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ABSTRACT

We propose a sampling scheme that can perfectly reconstruct a
collection of spikes on the sphere from samples of their lowpass-
filtered observations. The proposed algorithm can reconstruct K
spikes from (K +

√
K)2 spatial samples, thus improving over pre-

viously known FRI sampling schemes on the sphere by a factor of
up to four. Further, we show how multiple sound source localization
(SSL) by a spherical microphone array can be transformed into a
spherical FRI sampling problem. We certify the effectiveness of the
proposed algorithm by using it to solve the SSL problem.

Index Terms— Sphere, finite rate of innovation, sampling, spar-
sity, sound source localization

1. INTRODUCTION

Spherical signals appear frequently in a number of distinct domains.
Examples are signals defined on Earth’s surface [1–3], signals from
space measured on Earth [4, 5], or spherical microphone arrays that
output a time-varying signal supported on a sphere [6, 7].

Often, it is realistic to model the signal of interest as a weighted
sum of localized spikes. In the limit, spikes become Dirac delta func-
tions. For example, many acoustic sources are well-aproximated by
point sources. The directional distribution of multiple sources is then
a finite collection of spikes. Stars in the sky observed from Earth are
angular spikes, and so are plume sources on Earth. Collections of
spikes are signals with a finite rate of innovation (FRI). In the above
examples, we observe the spikes through sampling kernels (for ex-
ample point spread functions and Green’s functions). The essential
property of kernels is that they are approximately bandlimited. The
resulting spherical signal is then bandlimited, as it is a superposition
of rotations of bandlimited kernels.

An archetypal FRI signal is a weighted sum of Dirac delta func-
tions [8]; many other FRI signals are derived by processing sums
of Diracs. Integrating Diracs yields polynomial splines in 1D, and
bilevel polygons in 2D. The authors in [8] discuss periodic streams
of Diracs and related signals. In particular, they show that the T -
periodic signal x(t) =

∑
i∈Z
∑K
k=1 ckδ(t− tk − iT ) with the rate

of innovation of 2K/T can be reconstructed from 2K + 1 samples.
A more detailed discussion of the performance in the noisy case is
given in [9] and [10].

In higher dimensions, unlike in the 1D case, the signals are not
sampled at the rate of innovation [11,12]. Nevertheless, the term FRI
is still used, as the algorithms allow to directly compute the degrees
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of freedom. In 2D, due to the properties of zeros of multivariate
polynomials, the required number of samples is O(K2).

In this paper, we propose an algorithm to perfectly reconstruct
collections of spikes from their lowpass-filtered observations. Our
algorithm efficiently reconstructs K spikes when the bandwidth of
the lowpass filter is at least K +

√
K. Using recent results on ef-

ficient computation of the spherical Fourier transform [13, 14], this
implies that we need (K +

√
K)2 spherical samples to reconstruct

the K spikes.
In [15], the authors proposed a spherical FRI sampling scheme

requiring (2K)2 samples to reconstruct a distribution of K Diracs.
They further notice that if only 3K spectral bins are active, they
can use the optimal number of samples. Sampling at this critical
rate relies on the assumption that we can apply arbitrary spectral
filters before sampling the signal. But complex spectral filtering is
generally not possible by operating on 3K spatial samples; we must
compute the spectrum before applying the filter.

This observation reveals a semantic difference between spatial
(multi-dimensional) FRI sampling and FRI sampling in time. In the
latter case, the signal is not bandlimited, yet we can reconstruct it
from the critical number of samples because we can perform analog
anti-aliasing filtering. On the other hand, in spatial sampling, the
signal should be bandlimited before sampling. The value of spatial
or spherical FRI sampling lies in direct, efficient extraction of signal
parameters from a small number of samples.

In Section 2 we list the necessary results from harmonic analy-
sis on the sphere. Section 3 develops the main result, and in Section
4 we describe the application of the result to sound source localiza-
tion. Due to space limitations, we defer the proofs of lemmas and
theorems to a forthcoming longer paper [16].

2. HARMONIC ANALYSIS ON THE SPHERE

We briefly recall several definitions related to spherical harmonics.
The 2-sphere is defined as a locus of points in R3 with unit norm,
S2 =

{
x ∈ R3 | xTx = 1

}
. Spherical harmonics form a natural

(orthonormal) Fourier basis for the Hilbert space of square integrable
functions on the sphere. They are defined as [17]1

Y m` (θ, φ) = Nm
` P

m
` (cos θ)ejmφ, (1)

where Nm
` is the normalization constant, and Pm` are the associated

Legendre polynomials,

1Spherical harmonic order m is conventionally displayed as a superscript.
We will keep this convention for the associated Legendre polynomials P |m|` ,
spherical harmonics Ym` , normalization constants Nm

` , and the spherical
Fourier coefficients fm` . It should not be confused with powers as in x`.
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Pm` (x) = (−1)m(1− x2)m/2 d
m

dxm
(P`(x)), for m ≥ 0. (2)

P`(x) is the Legendre polynomial of degree `.
Any square integrable function on the sphere, f ∈ L2(S2), can

be expanded in the spherical harmonic basis,

f(θ, φ) =

∞∑
`=0

∑
|m|≤`

fm` Y
m
` (θ, φ). (3)

The expansion coefficients are computed as fm` = 〈f, Y m` 〉 =∫
S2 f(ω)Y

m
` (ω) dω, where dω = sin(θ) dθ dφ is the usual rotation-

ally invariant measure on the sphere. The coefficients (fm` )(l,m)∈I
form a countable set supported on a triangle of indices,

I =
{
(`,m) ∈ Z2 | ` ≥ 0, |m| ≤ `

}
. (4)

We say that f is bandlimited with bandwidth L if L is the smallest
integer such that fm` ≡ 0 for ` ≥ L.

We define the spherical Dirac delta function [18] so that it satis-
fies the sifting property,

∫
S2 δ(ω;ω0)f(ω) dω = f(ω0), ∀ω0 ∈ S2

and “nice” f . To address the case of a weighted sum of rotations of
a known function, we use (non-commutative) spherical convolution,
thereby reducing it to a sum of Diracs. Let g = f ∗ h. Then [17]

gm` = (2`+ 1)−1/2fm` h
0
` . (5)

3. SAMPLING SPHERICAL FRI SIGNALS

We aim to reconstruct weighted sums of Diracs, or more generally,
sums of rotations of a known kernel. The kernel is typically pre-
designed (e.g the point spread function), and we cannot change it.
The signal of interest is given as

f(θ, φ) =

K∑
k=1

αkδ(θ, φ; θk, φk), (6)

where αk ∈ C. The Fourier transform of f (in the sense of distribu-
tions) is

fm` =

K∑
k=1

αkY m` (θk, φk). (7)

3.1. Finite Rate of Innovation Sampling

Using the definition of associated Legendre polynomials (2), we
rewrite the spherical harmonics (1) as

Y m` (θ, φ) = Nm
` (sin θ)|m|

[
d|m|

d(cos θ)|m|
P`(cos θ)

]
ejmφ. (8)

For simplicity, we absorb all constants in Nm
` .

The essential observation is that the bracketed term is a polyno-
mial in x = cos θ. At a bandwidth L, the largest spherical harmonic
degree is L − 1, so the largest power of x is L − 1 as well. Then
we can rewrite the derivative term as the dot-product between the
coefficient vector and a basis of monomials,

d|m|

d(cos θ)|m|
P`(cos θ) = cT`mxm, (9)

where xm = [xL−|m|−1, xL−|m|−2, · · · , x, 1]T , x = cos θ and
c`m contains the polynomial coefficients. Denoting further ukm

def
=

(sin θk)
|m|e−jmφk , we have

fm` = Nm
` cT`mXmAum, (10)

m = 0m = −L+ 1 m = L− 1

p = L− 1

∆ =

p = 0

B

Fig. 1. Recoverable part of the data matrix ∆ (shaded). Columns
are indexed from left to right by m, −(L − 1) ≤ m ≤ (L − 1),
corresponding to spherical harmonic order. Rows are indexed bot-
tom to top by p, 0 ≤ p ≤ (L− 1) corresponding to powers of cos θ.
Note that the triangular part of the data matrix does not coincide
with the spherical harmonic spectrum, although there is an invertible
mapping between the two.

where Xm = [xm,1 · · · xm,K ], A = diag(α1, . . . , αK), um =
[u1,m · · ·uK,m]T , and xm,k is like xm, but for a particular θ = θk.

With this notation in hand, it is instructive to define the data
matrix ∆ as

∆
def
= X0AU, (11)

where U
def
= [u(−L+1), · · · ,u0, · · · , uL−1]. Rows of ∆ corre-

spond to decreasing powers of cos θk, and columns correspond to
ukm. Computing fm` then amounts to applying a linear functional
on ∆. This linear functional can be thought of as an inner product
with a mask that is overlaid over ∆. The support of the mask for fm`
is on the column corresponding tom, and on the rows corresponding
to ` ≥ |m|. That means that certain parts of the data matrix are not
involved in the creation of any spectral coefficient, and consequently,
they cannot be recovered from the spectrum.

Element of ∆ at the position (p,m) (with reference to Fig. 1)
can be expanded as

K∑
k=1

αkx
p
k(sin θk)

|m|e−jmφk (12)

where p varies from 0 to L − 1, and m from −(L− 1) to (L − 1).
For either positive or negative m, the sum (12) is a sum of 2D ex-
ponentials. To make it obvious, for positive m we can write it as∑
k αkx

p
ku

m
k1. If U was Vandermonde, and if we could retrieve the

whole ∆, our problem would correspond to a problem of 2D har-
monic retrieval [19]. However, 1) U is only almost Vandermonde
—it is a concatenation of two Vandermonde matrices due to the ab-
solute value in the exponent of ukm, 2) we can only recover a tri-
angular part of ∆, illustrated in Fig. 1. Accordingly, we devise a
different scheme to retrieve the signal parameters, achieving signif-
icantly better sampling efficiency than adapting the results on har-
monic retrieval.

Define next fm as the vector containing all spectral coefficients
of order m,

fm =
[
fm|m|, f

m
|m|+1, . . . , f

m
L

]T
, (13)

and let Cm be the matrix created by stacking Nm
` cT`m for all admis-

sible `,

Cm =
[
Nm
|m|c|m|,m, N

m
|m|+1c|m|+1,m, . . . , N

m
L−1cL−1,m

]T
.

(14)
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It follows that
fm = CmXmAum. (15)

Recall that the largest power of any xk in Xm is (L− |m| − 1). In
order to proceed, we need the following lemma.

Lemma 1. The coefficient matrices Cm are invertible for every m.

Thus we can recover dm
def
= XmAum from fm as dm =

C−1
m fm. The vector dm is a linear combination of the columns of

Xm, i.e. it is a linear combination of exponentials. It is exactly
the recoverable part of column m of the data matrix ∆ (see Fig.
1). Same as in the Euclidean case, we search for a finite impulse
response filter that annihilates dm, and then find {xk}Kk=1 as the
roots of the annihilating filter.

Consider a finite impulse response filter H(z) with the transfer
function H(z)

def
=
∏K
k=1(1− xkz

−1)
def
=
∑K
n=0 hnz

−n, where h =

[1, h1, . . . , hK ]T is the vector of filter coefficients. The response
of H(z) to a signal of the form yn =

∑K
k=1 bkx

n
k is

(y ∗ h)n =

K∑
m=0

yn−mhm = xnk

K∑
k=1

bk

K∑
m=0

hmx
−m
k = 0, (16)

so H(z) annihilates linear combinations of exponentials.
In order to find H(z), we observe that the annihilation relation

(16) states that the filter coefficients h are orthogonal to any length-
(K + 1) segment of any linear combination of exponentials xnk . If
we can find enough length-(K +1) segments of some linear combi-
nations of the sought exponentials, we could find h as the orthogonal
complement of the subspace spanned by these segments.

In the spherical case, we have that dm is a linear combination
of the sought exponentials for every admissible m. As the required
length of the segment is K + 1, we can only use those ms such that
the length of dm is at leastK+1. We could get the required number
of samples from d0 by setting L = 2K+1, but this strategy ignores
spectral coefficients for m 6= 0. Referring to Fig. 1, it is clear
that we can get the rows of the annihilation matrix from any column
(m = const.) of sufficient length.

In summary, every dm is a linear combination of exponentials,
and we want to compute the bases of these exponentials. If we can
observe enough linear combinations of sufficient length, we can con-
struct a matrix (denoted Z in Algorithm 1) withK independent rows,
whose nullspace contains the annihilation filter. The cosines of the
spherical colatitudes—bases of exponentials annihilated by the anni-
hilation filter—are obtained by factoringH(z) into first order terms.
We show in [16] that the described construction indeed ensures that
Z have K independent rows.

In order to recover the azimuths (φk)Kk=1, note that after recover-
ing the colatitudes, we can construct the matrices Xm. Furthermore,
note that for |m| ≤ L−K, CmXm has full column rank, as a prod-
uct of two full rank matrices. Thus we can compute Au(m), and the
azimuths (φk)Kk=1 as the phase difference between Au0 and Au1.

For our techniques to be applicable, we need to ensure that all
θk and φk be distinct. As in applications this may be violated, we
observe that for a finite collection of spikes, there will always exist a
choice of the coordinate system such that this is satisfied. We exploit
this fact, formalized in the following lemma.

Lemma 2. Consider a collection of Dirac delta functions on the
sphere, f(ω) =

∑K
k=1 αkδ(ω;ωk), and a random rotation R drawn

uniformly from the 3D rotation group SO3. Then almost surely, Rf
contains Diracs with distinct θk and distinct φk.

Algorithm 1 Spherical FRI
1: function SFRI(f ≡ {fm` , (`,m) ∈ IL})
2: f ← RandomRotation(f), Z← [ ] . Initialize
3: repeat
4: dm ← C−1

m fm . Get the data for order m
5: for i = 1: length(dm)−K do
6: Z← [ZT , dm,i:(i+K)]

T . Add one row to Z
7: end for
8: until Z has enough rows
9: [U,Σ,V]← SVD(Z)

10: h← vK+1 . Extract the annihilating filter
11: [θk]

K
k=1 ← arccos(Roots(h))

12: Compute X0,X1 and u1

13: [φk]
K
k=1 ← Angle

(
[(C0X0)

−1f0]÷ [(C1X1)
−1f1]

)
14: [αk]

K
k=1 ← [(C1X1)

−1f1]÷ u1

15: return InverseRotation([θk, φk]Kk=1), [αk]
K
k=1

16: end function
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Fig. 2. Comparison between the mean squared error (MSE) in esti-
mating the spherical location (θ, φ), with K = 1, and the Cramér-
Rao lower bound, at two different colatitudes.

Because we can rotate a spherical function by applying a lin-
ear operator on its spectrum, we can apply a random rotation before
estimating the signal parameters, and then inverse rotate after es-
timation. The described procedure is summarized in Algorithm 1.
Collecting the above observations, we state our main result.

Theorem 1. Let f be a bandlimited observation of a weighted sum
of K Diracs on the sphere. Algorithm 1 perfectly recovers f from⌈
K +

√
K
⌉2 spherical samples.

There is a different way to look at this result. Unlike in the
temporal Euclidean case, usually we do not get to choose L. It is
useful to know how many Diracs we can reconstruct with a fixed
sampling kernel. By solving for K we get

K ≤ b(L− (L+ 1
4
)1/2 + 1

2
)c. (17)

For the same number of Diracs, the algorithm of Deslauriers-
Gauthier and Marziliano [15] requires approximately four times
more samples.

3.2. Estimation in the Presence of Noise

Theorem 1 and Algorithm 1 provide a tool to recover sparse signals
on the sphere in the noiseless case. In the presence of noise Z will
generally not have a nullspace. A simple approach is to use the right
singular vector corresponding to the smallest singular value. Let
Z = UΣVH be the SVD of Z. Then we can set h = vK+1.
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Fig. 3. Multiple DOA estimation by a spherical microphone array at f = 4000 Hz, with r = 0.2 m. (A) Real part, imaginary part and
absolute value of the Green’s function. (B) Real part, imaginary part and absolute value of the spectrum. (C) Simulation results for K = 2.
Blue diamonds represent the source locations, and thick red lines show the estimated directions. Size of the sphere is exaggerated for the
purpose of illustration. The sphere color corresponds to the absolute value of the measured function, induced on the sphere by the sources.

Fig. 2 shows the variance of our estimator compared with the
Cramér-Rao lower bound for K = 1. The computation of the bound
is given in [16].

4. APPLICATION: SOUND SOURCE LOCALIZATION

In this section, we address the estimation of the directions-of-arrival
(DOA) of multiple narrowband sound sources using a spherical mi-
crophone array. In the wideband case, appropriately combining the
estimates at different frequencies could eventually only improve the
DOA estimates.

We assume that the microphones are distributed on the surface of
a sphere, either open or rigid. Therefore, the microphone signals rep-
resent samples of a time-varying function on S2. If a sound source
emits a sinusoid, every microphone measures a complex number—
the amplitude and the phase of that sinusoid shaped by the character-
istics of the propagating medium and of the spherical array casing.

Suppose that a source of unit intensity is located at rs, and that
the microphones are mounted on a rigid sphere of radius r with cen-
ter at the origin. The response measured by the microphone at r,
such that ‖r‖ = r, is given by the corresponding Green’s function.
For a wavenumber k = 2πf/c, where f is the frequency and c is the
speed of sound, the Green’s function can be shown to be [7],

g(r|rs, k) =
jk

4π

∞∑
`=0

b`(kr)h
(1)
` (krs)(2`+ 1)P`(〈r̂, r̂s〉), (18)

where h(1)
` is the spherical Hankel function of the first kind and of

order `, and b`(kr) is the mode strength [7].
The Green’s function g should be seen as a filter that describes

how the point source’s influence spreads over the sphere. Green’s
function is shown in Fig. 3(A), and its spectrum in Fig. 3(B).

For K sound sources at locations {si}Ki=1, with complex inten-
sities {αi}Ki=1, a microphone at r measures

f(r) =

K∑
i=1

αig(r|si, k). (19)

If all ‖sk‖were equal, then (19) would correspond to a weighted
sum of K rotations of a known kernel. As it is unrealistic to assume
that the sources are all at the same distance, we could hope that the

shape of g(r|rs, k) does not change with rs. The shape is indeed
preserved, although only approximately. Thus, we suppress the de-
pendence on ‖rs‖ and approximate as follows (setting f(ω) = f(r),
where ω = (θ, φ) are the coordinates of r),

f(ω) =

K∑
i=1

αkg(ω|si, k) ≈
K∑
i=1

α̃ig(ω|ωs,i, k)

=

[
K∑
i=1

α̃iδ(ω;ωs,i)

]
∗ g(ω|ωn, k).

(20)

Here, we absorbed αi and additional (complex) scaling due to dif-
ferent distances into α̃i. Angular coordinates of the north pole are
denoted by ωn, and g(ω|ωn, k) is computed at some predefined av-
erage distance.

We thus reduced the sound source localization problem to a
problem of finding parameters of a weighted sum of Diracs. In or-
der to apply our spherical FRI algorithm, we need to verify that g
is bandlimited on the sphere. Fig. 3(B) shows that this is indeed
the case. The bandwidth depends on frequency and on the sphere
radius. Fig. 3(C) shows an example of recovering 5 sources at 4000
Hz. Our intention is to highlight the usefulness of spherical finite
rate of innovation sampling. Detailed comparisons with other DOA
estimation algorithms are out of this paper’s scope.

5. CONCLUSION

We presented a new state-of-the-art sampling theorem for FRI sig-
nals on the sphere. A multitude of signals are well-modeled as sparse
signals on the sphere, and this motivates the development of the
corresponding sampling theorems. We demonstrated this for sound
source localization, but there are other examples such as the square
kilometer array (SKA) [20].

An important issue not discussed in this paper is the denoising of
the annihilation matrix. In the Euclidean case, this matrix is Toeplitz,
and we can use alternating denoising techniques such as the Cadzow
denoising algorithm [21]. On the sphere things seem more challeng-
ing. This is the topic of ongoing research.
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