resulting in a better re-
construction overall sampling regimes than BP (middle).

fairness. We use an interior point method to obtain high
accuracy solutions to each formulation.

Figure 8 shows that DBP outperforms BP as we vary the
number of measurements. Note that the number of mea-
surements needed to achieve a certain error is expected to
be lower for DBP than BP, as theoretically characterized in
[10]. Hence, by changing the objective in the convexifica-
tion, Figure 11 reinforces the message that we can lose the
tightness in capturing certain structured sparsity models.

8 Conclusions

We have provided a principled recipe for designing con-
vex formulations that jointly express models of simplicity
and structure for sparse recovery, that promotes clustering
or dispersiveness. The main hallmark of our approach is
its pithiness in generating the prevalent convex structured
sparse formulations and in explaining their tightness. Our
key idea relies on expressing sparsity structures via sim-
ple linear inequalities over the support of the unknown pa-
rameters and their corresponding latent group indicators.
By recognizing the totally unimodularity of the underlying
constraint matrices, we can tractably compute the bicon-
jugation of the corresponding combinatorial simplicity ob-
jective subject to structure, and perform tractable recovery
using standard optimization techniques.
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A Numerical illustration of Sparse G-group
cover’s performance

In this section, we compare the performance of minimizing
the TU relaxation gg'¢; of the proposed Sparse G-group
cover (c.f., Section 5.4) in problem (2), which we will call
Sparse latent group lasso (SLGL), with Basis pursuit (BP)
and Sparse group Lasso (SGL). Recall the SGL criteria is
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x=x*|2
X2

Error:

0.1 0.2 0.3 0.4 0.5
n/p

Figure 10: Recovery error of SLGL, SGL, and BP

(1-a) Ygeo VIOlllzsllo+allzgr, with g = 2in [22]. We
compare also against SG L, where we set ¢ = oo, which
is better suited for signals with equal valued non-zero co-
efficients. We generate a sparse signal z? in dimensions
p = 200, covered by G = 5 groups, randomly chosen from
the M = 29 groups. The groups generated are interval
groups, of equal size of 10 coefficients, and with an over-
lap of 3 coefficients between each two consecutive groups.
The true signal % has 3 non-zero coefficients (all set to
one) in each of its 5 active groups (cf., Figure 11). Note
that these groups lead a TU group structure &, so the TU
relaxation in this case is tight. We recover % from its com-
pressive measurements y = Ax" + w, where the noise w
is arandom Gaussian vector of variance ¢ = 0.01 and A is
a random column normalized Gaussian matrix. We encode
the data via ||y — Ax||s < ||w||2 using the true ¢3-norm
of the noise. We produce the data randomly 10 times and
report the averaged results.

Figure 10 measures the relative recovery error with
[l —||»
[EXP
ments. Since the SLGL criteria uses the fact that 2 lies
in the unit ¢,.-ball, we include this constraint in the all the
other formulations for fairness. Since the true signal ex-
hibit strong overall sparsity we use &« = 0.95 in SGL as
suggested in [22] (we tried several values of «, and this
seemed to give the best results for SGL). We use an inte-
rior point method to obtain high accuracy solutions to each
formulation. Figure 8 shows that SLGL outperforms the

other criterias as we vary the number of measurements.

, as we vary the number of compressive measure-

B Proof of Proposition 2

Proposition (Convexification). The convex envelope of
ge.n(x) over the unit {o,-ball is

Ygieo dillrg llee ifm e [-1,1]P
0 otherwise

go,n(®) = {

Proof. Since gg () is a TU-penalty, we can use Propo-

sition 1 in the main text, to compute its convex envelope:

o = i d'w:HB <0,|z| <
9& () se[o,u?,li%[o,lw{ w:HB<0,[z| < s}

— min {dTw:H[‘;] <0}

we(0,1]1M
= Z dil|xg, || (since w} = [|zg]oc)
G.e®
forz € [-1,1]7, g5~ () = oo otherwise. O

C Proof of Proposition 3

Proposition (Convexification). When the group structure
leads to a TU biadjacency matrix B, the convex envelope
of the group ly-“norm” over the unit {.,-ball is

o min e yu{d w: Bw > 2|} ifze[-1,1]°

g, 0(®) = ' ,
00 otherwise

Proof. Note that g o() can be written in the form given
in Definition 4 with M = [-B,I,] and ¢ = 0. Thus,
when B is TU, so is M [17, Proposition 2.1], and thus
we can use Proposition 1 in the main text, to compute its
convex envelope:

gero(®) = min {d"w:Bw>s,|z| < s}
’ s€0,1]?
w e 0,1
= min {d"w:Bw > |z|}
wel0,1]M
forz € [—1,1]7, gg'o(x) = oo otherwise. ]

D Proof of Proposition 4

Proposition. Given any group structure &, ge () is not
a TU penalty.

Proof. Let G(& U P, E) denote the bipartite graph repre-
sentation of the group structure &. We use the linearization
trick employed in [15] to reduce ge s() to an integer pro-
gram. For conciseness, we consider gg s(s) only for binary
vectors s € {0, 1}7, since ge,s (%) = g&,s(Lsupp(a))-

0o:MpB <0}

M
s(s) = min w;i||sg,
go.5(5) wE{OJ}M{; ills,

= min {Z wis; : MB <0}
(

we{0,1}M
O hee

= min {Zzij:Mﬂfanﬁ§z+]1}
we{0,1}M = £
ze(o1y1€l (B.1)€EE

Recall that F is the edge-node incidence matrix of G(& U
P,E). The constraint EG < z — 1 corresponds to z;; >
w;+s;—1,Y(i, ) € €. Although both matrices M and E
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Figure 11: Recovery forn = 0.25p, s = 15,p = 200, G = 5 out of M = 29 groups.

is not TU. To see

[—-B,I,).

are TU, their concatenation M = ]\E4
this, let us first focus on the case where M =
Given any coefficient ¢ € P covered by at least one group
G;, we denote the corresponding edge in the bipartite graph
by e; = (i, M + i), which corresponds to the ]th ow
of E. This translates into having the entries M i o=
71, Mi,M—i—i = 1, Mp—i—j,i = 1, and Mp+j,M+i = 1. The
determinant of the submatrix resulting from these entries is
—2, which contradicts the definition of TU (cf., Def. 4). It
follows then that M is TU iff & = {0}.

A similar argument holds for M = H. O

E Proof of Proposition 5

Proposition (Convexification). The convex surrogate via
Proposition 1 in the main text, for g s(x) with M = H

(i.e., the group intersection model with sparse groups) is
given by
Qos(@) = > (l@glloo + 25 = 1)+
(i,)€€

forx € [-1,1]?, and, Qg s(x) := oo otherwise. Note that
Qos(x) < g5 ().

Proof. Forx € [—1,1]P,

Qs.s(x) = min { Z zij  HB<0,EB<z+1,|z| <
;”f[[ff)ffm (4,4)€EE
= > (lzgilleo + |zl = 1)+
(1,5)€€
since w; = ||@g;||oc, 8" = |&|, and 27; = (wi + 5] —1)4. O

F Proof of Proposition 6

Proposition (Convexification). The convex surrogate
given by Proposition 1 in the main text, for ge s(x) with

M = [-B,1I,] (ie., the group {y-“norm” with sparse
groups) is given by
Qe () = min { Y (wi+l|z;|-1); : Bw> |z}

wel0,1]M
e (i,9)€€

forx € [-1,17, Qg s(x) = oo otherwise.

Proof. Forx € [—1,1]P,

Qes.s(x) mm Zz” Bw>s,EB<z+1,|x| < s}
:ee[[o 1]|g\(1a])€5
= min w; zi|—1)y : Bw > |x
B
(i,5)e€
since s* = |x|, and zj; = (wi + s — 1)4. O

G Proof of Proposition 8

Proposition. (Convexification) The convexification of the
tree £y-“norm” over the unit {.-ball is given by

) —1,1p
g%(m)z{ see Ly

otherwise
Proof. Since this is a TU-penalty we can use Proposition 1
in the main text, to compute its convex envelope:

de@H lzgl oo
0

gro(x) = min {]1 s:Ts>0,|x| < s}
’ s€(0,1]p
= 3 gl
GeBy
for ¢ € [—1,1]?, co otherwise, and where the groups

G € &y are defined as each node and all its descendants.
(%) holds since any feasible s should satisfy s > |x| and
Sparent = Schild, SO starting from the leaves, each leaf sat-
isfies s; >
sum of s;’s, we simply set s; = z;. For a node ¢ with two
children j, k as leaves, it will satisfy s; > |x;|,]s;|,|s&]
thus s; = max{|z,|, |x;|,|zx|}, and so on. Thus, s; =
O

MAX (L is a descendant of 4 or i itself} |xk' ‘

H Proof of Proposition 9

Proposition (Convexification). The convex envelope of
gp(x) over the unit lo-ball when B is a TU matrix is
given by

9p () ={

maxges |zgll ifz € [-1,1]7, BTz <1

00 otherwise
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Proof. Since this is a TU penalty we can use Proposition 1
in the main text, to compute its convex envelope:

minwE[O 1] {
s€[0,1]P

oo

:BTs <wl, |x| < s} if x feasible
Kok
9p (x) =

otherwise

_ {||BT:C|OO ifz e [~1,1)7, BT|z| < 1

00 otherwise

I Proof of Proposition 11

Proposition (Convexification). The convex envelope of
9g.p(x) over the unit {s-ball is

- > igpee @il + |z = 1)+
95 (@) = { (h)ee !

oo

if:B € [_17 1]1)

otherwise

Proof. We use the linearization trick employed in [15] to
reduce gg,p(x) to a TU penalty. Let s = Lgpp(a)»

9g,0(x Z 8iSj
(i,5)€E
= min Zii tZii > Si+si—1
z€{071}|g‘ Z ij iy = 91 J }
j)EE
= min Z zij  Egs <z —1}
ze{0,1}I¢l
(i,9)€€

Now we can apply Proposition 1 in the main text, to com-
pute the convex envelope:

{ Z zij : BEgs < z—1,|x| < s}
(1.5)€€

> (il + oy — 1)+

(i,5)€€

* 3k _ .
95, p(T) = min
s€[0,1]P,z€[0,1]I €]

(8" =@,z = (57 + 57 — 1))

forx € [—1,1]%, g5"p () = oo otherwise. O
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