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Abstract—In this work, we extend a separate magnitude and phase
regularization framework for Phase Contrast MRI by incorporating the
divergence-free condition.

Introduction 3D phase-contrast (PC) MRI is a powerful tool to
assess hemodynamic parameters. However, this method is hampered
by long acquisition times and residual phase errors due to system
imperfections. The latter can be adressed by incorporating physical
priors, such as the approximate incompressibility of blood [1]. Using
compressed sensing (CS) for scan acceleration, regularizers are often
designed for magnitude reconstruction [2], and therefore, may not be
robust for phase encoding. In [3] it was demonstrated that improved
phase accuracy can be achieved by separate magnitude and phase
regularization. In this work, we extend this framework for PC MRI
by incorporating the divergence-free and smoothness condition of the
velocity flow field.

Theory In a 4-point PC experiment, the velocities at position
r along three orthogonal (i = 1, 2, 3) directions are given by
vi(r) = (φi(r) − φ0(r))/kv,i. φi and φ0 denotes the phase of
the velocity encoded ρi(r), and reference image ρ0(r), respectively.
kv,i is the first moment of the applied bipolar gradient along i.
Using incoherent undersampling and collecting all four images into
ρ ∈ C4n and the acquired k-space samples into d ∈ C4m, the
separate magnitude-phase reconstruction problem is initialized with
the solution minimizing the following convex baseline cost function:

Ψ1(ρ) =
1

2
‖d − (I4 ⊗E)ρ‖22 + λ1‖(I4 ⊗B)ρ‖1

+ λ2‖(H ⊗ In)ρ‖1, (1)

with encoding matrix E relating the reconstructed images to the
acquired k-space trajectory, B an operator implementing several
sparsifying transforms andH the last 3 rows of the Hadamard matrix,
producing sparse complex difference images with signal concentrated
in the vessels. The image is then decomposed into its magnitude
mj ∈ R, and phase component θj = eiϕj ∈ C, s.t. ρ = m ◦θ. Both
components are reconstructed by minimizing the cost function,

Ψ2(m,θ) =
1

2
‖d − (I4 ⊗E)(m ◦ θ)‖22 + λ1‖(I4 ⊗B)m‖1

+ λ2

3∑
i=1

‖mi −m0‖1 +R(ϕ), (2)

with separate phase regularization

R(ϕ) = λ3

∥∥∥ω ◦ ( 3∑
i=1

∇i(ϕi −ϕ0)
)∥∥∥2

2
+ λ4

3∑
i=1

‖C(ϕi −ϕ0)‖22,

where ω ∈ {0, 1}n is a masking vector, ∇i the gradient operator
along i and C the 3D finite difference matrix penalizing divergence
and enforcing smoothness of the vector field, respectively.

Following [4], Eq. 1 and Eq. 2 are reformulated as constrained
optimization problems using variable splitting, where parts of the
objective are decoupled by introducing equality constraints. These

constraints are incorporated by adding augmented Lagrangian terms
with additional split variables and Lagrange multipliers and finally
an unconstrained optimization problem is solved. The optimization
consists of iteratively updating split variables, unknown variables and
Lagrange multipliers until some convergence criterion is met.

Methods Simulated PC MRI data with phase wraps was generated
using a computational fluid dynamic vector field in a U-bend.
Gaussian noise was added (SNR = 30) and the resulting reference
images were projected on 8-fold undersampled radial trajectories in
3D k-space. Reconstruction was then performed on the reduced data
by subsequently minimizing Eq. 1 and Eq. 2.

Results Figure 1 shows the noisy reference velocity fields in y
and x direction respectively. Next to them, estimated velocity and
divergence profiles are shown for the noiseless reference, the baseline
and the proposed method. From the results we can see that the
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Fig. 1. Top: Noisy ref. velocity in y direction, Velocity profiles, Diver-
gence profiles. Bottom: Noisy ref. velocity in x direction, Velocity profiles,
Divergence profiles.

proposed method is able to deal with the phase wrapping that can
occur in the reference data. The divergence of the vector field in both
directions is also descreased.

Discussion In this work, an extension of the separate magni-
tude and phase regularization on PC MRI has been developed
and evaluated. Results show that the proposed method overcomes
phase wrapping problems that can occur in the reference data and
simultaneously miminizes the divergence of the resulting velocity
vector field.
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