Activity choice in pedestrian facilities

Antonin Danalet

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

TU Eindhoven visiting EPFL

July 9, 2014

ECOLE POLYTECHNIQUE

Outline

- Motivation: Pedestrian demand management strategies
- 2 Detection: A Bayesian approach for WiFi traces
- 3 Modeling: Path choice in activity network
- 4 Conclusion: Forecasting behavior and building decision-aid tools

(日) (同) (三) (三)

Swiss context

By 2030, 100'000 > 25'000 travellers/day between Geneva and Lausanne* passengers per day ***** between Geneva and Lausanne > 50'000 travellers/day between Geneva and Lausanne* ********************** > 100'000 travellers/day between Geneva and Lausanne* *********************

* Forecast by Swiss Railways for the maximum scenario

A. Danalet (TRANSP-OR ENAC EPFL)

= 2000 travelers/day

Activity modeling

July 9, 2014 3 / 23

Pedestrian demand management strategies

- Pedestrian facilities
 - Transportation hubs (train stations, airports, ...)
 - Mass gathering (music festivals, ...)
 - Shops
 - ...
- Challenges
 - Designing efficient buildings
 - Locating points of interest
 - Modifying schedules
 - ...
- \Rightarrow Pedestrian demand management strategies

(人間) トイヨト イヨト

Activity modeling: Sensitivity to policies

A. Danalet (TRANSP-OR ENAC EPFL)

July 9, 2014 5 / 23

- 一司

WiFi traces: No stop, no semantics

A. Danalet (TRANSP-OR ENAC EPFL)

July 9, 2014 6 / 23

Generation of activity-episode sequences

A. Danalet (TRANSP-OR ENAC EPFL)

3 July 9, 2014 7 / 23

• = • •

Generation of activity-episode sequences

July 9, 2014 8 / 23

.∃ >

Probabilistic measurement model

$$P(a_{1:K}|\hat{m}_{1:J}) \propto P(\hat{m}_{1:J}|a_{1:K}) \cdot P(a_{1:K})$$

where

- $P(a_{1:K}|\hat{m}_{1:J})$, the activity probability of an activity-episode sequence
- $P(\hat{m}_{1:J}|a_{1:K}) = \prod_{k=1}^{K} \prod_{j=1}^{J} P(\hat{x}_{j}^{k}|x_{k})$, the measurement likelihood
- $P(a_{1:K})$, the prior based on attractivity of the POI

Intermediary measurements Eliminate intermediary measurement if

 $E(t^+) - E(t^-) < T_{min}$

since we generate an activity episode at each measurement

Sequence elimination procedure

Individual results

A. Danalet (TRANSP-OR ENAC EPFL)

July 9, 2014 11 / 23

Aggregate results

July 9, 2014 12 / 23

Demand analysis

- Model and forecast individual behavior
- Impact on the system

(Kirk Anderson)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Observations: activity patterns in a transport hub

Activity types

A. Danalet (TRANSP-OR ENAC EPFL)

Discrete choice models

- Utility theory : we maximize our satisfaction
- Evaluation of the trade-off between the attributes of the alternatives

- ∢ ∃ ▶

 e.g., willingness to pay (value of time)

Modeling assumption

- Sequential choice:
 - 1 activity type, sequence, time of day and duration
 - 2 destination choice conditional on 1
- Motivations:
 - Behavior: precedence of activity choice over destination choice
 - Dimensional: destinations \times time \times position in the sequence is not tractable

- **(1))) (1))))))**

Activity network

Activity types

Activity network

イロト イ団ト イヨト イヨト

Activity network

Challenges

Choice set generation

What are the considered alternatives during the choice process?

• Utility

What is the mathematical expression of the utility?

Correlation structure

Different alternatives share unobserved attributes.

One can get inspired by the route choice literature...

e.g., Metropolis-Hastings algorithm for sampling routes in a network

- 4 同 6 4 日 6 4 日 6

Utility function

$$V_{\Gamma n} = \eta_k \ln(t_k) + \sum_k \beta_k I_k + \ln \frac{k_{\Gamma n}}{b(\Gamma)}$$

where

• η_k the satiation parameter for activity type k

•
$$\sum_{k, au} eta_{k, au} I_{k, au}$$
 the time-of-day utility

•
$$\ln \frac{k_{\Gamma n}}{b(\Gamma)}$$
 is a sampling correction

<ロ> (日) (日) (日) (日) (日)

Forecasting behavior

• Where are the pedestrians?

WiFi tracking is cheap, covers the whole area and - mixed with other data - is precise enough (Danalet et al.; 2014)

- Why are they here? Parameters of the utility function answer this question (Danalet and Bierlaire; 2014)
- What would happen if some environmental characteristics change? For small variations, the utility function answer this question

(日) (同) (三) (三)

Thank you!

Questions?

A. Danalet (TRANSP-OR ENAC EPFL)

Activity modeling

<mark>১ ১ ৫ ট ১ ট ২ ০ ৫ ৫</mark> July 9, 2014 22 / 23

イロト イヨト イヨト イヨト

References I

- Danalet, A. and Bierlaire, M. (2014). A path choice approach to activity modeling with a pedestrian case study, 14th Swiss Transport Research Conference (STRC), Monte Verità, Ascona, Switzerland. URL: http://www.strc.ch/conferences/2014/Danalet_Bierlaire.pdf
- Danalet, A., Farooq, B. and Bierlaire, M. (2014). A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures, *Transportation Research Part C* 44: 146–170.
 URL: http://dx.doi.org/10.1016/j.trc.2014.03.015
- Lenntorp, B. (1978). A Time-Geographic Simulation Model of Individual Activity Programmes, in T. Carlstein, D. Parkes and N. Thrift (eds), *Timing space and spacing time, vol. 2; Human activity and time* geography, Edward Arn, London, p. 286. URL: http://trid.trb.org/view.aspx?id=1170511

Visiosafe in Lausanne train station

Animation

January 16, 2013 7h40-7h46

A. Danalet (TRANSP-OR ENAC EPFL)

 July 9, 2014
 ⊇

(日) (同) (三) (三)