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Abstract - This study proposes three simple approaches to estimate the stride count and frequency 

during walking and running using an inertial measurement system on the wrist. The approaches were 

based on a time-domain, frequency-domain and autocorrelation analysis, respectively. They were 

compared and validated against a reference on walks and runs of 16 participants in different conditions 

(different speeds, over ground and on treadmill). Results showed that the three methods provided an 

accurate and precise measure of the stride count and frequency: the median stride count error was 1 

stride with a 90% confidence interval of 4 strides and the stride frequency presented a median error of 

0.03 strides/min with a 90% confidence interval lower than 1.5 strides/min for all three methods. The 

approach, based on a wrist-worn inertial sensor, offers an effective and simple way to quantify the 

strides of healthy subjects in various conditions. 
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1. Introduction  

The analysis of human locomotion has received a lot of attention in the past decades. Temporal parameters 

related to the cyclic movement of locomotion, i.e. stride count and frequency, are useful for daily activity 

monitoring, disease assessment or sport science. To this end, body-worn inertial sensors provide an efficient 

measurement system as they are easy to use and have an unlimited capture volume. They were used in many 

studies which focused on the measurement of lower limbs and trunk movements for gait analysis. Several 

approaches were proposed to extract the stride count or frequency: event detection based on foot measurement 

[1-3], event detection, pendulum model or pattern matching from trunk data [4], frequency analysis [5] or 

autocorrelation analysis [6]. Although these methods provide an efficient way to quantify the stride frequency 

or number of performed strides, they still require a dedicated system and fixation to be attached on the foot 

(shoe dependent) or on the trunk (not very ergonomic). An interesting alternative is the use of a wrist-worn 

sensor which can be easily attached with a strap or integrated in a watch. Only a few studies used inertial 

sensors at the wrist or hand level to analyze gait [7, 8] and they reported errors up to 30% on the stride count. 

Moreover, during gait, arms can perform movement independent of locomotion. Thus, there are still open 

questions regarding the validity and robustness of current wrist-worn pedometers. The objective of this study 

was to implement different methods for determining the stride count and frequency based on a wrist-worn 

sensor. The accuracy and sensitivity of each method was compared to a reference system for different walking 

and running conditions. 

2. Material and Methods 

Measurements 

Sixteen healthy participants (age between 21 and 30 with a mean of 26 years, eight men and eight women) 

were enrolled in the study, which was approved by the local Ethics committee. The participants were asked to 

perform different locomotion tasks on treadmill and over ground as described in Table 1. The self-selected 

walking and running speeds were evaluated in field conditions, during which the subject received the 

instruction to walk or run a given distance at their preferred speed. The measurement system was composed of 

inertial modules including a tri-axial accelerometer and gyroscope (Physilog
®
, GaitUp, CH) sampled at 200 

Hz. One module was placed on each wrist, at the same position as one would wear a watch. Additionally, one 

module was placed on each foot as a reference for gait analysis using the algorithm proposed and validated by 

Mariani et al. [2].  

Stride Detection and Frequency Estimation 

The movements of each wrist were analyzed in order to extract the stride frequency and the number of strides 

for each trial. First, the locomotion periods were identified from the measurements using a threshold-based 

method: when the variance of the acceleration norm over a 1s period was larger than an empirically fixed 
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threshold, the period was considered as a locomotion time. Then, three simple methods exploiting the cyclic 

behavior of arm swing during locomotion to extract the stride frequency were compared: time-domain, 

frequency-domain and autocorrelation analysis.  

 The time-domain method was based on event detection. Principal component analysis was used to 

extract the principal axis of arm rotation during gait. It was hypothesized that each stride starts at a local 

maximum of the angular velocity around this axis of rotation. The stride frequency was defined as the 

inverse of the average duration between two successive strides and was expressed in strides/min.  

 The frequency-domain approach used the spectrum of the acceleration norm. It was hypothesized that 

the dominant frequency of this spectrum corresponds to the stride frequency. To maximize frequency 

resolution, the spectrum was estimated by an autoregressive model instead of using a conventional 

Fourier transform. 

 The autocorrelation-based approach was used to assess the periodicity of the acceleration norm. It was 

hypothesized that the duration between the peaks of the autocorrelation corresponds to the inverse of the 

stride frequency.  

For both frequency-domain and autocorrelation methods, the number of strides was calculated as the 

locomotion duration divided by the estimated stride frequency. The reference stride count and frequency were 

given by the analysis of the feet inertial signals using the gait analysis algorithm of Mariani et al. [2]. 

Statistical Analysis 

For each of the three methods, the estimated stride count and frequency was compared to the reference values. 

The differences over all trials were reported by the median value and the 90% confidence interval, i.e. the 

range between the 5
th

 and 95
th

 percentiles. ANOVA was used to investigate if the condition, participant or arm 

side (right and left) had an effect on the errors. The significance level was set to p=0.05. 

3. Results 

Data of 111 trials (16 participants, 7 conditions per participant, one outdoor running recording had to be 

cancelled due to heavy rainfall) were collected for both arm sides and analyzed, for a total of over 23’000 

strides. All conditions were successfully analyzed with the three methods. The reference stride frequency was 

between 44 and 81 strides/min for walking and between 71 and 97 strides/min for running (Table 1). The 

number of strides per trial varied from 17 for free over ground walking to 186 for treadmill trials. 

For the estimation of the stride frequency, all three methods performed similarly with a median error lower 

than 0.04 strides/min and a 90% confidence interval of lower than 1.5 stride/min (Table 2). The side (left and 

right) had no effect on the error and the participant only had an effect on the error for the autocorrelation 

method. The condition had a significant influence on the error for the time-domain and autocorrelation 

methods. The error on the estimated stride frequency did not depend on the measured value, i.e. the error is in 

the same range at low, medium and high frequencies (Fig. 1). 

The stride counters performed similarly, with a median error in stride count of 1 stride. For 90% of the 

recorded trials, the error in the stride count is at most four strides, regardless of the trial type (Table 3). The 

absolute stride count error over all conditions seems to be consistent between methods. All methods have a 

higher overestimate of the stride counts for running than for walking (Fig. 2). For all three methods, the 

condition and the participant presented both a significant effect on the error, whereas the effect of arm side 

was not significant. 

Table 1.  Description of the measurement conditions and of the characteristics of the collected data by the 
reference system placed on the foot 

Condition Description Imposed speed 

Frequency, 

strides/min  

(mean ± std) 

Stride count 

(mean ± std) 

Walk – free 30 m  over ground Self-selected 57.3 ± 3.9 20.8 ± 1.7 

Walk – slow 2 min treadmill Self-selected -  1km/h 52.7 ± 4.0 110.7 ± 11.2 

Walk – medium 2 min treadmill Self-selected 58.3 ± 6.9 122.5 ± 15.5 

Walk – fast 2 min treadmill Self-selected + 1km/h 60.9 ± 3.6 127.2 ± 17.2 

Run – free 100 m over ground Self-selected 82.6 ± 6.1 40.8 ± 4.0 

Run – medium 2 min treadmill Self-selected 77.5 ± 4.3 150.9 ±  23.4 

Run – fast 2 min treadmill Self-selected + 1km/h 78.6 ± 4.6 158.7 ± 8.9 



 

Figure 1.  Bland Altman plot for the stride frequency estimation of the three methods, compared to the 
reference system. One outlier for the left side, frequency domain method, with an error of -0.125Hz has been 
omitted in the figure. 

 

 

 

Figure 2.  Boxplot of the error of the stride count according to the conditions for the three methods: a) time-

domain analysis; b) frequency-domain analysis; c) autocorrelation  

 

Table 2.  Median and 90% confidence interval of the error on the stride frequency for the three methods, with 
the level of significance of the effects (condition, participant, side) on the error (n.s. = non-significant) 

Method 

Stride frequency error, 

strides/min 
ANOVA effects 

Median [90% CI] condition participant side 

Time domain -0.02  [-0.99; 0.50] < 0.001 n.s. n.s. 

Frequency domain  0.04  [-0.15; 0.74] n.s. n.s. n.s. 

Autocorrelation-based  0.02  [-0.21; 0.79] < 0.001 0.03 n.s. 

 



Table 3.  Median and 90% confidence interval of the error of the stride count for the three methods, with the 
level of significance of the effects (condition, participant, side) on the error (n.s. = non-significant).  

Method 
Stride count error ANOVA effects 

Median [90% CI] condition participant side 

Time domain 1  [-1; 3] < 0.001 0.007 n.s. 

Frequency domain 1  [ 0; 4] < 0.001 < 0.001 n.s. 

Autocorrelation-based 1  [ 0; 4] < 0.001 < 0.001 n.s. 

 

4. Discussion 

All three methods were able to accurately and precisely estimate the stride count and frequency for all 

conditions and participants. The stride frequency estimation error is independent from the measurement 

period as long as the gait speed is constant and has a sufficient duration. However, not all methods perform 

equally well for different conditions. The frequency-domain and autocorrelation analysis are more robust than 

the time-domain analysis. Arm swing breaks or artifacts due to voluntary arm movements are not affecting the 

stride frequency estimation as the entire measurement duration is averaged in the frequency domain and 

dominant frequency or main signal periodicity is not influenced by those additional movements. Compared to 

a previous study using a method based on frequency-domain analysis of accelerometer signals [8] that 

reported relative mean errors of the stride frequency estimated from arm and hand sensors in the order of 2%, 

with deviations of up to 35%, our algorithm performs better. However, it has to be emphasized that this 

previous work, in contrast to our project, allowed a variable sampling rate and used low quality inertial 

sensors (smartphones). 

On the other hand, both the frequency-domain and autocorrelation methods do not directly detect each stride. 

Therefore, especially for very short walking durations of a few seconds, those methods may prove to be 

unreliable and give a wrong estimate of the stride count. In the current study, the error on the stride count did 

not depend on the walking duration. However, only locomotion durations between 20 seconds and 2 minutes 

were analyzed. The performance of the methods was not analyzed for very short locomotion durations or long 

durations with varying stride frequency. Additionally, the time-domain method is the only method which 

allows cutting the inertial signals into cycles for a further inter- or intra-cycle analysis of the locomotion.  

In conclusion, the presented methods provide accurate and reliable measurement of the stride count and 

frequency for a wrist-mounted sensor. Depending on the application, either method can be implemented in 

order to obtain an optimal result. A reliable wrist-worn system further allows long term ubiquitous monitoring 

of the walking/running stride count and frequency for daily activity monitoring. 
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