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Abstract

State-of-the-art automatic speech recognition systems model the relationship be-
tween acoustic speech signal and phone classes in two stages, namely, extraction
of spectral-based features based on prior knowledge followed by training of acous-
tic model, typically an artificial neural network (ANN). In a recent work, it was
shown that convolution neural networks (CNNs) are capable of modeling the rela-
tion between acoustic speech signal and phone classes directly. This paper extends
the CNN-based approach to large vocabulary speech recognition task. More pre-
cisely, we compare the CNN-based approach against the conventional ANN-based
approach on Wall Street Journal corpus. Our studies show that the CNN-based ap-
proach with fewer parameters achieves performance comparable or better than the
conventional ANN-based approach.

1 Introduction

State-of-the-art Automatic speech recognition (ASR) systems typically divide the task into several
sub-tasks, which are optimized in an independent manner [1]. In a first step, the data is transformed
into features, usually composed of a dimensionality reduction phase and an information selection
phase, based on the task-specific knowledge of the phenomena. These two phases have been care-
fully hand-crafted, leading to state-of-the-art features such as mel frequency cepstral coefficients
(MFCCs) [2] or perceptual linear prediction cepstral features (PLPs) [3]. In a second step, the like-
lihood of subword units such as, phonemes is estimated using generative models or discriminative
models. In a final step, dynamic programming techniques are used to recognize the word sequence
given the lexical and syntactical constraints.

Recent advances in machine learning have made possible systems that can be trained in an end-
to-end manner, i.e. systems where every step is learned simultaneously, taking into account all
the other steps and the final task of the whole system. It is typically referred to as deep learning,
mainly because such architectures are usually composed of many layers (supposed to provide an
increasing level of abstraction), compared to classical “shallow” systems. As opposed to “divide
and conquer” approaches presented previously (where each step is independently optimized) deep
learning approaches are often claimed to have the potential to lead to more optimal systems, and to
have the advantage to alleviate the need of find the right features for a given task of interest. While
there is a good success record of such approaches in the computer vision [4] or text processing
fields [5], deep learning approaches for speech recognition still rely on spectral-based features such
as MFCC [6]. Some systems have proposed to learn features from “intermediate” representation of
speech, like mel filter bank energies and their temporal derivatives.

In a recent study [7], it was shown that it is possible to estimate phoneme class conditional probabil-
ities by using raw speech signal as input to convolutional neural networks [8] (CNNs). On TIMIT
phoneme recognition task, it was shown that the system is able to learn features from the raw speech
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signal, and yield performance similar or better than conventional ANN, more specifically multilayer
perceptron (MLP), based system that takes cepstral features as input. The goal of the present paper is
to ascertain that the findings on TIMIT phoneme recognition task scales to large vocabulary speech
recognition task. Towards that end, we compare the CNN-based approach against the conventional
ANN-based approach with different architectures on Wall Street Journal corpus. Our studies show
that the CNN-based approach with fewer parameters yields similar or better performance than ANN-
based approach.

The remainder of the paper is organized as follows. Section 2 presents a brief survey of related
literature. Section 3 presents the classical HMM/ANN system. Section 4 presents the architecture
of the proposed system. Section 5 presents the experimental setup and Section 6 presents the results.
Section 7 presents the discussion and concludes the paper.

2 Related Work

Deep learning architectures have been successfully applied to a wide range of application: characters
recognition [4], object recognition [9], natural language processing [10] or image classification [11]

In speech, one of the first phoneme recognition system based on neural network was the Time Delay
Neural Network [12]. It was extended to isolated word recognition [13]. At the same time, hybrid
HMM/ANN approach [14, 15] was developed, leading to more scalable systems.

Hybrid HMM/ANN approach was originally developed with ANNs that have single hidden layer
and classify context-independent phonemes given cepstral feature as input. More recently, ANNs
with deep learning architectures, more precisely, deep belief network or deep neural networks
(DNNs) [16, 17], which can yield better system than a single hidden layer MLP have been pro-
posed to address various aspects of acoustic modeling. More specifically, use of context-dependent
phonemes [18, 19]; use of spectral features as opposed to cepstral features [6, 20]; learning fea-
tures from raw speech signal and feeding them as input to ANN [21]; CNN-based system with mel
filter bank energies as input [22, 23]; combination of different features [24]; CNN based phoneme
recognition system with raw speech signal input trained in end-to-end manner [25]; multichannel
processing using CNNs [26], to name a few.

3 Hybrid HMM/ANN system

As presented in Figure 1, hybrid HMM/ANN based ASR system is composed of three parts: fea-
tures extraction, classification and decoding. In the first step, features are extracted from the signal,
by transformation and filtering. The most common ones are short-term spectrum based features,
namely, MFCCs or PLPs. Usually, the first and second derivative of these representations are com-
puted over neighboring frames and used as additional features. They are then given as input to a
Artificial Neural Network (ANN), along with some context, typically four frames of preceding and
following context. The network is usually a feed-forward MLP composed of a hidden layer and an
output layer, which estimates the conditional probabilities for each phoneme class. The MLP out-
puts are then used as emission probabilities or local score in a Viterbi decoder along with language
model and phonetic dictionary to infer the output word sequence.

Raw speech
signal

Feature
extraction

MFCC / PLP

Classification
ANN

p(i|x) HMM
Decoding

Word
sequence

Dictionary Language
Model

Figure 1: Hybrid HMM/ANN system. x here denotes cepstral features and i denotes a phoneme
class.
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4 Convolutional Neural Networks

In this paper, we use convolutional neural networks which replaces the first two stages of the hybrid
system: the feature learning and the classification, as presented in Figure 2. The CNNs take raw
speech signal as input, and output the conditional probabilities p(i|x) for each class i, for each
frame x. The two stages are trained jointly using the back-propagation algorithm.

Raw speech
signal

Feature
learning Classification

p(i|x) HMM
Decoding

Word
sequence

Dictionary Language
Model

Convolutional neural network

Figure 2: CNN-based ASR system. x denotes raw speech signal and i denotes a phoneme class.

4.1 Architecture

The network is given a sequence of raw input signal, split into frames, and outputs a score for
each classes, for each frame. These type of network architectures are composed of several filter
extraction stages, followed by a classification stage. A filter extraction stage involves a convolutional
layer, followed by a temporal pooling layer and an non-linearity (tanh()). Our optimal architecture
included three stages of filter extraction (see Figure 3). Signal coming out of these stages are fed to
a classification stage, which in our case is two linear layers with a large number of hidden units.

Raw speech
input x Convolution

Max
pooling

tanh(·)

Filter stage (feature learning) × N

Linear tanh(·) Linear SoftMax

Classification stage (modeling)

p(i|x)

Figure 3: Convolutional Neural Network. Several stages of convolution/pooling/tanh might be con-
sidered. Our network included 3 stages.

4.2 Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-size input vector, a convolution
layer is assumed to be fed with a sequence of T vectors/frames: X = {x1 x2 . . . xT }. A
convolutional layer applies the same linear transformation over each successive (or interspaced by
dW frames) windows of kW frames. For example, the transformation at frame t is formally written
as:

M

 xt−(kW−1)/2

...
xt+(kW−1)/2

 , (1)

where M is a dout × din matrix of parameters. In other words, dout filters (rows of the matrix M)
are applied to the input sequence. An illustration is provided in Figure 4.

4.3 Max-pooling layer

These kind of layers perform local temporal max operations over an input sequence, as shown in
Figure 5. More formally, the transformation at frame t is written as:

max
t−(kW−1)/2≤s≤t+(kW−1)/2

xds ∀d (2)
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Convolution
M × ·

din

dout

kWdW

Figure 4: Illustration of a convolutional layer.
din and dout are the dimensions of the input
and output frames. kW is the kernel width
(here kW = 3) and dW is the shift between
two linear applications (here, dW = 2).

Max-Pooling
max(·)

d

d

kW

Figure 5: Illustration of max-pooling layer.
kW is the number of frame taken for each
max operation (here, kW = 2) and d rep-
resents the dimension of input/output frames
(which are equal).

with x being the input and d the dimension. These layers increase the robustness of the network to
slight temporal distortions in the input.

4.4 SoftMax layer

The Softmax [27] layer interprets network output scores fi(x) as conditional probabilities, for
each class label i:

p(i|x) = efi(x)∑
j

efj(x)
(3)

4.5 Network training

The network parameters θ are learned by maximizing the log-likelihood L, given by:

L(θ) =

N∑
n=1

log(p(in|xn, θ)) (4)

for each input x and label i, over the whole training set, with respect to the parameters of each layer
of the network. Defining the logadd operation as: logaddi(zi) = log(

∑
i e

zi), the likelihood can
be expressed as:

L = log(p(i|x)) = fi(x)− logadd
j

(fj(x)) (5)

where fi(x) described the network score of input x and class i. Maximizing this likelihood is
performed using the stochastic gradient ascent algorithm [28].

5 Experimental Setup

In this section, we present the setup used for the experiments, the database and the hyper-parameters
of the networks.

5.1 Wall Street Journal Corpus

The SI-284 set of the Wall Street Journal (WSJ) corpus [29] is selected for the experiments. It is
formed by combining data from WSJ0 and WSJ1 databases, sampled at 16 kHz. The set contains
36416 sequences, representing around 80 hours of speech. Ten percent of the set was taken as
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validation set. The Nov’92 set was selected as test set. It contains 330 sequences from 10 speakers.
The dictionary was based on the CMU phoneme set, 40 context-independent phonemes, was used.
2776 tied-states were used in the experiment. They were derived by clustering context-dependent
phones in HMM/GMM framework using decision tree state tying. The dictionary and the bigram
language model provided by the corpus were used. The HMM/GMM system yields a performance
of 5.1% word error rate. It is comparable to the performance reported in literature [30].

5.2 Features

Raw features are simply composed of a window of the speech signal (hence din = 1, for the first
convolutional layer as shown in Figure 3). The window is normalized such that it has zero mean and
unit variance. We also performed several baseline experiments, with MFCC as input features. They
were computed (with HTK [31]) using a 25 ms Hamming window on the speech signal, with a shift
of 10 ms. The signal is represented using 13th-order coefficients along with their first and second
derivatives, computed on a 9 frames context.

5.3 Baseline systems

We compare our approach with the standard HMM/ANN system using cepstral features, as described
in Section 2. We train ANNs with two different architectures. More precisely, MLP with single
hidden layer referred to as ANN-1l and MLP with three hidden layers, referred to as ANN-3l.
The input to the MLPs are 39 dimensional MFCC with several frames of preceding and following
context. The number of context frame was tuned on the validation set. We do not pre-train the
network.

5.4 Networks hyper-parameters

The hyper-parameters of the network are: the input window size, corresponding to the context taken
along with each example, the number of sample for each example, the kernel width kW and shift
dW of the convolutions, the number of filters dout, the width of the hidden layer and the pooling
width. They were tuned by early-stopping on the validation set. Ranges which were considered for
the grid search are reported in Table 1. It is worth mentioning that for a given input window size
over the raw signal, the size of the output of the filter extraction stage will strongly depend on the
number of max-pooling layers, each of them dividing the output size of the filter stage by the chosen
pooling kernel width. As a result, adding pooling layers reduces the input size of the classification
stage, which in returns reduces the number of parameters of the network (as most parameters do lie
in the classification stage).

The best performance was found with: 10 ms duration for each example, 310 ms of context, 9, 9
and 9 frames kernel width, 10, 1 and 1 frames shift, 80, 60 and 60 filters, 500 hidden units and 2
pooling width. For the baselines, the ANN-1l uses 500 nodes for the hidden layer and 21 frames as
context. The ANN-3l system uses 1000 nodes for each hidden layer and 21 frames as context. The
experiments were implemented using the torch7 toolbox [32].

Table 1: Network hyper-parameters

Parameters Range

Input window size (ms) 100-700
Example duration (ms) 5-15
Kernel width (kW ) 1-11
Number of filters per kernel (dout) 20-100
Max-pooling kernel width 2-6
Number of hidden units in the class. stage 200-1500
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5.5 Decoding

During decoding, the scaled likelihoods were estimated by dividing the posterior probability derived
from the ANN or CNN by the prior probability of each class, estimated by counting on the training
set. The hyper parameters such as, language scaling factor and the word insertion penalty were
determined on the validation set.

6 Results

The results expressed in terms of Word Error Rate (WER) for the baseline systems and the proposed
system are presented in Table 2, along with the number of parameters of the network. As it can be
observed, CNN-based system outperforms the ANN-1l based baseline system . When compared to
the ANN-3l baseline, the CNN-based system yields similar performance. These results suggest that
CNNs result in simpler features which can be classified easily when compared to MFCC features.

Table 2: Word Error Rate on the Nov’92 testset
Feature Classifier #Params. WER

MFCC ANN-1l 1.8M 7.8 %
MFCC ANN-3l 5.6M 6.4 %
RAW CNN 3.1M 6.7 %

7 Conclusion

In this paper, we investigated the scalability of an ASR approach based on CNN, which takes as
input the raw speech signal, to large vocabulary task. Our studies on WSJ corpus showed that the
CNN-based system is able to achieve performance comparable to or better than the ANN-based
system, which takes standard cepstral features as input. These findings are inline with the phoneme
recognition studies reported on TIMIT corpus in [7]. Thus, indicating that the CNN-based approach
is indeed scalable and can potentially remove the need to extract standard cepstral features. In order
to further ascertain it, our future work will focus on studying the domain independence and language
independence of the CNN-based approach, as the standard cepstral feature extraction process does
not have any such dependency.
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