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Physical properties of surfaces are extremely important for initiation and nucleation of crystal growth,
including nanowires. In recent years, fluctuations in surface characteristics have often been related to
unreproducible growth of GaAs nanowires on Si by the Ga-assisted method. We report on a systematic
study of the occurrence of GaAs nanowire growth on silicon by the Ga-assisted method for different
kinds of silicon oxides: native, thermal and hydrogen silsesquioxane (HSQ). We find that success in
achieving nanowires and the growth conditions such as gallium rate and substrate temperature depend
mainly on the physical properties of the surface: oxide stoichiometry, oxide thickness and surface
roughness. These results constitute a step further towards the integration of GaAs technology on the Si

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Semiconducting nanowires provide a wide range of possibili-
ties both in applied and fundamental science [1-3]. Within the
range of possible applications Il[-V semiconductors are among the
most promising materials. The small footprint of nanowires allows
for virtually defect-free integration of mismatched materials,
which would not be possible in the thin film form [4,5]. Moreover,
III-V nanowires can be obtained on Si [6-11], providing a path for
combining the II-V and Si platforms. As nanowires start growing
generally in a single nucleation event followed by a layer-by-layer
mode, I[I-V nanowires grown on silicon appear also free from anti-
phase boundaries otherwise often found in thin film counterparts
[12-14]. Still, the lack of polarity of the silicon substrate leads to
non-perpendicular growth nanowires grown on Si(111) due to the
existence of three-dimensional twinning under certain growth
conditions [13,15].

One of the most successful ways of growing nanowires is the
vapor-liquid-solid method (VLS) in which a liquid droplet (deno-
minated as catalyst) is used for the gathering and preferential
decomposition of growth precursors [16,17]. Upon supersatura-
tion of the droplet, precipitation occurs at the interface with the
substrate in the form of a nanowire. One of the most successful
catalysts used for VLS is gold. However, when heating a Si substrate
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with gold on top, the gold droplets incorporate a significant amount
of silicon by the formation of an eutectic alloy. The presence of Si
in the Au interferes with the decomposition and precipitation of
precursors. As a consequence, growth of IlI-V nanowires on Si
using gold as a catalyst is quite more challenging than on IlI-Vs.
Many groups working on the growth of IlI-V nanowires on silicon
have looked for alternative methods, including the selective area
epitaxy and Ga-assisted growth of GaAs nanowires [6-8,13,18-21].
In the latter, it was found that the presence of an oxide at the
surface was necessary for the formation of the liquid droplet
necessary for VLS.

The physical characteristics of the silicon oxide have always
been an important parameter in Ga-assisted nanowire growth
[9-11]. It was observed that the oxide thickness plays a role in
achieving nanowires with an epitaxial relation to the substrate
[22]. Interestingly, the critical thicknesses reported by the various
groups are significantly different depending on the preparation
method of the oxide: 5 nm for Hydrogen Silsesquioxane (HSQ),
0.9-2 nm for thermal oxide and 30 nm for sputtered oxide [22,23].
In these works, the existence of a critical oxide thickness on a GaAs
substrate was discussed in terms of the opening of craters in the
oxide, either by the reaction of Ga with the substoichiometric
oxide and/or due to the desorption of As at GaAs surface tem-
peratures above 500 °C. Few works report on successful growth
without the presence of an oxide on the silicon surface [24,7,10].
One should note that in all of these cases, there was a non-
negligible time lapse between substrate preparation and loading
in the ultra-high-vacuum environment. It is well established that
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Si surfaces naturally undergo oxidation even at room temperature,
simply by exposing them to air. The same oxidation process takes
place also in the case of hydrogen passivated surfaces [25-27]. As a
consequence, what was claimed as oxide-free surface had most
probably oxidized to Si +1 (i.e. Si-O-Si) as shown from X-Ray
photoelectron spectroscopy data of refs [10,28].

Most of the works discussing the role of the oxide in the
growth of GaAs nanowires by the Ga-assisted method were
performed on GaAs substrates [22,7,9-11]. To the best of our
knowledge, there are no reports on the role of oxide in Ga-assisted
growth of GaAs nanowires on silicon. Different groups have used
different types of surface preparation, but no systematic compar-
ison between different types of oxide has been realized. Addition-
ally, it is generally accepted that growth conditions for obtaining
GaAs nanowires can strongly depend on the wafer batches and
providers used, despite identical nominal properties. There is a
clear need for finding out the physical origin of this in order to
deduce a reproducible preparation method of the silicon surface.
In this work, we address the following unanswered questions on
the Ga-assisted growth of GaAs nanowires on silicon: is the
presence of an oxide needed? What is the ideal oxide stoichio-
metry for reproducible growth? What is the ideal critical oxide
thickness? Is it possible to relate the physical characteristics of the
surface with the ideal growth conditions? For this, we analyze the
physical characteristics of different types of oxides and relate them
to the optimized GaAs nanowires growth conditions. This work
constitutes a step towards systematic use of silicon as a substrate
for Ga-assisted growth of GaAs nanowires and could be potentially
extended to other materials systems.

2. Experimental details

GaAs nanowires have been grown by Ga-assisted self-catalyzed
method on Si(111) 2-inch wafers RCA treated (ended with an HF
etch) from different providers (Virginia and Siltronix, p-doped
Boron, 10-20 © cm) from now on named Batch A and B respec-
tively. The growth was performed in a Molecular Beam Epitaxy
machine (MBE) with solid state sources (DCA P600). Previous to
growth and in order to ensure a clean surface, all substrates were
annealed at 500 °C in a separate UHV chamber for 2 h; from now
on we will refer to this process as degassing. The effect of this step
on oxide chemistry, thickness and roughness is reported in the
Supplementary Information. All the values of roughness, thickness
and chemistry characterization reported in the manuscript have
been performed after degassing, unless differently specified. After
this step, the samples were moved to the growth chamber, always
in UHV.

The silicon substrates were prepared with different types
of oxides: thermal, native and Hydrogen Silsesquioxane (HSQ).
Thermal oxide was produced by means of dry oxidation of the
wafer of batch B in a Centrotherm furnace at 950 °C in a cleanroom
environment. The native oxide was obtained by natural exposure
of the Si wafers (of batch A and B) to air in cleanroom environment
(21 £ 0.5 °C, humidity 44%). HSQ oxide was obtained by spinning a
HSQ:MIBK solution (XR-1541-002, Dow Corning) on wafers of
batch B at 6000 rpm with subsequent annealing for 5 min at
180 °C for removal of the solvent. Without diluting the solution,
the oxide thickness achieved was of 28-30 nm. By diluting it (1:4-
1:8), thinner oxides were obtained (8-4 nm). The films were
transformed into silicon oxide by annealing them at 475 °C in N,
atmosphere for 1 h. The solutions were spun right after exposing
the Si wafers to an HF solution, in order to avoid the presence of
the native oxide. The oxide thickness was controllably reduced by
chemical etching with a NH4F:HF (500:1) solution. The etching
rate was calibrated independently for every type of oxide used.

The oxide thickness was measured with spectroscopic ellipsome-
try (Sopra GES 5E) and confirmed by Atomic Force Microscopy
(AFM) on etched steps. Each thickness value obtained by ellipso-
metry is the result of the average of five measurements in different
points on the wafer. Attenuated total reflection (ATR) IR spectro-
scopy (Jasco FT/IR 6300 with Pike MIRacle holder with single
reflection diamond crystal) was realized for the characterization of
the oxide stoichiometry, by scanning in the 650-4000 cm ™~ range
with 100 accumulations. Although, since the intensity of the
signal-to-noise ratio above 1500 cm~! is extremely low, only the
low range (650-1500cm™') is considered and reported. Each
ATR-FTIR measurement was repeated 3 times on each sample in
different points. Finally, AFM (Bruker) was also used for the
determination of the surface roughness: each surface roughness
value is the result of the average of three measurements of
5x5pm, 1 x 1pm and 500 x 500 nm areas. It is important to
remark that the reported values of roughness have been measured
after the degassing. The roughness before degassing are reported
in the Supplementary Information. In the case of completely
etched oxides, the substrates were immersed in an isopropanol
bath immediately after etching, and then dried under Nitrogen
flow just before loading in the UHV environment. We used the
following range of growth conditions:

® the substrate temperature between 580 °C and 660 °C, as
measured by means of a calibrated pyrometer;

® Ga rates between 0.25 A/s and 1.25 A/s, as calibrated on planar
growth on GaAs (111) by means of Reflection High Energy
Electron Diffraction (RHEED);

® As, fluxes were from 2.5 x 10~° torr to 4.9 x 10~ torr; as
calibrated by means of a beam flux monitor gauge.

Scanning Electron Microscopy (SEM) (Zeiss Merlin) was used for
the morphological characterization of the samples.

3. Experimental results
3.1. Chemical composition of the oxides

We start by presenting the nature of the various oxides used in
this work. Thermal oxide is a mostly stoichiometric oxide (SiO,),
which can be produced by oxidation of Silicon at 800-1200 °C
under a controlled oxygen flux; it exhibits low as-grown rough-
ness (~ > 0.6 nm) [34].

Native oxide is a thin layer of oxide formed by the natural
exposure of a Si wafer to air; it follows the surface roughness of
the underlying silicon substrate and it grows monolayer by
monolayer [25,35,27]. The chemical composition of native oxide
depends on its thickness. For thicknesses of few monolayers, it
mainly consists of Si-O-Si [36]. The oxygen content increases for
larger thicknesses, though it remains sub-stoichiometric with
respect to thermal oxide.

HSQ oxide is obtained by annealing a Hydrogen Silsesquioxane
resin on a silicon wafer previously etched with HF. The thickness
can be tuned by the dilution of the resin solution and the spinning
rate [37,38]. Annealing the HSQ resin at 450 °C transforms the cage
structure of HSQ monomer into a network, whose chemical
composition is SiO, with 1 <x <2, depending on the annealing
temperature [37,38].

By investigating these three types of oxides, we can understand
the influence of the stoichiometry in the nucleation and growth
mechanism of GaAs nanowires. The stoichiometry of silicon oxide
can be characterized with Fourier Transform Infrared Spectroscopy
(FTIR). The main absorption bands characteristic of silicon oxide

are the interstitial oxygen band (Si-0-Si), centered at 1107 cm !,
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[29,31,32] the transverse optical phonon (TO) of SiO, around

1075 cm~! [33], as well as the longitudinal optical phonon (LO)

around 1250 cm~! [33], as reported in Table 1. Suboxides of the

form SiO, with 1 <x <2 are characterized by an absorption band

downshifted and broadened with respect to the TO SiO,. The shift

can be directly related to the stoichiometry [33]. Examples of ATR-

FTIR spectra obtained from the different oxides are shown in Fig. 1.
In Fig. 1 the Si-O-Si absorption band is observed for all the

oxides (thermal, native and HSQ), albeit with different intensities.

The spectra at higher wavenumbers depend on the oxide type:

® Thermal oxide shows a clear LO-SiO, positioned at 1250 cm ™!,
indicating it being stoichiometric oxide.

® HSQ oxide shows an absorption band (1226 cm~!), indicating
that it is substoichiometric oxide SiO, with (1 <x < 2) [33].

® Native oxide does not show any additional absorption band
than the already described Si-O-Si related, consistently with
reported results on films of similar thickness [29].

Table 1
Characteristic phononic modes of silicon oxide.

Phononic mode Position (cm~1) Ref.

Si-0-Si 1107 [29-32]
TO SiO, 1075 [33]
LO Si0, 1250 [33]
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Fig. 1. ATR FTIR spectroscopy of different oxides. The peak at 1250 cm~ " corre-
sponds to the LO mode of SiO,, whereas the peak at 1107 cm ™! is related to the
presence of interstitial oxide Si-O-Si. The TO mode of SiO, is located around
1075 cm~'. Thermal oxide is the only oxide that shows TO and LO modes of SiO,.
HSQ presents a downshifted broad peak around 1225 cm ™! correspondent to non-
stoichiometric oxide SiOy with x < 2. All the oxides show the interstitial oxide peak
(1107 cm~ ') but not the sputtered oxide on GaAs; this proves that Si-O-Si is
peculiar of Si/SiO,-interface. A similar result was obtained with HSQ oxide on GaAs
substrate (see Supplementary Information).

In order to demonstrate that the interstitial oxide is charac-
teristic only of the interface between the silicon and the silicon
oxide, the spectra of sputtered oxide on GaAs is also shown
(see Fig. 1); the same result has been achieved with HSQ on GaAs
(see Supplementary Information). No absorption band is observed
at 1107 cm !, showing that no interstitial oxide is present. On the
other hand a broad absorption is observed around 1226 cm™!,
characteristic of sub-stoichiometric oxide. As a remark, interstitial
oxide is present in every type of oxides on silicon since it represent
the initial step of oxidation of every silicon surface, being followed
by oxide of different composition, depending on the processing
[27]. In the following, FTIR spectrum of Si substrate is used as a
tool to investigate the physical properties that influence the early
stages of growth of self-catalyzed GaAs nanowires.

3.2. Thermal oxide

We first present our results on thermally oxidized silicon
substrates. As introduced earlier in this manuscript, three physical
properties of the substrates will be considered: thickness, rough-
ness and chemical composition. First we investigate substrates
with four different thicknesses of the same oxide, by a combina-
tion of optical lithography and etching (see supplementary infor-
mation). This allowed us to investigate simultaneously several
oxide thicknesses under identical experimental conditions.

Fig. 2 shows SEM micrographs of oxidized substrates with
varying oxide thicknesses after performing the same growth pro-
cess. The growth conditions were substrate temperature T=600 °C,
Gallium rate Ga=1.25 A/s and Arsenic beam flux pressure As = 2.5 x
106 torr. Under these conditions nanowire growth was observed
only for an oxide thickness between 1 and 2 nm (Fig. 2(c)). Similar
thickness selectivity results were obtained under other conditions
(T=590-630 °C, Gallium rate 0.5-1.25A/s) leading to nanowire
growth. In the case of thicker oxides, Ga droplets were always
observed on the surface (see Fig. 2(a) and (b)). Oppositely, for oxide-
free silicon surfaces, textured two-dimensional growth was found
(see Fig. 2(d)). Such a change in growth mechanism could be related
to the difference in surface energy of the SiO, compared to the bare
Si and thereby influence the initial Ga droplet formation and pinning
on the surface. The question here is what makes 1-2 nm thermal
oxide so prone for Ga-assisted nanowire growth. In order to shed
some light to this question, we show the ATR-FTIR spectra of the
thermal oxide of different thickness (see Fig. 2 (e)), with comparable
pre-degassing roughness ( ~ 0.3 nm). It is interesting to note that
the intensity of the LO SiO, is proportional to the thickness, while
the Si—-O-Si mode exhibits the identical amplitude for all. This
corroborates the interface nature of Si-O-Si. Moreover, when the
oxide thickness is around 1-2 nm, roughness was comparable to
thickness (see Table 2), and only the Si-O-Si band is observed. These
results are in good agreement with the results obtained by Muller
et al. [34]: stoichiometric silicon dioxide is formed only for thick-
nesses higher than 2 nm.

3.3. Native oxide

From our study on thermal oxide we understand that when
roughness is comparable to thickness, nanowire growth can be
achieved. In other words, this condition corresponds to the
exposure of Si/SiO,-interface (i.e. Si-O-Si) Based on the thermal
oxide results, we also speculate that the substoichiometric com-
position of the oxide might help in the achievement of nanowire
growth. As described in the first section, native oxide appears
naturally upon exposing silicon wafers to air. This would suppo-
sedly make native oxide a reliable candidate. Still, one observes an
extreme variation within batches and providers on the success in
nanowire growth, which to date is not understood. In order to
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Fig. 2. Growth of GaAs nanowires on Si (111) substrates covered by thermal oxide. The same substrate has been etched with NH4F:HF (500:1). SEM micrographs of GaAs
nanowires growth attempt on (a) 24 nm, (b) 10 nm and (c¢) 1.5 nm thick thermal oxide. In (d) growth without oxide is reported. Growth has been performed simultaneously
for all the different oxide thicknesses. In (e) ATR-FTIR spectra of thermal oxides with different thicknesses and comparable roughness pre-degassing ( ~ 0.3 nm) are reported.
By decreasing the oxide thickness the LO-SiO, is decreasing in intensity, whereas the Si-O-Si remain unchanged. The scale-bar corresponds to 1 pm.

Table 2
Thickness and roughness of different types of oxides after degassing. The measure-
ments have been performed by ellipsometry.

Oxide type Annealing (°C) Thickness (nm) Roughness RMS (nm)
Native oxide (Batch A) 500 0.8+ 0.6 0.5+0.5
Native oxide (Batch B) 500 21+0.6 5.3+0.5
Thermal oxide 500 1.2+0.6 13+05
HSQ etched 300 8.8+0.9 31105
HSQ as spun 300 814+0.6 12405

demonstrate that this variability is not a provider issue, we take
a closer look at the physical properties of the native oxide of
substrates coming from different providers that, despite having

identical specifications, gave rise to different growths. One should
note that the characteristics may not be specific of a certain
company and may vary from batch to batch. As a first observation
we find that at comparable roughness pre-degassing (0.3-0.8 nm,
see supplementary information) the oxide is slightly thicker in the
case of batch B than batch A (see Table 2). Secondly, the ATR-FTIR
spectra (Fig. 3 (a)) show that the intensity of the Si-O-Si peak is
much higher for Batch B wafers, pointing out a rougher Si/SiO,-
interface. This is in accordance with the post degassing roughness
measurements (see Table 2). Finally, we show the SEM micro-
graphs of the growth performed on the two type of substrates (see
Fig. 3 (b) and (c)). The two growths were performed under identical
conditions (T=610°C, Ga=0.27 Afs, As=2.5 x 10~ ° torr). How-
ever, while a forest of nanowires is obtained on batch B wafers
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Fig. 3. Native oxide grown on wafers of different providers (batch A and B) with same doping concentration and same surface treatment (see Section 2). In (a) the ATR-FTIR
spectra of batch A and B native oxides are shown. Batch B shows stronger absorption band of Si—-O-Si compared to batch A, at higher thickness (see Table 2) and comparable
roughness (0.3-0.8 nm, see Supplementary Information). Growth has been performed with same process parameters (T=610 °C, Ga=0.27 A/s, As=2.5 x 10~ torr), and in
the case of Batch A extremely low nanowire density ( < 10% cm~2) was achieved (b), whereas in the case of batch B higher nanowire density (~ 1.5 x 10’ cm~2) was

achieved (c). The scale-bar corresponds to 2 pm.

(roughest surface), an extremely low density of nanowires is
observed on the batch A (smoothest surface). The different nano-
wire density can be understood in terms of changes in surface
diffusion: a lower roughness results in an augmented surface
diffusion, that lead to a lower nanowire density [39]. Vice versa, a
rougher substrate (i.e. batch B) leads to a higher nanowire density,
as shown in Fig. 3 (c). In a nutshell, the Si/SiO,-interface seems to be
a key parameter in the GaAs nanowire growth on Si. Further studies
should involve the intentional modification of this roughness for
engineering the nanowire density in a reproducible manner.

3.4. HSQ oxide

So far we have evaluated the growth on SiO, and interstitial
oxide (Si-O-Si) exposed to the surface. Now we want to evaluate
the possibility of growth on an oxide with intermediate composi-
tion. For this purpose we used silicon substrates covered with
silicon oxide from HSQ processing. Further information about the
processing of HSQ can be found in the Supplementary Information.
Analogously to the thermal oxide investigation, several growths
were performed simultaneously on oxide thicknesses ranging
from 2 nm up to 24 nm. Representative SEM images of samples

grown under at a substrate temperature of 595 °C, Ga rate of
1.1 A/s and As flux of 2.5 x 1075 torr are reported in Fig. 4. As the
SEM micrographs show, growth of vertical nanowires was only
achieved for thin oxide layers ( <5—6 nm). This value is higher
than in the case of thermal oxide, and comparable to what has
been reported for HSQ on GaAs substrates [40]. Similar to what
was observed for thermal oxide, the Si-O-Si band is the most
dominant feature in the FTIR spectra of HSQ oxide of around the
critical thickness and below. We note that the IR spectrum of 4 nm
thick HSQ presents a non-negligible SiO,-related absorption band.

For this reason we performed the following experiment; we pre-
pared two substrates with the same HSQ oxide thickness, achieved by

® Spinning HSQ from a MIBK diluted solution (1:8) to form
directly a film with a thickness of 4-5 nm. This type of sample
will be called “as spun”.

® Spinning HSQ from non-diluted solution, and etched it down to
a similar thickness. In the following, this type of sample will be
called “etched”.

The IR spectra are virtually identical (see Fig. 5 (a)), indicating
the same composition of Si-O-Si and SiO,. Interestingly, successful
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Fig. 4. Growth of GaAs nanowires on Si (111) substrates covered with HSQ oxide. Thickness was controlled by etching down the oxide with NH4F:HF diluted 500:1. In (a)-(b)-
(c) and (d) the SEM micrographs show the growth attempts on respectively 19-15-8 and 5 nm oxide thicknesses. Only in the latter case growth was performed successfully;
the growth conditions were substrate temperature 595 °C, Ga rate of 1.1 Afs and As flux of 2.5 x 10~ torr. (e) ATR-FTIR spectra of HSQ oxides with different thicknesses: the
absorption band of SiO, decreases in intensity by decreasing oxide thickness. On the other hand the absorption band of Si-O-Si does not decrease in intensity, showing that it

is related to the Si/SiO»-interface. The scale-bar corresponds to 2 pm.

growth had been achieved only in the case of etched HSQ
(see Fig. 5). Even though the substrates seemed to be identical,
the AFM analysis revealed a difference in surface roughness (see
Table 2). In the case of low roughness (as spun) only Ga droplets
were obtained, whereas for roughness of the order of the oxide
thickness (etched), vertical nanowires were observed. We believe
that, as schematically depicted in inset of Fig. 5, the Ga droplet
cannot reach the Si/SiO,-interface and no growth is observed in
the case of a smooth and compact oxide layer. On the other hand,
for large surface roughness (i.e. comparable to thickness), the Si/
SiO,-interface can be exposed to the precursors, allowing vertical
nanowire growth.

4. Discussion

We discuss now the results in views of generalizing our
findings for nanowire growth. We first review the impact of
stoichiometry and roughness of the oxide on nanowire growth.
We have varied the composition of the silicon oxide SiO, with x
ranging from O to 2. For simplicity's sake, we start considering
growth on the two extreme cases: stoichiometric SiO; (x=2),
namely thermal oxide thicker than 2 nm, and oxide-free silicon
(x=0), see for example Fig. 2. In both cases it was not possible to
obtain GaAs nanowire growth in any of the conditions used.
Instead, we observe a droplet-like deposit on the SiO,, while a
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polycrystalline growth is observed in the oxide-free surface.
The droplet-like deposit suggests that the diffusion coefficient
of Ga-adatoms on the oxide is higher than on the silicon surface.
It is interesting to note that in the case of growth on Si substrates
covered with oxide thickness comparable to roughness, nano-
wires were always obtained. This condition suggests a nucleation
model based on the formation of a pin-hole that provides the
epitaxial relation with the substrate, coherently with what
reported from other researchers [41,22]. The conditions of rough-
ness comparable to thickness that allow the pin-hole formation,
necessary to achieve nanowire growth can be obtained in various
manners: thermal oxide thinner than 2 nm, HSQ etched thinner
than 4-5 nm and native oxide. A clear proof of the importance
of roughness vs thickness is shown in Fig. 5 (b) and (c), where
two substrates were prepared with HSQ with identical thickness
and composition, but different roughness. We have also seen that
the roughness/thickness conditions that lead to successful
growth seems to be correlated to Si/SiO,-interface (i.e. Si-O-Si),
as shown in Fig. 6. The recurrent observation of such an interface
layer has been described in other works, where though successful
growth of GaAs nanowires on patterned silicon dioxide is not
related to the presence of interstitial oxide at the SiO, hole
opening [42-44]. However the role of Si/SiO,-interface in the

:,_
‘ h%‘

Fig. 5. (a) ATR-FTIR spectra of HSQ oxides with identical thickness but different preparation method: the as spun was prepared by direct dilution, whereas the etched was
prepared by a more concentrated solution and then etched down. In (b) and (c) the SEM micrographs report the growth attempts on respectively the as spun and etched
HSQ. Nanowires growth was successful only in the case of the etched HSQ. The insets in (a) show the proposed mechanisms for etched and as spun HSQ: the latter present a
lower roughness compared to the etched HSQ (see Table 2), that did not allow Si/SiO,-interface exposure to the surface, leading to no nanowire growth. Differently,
successful growth was achieved for the etched HSQ since the roughness allowed Si/SiO,-interface exposure to the surface (see Table 2). The scale-bar corresponds to 2 pm.

growth mechanism is still not fully understood and requires
further investigation.

In parallel, we explored growth on smooth surfaces (batch A
substrates) to understand if nanowire density could be controlled
by the “processing parameters”, as Ga rate or substrate tempera-
ture. We varied both Ga rate and substrate temperature respec-
tively from 0.3 A/s to 1.1 A/s, and from 600 °C to 660 °C, as shown
in Fig. 6. At low Ga flux and substrate temperatures ((a) and (b))
extremely low density of vertical nanowires is observed, as already
reported in Fig. 3. On the other hand the higher the Ga flux ((c)-
(e)-(g)), the more material is deposited on the surface, resulting in
an increased nanowire density and polycrystalline parasitic islands
density. By increasing temperature, the polycrystalline parasitic
layer decreases ((g)-(h)-(i)). Coherently with what mentioned
before, the diffusion length of Ga atoms augment with increasing
temperature, decreasing the polycrystalline islands density.

In order to generalize these results, we have correlated the
surface characteristics with the conditions needed to achieve
growth with comparable density number of vertical nanowires
((1.5+0.5) x 107 cm~2). Fig. 7 depicts the general conditions for
obtaining comparable nanowire density as a function of surface
roughness and Si-O-Si content. In general, a lower surface rough-
ness requires higher substrate temperature and Ga rate to achieve
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Fig. 6. SEM micrographs of GaAs nanowires grown on batch A wafers covered with native oxide. The as flux used in all the growths shown is constant at 2.5 x 10~ torr. By
moving from bottom to top Ga rate increases, whereas from left to right the substrate temperature increases. At low Ga rate and substrate temperatures (a) and (b) low
material deposition is observed. On the other hand the higher the Ga rate (c)-(e)-(g), the more material is deposited on the surface, increasing at the same time nanowire
density and polycrystalline island density. If also temperature is increased, the density of vertical nanowire strongly increases (g)-(h)-(i), decreasing polycrystalline island
density. Growth at temperature above 640 °C was also attempted, but no growth was observed anymore. The scale-bar corresponds to 2 pm.

comparable nanowire density. As an example, in the case of batch
A Si wafers (smoothest surface), the conditions to achieve the
desired nanowire density were of Ga=0.75 A/s and Ts,,=640 °C.

Thermal oxide presented the second lowest surface roughness:
the desired nanowire density was achieved with Ga=0.75 A/s and
Tsup=625 °C. The trend is followed by HSQ for which the condi-
tions for the desired nanowire density were Ga=0.45 A/s and
Tsup=610 °C. In the case of the highest surface roughness, a
comparable nanowire density was achieved at Ga=0.27 A/s and
Tsup=610,°C.

We explain the change in Ga rate conditions for creating
comparable nanowire density with surface diffusion: a decrease
in roughness produce an increase in surface diffusion, forming less
nanowires [39]. Therefore, to increase nanowire density for lower
roughness substrates (i.e. native oxide batch A) Ga rate and
substrate temperature have to be increased compared to rougher
substrate (i.e. native oxide batch B).

As shown in Fig. 7, roughness and interstitial oxide content
are directly correlated, suggesting that the sharpness of the

Si/SiO,-interface affects the characteristic roughness for the bot-
tom up oxides (i.e. thermal oxide and native oxide). Presently, how
to achieve control over interstitial oxide formation remains still
open and it needs further investigation.

5. Conclusions

In conclusion, we have shown that roughness is a key para-
meter for forming pinholes necessary for successful GaAs nano-
wire growth. This explains the different optimal oxide thicknesses
to achieve growth reported in literature: the critical oxide thick-
ness depends on the surface roughness as it is related to the
thickness leaving Si/SiO,-interface exposed to the surface. For
example, we found a critical thickness of 1-2 nm for thermal
and native oxide, 5-6 nm for oxide from HSQ. The lower the
roughness, the higher the temperature and the Ga rate needed for
achieving the comparable nanowire density, and vice versa.
Additionally, we have also shown that the “provider dependence”
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Fig. 7. The relation between optimal growth conditions (substrate temperature
and Ga rate) at comparable density number of vertical nanowires ((1.5 + 0.5)x
10° cm~2) with surface roughness and interstitial oxide content is shown. The
higher the Si-O-Si content, the rougher the Si/SiO,-interface. To achieve compar-
able nanowire density lower roughness lead to higher substrate temperature and
Ga rate, and vice versa.

on growth conditions has physical reason, and it is related to the
interface roughness of the substrates, that seems to be correlated
to Si/SiO,-interface. Still, to clarify the latter point further inves-
tigation is needed. Systematic AFM and FTIR on the received
substrates might help in determining the conditions to achieve
the desired nanowire density. This work opens new perspectives
for the reproducible integration of GaAs nanowires on silicon.
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