
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014 3279

LDPC Codes for 2D Arrays
Yuval Cassuto, Member, IEEE, and Amin Shokrollahi, Fellow, IEEE

Abstract— Binary codes over 2D arrays are very useful in
data storage, where each array column represents a storage
device or unit that may suffer failure. In this paper, we propose
a new framework for probabilistic construction of codes on
2D arrays. Instead of a pure combinatorial erasure model used
in traditional array codes, we propose a mixed combinatorial-
probabilistic model of limiting the number of column failures,
and assuming a binary erasure channel in each failing column.
For this model, we give code constructions and detailed analysis
that allow sustaining a large number of column failures with
graceful degradation in the fraction of erasures correctable in
failing columns. Another advantage of the new framework is that
it uses low-complexity iterative decoding. The key component in
the analysis of the new codes is to analyze the decoding graphs
induced by the failed columns, and infer the decoding perfor-
mance as a function of the code design parameters, as well as the
array size and failure parameters. A particularly interesting class
of codes, called probabilistically maximum distance separable
(MDS) array codes, gives fault-tolerance that is equivalent to
traditional MDS array codes. The results also include a proof
that the 2D codes outperform standard 1D low-density parity-
check codes.

Index Terms— Array codes, LDPC codes, two-dimensional
codes, data storage, iterative decoding.

I. INTRODUCTION

L INEAR codes constructed from low density matrices are
the keystone of contemporary coding theory, with huge

impact on both theoretical research and practical applications.
The sparsity of the code matrices offers a compelling complex-
ity advantage in implementation, and achieving this low com-
plexity with optimality in redundancy is the great achievement
of a large body of deep research. Interestingly, two separate
coding-theory fields aim at the above objective of developing
low-density codes with good information efficiency.

One is the field of array codes [3]. Array codes, defined
over two-dimensional binary arrays, use low-density parity-
check matrices to construct codes for erasures or errors of
full columns. The low-density property offers complexity

Manuscript received September 18, 2013; revised February 27, 2014;
accepted March 8, 2014. Date of publication March 25, 2014; date of current
version May 15, 2014. This work was supported in part by the School
of Computer and Communication Sciences, École Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland, in part by ERC and CIG Grants
through the European Union, and in part by the Israeli Ministry of Science
and Technology. This paper was presented at the 2011 IEEE International
Symposium on Information Theory [8].

Y. Cassuto is with the Department of Electrical Engineering, Technion–
Israel Institute of Technology, Haifa 32000, Israel (e-mail: ycassuto@
ee.technion.ac.il).

A. Shokrollahi is with the School of Computer and Communication
Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015,
Switzerland (e-mail: amin.shokrollahi@epfl.ch).

Communicated by D. Burshtein, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2014.2313720

benefits in encoding and decoding operations. Hence the task
of array codes is to combat column-level erasures/errors,
while being defined by operations over smaller informa-
tion units (bits or small groups of bits). The ultimate goal
of array-code research is code families that are Maximum
Distance Separable (MDS) from the column perspective, thus
having optimal redundancy for a given column correction
requirement. Array codes are widely used in practice, being
employed as a central element of RAID (Redundant Arrays of
Inexpensive Disks) [14] storage systems. Each array column
then represents an individual storage device, whose failure is
modeled as a column erasure. The second, and better-known
low-density coding field, is low-density parity-check (LDPC)
codes under iterative decoding [15]. Without need for
detailed introduction, in this area the objective is to construct
low-density (one dimensional) codes that will decode well
under sub-optimal iterative decoding algorithms.

So far, despite the structural similarities, the two low-density
coding fields evolved in essential separation. Array codes
have concentrated on algebraic constructions and decoding
algorithms that guarantee fixed numbers of column erasures
over small array dimensions. In contrast, the theory of iter-
atively decoded low-density parity-check codes has sought
probabilistic code constructions that with high probability have
good iterative decoding performance in the limit of large
block lengths. Previous work exists where iterative decod-
ing of known array codes over one-dimensional channels is
experimentally examined [2], [9], but no attempt has been
made (to the best of our knowledge) to construct new array
codes for iterative decoding over two-dimensional channels.
Such constructions are highly motivated by the current state
of matters in array-code theory and practice. Algebraic array
codes rigidly assume that columns are erased at full, while in
practice many storage devices have failure modes that render
only part of their data inaccessible. This strong error model
introduces significant complexity penalties, with encoding and
decoding complexities that steeply grow with the number of
column erasures. Moreover, algebraic array codes guarantee
correction of a certain number of column erasures, with a sharp
transition to failure if the specified number of column erasures
is exceeded. These issues have triggered a recent line of work
constructing array codes for combinations of full-column and
individual-symbol erasures (and errors) [4], [16].

For the same purpose of targeting more realistic erasures
in storage arrays, the study in this paper proposes the first
framework for construction and analysis of two-dimensional
array codes under iterative decoding. The new framework
merges the fields of array coding and LDPC coding in the
sense that it applies the deep construction and analysis tools
of LDPC codes to an error model very natural for array codes.

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148007825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

The outcome from this framework are codes that can extend
the fault tolerance of storage arrays with complexities signifi-
cantly lower than what algebraic array codes can achieve. The
new framework comprises three main components

1) An erasure model that combines an integer bound on the
number of failing columns with an erasure probability
within failing columns.

2) A probabilistic code construction that considers the
two-dimensional array structure when choosing parity
groups.

3) Performance analysis using the decoding graphs induced
by erasure events under the model in 1.

The majority of the paper is devoted to the theoretical
performance analysis of the new codes over the new channel
model. The main challenge to analysis in this framework is
the introduction of combinatorial objects (originating from
the integer number of failing columns) into the probabilistic
analysis of code ensembles under random erasures. Due to the
non-uniformity of erasure probability across the array bits, the
graph observed by the decoder is substantially different from
the graph of the designed code. Hence analysis must accom-
modate the parameters of array size and failure cardinality in
addition to the parameters of the code itself.

We now detail the paper’s content and main contributions.
Section II defines the coding structure as a two-dimensional
array with dimensions b × n. The erasure model for the array
allows up to r (out of the n) columns to fail, and in each
failing column bits are erased i.i.d. with probability ε. The
number of columns n is assumed to be a parameter of the code,
and for the sake of analysis, the column size b is assumed
to grow to infinity. This mirrors practical storage systems
having a given number of nodes, but whose individual storage
capacities are large (and constantly growing). In Section III
we give code constructions for the two-dimensional erasure
model. The constructions are given as code ensembles, from
which codes are drawn at random. The code ensembles have
the same flavor as standard one-dimensional LDPC ensembles,
only with an important additional property of allowing a check
node to have at most one neighbor from each column. This
property is the key to the remainder of the results in the paper.
In Section IV the codes are analyzed over the two-dimensional
erasure model. The analysis is centered at an object we call
the decoder induced graph. The induced graph is a subgraph
of the code graph, obtained by removing the variable nodes in
non-failing columns. Unlike one-dimensional codes, to analyze
the performance of the code it is not sufficient to consider
the designed code graph. Rather, the performance will be
determined by the interplay between the code graph (which we
can control) and a transformation induced by the combinatorial
process of taking r out of the n columns (which is dictated to
us by the model). Section IV reveals the most attractive feature
of LDPC array codes: their ability to sustain a large number
of column failures, where the in-column erasure probability ε
that they can sustain degrades gracefully with r . This feature
is unique to our scheme, in contrast to the rigid r offered by
traditional array codes. Section V is devoted to a special class
of codes correcting an ε = 1 fraction of erasures in r failing
columns, with optimal redundancy of r/n. The importance of

Fig. 1. Two-dimensional array with dimensions b × n, where n is fixed
and b → ∞.

this class of codes is that they offer fault tolerance that is
equivalent to traditional MDS (maximum distance separable)
array codes. Then in Section VI we prove analytically that two-
dimensional LDPC ensembles are superior to one-dimensional
ones for the studied erasure model. The way we establish this
result is through explicit rate bounds for one-dimensional and
two-dimensional codes, which are proved to exhibit a gap in
favor of two-dimensional codes.

II. TWO-DIMENSIONAL ERASURE MODEL

In the main target application for this work – arrays of
storage devices – erasures are not uniformly distributed across
the two-dimensional array. Rather, a few of the columns,
corresponding to failing devices, will have a large number
of erasures, and the rest of the columns, corresponding to
non-failing devices, will have no erasures at all. We now
seek to define a general two-dimensional erasure model that
captures this bi-modality of erasure probability. But before
considering the characterization of erasures over the array, we
need to define the structure of the array itself.

bn bits are organized in a two dimensional array A = (ai, j),
1 � i � b, 1 � j � n. Note that in practice each ai, j may not
be a single bit, but a larger information unit. Nevertheless, we
assume the basic array unit to be a bit throughout the paper,
since XOR operations over bits can be easily extended to larger
sets of bits. Since the total capacity of the storage device is
much larger than the desirable unit of XOR operations for the
code, the column size (number of XOR units per device) b will
be assumed large, and growing to infinity for the purpose of
analysis. The number of columns n will however be assumed
a fixed integer. This array structure is natural for real storage
systems, in which the number of devices stay fixed at the order
of roughly 10s of devices, while the capacities of constituent
devices grow rapidly with the scaling of storage densities. This
chosen array structure is depicted in Fig. 1.

A. Mixed Probabilistic-Combinatorial Erasure Model

Let Fj be an indicator function for the event that column j
is in failure state.

Fj =
{

1 if column j fails

0 otherwise

CASSUTO AND SHOKROLLAHI: LDPC CODES FOR 2D ARRAYS 3281

In a failing column, every bit is erased independently and with
equal probability. In a non-failing column, none of the bits are
erased. Formally, the erasure probability of bits in column j
is specified as a function of Fj :

ε(j) =
{

ε if Fj =1

0 otherwise
(1)

where ε is a global erasure probability applying to all failed
columns.

To the probabilistic intra-column erasure model above we
now add a combinatorial column-failure model. Within an
array of n columns, at most r columns are failing. Hence

|{ j : Fj = 1}| � r. (2)

The rest of the paper is thrust toward the correction of erasures
that fall under the model defined jointly by (1) and (2).

III. ARRAY CODE ENSEMBLES

The usual approach to combat erasures in two-dimensional
arrays is to algebraically construct array codes for a prescribed
number of column failures r (see for example [1], [5], [7] for
a more general column erasure model). Algebraic array codes
are defined explicitly, by specifying sets of array locations with
restricted parity values. In addition, algebraic array codes aim
at the extreme case of ε = 1, i.e. all bits are assumed erased
in a failing column. In this paper, in contrast, array codes
are constructed probabilistically, by specifying ensembles of
parity restrictions over the array. Moreover, the case of interest
here is ε < 1, which better describes realistic failure modes
in storage systems.

For the two-dimensional erasure model specified by (1)
and (2), we now propose a probabilistic array-code construc-
tion. The resulting codes are two-dimensional variants of the
well known LDPC codes, called herein LDPC array codes or
(interchangeably) two-dimensional LDPC codes.

Definition 1. [LDPC Array Codes/2D LDPC Codes] An
LDPC array code for array A = (ai, j) consists of parity
constraints of the form

ai1, j1 + ai2, j2 + · · · + aid , jd = 0,

where + represents the binary XOR operation, and d � n is
the degree of the parity constraint. The code has the following
properties.

1) The parity-constraint degrees d and the array bits aim , jm
in each constraint are randomly selected according to
some probability distribution.

2) A parity constraint has at most one bit from each
column.

The key feature of Definition 1 is Property 2 above, assuring
that no two or more bits from the same column appear in
a parity constraint. The reasoning behind this feature is that
multiple bits from the same column cause correlated erasures
within a parity constraint in case this column fails. The benefits
of this feature are made more precise in Section VI.

In Fig. 2 are illustrated two sample parity constraints:
a2,1 + a3,2 + a4,3 + a2,4 = 0 (left XOR node) and

Fig. 2. Array parity constraints. Two parity constraints with d = n = 4 are
shown (each column contributes exactly one bit to each of the sample parity
constraints).

a3,1 + a1,2 + a1,3 + a5,4 = 0 (right XOR node). As required
by the definition of LDPC array codes, the j indices (column
locations) in both parity constraints are unique. On the basis
of the above definition of LDPC array codes, we proceed to
define the codes as Tanner graphs sampled from array-code
ensembles.

A. Regular Array-Code Ensembles

An array-code ensemble is called (l, d)-regular if every
array bit participates in l parity constraints, and every parity
constraint consists of d array bits, each from a distinct column.
Array codes are constructed from array-code ensembles by
randomly sampling |E | = nbl edges in a bipartite graph with
N = nb variable nodes and M = nbl/d check nodes (assum-
ing d divides nbl). The number of outgoing edges from the
variable nodes and from the check nodes are called variable-
node and check-node degrees, respectively. The sampling
process differs from the standard graph sampling process of
one-dimensional LDPC codes in the restriction on check nodes
to have at most one variable-node neighbor from any column.
The (l, d)-regular array-code ensemble is formally defined in
the following construction.

Construction 1. [(l, d)-regular array-code ensemble] Let
V1 be a set of N = nb variable nodes from a b × n array,
each with l sockets. Let V2 be a set of M check nodes, each
with d sockets. The total number of sockets in V1 nodes
and the total number of sockets in V2 nodes each equals
|E | = Nl = Md. For each of the V1 and V2 nodes we
label the sockets with the set [|E |] = {1, . . . , |E |}. Define
� to be the set of permutations on [|E |]. Define �′ ⊂ �
to be the set of permutations on [|E |] that do not connect
two or more sockets of a check node to variable nodes in the
same column. An (l, d)-regular array-code ensemble consists
of all bipartite graphs obtained by connecting the V1 and V2
sockets by permutations in �′, with the uniform probability
distribution on the set �′.

B. Irregular Array-Code Ensembles

As in one-dimensional LDPC codes, better iterative-
decoding performance can be achieved when the degree
regularity constraint is lifted [12]. To specify the ensemble
degree distributions, we adopt the standard notation used for
one-dimensional LDPC codes [15]. This notation will be
extended and refined in the next sections for the analysis of

3282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

array-code ensembles. For each i ∈ {1, . . . ,lmax}, we denote
by Li the probability that a variable node has degree i .
Similarly, for each i ∈ {1, . . . ,dmax}, we denote by Ri the
probability that a check node has degree i . When the
Li and Ri probabilities are viewed as coefficients of poly-
nomials, we get the variable-degree distribution polynomial
L(x) = ∑lmax

i=1 Li x i , and the check-degree distribution poly-
nomial R(x) = ∑dmax

i=1 Ri x i . Since iterative decoding is ana-
lyzed through messages passed on edges, similar distributions
from edge perspective are often useful. These are λ(x) =∑lmax

i=1 λi x i−1 and ρ(x) = ∑dmax
i=1 ρi x i−1. λi is the probability

that an edge is connected to a variable node with degree i .
ρi is the probability that an edge is connected to a check
node with degree i . The relations between the node-perspective
and edge-perspective degree distributions are given by λ(x) =
L ′(x)/L ′(1) and ρ(x) = R′(x)/R′(1), where the operator ′
represent the function’s first derivative.

As in the one-dimensional case, a simple generalization of
the regular construction in Construction 1 gives a construction
for irregular codes.

Construction 2. [L(x), R(x) irregular array-code ensem-
ble] Let V1 be a set of N = nb variable nodes from a
b × n array. For each i , N Li (assumed to be an integer)
variable nodes from V1 have i sockets each. Let V2 be a set of
M check nodes. For each i , M Ri (assumed to be an integer)
check nodes from V2 have i sockets each. The total number
of sockets in V1 nodes and the total number of sockets in
V2 nodes each equals |E | = N L ′(1) = M R′(1). The |E |
sockets on the V1 side are connected to the |E | sockets on
the V2 side by a uniformly selected permutation from �′
(defined in Construction 1 as the set of permutations that do
not connect two or more sockets of a check node to variable
nodes in the same column).

The regular construction of Construction 1 is clearly a
special case of Construction 2 with L(x) = xl and R(x) = xd .

IV. ANALYSIS OF ITERATIVE ERASURE DECODING

A natural method to decode array codes from the proposed
ensembles is by iterative message-passing decoding, also
called belief propagation (BP) decoding. This is an especially
simple standard way to decode one-dimensional LDPC codes
over erasure channels. The special property of LDPC array
codes is that the variable nodes in the code graph are parti-
tioned into two sets: variables in failed columns with erasure
probability ε, and variables in non-failed columns with erasure
probability 0. This property has little impact on the decoder
implementation, but a significant impact on the decoding
analysis. The decoding-analysis framework developed here for
array-code ensembles follows the adaptation of established
tools from one-dimensional LDPC ensembles [15] to the
special structure of array-code decoding graphs. In particular,
our main objective is to obtain BP decoding thresholds for
LDPC array codes under the two-dimensional erasure model.
For a given array-code ensemble, there is no longer a single BP
threshold, but one for each number of failing columns. Given
r failed columns, εr is defined such that decoding succeeds
with high probability as long as the failed-column erasure

Fig. 3. Sample from a code/decoding graph of an LDPC array code. Black
variable nodes (circles) are from failed columns; white variable nodes are
from non-failed columns. The white variable nodes can be removed from the
decoding graph because they have erasure probability 0. (a) A check node with
degree 5 in the code graph and degree 2 in the decoding graph. (b) A check
node is removed from the decoding graph if all its variable neighbors are
white. (c) A black variable node always has the same degree in the decoding
graph as in the code graph.

probability satisfies ε < εr . In the sequel when r is clear
from the context, we often omit the index r from εr .

A. Induced Decoding Graphs

Throughout the analysis, we will assume that exactly
r columns are failing. Fig. 3 reveals the relations between the
code graph and the decoding graph induced by the r failed
columns. As usual, variable nodes are represented as circles,
and check nodes as squares. A variable node belonging to
a failed column is marked black, and its erasure probability
is ε. A variable node in a non-failing column is marked white,
and its erasure probability is 0. White variable nodes are
completely known, and thus do not appear in the decoding
graph. As a result of removing the white variable nodes,
check nodes may have lower degrees in the decoding graph
compared to their degrees in the code graph – cf. Fig. 3(a).
Check nodes all of whose neighbors are white, are also marked
white and removed from the decoding graph – cf. Fig. 3(b).
It is observed that black variable nodes always have the
same degree in the code and decoding graphs, because the
only removed check nodes are those with all-white variable
neighbors – cf. Fig. 3(c). The structure of decoding graphs
induced by r column failures is made more precise with the
following definitions.

For a given LDPC array code and a given set of failed
columns, we define the decoding graph induced by the failed-
column set.

Definition 2. Given a code graph G and a set of failing
columns R = {i1, . . . , ir }, we define the induced decoding
graph GR as the subgraph of G containing the variable nodes
that reside in the columns of R.

The induced decoding graph will play a central role in the
analysis of array-code ensembles. In the sequel, we seek to
characterize the probabilistic structure of induced decoding
graphs. The principal question is to find the distribution of
induced decoding graphs given the code-graph distribution
and the number of column failures. A nice outcome from
this approach is that established analysis tools, such as binary
erasure channel (BEC) density evolution, can be applied to
two-dimensional codes by considering the induced decoding
graph rather than the code graph itself.

CASSUTO AND SHOKROLLAHI: LDPC CODES FOR 2D ARRAYS 3283

Recall [15] that given an ensemble of one-dimensional
LDPC code graphs, the BEC density-evolution threshold
(decoding threshold for short) is the supremum of ε ∈ [0, 1]
such that over a BEC(ε) channel the failure probability of a
BP decoder tends to zero as the block size tends to infinity.
We now want to extend the decoding-threshold analysis to
array-code ensembles. For this purpose, we first character-
ize the probabilistic effect of removing variable nodes in
non-failing columns from the decoding graph. We start with
the following definitions.

Definition 3. Given design degree distributions of variable
resp. check nodes L(x), R(x) (from node perspective) or
λ(x), ρ(x) (from edge perspective), the induced degree
distributions are the degree distributions of an induced
decoding graph containing only the variable nodes belonging
to r array columns. We denote them as

L̃(x), R̃(x)

(from node perspective) and

λ̃(x), ρ̃(x)

(from edge perspective). We note that given the probabilistic
nature of Construction 2, the induced distributions depend only
on r , and not on the identity of the r failed columns in R. For
notational convenience, we keep this dependence on r implicit,
in cases where the value of r is clear from the context.

Because variable nodes maintain their code degree in the
induced graph [Fig. 3(c)], we always have L̃(x) = L(x).
Similarly to the code-graph degree distributions, the induced
edge-perspective distributions are related to the node-
perspective distributions by λ̃(x) = L̃ ′(x)/L̃ ′(1) and ρ̃(x) =
R̃′(x)/R̃′(1).

An obvious generalization of one-dimensional density
evolution [11] gives that the decoding threshold εr is the
largest ε such that

x > ελ̃(1 − ρ̃(1 − x)), ∀x ∈ (0, 1], (3)

for the λ̃(x), ρ̃(x) given in Definition 3. We can also define
the induced rate of the decoding graph, which is different from
(lower than) the actual code rate.

Definition 4. Given induced variable resp. check degree dis-
tributions λ̃(x), ρ̃(x), we define the induced rate as

1 −
´ 1

0 ρ̃(x)dx
´ 1

0 λ̃(x)dx
.

Explicit calculation of the induced degree distributions
of array-code ensembles will be the main tool for analysis
and design of LDPC array codes in the remainder of the
paper.

B. Regular Codes With Degree-n Check Nodes

An interesting (and simple) special case of LDPC array
codes is when the code is regular with check degree d = n.
The restriction on the graph connectivity in Construction 2
implies that given check-regularity of d = n, every check
node has exactly one variable-node neighbor from each array

column. It is not hard to see that for this case the induced
decoding graph is regular as well, but with a check-degree r
instead of n. As a result, the following theorem can be proved.

Theorem 1. An (l, n)-regular array-code ensemble has design
rate 1 − l/n, and an erasure decoding threshold of an
(l, r)-regular one-dimensional LDPC code ensemble, for any
set of r failed columns.

Proof: The argument regarding the design rate is identical
to (l, n)-regular one-dimensional LDPC codes. We now prove
the statement on the decoding threshold. After removing all
(n−r)b variable nodes in non-failing columns, the code graph
becomes an (l, r)-regular graph, with the restriction that each
of the r neighbors of a check node comes from a different
column. For one-dimensional LDPC ensembles, it is well
known [15, Ch.3] that after a finite number � of decoding
iterations, the computation graph of a BP decoder around a
given variable node is a tree with probability tending to 1 as
the number of variable nodes tends to infinity, giving rise to
the condition (3). It thus remains to prove that this property
still holds given the restricted sampling of Construction 1.
To prove this, we make the (incorrect) assumption that all
edges connect to variable nodes in the same column. While
this is not the case for the code construction, this assumption
can only increase the probability that the computation graph
has cycles, and thus it is valid for proving the acyclic property.
In that case, the random permutation with column restrictions
maps to uniformly distributed permutations on the sockets of b
variable nodes in one column. This is identical to the uniform
permutation sampling in the one-dimensional case. Since the
column size b tends to infinity, the one-dimensional result
carries over to the two-dimensional case.

The nice consequence of Theorem 1 is that array codes
with high rate (thanks to the high check-node degrees in
the code graph) have high thresholds (thanks to the low
check-node degrees in the induced decoding graph). Moreover,
the decoding threshold gracefully decreases as the number r
of failed columns grows. Example 1 shows the decoding
performance of a regular check-node degree n array code
ensemble, and compares it with an MDS array code of the
same rate.

Example 1. Suppose we want to design an array code for
r = 3 column failures. One alternative is to use a traditional
MDS array code with rate 1 − 3/n. Another alternative is to
use a (3, n)-regular array-code ensemble, which has the same
rate. In Fig. 4 the thresholds of both options are plotted for
1 � r � 7. For the MDS code, the threshold is either 1 for
r � 3, or undefined for r > 3 (square markers). On the other
hand, the array-code ensemble can tolerate many erasures
even for large r values (dot markers). For r = 3 there
is a gap in favor of the MDS code, where the array-code
ensemble only achieves a threshold of 0.844, strictly smaller
than the 1 threshold of the MDS array code. The problem
with the regular ensemble is that at r = 3 we get a threshold
of a (3, 3)-regular induced graph, which is not an effective
rate 0 code. Tightening the gap necessitates the departure
from the (l, n)-regular ensemble family, into more general
ensembles discussed in the next sub-sections.

3284 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

Fig. 4. Threshold values as a function of the number of failing columns.
dots: (3, n)-regular ensembles, squares: traditional MDS array codes.

C. Regular Codes With General Check-Node Degrees

In the previous sub-section, a code graph with regular
check-degree n induced a regular check-degree r in the
decoding graph. Now we want to consider the more general
case where check nodes have a general – but still constant –
degree d � n. As we will see, the induced graph in this case
is no longer regular.

Given a set of r failed columns, a check node has between 0
and min{r, d} neighbors in the induced graph. From symmetry
in the graph sampling of LDPC array codes (specified in
Construction 1), the sets of d distinct columns neighboring
a check node are uniformly distributed among the size-d
subsets of {1, . . . , n}. Hence the induced degree distribution
is given by

Pr(degree i) =
(r

i

)(n−r
d−i

)
(n

d

) � T (n,r,d)
i . (4)

The numerator is the number of size-d subsets partitioned to
i failed columns and d − i non-failed columns. The denom-
inator is the total number of size-d subsets. Hence given a
uniform column sampling of d check-node edges, the induced
degrees are distributed according to the hypergeometric distri-
bution [10] T (n,r,d). Note that by (4) T (n,r,d)

i = 0 when i > r
or when i > d , as required. It is clear that when d = n, T (n,r,n)

i
degenerates to a delta function δ[i−r], i.e., Pr(degree i) equals
to 1 when i = r and 0 otherwise (giving the regularity proved
in Theorem 1). Note further that if r + d � n, there is a non-
zero probability that a check node has degree 0 in the induced
graph, in which case it is removed from the graph. Recall
from Section IV-A that the induced graph remains regular with
respect to the variable-node degrees. Altogether we obtain the
following result.

Theorem 2. An (l, d)-regular array-code ensemble has design
rate 1−l/d and an erasure decoding threshold of an irregular
one-dimensional LDPC code ensemble with variable resp.
check degree distributions (from node perspective) given by

L̃(x) = xl, R̃(x) =
r∑

i=0

T (n,r,d)
i x i .

Proof: From (4), the check-degree distribution of the induced
graph is given by R̃(x). The degree distribution of variable
nodes is unchanged in the induced graph, since removed
(induced degree 0) check nodes affect only variable nodes

Fig. 5. Threshold value comparison between degree n (dots) and degree
d < n (squares) ensembles.

outside the induced graph. To prove that finite-depth compu-
tation graphs are trees with high probability we essentially
repeat the proof of Theorem 1.

Note that R̃i �= 0 only if d − (n − r) � i � r . The right
inequality trivially follows from the fact that there are no more
than r failing columns for a check node to be connected to.
The left inequality follows from the fact that at most n − r
edges out of the check node’s d edges are connected to variable
nodes in non-failing columns.

Check degree d < n can improve decoding performance
over codes with check degree d = n with the same rate. This
is because a lower check degree allows to reduce the variable
degree, which in general results in better BP thresholds.
Example 2 compares two such codes.

Example 2. For n = 16, we compare two possible ensembles:
the (3, 12) and (4, 16 = n) regular ensembles. Both have the
same rate = 3/4. Fig. 5 plots the decoding thresholds for
3 � r � 6. The (3, 12) ensemble (square markers) gives better
thresholds for every r compared to the (4, 16) ensemble (dot
markers).

Note that unlike check degree n regular codes whose
thresholds are only a function of l, codes with check-degree
d < n have thresholds that depend on the length n as well, due
to the T (n,r,d)

i coefficients in their induced degree distributions,
which depend on n.

D. Irregular Codes

The most general array-code ensembles have irregular
degrees in the original code graph as well, and not only in the
induced graph as in the previous sub-section. We now examine
the induced decoding graphs of such ensembles. Let L(x) =∑lmax

l=1 Ll xl and R(x) = ∑dmax
d=1 Rd xd be the node-perspective

variable and check degree distributions, respectively. A given
check node with degree d will have induced degree i according
to the distribution in (4). Now considering all possible degrees
d in the degree distribution R(x), we obtain the induced check-
degree distribution

R̃(x) =
dmax∑
d=1

Rd

d∑
i=0

T (n,r,d)
i x i =

dmax∑
i=0

xi
dmax∑
d=i

Rd · T (n,r,d)
i ,

where the last equality is obtained by reversing the order
of summation. Therefore, the i th coefficient of the induced

CASSUTO AND SHOKROLLAHI: LDPC CODES FOR 2D ARRAYS 3285

check-degree distribution equals in the irregular case

R̃i =
dmax∑
d=1

Rd · T (n,r,d)
i =

dmax∑
d=1

Rd

(r
i

)(n−r
d−i

)
(n

d

) . (5)

(Starting the summation at d = 1 instead of d = i simplifies
the expression without changing the sum.) The expression
above leads to the following theorem.

Theorem 3. An (L(x), R(x))-irregular array-code ensemble
has design rate 1 − L ′(1)/R′(1) and an erasure decoding
threshold of an irregular one-dimensional LDPC code ensem-
ble with variable and check degree distributions

L̃(x) = L(x), R̃(x) =
r∑

i=0

(
dmax∑
d=1

Rd · T (n,r,d)
i

)
xi .

Proof: The induced check-degree distribution R̃(x) is proved
in the preceding analysis. As in the regular case, the variable
degree distribution is unchanged in the induced graph, since
removed check nodes affect only variable nodes outside the
induced graph. Convergence to tree ensembles is proved
identically to Theorem 1.

The T (n,r,d)
i coefficients thus induce a linear transformation

on the design check-degree distribution, as formalized in the
sequel. Let R̃ = [R̃0, . . . , R̃r] be the vector of induced
degree-distribution probabilities. When the inducing distribu-
tion T (n,r,d)

i is viewed as a dmax ×(r +1) matrix T n,r = {td,i },
then the induced check-degree distribution is obtained from the
design check-degree distribution R = [R1, . . . , Rdmax] by the
linear transformation

R̃ = R · T n,r . (6)

V. PROBABILISTICALLY MDS ARRAY CODES

Array-code ensembles are better than r -erasure-correcting
MDS codes in tolerating more than r column failures. But
so far in the paper, array-code ensembles failed to match the
threshold of εr = 1 that MDS codes have with rate = 1 − r/n
(cf. Fig. 4). It is thus the purpose of this section to close this
gap and provide array-code ensembles with rate = 1 − r/n
and a threshold approaching εr = 1. Such codes are called
herein probabilistically MDS codes.

Definition 5. An array-code ensemble is probabilistically
MDS if for some integer r , the ensemble rate equals
1 − r/n, and for any r failing columns it can recover with
high probability from any erasure probability εr < 1.

It is clear that tolerating arbitrary erasure probabilities
εr < 1 in r columns cannot be achieved with redun-
dancy smaller than r/n. Hence similarly to standard MDS
codes, probabilistically MDS codes attain the optimal redun-
dancy for their erasure-correction capabilities. Formulating the
probabilistically MDS property in terms of the threshold gives
the following proposition.

Proposition 4. An array-code ensemble is probabilistically
MDS if and only if it has rate 1 − r/n and its induced degree
distributions satisfy

λ̃(1 − ρ̃(1 − x)) = x, ∀x ∈ (0, 1]. (7)

Proof: If λ̃(1 − ρ̃(1 − x)) = x , then multiplying the left-
hand side by any εr < 1 will give εr λ̃(1 − ρ̃(1 − x)) < x ,
as required by the threshold definition of (3). To show neces-
sity, suppose that λ̃(1 − ρ̃(1 − x0)) > x0 for some x0 ∈ (0, 1].
Then by substituting εr = x0/λ̃(1 − ρ̃(1 − x0)) we get that
εr λ̃(1 − ρ̃(1 − x0)) = x0, violating the threshold definition
of (3).

The existence of explicit probabilistically MDS array-code
ensembles is proved in the following sub-sections.

A. Check-Degree n Probabilistically MDS Codes

The first probabilistically MDS code construction we
present is a check-regular array-code ensemble with check
degree n. It is also the simplest construction, since degree n
check nodes induce degree r checks in the decoding graph.
More general constructions in subsequent sub-sections require
analysis and manipulation of non-trivial combinatorial coeffi-
cients in the induced degree distribution polynomials.

Proposition 5. The degree distributions given by

ρ(x) = xn−1, λ(x) = 1 − (1 − x)1/(r−1) (8)

define a probabilistically MDS code ensemble for r failed
columns.

Proof: Using the standard formula to calculate the ensemble
rate we get

rate = 1 −
´ 1

0 ρ(x)dx
´ 1

0 λ(x)dx
= 1 − 1/n

1/r
= 1 − r

n
.

Now for r failed columns the induced degree distributions are

ρ̃(x) = xr−1, λ̃(x) = 1 − (1 − x)1/(r−1).

It is easy to verify that λ̃(1 − ρ̃(1 − x)) = x , and hence
x > ελ̃(1 − ρ̃(1 − x)) for all ε < 1. Hence the ensemble is
probabilistically MDS.

The array-code ensemble of Proposition 5 has a check-
regular degree distribution (all the check nodes have equal
degree n), and is a close relative of the check-regular
matched distributions used in the construction of capacity-
approaching one-dimensional LDPC codes [17]. Unlike in
the one-dimensional case, here it is not necessary to modify
the distributions (8) to get rate > 0. In the two-dimensional
construction, the distributions (8) only have their induced rate
equal to 0, with their ensemble rate reaching the optimum
of 1 − r/n.

It is now interesting to examine the performance of the
aforementioned probabilistically MDS code when the number
of failed columns is s > r . For that, we replace the r
with s in the induced check-degree distribution ρ̃(x), but
leave the original (design parameter) r in the variable-degree
distribution λ̃(x). The modified check-degree distribution will
be marked ρ̃s(x). Now with ρ̃s(x) = xs−1 and λ̃(x) =
1 − (1 − x)1/(r−1) we need to find εs as the largest ε such
that x > ελ̃(1 − ρ̃s(1 − x)) for every x ∈ (0, ε]. Substituting
ρ̃s , λ̃, we get

εs = sup
{
ε : x > ε

[
1 − (1 − x)

s−1
r−1

]
, ∀x ∈ (0, ε]

}

3286 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

Theorem 6. For s � r column failures, a code constructed
from the ensemble of Proposition 5 can with high probability
recover from any erasure probability ε < εs = (r −1)/(s −1).

Proof: The case s = r was proved in Proposition 5; now
assume s > r . We need to find the supremum of ε such that
x > ε[1 − (1 − x)

s−1
r−1] for every x ∈ (0, ε]. For convenience,

we change variables y := 1 − x and σ := (s − 1)/(r − 1).
Now the condition becomes

1 − y > ε[1 − yσ], ∀y ∈ [1 − ε, 1) (9)

Let f (y) = 1 − y − ε(1 − yσ). It is easy to verify that f is
convex and that f (1) = 0. So to get f (y) > 0 for y < 1
(as required by (9)), it is both sufficient and necessary to have
f ′(y) < 0 for all 0 < y < 1 (a zero first derivative at some
y0 < 1 implies a local minimum and f (y) < 0 for all y0 <
y < 1). The above gives the condition

f ′(y) = σεyσ−1 − 1 < 0, y ∈ (0, 1),

or

ε <
1

σ
= r − 1

s − 1
� εs .

Note that induced-rate considerations imply the following
upper bound on εs when s column failures occur:

εs < 1 − rate(λ̃(x), ρ̃s(x)) =
´ 1

0 ρ̃s(x)dx
´ 1

0 λ̃(x)dx
= r

s
. (10)

Therefore, since (r − 1)/(s − 1) < r/s for all s > r ,
the decoding performance of the check-regular array-code
ensemble has a lower threshold than what in principle can
be achieved given its induced rate. It is an interesting open
problem whether there exist probabilistically MDS codes that
have optimal thresholds for s > r as well (or if tighter
than (10) upper bounds exist).

B. Check-Degree d < n Probabilistically MDS Codes

Before constructively presenting probabilistically MDS
codes with regular check-degree d < n, we give a result that
limits the parameters d, n, r for which such codes are possible.

Proposition 7. A probabilistically MDS check-regular array-
code ensemble must have d > n − r + 1.

Proof: If d � n − r + 1, then d − 1 � n − r , and by (5)
we have R̃1 > 0. This also implies ρ̃1 > 0, which in turn
implies ρ̃(0) > 0. Therefore, substituting x = 1 in the right-
hand side of (7) gives λ̃(1 − ρ̃(0)) < 1 = x , in violation with
the equality condition of Proposition 4.

The next theorem shows that for the special case of r � 4,
the necessary condition in Proposition 7 is also sufficient for
the existence of regular check-degree d < n probabilistically
MDS array codes. Although the constraint r � 4 seems lim-
iting, we note that known algebraic array-code constructions
with r = 4 are considered too complex for erasure decoding
from practical standpoint. Hence the following construction
gives a low-complexity alternative for additional parameters
beyond the d = n construction of Proposition 5.

Theorem 8. For any r � 4, there exists a probabilistically
MDS array-code ensemble with regular check degree d, for
any d > n − r + 1.

Proof: For a check-regular degree d ensemble the node-
perspective degree distribution polynomial is

R(x) = xd .

The induced degree distribution, given the parameters n, r , is
(from Theorem 2):

R̃(x) = 1(n
d

) r∑
i=0

(
r

i

)(
n − r

d − i

)
xi . (11)

From edge perspective, the induced degree-distribution
polynomial is

ρ̃(x) =
r∑

i=1

ρ̃i x
i−1= R̃′(x)

R̃′(1)

= 1(n
d

)
R̃′(1)

r∑
i=1

i

(
r

i

)(
n − r

d − i

)
xi−1. (12)

Note that the condition d > n − r + 1 guarantees that ρ̃1 = 0,
as shown to be necessary in Proposition 7. The next step to
obtain a probabilistically MDS ensemble is to find a variable-
degree distribution λ̃(x) such that

λ̃(1 − ρ̃(1 − x)) = x,

which will guarantee correcting any ε < 1 fraction of erasures
in r columns. The existence of such a degree distribution
polynomial λ̃(x) can be established with the aid of the
following lemma from [13].

Lemma 9. [13] For a polynomial f (x) = f1x + f2x2 + f3x3

with f (1) = 1 and ∀i, fi � 0, there exists a polynomial g(x)
with g(1) = 1 and ∀i, gi � 0 such that g(1− f (1−x)) = x if

2 f ′(1) f ′′′(1) � f ′′(1)2.

(f ′ is the standard derivative of f (x) with respect to x, and
similarly f ′′ and f ′′′ are the second and third derivatives,
respectively.)

Translation of Lemma 9’s sufficient condition to a condition
on the coefficients of ρ̃(x) gives

Lemma 10. For a check (induced) degree-distribution poly-
nomial ρ̃(x) = ρ̃2x + ρ̃3x2 + ρ̃4x3 (ρ̃(1) = 1, ∀i, ρ̃i � 0),
there exists a variable degree distribution polynomial λ̃(x)
(λ̃(1) = 1, ∀i, λ̃i � 0) such that λ̃(1 − ρ̃(1 − x)) = x if

3ρ̃2ρ̃4 � ρ̃2
3 . (13)

Proof: Taking f = ρ̃ in Lemma 9 and substituting

f ′(1) = ρ̃2 + 2ρ̃3 + 3ρ̃4, f ′′(1) = 2ρ̃3 + 6ρ̃4, f ′′′(1) = 6ρ̃4

gives the sufficient condition (13).
It is now required to prove that the sufficient condition of

Lemma 10 is met for any n and d covered by the theorem’s
assumptions.

CASSUTO AND SHOKROLLAHI: LDPC CODES FOR 2D ARRAYS 3287

Denote Z = (n
d

)
R̃′(1). If r < 4, ρ̃4 = 0 and the sufficient

condition (13) is met trivially, therefore we assume r = 4.
Substituting r = 4 in (12) gives

Z ρ̃2 = 12

(
n − 4

d − 2

)
, Z ρ̃3 = 12

(
n − 4

d − 3

)
, Z ρ̃4 = 4

(
n − 4

d − 4

)

To prove that ρ̃2, ρ̃3, ρ̃4 above satisfy the sufficient condi-
tion (13), we derive successively simpler equivalent conditions

3ρ̃2ρ̃4 � ρ̃2
3

	
144

Z2

(
n − 4

d − 2

)(
n − 4

d − 4

)
� 144

Z2

(
n − 4

d − 3

)(
n − 4

d − 3

)
	

(n − d − 1)!(n − d − 1)!
(d − 2)!(d − 4)! � (n − d − 2)!(n − d)!

(d − 3)!(d − 3)!
	

(d − 3)(n − d − 1) � (d − 2)(n − d)

	
nd − d2 − d − 3n + 3d + 3 � nd − d2 − 2n + 2d

	
3 � n.

All the transitions follow simple arithmetic operations to both
sides of the inequality. Therefore, the condition n � 3 is
equivalent to (13), and is sufficient for the existence of the
desired variable-degree distribution polynomial λ̃(x). Since
codes with fewer than 3 columns are not very interesting,
n � 3 is met for every useful d, n parameters.

The final step in proving the probabilistic-MDS property is
showing that the rate of the code ensemble equals 1 − r/n.
This fact is established in the following Proposition 11.

Proposition 11. Let ρ(x) = xd−1 induce a check degree
distribution ρ̃(x) as in (12). Let λ(x) be a variable-degree
distribution satisfying λ(1 − ρ̃(1 − x)) = x. Then

1 −
´ 1

0 ρ(x)dx
´ 1

0 λ(x)dx
= 1 − r

n
.

Proof: We first observe that if λ(1 − ρ̃(1 − x)) = x then´ 1
0 λ(x)dx = ´ 1

0 ρ̃(x)dx . This is seen by rewriting the former
as 1 − ρ̃(1 − x) = λ−1(x) and the fact that

´ 1
0 λ−1(x)dx =

1−´ 1
0 λ(x)dx . So we are now to prove the equivalent statement

´ 1
0 ρ(x)dx
´ 1

0 ρ̃(x)dx
= r

n
. (14)

The inverses of the numerator and denominator of the left-
hand side are, respectively,

1
´ 1

0 ρ(x)dx
= d

1
´ 1

0 ρ̃(x)dx
= 1(n

d

) r∑
i=1

i

(
r

i

)(
n − r

d − i

)
,

where the latter follows from the relation
´ 1

0 ρ̃(x)dx =
1/R̃′(1) and from (11). We now write

1
´ 1

0 ρ̃(x)dx
= 1(n

d

) r∑
i=1

i

(
r

i

)(
n − r

d − i

)

= r(n
d

) r∑
i=1

i

r

(
r

i

)(
n − r

d − i

)

= r(n
d

) r∑
i=1

(
r − 1

i − 1

)(
n − r

d − i

)
(15)

= r(n
d

)(
n − 1

d − 1

)

= r
d

n
.

The sum in (15) counts all column combinations such that one
column is a fixed failed column, i−1 columns are chosen from
the remaining r − 1 failed columns, and d − i columns are
chosen from the non-failed columns. Since i − 1 takes the
full range from 0 to r − 1, (15) sums all combinations of
choosing d − 1 columns from the n − 1 columns that are not
the fixed failed column. Hence the

(n−1
d−1

)
in the subsequent

expression. All the other transitions are elementary arithmetic
manipulations.

Now we arrived at the needed result
´ 1

0 ρ(x)dx/´ 1
0 ρ̃(x)dx = r/n.

At the heart of Proposition 11 lies (14), the fact that the
ratio between the average degree of a check node in the code
graph (

´ 1
0 ρ(x)dx)−1, and the average degree of a check node

in the induced graph (
´ 1

0 ρ̃(x)dx)−1, is n/r (same as the ratio
between the number of columns in the code block and the
number of failing columns seen by the decoder). This fact is
true for general ρ(x), not just regular ρ(x) as above. However,
since Theorem 8 applies to regular ρ(x), the simpler proof of
the special case suffices.

VI. COMPARISON WITH ONE-DIMENSIONAL

LDPC CODES

The value of LDPC array codes has been demonstrated in
previous sections in two main respects:

1) They correct erasures beyond the designed number
of failed columns, unlike traditional array codes
(Section IV).

2) Probabilistically MDS codes attain optimal redundancy
(Section V).

In this section, it is our objective to show, and theoretically
quantify, the value of LDPC array codes in more generality
than in previous sections. For this analysis, the erasure-
correction performance of LDPC array-code ensembles will
be measured using precise theoretical tools. The generality of
the forthcoming study is embodied in its applicability to codes
of all parameters, not just probabilistically MDS ones.

The most natural way to study the performance of LDPC
array codes is through a comparison with one-dimensional
LDPC codes. It is possible that for the two-dimensional
error model defined in Section II, one may choose to use
a standard one-dimensional LDPC code, i.e., a graph with

3288 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

bn variable nodes drawn from a degree-distribution pair with-
out the one-neighbor-per-column restriction of Construction 1.
Then the key question for the evaluation of LDPC array codes
is whether they provably outperform the alternative choice
of one-dimensional LDPC codes, and if so, by how much.
As shown in the remainder of this section, LDPC array codes
are provably better than one-dimensional LDPC codes for all
parameters, and their advantage can be quantified analytically.

A. Induced Tree Ensembles

The decoding performance of codes over the proposed two-
dimensional erasure model is determined by the structure of
the decoding graph induced by the r failing columns. For that
reason, the performance analysis in previous sections has made
extensive use of the codes’ induced degree distributions. It is
apparent that further theoretical understanding of the codes’
performance depends on our ability to analyze and manipulate
induced degree distributions with general parameters. Unfor-
tunately, the coefficients of the hypergeometric distribution as
given in (5) are calculated as multiplications and divisions
of different binomial coefficients, which are difficult to deal
with analytically. To go around this difficulty, we refine our
view of induced degree distributions by examining the induced
tree ensembles of the codes. Recall [15] that a tree ensemble
is the asymptotic version of the decoding-graph ensemble,
consisting of rooted bi-partite trees whose degrees are distrib-
uted according to some variable/check degree-distribution pair.
For notational simplicity, in our discussion on tree ensembles
we focus on regular code ensembles with check degree d .
However, similar constructs and analysis can be provided for
irregular check degrees as well.

The first tree ensemble we examine is the one induced by
the regular Construction 1.

Tree Ensemble 1. The constrained random sampling in
Construction 1 implies that the d variable nodes connected
to a check node reside in d distinct columns, which form a
uniformly selected size-d subset of the column set {1, . . . , n}.
Given a set of r failing columns, the intersection size i between
the size-r failing subset and a random size-d subset follows
the hypergeometric distribution

P�
i =

(r
i

)(n−r
d−i

)
(n

d

) . (16)

Hence (16) is the induced check-degree distribution of the tree
ensemble of Construction 1. The superscript � represents a
two-dimensional ensemble.

As noted earlier, analyzing Tree Ensemble 1 above is
difficult due to the combinatorial form of (16). For that reason,
we propose Tree Ensemble 2 as a slight variation of Tree
Ensemble 1 that is more amenable to analysis.

Tree Ensemble 2. Instead of choosing the neighboring
columns of a check node as size-d subsets of {1, . . . , n}, in the
modified tree ensemble a check node connects to each column
in {1, . . . , n} i.i.d. with probability δ = d/n. The result of this
modified tree ensemble is that the intersection size i between
the size-r failing subset and the set of neighboring columns

in the tree now follows the binomial distribution

P�
i =

(
r

i

)
δi (1 − δ)r−i . (17)

The superscript � represents a modified two-dimensional
ensemble.

Note that in Tree Ensemble 2 the check degrees are d
only in expectation, so if we change the graph sampling of
Construction 1 to obtain Tree Ensemble 2, the code graph
becomes not strictly check-regular. Nevertheless, this minor
deviation from regularity does not impose any practical imple-
mentation issue.

The last tree ensemble we consider is the one induced by
standard one-dimensional LDPC codes drawn with no column
restrictions. It is given in Tree Ensemble 3.

Tree Ensemble 3. In a regular check-degree d one-
dimensional LDPC code a check node may connect to two
(or more) variable nodes in the same column. In particular,
given a size-r subset of columns, each edge connects to a
variable node in this subset i.i.d. with probability β = r/n.
As a result, in the induced tree ensemble of one-dimensional
codes, the number of edges i connecting to variable nodes in
the failing subset follows the binomial distribution

P−
i =

(
d

i

)
β i (1 − β)d−i . (18)

The superscript − represents a one-dimensional ensemble.
Note that both Tree Ensemble 2 and Tree Ensemble 3

result in binomial check-degree distributions in the induced
graphs, but with different parameters. The binomial distribu-
tions of (17) and (18) are well-known approximations [6] for
the hypergeometric distribution (16). In the remainder of the
section, our objective is to compare the 2D Tree Ensemble 2
and the 1D Tree Ensemble 3 in terms of their iterative-
decoding performance.

B. Iterative-Decoding Analysis of Induced Tree Ensembles

As we replaced the unwieldy hypergeometric distribution
P�

i of (16) with the more manageable binomial distribution

P�
i in (17), now we can express the induced check-degree

distribution polynomial (from node perspective) of LDPC
array codes as

R̃�(x) =
r∑

i=0

(
r

i

)
δi (1 − δ)r−i x i = (1 − δ + δx)r . (19)

In a similar way, the induced check-degree distribution
polynomial of one-dimensional LDPC codes is

R̃−(x) =
d∑

i=0

(
d

i

)
β i (1 − β)d−i x i = (1 − β + βx)d . (20)

Let aR̃� be the average induced check degree in Tree Ensem-
ble 2, and aR̃− be the average induced check degree in Tree
Ensemble 3. A first attempt to differentiate between Tree
Ensemble 2 and Tree Ensemble 3 – based on their average
induced check degree – turns unsuccessful, as shown in the
following proposition.

CASSUTO AND SHOKROLLAHI: LDPC CODES FOR 2D ARRAYS 3289

Proposition 12. Tree Ensemble 2 and Tree Ensemble 3 have
the same average induced check degree

aR̃� = aR̃− = rd

n
.

Proof: By definition we have aR̃� = R̃′�(1) and aR̃− =
R̃′−(1). Taking the derivative of (19) and (20) with respect to
x and substituting x = 1, β = r/n, δ = d/n, we get

R̃′�(1) = R̃′−(1) = rd

n
.

The fact that the 2D and 1D induced tree ensembles have
the same average degree means that we cannot use degree-
based arguments to show a performance gap in favor of the
2D construction. A more refined quantitative differentiation
between the 1D and 2D induced degree distributions is given
in the following proposition.

Proposition 13. Given code parameters d, n, and r < d
failed columns, the degree distributions of the induced
1D and 2D tree ensembles satisfy

R̃�(x) < R̃−(x),

for all x ∈ [0, 1).
Proof: We substitute y = 1 − x in the degree distribution

polynomials at the right-hand side of (19) and (20); then use
the following lemma.

Lemma 14. For any δ > β, δ, β ∈ (0, 1]
(1 − δy)β < (1 − βy)δ,

for all y ∈ (0, 1].
Proof: We expand the two sides of the inequality using

fractional binomial coefficients.

(1 − δy)β = 1 −
(

β

1

)
δy +

(
β

2

)
δ2 y2 −

(
β

3

)
δ3 y3 + · · ·

(21)

and

(1 − βy)δ = 1 −
(

δ

1

)
βy +

(
δ

2

)
β2 y2 −

(
δ

3

)
β3 y3 + · · ·

(22)

The expansion of fractional binomial coefficient is given by(
α

�

)
= α(α − 1) · · · (α − � + 1)

�!
= (−1)�−1 α

�

(
1 − α

� − 1

)
· · ·

(
1 − α

2

)
(1 − α) .

A simple observation is that for δ > β, we have 1
β

(β
�

)
> 1

δ

(δ
�

)
for odd �, and 1

β

(β
�

)
< 1

δ

(δ
�

)
for even �. As a result, we have

for odd �(
β

�

)
δ� = 1

β

(
β

�

)
δ�β >

1

δ

(
δ

�

)
δ�β >

(
δ

�

)
β�,

where the last inequality follows directly from δ > β. This
proves that the coefficients of odd powers of y are smaller
in (21) than in (22). In a similar way we have for even �(

β

�

)
δ� <

(
δ

�

)
β�,

which proves that the coefficients of non-zero even powers of
y are smaller in (21) than in (22). This proves that

(1 − δy)β < (1 − βy)δ.

To prove the proposition, we recall that

R̃�(x) = R̃�(1 − y) = (1 − δy)βn

and

R̃−(x) = R̃−(1 − y) = (1 − βy)δn,

so (1 − δy)β < (1 − βy)δ from Lemma 14 implies R̃�(x) <
R̃−(x).

With the proven gap between R̃�(x) and R̃−(x) given by
Proposition 13, we are now ready to prove the main result of
this section.

Theorem 15. For any code parameters n, d, and a number of
failed columns r < d, the rate of a 1D check-regular ensemble
is bounded strictly below the rate of a 2D ensemble for the
same erasure probability ε.

Proof: To prove a gap in the maximal rate between 1D
and 2D codes we use a known result from the theory of
one-dimensional LDPC codes.
Lemma 16. [17] For a code ensemble with check-degree
distribution polynomial R(x), average check-node degree aR,
and average variable-node degree aL, successful BP decoding
is possible if the erasure probability ε satisfies

ε <
aL

aR
(1 − R(1 − ε)).

Substituting the parameters of the induced decoding graphs
into Lemma 16, we get two upper bounds. One for the
1D code

ε <
aL−
aR̃−

(1 − R̃−(1 − ε)),

and one for the 2D code

ε <
aL�
aR̃�

(1 − R̃�(1 − ε)).

Substituting aR̃� = aR̃− = rd
n and rearranging, we get

aL− >
rdε

n(1 − R̃−(1 − ε))
,

and

aL� >
rdε

n(1 − R̃�(1 − ε))
.

The average check degree in the code graph is the same for
the 1D and 2D construction

aR− = aR� = d.

As a result, the lower bounds on aL− and aL� readily translate
to upper bounds on the respective code rates through the
relation rate = 1 − aL

aR
.

rate1D < 1 − rε

n(1 − R̃−(1 − ε))
, (23)

3290 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

Fig. 6. Experimental comparison between decoding success of a 2D code
(star markers) and a 1D code (square markers). For each in-column erasure
probability ε the plots mark the percentage of decoding instances that resulted
in full recovery of erased bits.

and

rate2D < 1 − rε

n(1 − R̃�(1 − ε))
. (24)

Having proved in Proposition 13 that R̃�(1−ε) < R̃−(1−ε),
we establish that the right-hand side of (23) is strictly smaller
than that of (24). A gap between the allowable rates of 1D
and 2D codes is now proven.

The implication from Theorem 15 is that for the two-
dimensional r, ε erasure model proposed in Section II,
two-dimensional codes may give better rates than standard
one-dimensional codes that ignore the structure of the array.
While the above only shows a gap in the upper bound on
the rates, success in meeting this bound with 1D ensembles
makes it likely that for large parameter families explicit 2D
ensembles can be found that approach the upper bound (hence
exceeding the 1D upper bound). For example, the special case
d = n (δ = 1), ε = 1, for which we have shown codes with
rate2D = 1 − r/n (Proposition 5), has a strictly smaller rate
upper bound for 1D codes.

It is important to note that our re-definition of 2D codes
as Tree Ensemble 2 instead of Tree Ensemble 1 was done
solely to gain analytic tractability in proving results such as
Theorem 15. In fact, in all the parameters that we checked, we
have found that R̃�(x) < R̃�(x) < R̃−(x) for all x ∈ [0, 1),
hence the original 2D sampling (Construction 1) giving rise
to Tree Ensemble 1 is expected to give even better rates than
Tree Ensemble 2 analyzed in this section.

C. Experimental Validation

In addition to the theoretical advantage of 2D codes proved
in the previous sub-section, we now want to see an example
of this advantage on a real code. To get such as example,
we took an array with dimensions n = 16, b = 1000.
With fixed variable-node degree l = 3 and fixed check-node
degree d = 12, we randomly drew a 2D code according to
Construction 1, and a 1D code similarly, only without the
column restrictions. For the case of r = 6 failing columns,

we simulated i.i.d. erasures within failing columns with vary-
ing erasure probabilities ε. For each of the codes we mea-
sured the decoding-success percentage across many channel
instances, each randomly choosing the r failing columns and
the erasures within columns. Decoding success is defined
as recovering the entire erased bits after a fixed number of
iterations. The results are given in Fig. 6. It can be seen
that the 2D code outperforms the 1D code in many ε points,
never performing worse. The theoretical 2D threshold for
n = 16, l = 3, d = 12, r = 6 is marked as a vertical solid line
at ε = 0.56.

VII. CONCLUSION

The results of the paper serve to lay out a new theoretical
framework for LDPC codes over two-dimensional arrays.
From these results many open questions arise. The main
open problem on the constructive side is the search for
code ensembles that give optimal decoding performance for
multiple r values. More upper bounds on code rates given
correction parameters are also important to come by. From
practical perspective, it is beneficial to consider similar codes
that are systematic.

ACKNOWLEDGMENT

The authors would like to thank Uri Gertzek and
Gali Granot for the implementation and simulations that led
to the results of Fig. 6. They would also like to thank Igal
Sason for valuable discussions.

REFERENCES

[1] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 529–542,
Mar. 1996.

[2] M. Blaum, J. L. Fan, and L. Xu, “Soft decoding of several classes
of array codes,” in Proc. IEEE Int. Symp. Inf. Theory, Lausanne,
Switzerland, Jun. 2002, p. 368.

[3] M. Blaum, P. Farrell, and H. van Tilborg, “Array codes,” in Handbook of
Coding Theory, 1st ed. V. S. Pless and W. C. Huffman, Eds. Amsterdam,
The Netherlands: North Holland, 1998, pp. 1855–1909.

[4] M. Blaum, J. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510–4519, Jul. 2012.

[5] M. Blaum and R. Roth, “New array codes for multiple phased burst
correction,” IEEE Trans. Inf. Theory, vol. 39, no. 1, pp. 66–77, Jan. 1993.

[6] H. Brunk, J. Holstein, and F. Williams, “A comparison of bino-
mial approximations to the hypergeometric distribution,” Amer. Statist.,
vol. 22, no. 1, pp. 24–26, 1968.

[7] Y. Cassuto and J. Bruck, “Low-complexity array codes for random
and clustered 4-erasures,” IEEE Trans. Inf. Theory, vol. 58, no. 1,
pp. 146–158, Jan. 2012.

[8] Y. Cassuto and A. Shokrollahi, “Array-code ensembles -or- two-
dimensional LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory,
St. Petersburg, Russia, Jul. 2011, pp. 518–522.

[9] J. L. Fan, “Array codes as low-density parity check codes,” in Proc. Int.
Symp. Turbo Codes, 2000, pp. 543–546.

[10] W. Feller, An Introduction to Probability Theory and Its Applications
Volume I, 3rd ed. New York, NY, USA: Wiley, 1968.

[11] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random
processes via and-or trees,” in Proc. 9th Annu. ACM SIAM Symp.
Discrete Algorithms, 1998, pp. 364–373.

[12] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 569–584, Feb. 2001.

[13] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for
the erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 12,
pp. 3017–3028, Dec. 2002.

CASSUTO AND SHOKROLLAHI: LDPC CODES FOR 2D ARRAYS 3291

[14] D. A. Patterson, G. A. Gibson, and R. Katz, “A case for redundant arrays
of inexpensive disks,” in Proc. SIGMOD Int. Conf. Data Manag., 1988,
pp. 109–116.

[15] T. Richardson and R. Urbanke, Modern Coding Theory. New York, NY,
USA: Cambridge Univ. Press, 2008.

[16] R. Roth and P. Vontobel, “Coding for combined block-symbol error
correction,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey,
Jul. 2013, pp. 1217–1221.

[17] A. Shokrollahi, “New sequences of linear time erasure codes approach-
ing the channel capacity,” in Proc. 13th Int. Symp. Appl. Algebra,
Algebraic Algorithms, Error-Correcting Codes, 1999, pp. 65–76.

Yuval Cassuto (S’02–M’08) is a faculty member at the Department of
Electrical Engineering, Technion – Israel Institute of Technology. His research
interests lie at the intersection of the theoretical information sciences and the
engineering of practical computing and storage systems.

During 2010-2011 he has been a Scientist at EPFL, the Swiss Federal
Institute of Technology in Lausanne. From 2008 to 2010, he was a Research
Staff Member at Hitachi Global Storage Technologies, San Jose Research
Center. From 2000 to 2002, he was with Qualcomm, Israel Research and
Development Center, where he worked on modeling, design and analysis in
wireless communications.

He received the B.Sc degree in Electrical Engineering, summa cum laude,
from the Technion, Israel Institute of Technology, in 2001, and the MS
and Ph.D degrees in Electrical Engineering from the California Institute of
Technology, in 2004 and 2008, respectively.

Dr. Cassuto has won the 2010 Best Student Paper Award in data storage
from the IEEE Communications Society, as well as the 2001 Texas Instru-
ments DSP and Analog Challenge $100,000 prize.

Amin Shokrollahi (M’00–SM’06–F’07) has worked and published on a
variety of topics, including coding theory, computational number theory and
algebra, and computational/algebraic complexity theory. He is best known
for his work on iterative decoding algorithms of graph based codes, an area
in which he has published several influential papers, and holds more than
20 granted and pending patents. He is the co-inventor of Tornado codes,
and the inventor of Raptor codes. His codes have been standardized and
successfully deployed in industrial applications involving data transmission
over lossy networks.

Amin finished his Ph.D. in 1991 at the University of Bonn. From 1995
to 1998, he was a Senior Researcher at the International Computer Science
Institute in Berkeley. From 1998 to 2000, he was a Member of the Technical
Staff at the Mathematical Sciences Research Center at Bell Laboratories.
In 2000, he became the Chief Scientist of Digital Fountain, a company
specializing on fast and reliable data transmission on unreliable networks.
He held this position until early 2009, when the company was acquired
by Qualcomm. In 2003, Amin joined the faculty of EPFL where he holds
a position as a full professor jointly in the departments of Mathematics,
and of Computer Science. He is the co-founder of Kandou Technologies,
a company specializing in the design and implementation of high speed and
energy efficient serial links of which is he currently the CEO.

Amin was awarded the best paper award of the IEEE IT Society in 2002 for
his work on iterative decoding of LDPC codes, the IEEE Eric Sumner Award
in 2007 for the development of Fountain Codes, and the joint Communication
Society/Information.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

