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Abstract—A micro-watt power subthreshold current modu-
lator suitable for low-power and low-noise sensor interfaces
is presented. The prototype design is based on Subthreshold
Source Coupled Logic (STSCL) cells and implemented in a
0.18 µm standard CMOS technology. The modulator operates
with the supply voltage of 0.8 V which is significantly lower
than the nominal supply of the technology node (1.8 V). It
consumes 5.43 µW of power at the maximum bandwidth of
20 kHz. The obtainable current-sensing resolution ranges from
ENOB=7.1 bits at a 5 kHz bandwidth to ENOB=6.5 bits at
a 20 kHz bandwidth. The obtained power-efficiency of 1.5 pJ
per conversion outperforms any existing current-mode analog-
to-digital converter (ADC) design and is comparable to conven-
tional voltage-mode Continuous-Time (CT) Σ∆ modulators. The
modulator generates very low levels of switching noise thanks to
the continuous-time operation and subthreshold current-mode
circuits that draw a constant subthreshold current from the
voltage supply. The modulator is used as an interface for sensors
with current-mode output in ultra low-power conditions and can
also be used for power monitoring circuits.

Index Terms—Sensor Interfaces, Current Sensing, Current-
mode, Low-Power, Low-Voltage, Sigma-Delta Modulation

I. INTRODUCTION

Many state-of-the-art IC sensors have current-mode or

charge-packet-based outputs [1]–[6]. In these cases, a current-

to-voltage conversion is necessary in order to utilize voltage-

mode ADCs (except in [6] where a current-input ADC is used).

Using integrated resistors for current-to-voltage conversion is

generally avoided because on-chip high-value resistors are

large, non-linear and introduce high thermal noise. Hence,

conversion is preferably performed by integrating the current

output on an on-chip (integrated) capacitor. However, current

integration on a capacitor typically suffers from low band-

width and/or high non-linearity which is inefficient in some

applications. Another possible solution is the implementation

of active integrated Trans-Impedance Amplifiers (TIAs) with

high trans-impedance-gain (in Giga-Ω range). However, im-

plementing a low-power low-voltage linear active high-gain

TIA is a challenging task. At relatively high supply voltages,

if fairly linear, even state-of-the-art integrated TIAs (see [7],

[8]) consume relatively high amount of power. Thus, even

extremely efficient voltage-mode low-power ADCs placed

in the following stage can not compensate for the power

inefficiency introduced by the active TIA.

For noise-sensitive front-end circuits, it is very important

to minimize the voltage supply noise and substrate noise by

minimizing the switching activity of the surrounding circuits.

Continuous-time (CT) operation minimizes the spikes in the

supply current (small dI/dt) and results in low-noise gener-

ation. This work focuses on the design of a CT subthreshold

current-mode modulator.

Current-mode circuits suffer from the limited accuracy

of the current transfer which limits their final performance.

Consequently, a very few such designs and promising concepts

have been proposed in literature. Current-mode pipeline ADCs

were presented in [9] and [10]. Furthermore, a Successive-

Approximation ADC with current-mode comparator was pre-

sented in [11]. Current-mode interpolation stage has also been

used by folding and interpolating ADCs [12] [13].

The presented modulator is used as a readout interface for

sensors at low-power and low-voltage conditions. Moreover,

it can be used for power monitoring schemes such as [14],

which would take benefit of sensing small (divided and copied)

replicas of the supply currents in the digital domain at low

power cost.

II. SUBTHRESHOLD-CURRENT-SENSING Σ∆ MODULATOR

The proposed current-sensing modulator implements a first-

order Σ∆ architecture with a quantizer based on subthreshold

STSCL cells forming a ring-oscillator. A top-level diagram

of the modulator is shown in Figure 1. In order to simplify

the testing procedure and allow better input control, the input

current is generated on-chip by converting the input voltage.

The input current is combined with the reference currents

and the DAC output currents and delivered to the differential

current-mode low-pass filter operating in subthreshold mode.

The filter output provides the control current for the ring-

oscillator replica-biasing (RB) circuit (Figure 2). The RB

circuit generates the tail current for the differential STSCL

inverters within the ring-oscillator. Ring-oscillator outputs are

used as inputs to the phase-to-frequency converter which

performs the first-order differentiation of the phase in the

digital domain. The number of logical “ones” in the phase-to-

frequency converter output, represents the number of inverters

within the ring-oscillator that underwent an output transition

during the sampling cycle. The sum of the phase-to-frequency

converter outputs is therefore proportional to the ring-oscillator

frequency and the input current, and represents the final

modulator digital output. The phase-to-frequency converter

outputs are delivered to the thermometer-coded differential

current-mode DAC which generates the feedback currents. The

first-order Σ∆ loop results in second-order noise-shaping of

the modulator, due to additional (intrinsic) first-order noise

shaping property of the ring-oscillator-based quantizer [15].
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Figure 1: Top-level circuit-diagram of the current-sensing modulator
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Figure 2: STSCL current-controlled ring oscillator and replica biasing circuit

III. SUBTHRESHOLD CURRENT QUANTIZER

The top-level schematic of the proposed current-quantizer is

shown in Figure 2. Based on the current-signal input (Isig), the

RB circuit generates the controlling voltages for the cascoded

current mirrors (Vn1 and Vn2) and the gates of the BD-

connected load devices Vgp. The current Isig is copied by the

High-Compliance-Regulated-Cascode (HCRC) current mirror

[16] (modified for the subthreshold operation) to the corre-

sponding STSCL inverter cells within the (current-controlled)

ring oscillator. The low-swing STSCL voltage outputs of the

Current-Controlled-Oscillator (CCO) are converted into full-

swing CMOS outputs and delivered to the digital phase-to-

frequency converter. The digital phase-to-frequency converter

measures the frequency of the oscillator by performing a first-

order differentiation (1−z−1) in the digital domain (see [15]).

The XOR outputs are directly connected to the thermometer-

coded DAC in the feedback loop (see Figure 1).
The concept of Subthreshold Source-Coupled Logic for

ultra-low power digital gates was introduced in [17]. The

inverter cell is biased with the subthreshold current (Iss - copy

of Isig in Figure 2) which is typically in the nA range, but

can be set as low as 10 pA [17]. The replica-biasing circuit

allows a dynamic control of the load bias by adjusting the

gate voltage of the PMOS devices (Vgp). The RB feedback

keeps the output voltage swing constant independently of the

tail current Iss and minimizes the effect of process variation.

Having constant output swing is also important to guarantee

the desired delay, noise margin and proper switching of the

differential inverter. Random device mismatch remains as a

dominant cause of load resistance variation. The load output

node is connected to the bulk to modulate the depth of the

depletion region underneath the gate, therefore modulating

the drain current. This results in lower small-signal output

impedance compared to bulk-source connection improving the

stability of the feedback loop while maintaining enough load

resistance for the desired output voltage swing. The power

consumption is also reduced because the same stability (small-

signal output impedance) would require significantly higher

biasing current in the case of bulk-source connection.

Simulation results show that the Total-Harmonic-Distortion

of less than −60 dB is achievable over 3 decades of the input

current (from 100 pA to 100 nA) using appropriate device

matching in the quantizer. The STSCL ring oscillator quantizer

can therefore be used as a stand-alone subthreshold current-

sensing modulator. A simplified version of the standalone

quantizer is presented in [18], and the measurement results

confirm the wide input current range. In [18], the measured

distortion level is mainly limited by low output impedance of

the current mirrors.
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Figure 3: Companding current-mode low-pass filter with two translinear loops: M1-M2-M3-M4 and M1’-M2’-M3’-M4’
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Figure 4: Die micrograph

IV. CURRENT-MODE LOW-PASS FILTER

The translinear circuit technique is convenient for designing

continuous-time analog processing circuits under low supply

voltage conditions [19]. The low-pass filter implemented in

this design is based on the translinear Companding Integrator

(CI) originally designed in bipolar technology [20]. The class

AB differential CI presented in [20] is implemented using

subthreshold MOS devices and complemented with a single-

ended output stage. The complete schematic of the filter is

shown in Figure 3.

V. MEASUREMENT RESULTS

A prototype of the current-sensing modulator (shown in

Figure 1) is implemented in a standard 0.18 µm CMOS

process. Two identical modulators are placed on the same die,

and can be used in parallel operating in a pseudo-differential

mode (Figure 4). A single modulator achieves 20 kHz of

bandwidth while consuming 5.43 µW of power operating at a

0.8 V supply voltage. Most of the power is consumed by the

quantizer (PROQ = 2.95 µW) and the DAC (PDAC = 1.85
µW). The remaining power of 630 nW is consumed by the

current-mode low-pass filter. The current references and the

input transconductance stage are not considered as the part

of the modulator core and their power consumption is not

included in the measured 5.43 µW of total power. The peak

measured SNDR is 44.5 dB at a 5 kHz bandwidth, and 40.89
dB at a 20 kHz bandwidth using a 1 kHz input signal and 1

MHz sampling rate (Figure 5). The maximum measured SNDR

in differential mode is 43.6 dB (ENOB = 7) at a 20 kHz and

47.5 dB at 5 kHz bandwidth (ENOB=7.6). The summary of the

modulator performance is presented in Table I. The efficiency

(FoM) is defined as FoM = Power/(2·BW·2ENOB).

Thanks to the current-mode operation and analog-to-digital

conversion of the modulator, the presented design is compared

to the best current-mode ADCs available in literature. The

result of the comparison is given in (Table II) and expressed

in terms of power efficiency.

VI. CONCLUSION

A micro-watt power subthreshold current-to-digital Σ∆

modulator is presented. The circuit is based on subthreshold-

operation low-power low-voltage technique for continuous-

time Σ∆ modulation. The presented prototype achieves cur-

rent quantization of ENOB = 6.5 (ENOB = 6.8 in pseudo-

differential mode) at a 20 kHz and ENOB = 7.1 (ENOB = 7.4
in pseudo-differential) at a 5 kHz bandwidth. The sampling

rate of the converter is 1 MHz, the power consumption

is 5.43 µW while operating at 0.8 V supply voltage. The

power efficiency of the presented modulator outperforms all

previously reported current-mode designs, and is comparable

to many voltage-mode CT Σ∆ modulators.

The modulator is primarily intended for sensors with

current-mode outputs at ultra low-power conditions where

both passive and active current-to-voltage conversions are

ineffective. Extremely low switching noise due to mainly static

subthreshold current consumption makes it very attractive for

low noise front-end circuits and interfaces. Due to micro-

watt power operation the presented current-sensing modulator

can also be used for on-chip current measurements in power

management units.

The presented technique is scalable and would benefit from

newer nanometer CMOS technology nodes. Increased match-

ing would enable higher bandwidth or higher precision for the

same size devices. Implementing a fully-differential topology

would further improve the performance of the presented pro-

totype. Future work will also include improving the current-



Figure 5: Fast-Fourier-Transform (FFT) of the output signal for: (a) 1 kHz (1003.26 Hz) single-ended (b) 1kHz

pseudo-differential (c) 5 kHz (4985.81 Hz) single-ended input signal at 1 MHz sampling rate and −6 dbFS. (d) SNR and

SNDR versus input amplitude at 1kHz input frequency, 20kHz bandwidth and 1MHz sampling

mode DAC and using digitally-assisted and digitally-calibrated

circuits to improve the resolution which is currently limited by

the non-linearity. Therefore, digital calibration can additionally

boost the performance of the presented subthreshold current-

sensing technique.
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