GentleRain: Cheap and Scalable Causal
Consistency with Physical Clocks

Jiaging Du  Cilin lorgulescu

Amitabha Roy

Willy Zwaenepoel

EPFL
{firstname.lastname }@epfl.ch

Abstract

GentleRain is a new causally consistent geo-replicated data
store that provides throughput comparable to eventual con-
sistency and superior to current implementations of causal
consistency.

GentleRain uses a periodic aggregation protocol to deter-
mine whether updates can be made visible in accordance
with causal consistency. Unlike current implementations, it
does not use explicit dependency check messages, result-
ing in a major throughput improvement at the expense of
a modest increase in update visibility. Furthermore, Gen-
tleRain tracks causal consistency by attaching to updates
scalar timestamps derived from loosely synchronized phys-
ical clocks. Clock skew does not cause violations of causal
consistency, but may delay the visibility of updates. By en-
coding causality in a single scalar timestamp, GentleRain
reduces storage and communication overhead for tracking
causality.

We evaluate GentleRain using Amazon EC2, and demon-
strate that it achieves throughput equal to about 99% of even-
tual consistency, and 120% better than previous implemen-
tations of causal consistency.

Categories and Subject Descriptors C.2.4 [Computer Sys-
tems Organization]: Distributed Systems

Keywords Causal Consistency, Distributed Consistency,
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1. Introduction

Distributed data stores are a critical infrastructure compo-
nent of many large-scale online services. To provide per-
formance and availability, these data stores are often geo-
replicated. A critical decision in geo-replication is the choice
of a consistency model. At one end, strong consistency [16]
provides simple semantics, but suffers from long latencies
and does not tolerate network partitions. At the other end,
eventual consistency provides excellent performance and
tolerates partitions [29], but renders the programming model
more complicated. Recent work also considers the possi-
bility of multiple consistency models in simultaneous use
[21, 28].

Causal consistency [2] is an attractive model for construct-
ing geo-replicated data stores. The causality relation is the
transitive closure of the order of events within a single client
and the reads-from relation between different clients [20]. A
causally consistent store guarantees that an update does not
become visible until all its causal dependencies are visible.
Causal consistency is attractive, because it avoids the long
latencies and partition-intolerance associated with strong
consistency, yet it also avoids some of the anomalies pos-
sible with eventual consistency.

Large data stores furthermore partition the data at each data-
center in order to scale to very large data sets. Recent papers
[12, 23, 24] have shown how to implement causal consis-
tency in a replicated partitioned data store without incurring
the serialization bottleneck of going through a single log.
Roughly speaking, both the client and the data store track
causal dependencies. Updates are replicated asynchronously,
and the causal dependencies recorded for an update are sent
along with the update replication message. At a remote data-
center, the recipient verifies that all causal dependencies are
present by sending dependency check messages to other par-
titions. Once these checks complete, the new version is in-
stalled. Unfortunately, the exchange of potentially many de-
pendency check messages can cause throughput to degrade
compared to eventual consistency.

GentleRain presents a different design for a causally consis-
tent key value store with the following features:



e GentleRain eliminates dependency check messages for
updates.

¢ GentleRain uses only a single physical timestamp to track
dependencies.

These features distinguish GentleRain from other causally
consistent key value stores such as COPS [23], which explic-
itly tracks individual dependencies, and Orbe [12], which
tracks dependencies using dependency matrices. Elimi-
nating dependency check messages altogether improves
throughput in comparison to the other two systems. Us-
ing only a single timestamp allows for a far more concise
representation of dependencies, and therefore a reduction in
storage and communication overheads. GentleRain therefore
provides a new and hitherto unexplored design point in the
construction of causally consistent data stores.

While achieving better throughput and reducing storage and
communication overhead, GentleRain incurs longer laten-
cies in making updates remotely visible. Updates become
visible immediately at the originating datacenter - as in other
systems - but remotely they incur a slightly longer visibility
delay.

The contributions of this paper are:

e The design and implementation of a causally consistent
data store that has throughput comparable to eventual
consistency, with a modest increase in remote update
visibility latency

e An implementation of a causally consistent key-value
store that encodes dependency information as a single
scalar, both in terms of storage and transmission

e The evaluation of these contributions in the context of a
key-value store geo-replicated on Amazon EC2

® An exploration of the tradeoff between the throughput
and the remote update visibility latency of causally con-
sistent data stores

The outline of the rest of this paper is as follows. Sec-
tion 2 motivates our approach by showing the origin of the
overheads of previous causally consistent data store imple-
mentations. Section 3 describes the system model. Section
4 presents GentleRain’s core protocol. Section 5 provides
a proof sketch and some discussion of various aspects of
GentleRain’s protocol. We evaluate the performance of Gen-
tleRain in Section 6. We discuss related work in Section 7,
and conclude in Section 8.

2. Motivation

We demonstrate with a simple experiment the effect of
dependency check messages on the throughput of current
causal consistency implementations.
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Figure 1. Throughput of a distributed data store with even-
tual and causal consistency. Each partition is replicated by
three replicas. Clients read an item from each partition and
update an item at one partition.

To do so, we compare the throughput of causal and even-
tual consistency by an experiment in a distributed key-value
store. The data store provides single-item read and write op-
erations. It implements causal consistency as in COPS [23]
and Eiger [24], tracking only the nearest dependencies, be-
cause of the transitivity of causality. For eventual consis-
tency, the implementation does not track dependencies and
makes updates visible as soon as they arrive. A client reads a
random item from each partition and updates one random
item at a randomly selected partition. The update is then
propagated to replicas at remote datacenters. This workload
stretches the causal consistency implementation, since it cre-
ates dependencies across all partitions for each update oper-
ation. While worst-case, workloads with a large number of
dependencies across different partitions may not be rare in
real world applications [4]. For instance, the default page of
a user of Twitter or Facebook loads at least dozens of or even
hundreds of different states. Any subsequent updates via the
page, such as commenting on other users’ posts, causally de-
pends on all the displayed states.

Figure 1 shows the throughput of causal and eventual con-
sistency. As more partitions are added to the system, the per-
formance gap between the two becomes larger. For causal
consistency, dependency check messages are the main rea-
son for the performance degradation. We demonstrate this
fact by performing the following additional experiments. In
a first experiment, we remove from the code implement-
ing causal consistency any sending or receiving of messages
that check dependencies. In a second experiment, we leave
the sending and receiving of dependency check messages
in place, but we do not perform any computation or wait-
ing as a result of receiving these messages. The resulting
throughput is shown in Figure 1 by the curve “no remote de-
pendency check” for the first experiment, and by the curve



“fake remote dependency check” for the second experiment.
Not sending or receiving any dependency check messages
results in throughput almost identical to eventual consis-
tency. Sending and receiving the messages, but not acting on
them, leaves throughput at values comparable to causal con-
sistency. The conclusion is then clear: if causal consistency
is to achieve throughput comparable to eventual consistency,
we must find a way to implement causal consistency without
the exchange of dependency check messages between parti-
tions.

3. Definition and Model
3.1 Causality

Causality is the happens-before relationship between two
events [2, 20]. We denote causal order by ~». For two op-
erations a and b, if a ~» b, we say b depends on @ or a is a
dependency of b. a ~» b if and only if one of the following
three rules holds:

e Thread-of-execution. a and b are operations in a single
thread of execution, and a happens before b.

e Reads-from. a is a write operation, b is a read operation,
and b reads the value written by a.

¢ Transitivity. There is some other operation ¢ such that
a~-»candc~b.

A version X of a data item x is causally dependent on a
version Y of data item y if the write of X causally depends
on the write of Y. A store is causally consistent if, when a
certain version of a data item is visible to a client, then all of
its causal dependencies are also visible.

3.2 Architecture and Interface

We assume a distributed key-value store that manages a large
set of data items. The system is partitioned into N partitions
and each partition is replicated by M replicas. A data item is
assigned to a partition based on the hash value of its key. In a
typical configuration, as shown in Figure 2, the system runs
at M different datacenters. Each datacenter runs N partitions.
Hence, a full copy of the data is stored at each datacenter.

We assume a multiversion data store. An update operation
creates a new version of an item. In addition to the actual
value of the key, each version also stores some metadata,
in order to track causality. The system periodically garbage-
collects old versions of items.

A server is equipped with a physical clock, which provides
monotonically increasing timestamps. Clocks are loosely
synchronized by a time synchronization protocol, such as
NTP [1]. The correctness of our system does not depend on
the synchronization precision.
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Figure 2. System architecture. The data set is replicated by
multiple datacenters. Clients are co-located with the data
store in the datacenter and are used by the application tier
to access the data store.

Datacenter

Our distributed key-value store provides the following oper-
ations to the clients:

e PUT(key, val): A PUT operation assigns value val to an
item identified by key. If item key does not exist, the
system creates a new item with initial value val. If key
exists, then a new version storing val is created.

e val <+ GET(key): The GET operation returns the value of
the item identified by key.

e (vals) + GET-SNAPSHOT (keys): This operation re-
turns the values of a group of items from a snapshot
of the data store. A causally consistent snapshot satisfies
the following property: For any two items x and y, if X,
a version of x, and Y, a version of y, belong to the same
consistent snapshot, then there does not exist X’, another
version of x, such that 1) X’ is created after X, and 2)
X' ~ Y. The datastore is free to return a snapshot from
any point in the past. It can therefore exclude values that
have been already read by the client before executing the
snapshot read.

e (vals) < GET-ROTX(keys): This operation provides a
causally consistent read-only transaction [23, 24]. It has
the same semantics as a snapshot but, in addition is con-
strained to include any values previously read by the
client.

While the GET and PUT operations are relatively standard,
the snapshot is a weaker form of the causally consistent read-
only transactions provided by systems such as Orbe [12]
and COPS [23]. Relaxing the requirement that previously
seen updates be part of the snapshot returned by a causally
consistent read-only transaction allows the snapshot to be
implemented more efficiently than read-only transactions,
while continuing to serve many of the same purposes. For
example, consider the case of a photo album in a social
network. A user might change the album properties to private
and then add photos to it. A client, by using a snapshot read



Symbols | Definitions

N number of partitions

M number of replicas per partition

DT, dependency time at client ¢

GST, global stable time known by client ¢
pr server, the m™ replica of the n™ partition
Clockl! current physical clock time at p!’
v version vector of p”', with M elements
LST" local stable time at p/

GST," global stable time at p};

d item tuple (k, v, ut, sr)

k key

v value

ut update time

sr source replica id

Table 1. Definition of symbols.

of the album properties and contents, ensures that it does not
read the album as shared and then accesses private photos.
This can be achieved both by read-only transactions as well
as by read snapshots.

4. GentleRain Protocol

The GentleRain protocol timestamps all updates with the
physical clock value of the server where they originate (the
source server). Concatenated with their partition and replica
identifiers, these timestamps provide a total order on all up-
dates. The protocol guarantees that this total order is consis-
tent with the causal order of events.

We distinguish between, on the one hand, updates that have
been received at a server, and, on the other hand, updates that
have been made visible to clients. The protocol guarantees
that updates are made visible only if that can be done in ac-
cordance with causal consistency. Local updates are always
immediately visible. Updates originating at remote datacen-
ters become visible when their update timestamp is smaller
than the global stable time (GST), defined below. The use
of physical clock values as update timestamps, rather than
logical clock values, is instrumental in making sure that the
global stable time makes suitable progress, and remote up-
dates become visible in a short amount of time.

4.1 States

Table 1 provides a summary of the symbols used in the
protocol.

Client States. A client ¢ maintains for its session a depen-
dency time DT,. This value is the maximum update times-
tamp of all items accessed so far by the client session. A
client ¢ also maintains in GST, the global stable time that it
is aware of.

Algorithm 1 Client operations at client ¢
: GET(key k)
. send (GETREQ k, GST,) to server
: receive (GETREPLY v, ut, gst)

1

2

3

4 DT, + max(DT;,ur)

5. GST, + max(GSTy, gst)
6 return v

7: PUT(key k, value v)

8 send (PUTREQ k, v, DT,) to server
9:  receive (PUTREPLY ut)

10: DT, + max(DT,,ut)

Server States. Each server p}' maintains a version vector
VV* [2, 26], consisting of M physical timestamps from
updates seen at that server. VV,"[m] is the largest update
timestamp of any update originating at p}'. Similarly, pJ' has
received all updates with timestamp up to VV/"[i] (i # m)
from p!, replica i of the same partition located at datacenter
i.

We define the local stable time LST," at a server p;' as the
minimum element of its VV,". Updates originating at any
replica p, of p™ with an update timestamp smaller than or
equal to LST," have been received at p!'.

We define the global stable time GST," at a server p)' as a
lower bound on the minimum LST of all partitions within
the same datacenter. Partitions in the same datacenter pe-
riodically compute GST, by means of a protocol described
in Section 4.5. This quantity can vary across partitions but
never exceeds the minimum LST across all partitions in the
datacenter.

Item Version. For each item uniquely identified by its key,
there exists a chain of one or more item versions. We repre-
sent an item version d as a tuple (k,v,ut,sr). k is a unique
key that identifies the item. v is the value of the item. ut is
the update time, the creation time of the item at its source
server. sr is the source replica, the replica id of the item’s
source server.

4.2 Protocol

We now describe how our protocol executes GET and PUT
operations from clients and replicates PUT operations while
preserving causality. Algorithms 1 and 2 show the pseudo-
code of the protocol running at the client and server side,
respectively.

GET. A client sends a GET request with an item key and
its GST; to the server that serves the partition containing
the item. The server first updates its GST if it is smaller
than the client’s. The server then obtains the latest version
in the version chain of the requested item, which is either
created by clients attached to the local datacenter or has an



Algorithm 2 Server operations at server pj’
1: upon receive (GETREQ k, gst)
GST!" < max(GST!", gst)
3: obtain latest version d from version chain of key k
s.t.d.sr =mord.ut < GST"
4: send (GETREPLY d.v,d.ut,GST)") to client

»

5: upon receive (PUTREQ k,v,dt)

6: wait until dt < Clock];

7: update version vector: VV,""[m] <— Clock]!
8 create new item d

9: setkey: d.k <k
10: set value: d.v <—v

11: set update time: d.ut < VV"[m]
12: set source replica: d.sr <— m

13: insert d to version chain of key k
14: send (PUTREPLY d.ut) to client

15: upon new version d created
16:  for each server pX, k € {0..M — 1},k # m do
17: send (REPLICATE d) to pX

18: upon receive (REPLICATE d) from p¥
19: insert d to version chain of key d.k
20: VVI'k] + d.ut

21: upon every A time

22: ct < Clock)}

23: if ct > VV)"[m] 4 A then

24: VVIm] < ct

25: for each server pk, k € {0.M — 1},k #m do
26: send (HEARTBEAT ct) to pk

27: upon receive (HEARTBEAT ct) from pk

28: VVI'k]  ct

29: upon every 0 time

30: LST™  min(VV™)

3. GST" < min({LST" |0 <k <N —1})

update timestamp no greater than the partition’s GST. Hence,
a client always reads local updates without any delay and
replicated updates from other datacenters once they are glob-
ally stable. The partition returns the item value, its update
timestamp, and its GST back to the client. Upon receiving
the reply, the client sets its dependency time DT, to the re-
turned item update timestamp if the latter is larger than its
current value. It also updates its global stable time GST. to
the returned global stable time if the latter is larger than its
current value.

PUT. A client sends a PUT request,
(PUTREQ k, v, DT,), which includes the item key, the update
value, and the client’s dependency time, to the server that
manages the item. The server then checks that the client’s
dependency time is smaller than its physical clock time. In

the highly unlikely case that it is not, it waits until the con-
dition becomes true.

The server then updates the local element of its version vec-
tor (m™ element of V'V at server p™) with its physical clock
time. It creates a new version of the item by assigning it a tu-
ple that consists of the key, value, update time, and its replica
id, and inserts the newly created item version in the version
chain of the item. The server sends a reply with the update
time of the newly created item version to the client. Upon
receiving the reply, the client sets its dependency timestamp
to the returned item update timestamp if the latter is larger
than its current value.

Update replication. After a server executes a local update,
it replicates it asynchronously by sending it in update times-
tamp order to its replicas at the other datacenters. When a
server receives such an update replication message, it inserts
the received item version in the corresponding version chain.
However, this update is not visible to local clients until the
partition’s GST becomes larger than its update timestamp.

GST derivation. Each server periodically computes the
GST, which is the minimum of the LSTs of all partitions
within the same datacenter. We explain how to aggregate the
LSTs of all partitions, compute the GST, and distribute it
efficiently in Section 4.5.

Heartbeats. If a partition does not receive update requests
from clients, GST may not increase. To solve this problem,
a partition that does not have frequent local updates peri-
odically (at time interval A) broadcasts its latest clock time
to its replicas. It does so by piggybacking the clock time in
the heartbeat messages used by failure detectors. Heartbeat
messages and update replication messages are sent in order
of increasing update timestamps and clock values.

4.3 Reads of Multiple Items

GentleRain also supports snapshot reads and causally con-
sistent read-only transactions as defined in Section 3.

GET-SNAPSHOT. Algorithm 3 shows the pseudo-code of
snapshot reads. A client sends a snapshot read request, which
includes a set of item keys and its GST to a coordinating
partition, selected based on some load balancing algorithm.
The coordinating partition first updates the partition’s GST if
it is smaller than the client’s. It then initializes the snapshot
timestamp of the snapshot read using the latest GST.

Using the snapshot timestamp, the snapshot read chooses a
proper version of each requested item at the partition that
manages the item. The latest item version with an update
timestamp smaller than the snapshot timestamp is returned.
The item value, update timestamp, and the GST of the ac-
cessed partition are sent back to the coordinating partition.



Algorithm 3 Snapshot Reads
1: // at client ¢
2: GetSnapshot(keys kser)
3: send (GETSNAPSHOT ks, GST,) to server
4 receive (GETSNAPSHOTREPLY vset, ut, gst)
5. DT, < max(DT;,ut)
6:  GST. < max(GST,gst)
7.
8
9

: return vset
: // at partition p/
. upon receive {GETSNAPSHOT kset, gst)
10: GST < max(GST)", gst)
11: vset <— ¢, ut <0, gst < 0
12: st < GST"
13: for each key k € kset do

14 send (SLICEREQ k, st) to server

15: receive (SLICEREPLY v, ut’, gst')

16: vset <— vset U{v}

17: ut < max(ut,ut")

18: gst < max(gst, gst’)

19: send (GETSNAPSHOTREPLY vset, ut, gst) to client

20: // at partition p/

21: upon receive (SLICEREQ k, st)

22 GST" + max(GST)", st)

23: obtain latest version d from version chain of key k
s.t. d.ut < st

24: send (SLICEREPLY d.v,d.ut, GST") back

Algorithm 4 Causally Consistent Read-Only Transactions
1: // at client ¢
2: Get-ROTX(keys kser)

send (GETROTX ks, GST,,DT;) to server

[95]

4:  receive (GETROTXREPLY vset, ut, gst)
5. DT, + max(DT,,ur)

6:  GST. + max(GST,gst)

7: return vset

8: // at partition p!

9: upon receive (GETROTX kset, gst,dt)

10: if dt — GST," < o then

11: wait until dt < GST)"
12: run snapshot reads in Algorithm 3
13: else

14: run read-only transaction protocol in Eiger [24]

The coordinating partition returns the collected item values
with the maximum update timestamp and the maximum
GST back to the client. Upon receiving the reply, the client
updates its dependency time and GST, as before.

GET-ROTX.

Algorithm 4 shows the pseudo-code of causally consistent
read-only transactions. Such a transaction returns values that

form a read snapshot, but in addition it must also guarantee
that this snapshot includes any values previously seen by the
client.

This latter condition may not hold in a situation in which a
client reads a version of an item written by a client in the
same datacenter, and then performs a snapshot read includ-
ing that item. If the GST of the server hosting that item at the
time of the snapshot is smaller than the update timestamp of
that version, then the snapshot would return an earlier ver-
sion. To avoid this scenario, our protocol for read-only trans-
actions takes one of two approaches. On the one hand, if the
dependency time of the client does not exceed the GST by
more than some threshold o, then we simply block the trans-
action to allow the GST to advance past the dependency time
of the client. We then execute the snapshot read protocol. On
the other hand, if the dependency time is larger than the GST
by an amount that exceeds the threshold ¢, then we fall back
on using the protocol used in Eiger [24] for causally consis-
tent read-only snapshots. Compared with our snapshot read
protocol, this protocol may require two rounds to terminate.

4.4 Conflict Detection

A conflict happens when two causally unrelated updates to
the same key are done at two different replicas. In Gen-
tleRain, we detect such conflicts and handle them by call-
ing up to the application that must then tell GentleRain (in a
consistent manner at all servers) how to order the conflict-
ing updates. To detect conflicts we use a similar technique to
that used in COPS [23]. Each update that needs to be repli-
cated also carries the update time and source replica id of
the previous version of the item in the version chain. Before
applying a propagated update, a server checks whether the
previous version in the chain is the same as the previous ver-
sion attached to the incoming update. If these are different,
then a conflict has occurred and the application must decide
whether to retain the incoming version or drop it as it has
been superseded by a later version. Conflict detection does
not flag causally ordered updates to the same key as conflict-
ing, because the causally previous update must have arrived
at all replicas before a client can install a causally later ver-
sion at the local replica.

4.5 Efficient Global Stable Time Derivation

Servers within the same datacenter periodically exchange
their LSTs to compute their GST. If the number of partitions
is large, exchanging LSTs by simply broadcasting them is
too expensive and not scalable. Although, with broadcast-
ing GST is derived and distributed to each partition in one
round-trip network latency within a datacenter, the message
complexity of broadcasting is O(N?). If we assume there are
a thousand servers and GST is computed every 10ms, each
server sends and receives 100K messages per second, which



is not affordable in practice. To efficiently derive the GST at
each server, we build a tree over all servers in the same dat-
acenter and compute an aggregate minimum using the tree.
This process has been used to solve similar problems such as
aggregating state from distributed graph computation [25] or
in sensor networks [15].

During initialization, all servers are given the fanout of the
tree and a list of servers sorted based on their partition id. A
server then finds its parent and children nodes from the list
and sets up a TCP connection to each of them. Leaf nodes of
the tree periodically push their LSTs to their parent nodes.
Once an internal node receives LSTs from all its children,
it computes the minimum and pushes it to its parent node.
The root node obtains the GST of the round and pushes
it down the tree. The message complexity is O(N). Each
round of GST computation takes 2 x logz N round trips in
the datacenter, where F is the fanout of the tree.

Using a tree for GST computation brings message counts
down to acceptable levels. Continuing the example above, a
tree with fanout of five and depth of six can cover almost
20K nodes, well above one thousand servers in the example.
Computing the GST every 10ms means that each server only
sends and receives one message every 10 ms on every one
of its six links in the tree (five children and one parent). This
works out to sending and receiving 600 messages per second
rather than 100K messages per second.

At the same time, the tree enables computing and distribut-
ing the GST in a reasonable amount of time. This is impor-
tant because a remote update becomes visible after it has
been received by the local datacenter and the GST computa-
tion takes into account the increase in the LST corresponding
to the timestamp of the arrived update. In the same example,
if we assume that the link latency within the datacenter is
0.1ms then propagating values from the leaf to the root and
back again represents the worst case for latency and works
out to 1.2ms. In contrast, the latency between datacenters
is usually of the order of about a 100 milliseconds. There-
fore GST computation adds only a marginal delay to update
propagation.

5. Discussion
5.1 Why Physical Clocks?

The GentleRain protocol continues to provide causal con-
sistency if the loosely synchronized physical clocks are re-
placed with Lamport clocks (or vectors, such as in [2] or
Orbe [12]) that are incremented on receiving updates from
clients and replication messages from other servers. This,
however, can cause clocks at different servers to move at
very different rates if they also receive updates at different
rates. Hence, the visibility of propagated updates from repli-
cas can be arbitrarily delayed as GST always tracks the min-

imum element across all version vectors in the datacenter.
Using loosely synchronized physical clocks together with
the aggregation protocol allows us to keep GentleRain’s abil-
ity to scale across partitions and datacenters, while avoiding
the problem of large differences between clocks at different
partitions.

5.2 Throughput vs. Latency Tradeoff

As we have shown in Section 2, in the current implemen-
tations of causal consistency, dependency check messages
are a major source of overhead, and explain the difference
in throughput between causal and eventual consistency. In
GentleRain we have eliminated those dependency messages,
and replaced them with a tree aggregation protocol for com-
puting the minimum timestamp and (in the absence of reg-
ular updates at a partition) a heartbeat protocol. Both these
protocols are parameterized by the time interval at which
they are invoked. As we show in Section 6, with reasonable
choices of such intervals, throughput is much better than
current implementations of causal consistency and approx-
imates that of eventual consistency.

This better throughput comes at the price of an increase in
update visibility latency for remote updates. Local updates
are visible immediately, both in current implementations and
in GentleRain. In current implementations, the latency be-
fore an update becomes visible at a remote datacenter is the
sum of the network travel time from the origin to the remote
datacenter plus the time to exchange the dependency check
messages, if any. Since the latter are local to a datacenter,
we assume in first approximation that remote update visi-
bility is equal to the travel time to the remote datacenter. In
GentleRain, the latency before an update becomes visible at
a remote datacenter is the sum of a number of factors. First,
there is the network travel time from the furthest removed
datacenter, because this is the longest time it takes for an
update or a heartbeat with a particular value to arrive. Sec-
ond, there is the clock skew between those two datacenters.
Third, there is the interval at which the aggregation proto-
col runs, and, finally, in the absence of regular updates, there
is the interval at which the heartbeat protocol runs. Assum-
ing expected values for these component times, we can in
first approximation conclude that the remote update visibil-
ity latency is equal to the network travel time to the furthest
removed datacenter.

We argue that this is a reasonable tradeoff for increased
throughput because the maximum latency between datacen-
ters is usually under 270ms (for a satellite link) and this la-
tency is tolerable for applications such as social networks.
If increased remote update visibility is a consideration, the
GentleRain protocol can be modified to, instead of a single
scalar, maintain a vector of size the number of datacenters as
dependency information. Essentially, rather than computing
LST,", the minimum of VV,”", we maintain the entire vector,



and use that to compute an element-wise minimum over all
partitions in a datacenter. Similarly, a vector of dependen-
cies is maintained by the client and with each data item, and
exchanged between clients and servers. With this modified
design, the computation and storage overhead increase, but
the latency is reduced, in first approximation, to the network
travel time to the originator of the update. We have not yet
experimented with this modified design.

5.3 Garbage Collection

We briefly describe how to garbage-collect old item ver-
sions to keep the storage footprint small. Partitions within
the same datacenter periodically exchange global snapshot
timestamps of the oldest active snapshot read. If a partition
does not have any active snapshot read, it sends out its GST.
At each round of garbage collection, a partition chooses
the minimum among the received timestamps as the safe
garbage collection timestamp. With this timestamp, a par-
tition scans the version chain of each item it stores. It only
keeps the latest item version created before the safe garbage
collection timestamp (if there is one) and the versions cre-
ated after the timestamp. It removes all the other versions as
these are not needed by active and future snapshot reads.

The computation of the safe garbage collection timestamp
can be done efficiently using the same techniques as used
for computing GST.

5.4 Correctness

We provide an informal proof sketch that GentleRain pro-
vides causal consistency. First, local updates can be made
visible locally, because they have read and written their de-
pendencies locally, and so they must be visible. Second, for
remote updates, we first demonstrate the correctness of Gen-
tleRain in the absence of the heartbeat messages. This is
done by demonstrating two supporting propositions, which
are then used to derive the overall correctness argument. We
conclude by showing that the heartbeat messages are correct
optimizations.

Proposition 1: If an update ul depends on an update u2,
then u2.ut < ul.ut.

By lines 4 and 8 of Algorithm 1, the client puts in the PU-
TREQ the largest update timestamp value of any dependency
it incurred as a result of a previous GET or PUT. By lines 6,
7, and 11 of Algorithm 2, the update timestamp of an update
is always at least as large as the dependency time dr passed
in the PUTREQ. It follows that the new update has an update
timestamp larger than any of its dependencies.

Proposition 2: When, at some partition p}}, GST, has a cer-
tain value T, then all partitions p}" (i = 0..N) have received

all updates with update timestamp less than or equal to T.

This is shown by contradiction. Suppose there is an update
u originating in partition p{ (j # m) with u.ut < T, and that
update has not been received by partition p?'. Since update
replication messages arrive in update timestamp order, and
by line 20 of Algorithm 2, VV?*[j] < T, thus LST}" < T, and
GST;! < T, leading to a contradiction.

Correctness in the absence of heartbeat messages.

We wish to show that the following proposition holds. As-
sume data item x resides at partition i and data item y resides
at partition j. If a client receives as a result of a GET(x) from
partition p!" a version X of x, and if that version X of x de-
pends on the version Y of y, then if that same client performs
a GET(y) to partition p7', it receives in response a version of
y created no earlier than Y, and that version is available from
p’j without blocking.

The phrase “no earlier than” is to be interpreted in terms
of the total order imposed on all updates by the update
timestamps (physical clock values followed by replica and
partition identifiers to break ties).

Assume a client performs a GET(x) on partition p?", and
receives as a result a version X of x with update timestamp
X.ut. Let T be the value of GST" at p}" at the time the GET
is performed. Then, it follows, by line 3 of Algorithm 2, that
X.ut <T,and, by line 5 of Algorithm 1, that T < GST..

If that version X of x depends on a version Y of y, then by
Proposition 1 it must be that Y.ut < X.ut, and therefore also
that Y.ut < T. Then, by Proposition 2, the version of Y of y
must have been received at p;f’.

Assume finally that the same client performs a GET(y) on
partition p’]’?, then by line 2 of Algorithm 2, GST, < GST;",
and thus also Y.ur < T < GST;". By line 3 of Algorithm 2,
it follows that GET(y) returns a version of y with update
timestamp no smaller than Y.ut.

Correctness in the presence of heartbeat messages.

The heartbeat messages are an optimization that causes the
GST values to move forward when there is no local update
in a particular partition. We conclude by showing that this
optimization is correct. A heartbeat message from pl" to p}’
informs p/} of the fact that there are no updates from p’" with
update timestamp smaller than the heartbeat value ct. By line
28 of Algorithm 2, VV/"[i] = ct, and by line 30 of Algorithm
2 LST" = min(VV}"), the invariant is maintained that p"
has received all updates with update timestamp smaller than
LST™.

Correctness of snapshot reads.

All updates across different partitions and replicas are totally
ordered by their update timestamps. By Proposition 2, all

partitions have received all updates with update timestamp
less than or equal to the GST. We assign the latest GST to the



operation as its snapshot timestamp. Therefore, by choosing
the item version with the largest timestamp that is not greater
than the snapshot timestamp, we provide a snapshot that is
causally consistent as defined in Section 3.

Correctness of read-only transactions.

By virtue of the fact that the update timestamp order is a
total order that reflects the partial causal order, the value
of the snapshot timestamp provides a value that divides all
updates causally before and causally after that timestamp.
By choosing the version with the largest timestamp value
before the snapshot timestamp and delaying the transaction
briefly (line 11 of Algorithm 4), we return versions that form
a causally consistent snapshot as defined in Section 3.

5.5 Failures and Laggards

GentleRain is designed to continue causally consistent key
value service even in the presence of machine and network
failures or in the presence of slow machines (laggards). In
particular it never violates causal consistency in response to

a query.

Machine failures, network partitions and machine slow-
downs all have a single consequence in GentleRain: GST
at one or more datacenters does not make adequate progress.
By design GentleRain only delays the visibility of remote
updates in such a case and not local updates, whose visibility
is independent of GST . Geo-replicated datastores are usually
built under the assumption of locality of traffic to a datacen-
ter to better serve users in a geographical region. GentleRain
isolates the exchange of information among clients local to
a datacenter from the above mentioned problems.

Further, GentleRain assumes that servers in a datacenter are
themselves backed up by strongly consistent replicas within
the same datacenter. This means that GST computation can
only be stalled on failure of a single server by the amount of
time needed to switch over to another local replica.

This leaves network failures both within and across data-
centers. Datacenters themselves often contain redundancy
in their networks, and this redundancy can be further im-
proved by adequately designing the network topology [22].
This leaves GentleRain only vulnerable to complete parti-
tions between datacenters. If a datacenter gets disconnected
from the rest, no remote updates can be visible at any dat-
acenter due to GST not making progress. Such datacenter
partitions are usually rare and in GentleRain do not impact
visibility of local updates within a datacenter. However, we
can handle such complete datacenter partitions by excluding
the partitioned datacenter from the computation of GST. We
also exclude any updates from the disconnected datacenter
that have been seen after the GST value where it was deemed
to be partitioned, to avoid the situation where a value has
arrived without its dependencies. This exclusion is possible

since we have a total order on updates given by the single
scalar timestamp. This failure handling protocol requires us
to maintain a group [17] of connected datacenters. Design-
ing and implementing this protocol to dynamically size the
group of datacenters over which GST is computed is a focus
for future work in GentleRain.

6. Evaluation

We evaluate GentleRain in terms of local latencies, through-
put, and remote update visibility latency, by varying the
workloads and the number of partitions. We compare Gen-
tleRain to Eventual Consistency (EC) and a current imple-
mentation of causal consistency (COPS).

6.1 Implementation and Setup

We implement GentleRain in C++ and use Google’s Pro-
tocol Buffers for message serialization. We also implement
eventual consistency (EC) and COPS in the same code base
for performance comparison. The GentleRain implemen-
tation requires about 20k lines of code, compared to 21k
lines for EC and COPS. Our implementation of COPS only
tracks one-hop nearest dependencies. It does not provide
read-only transactions, which requires tracking complete de-
pendencies. In this mode, without support for transactions,
the COPS protocol is identical to Eiger [24], which is a later
protocol from the same authors. Also, this places COPS in a
more favorable position for comparison with GentleRain.

The data store is a key-value store, partitioned over a group
of servers using consistent hashing [18]. The data set used
in the experiments contains one million key-value pairs per
partition, with the key size being eight bytes and the value
size 64 bytes. The key-value store keeps all key-value pairs
in main memory. A key points to a linked list that contains
different versions of the same item. The operation log re-
sides on disk. The system performs group commit to write
multiple updates in one disk write. A PUT operation inserts
a new version to the version chain of the updated item and
adds a record to the operation log.

We run NTP to keep physical clocks synchronized [1]. NTP
can be configured to either change the clock value or change
the clock frequency to catch up or fall back to a target. We
configure it to change clock frequency, so that our physical
clocks always move forward, a requirement for correctness
in GentleRain.

We run all experiments on Amazon EC2 using c3.large
instances running Ubuntu 12.04. Each server has two virtual
CPU cores, 3.75 GB memory, and 2 x 16GB SSD storage.
We replicate each partition at three EC2 datacenters: one on
the US east coast (Virginia), one on the US west coast (Ore-
gon), and one in Europe (Ireland). We measure the follow-
ing average latencies between these datacenters: Virginia to



Op/Bytes Echo/- | GET/10 | PUT/16 | PUT/128
GentleRain | 65.3 57.8 334 30.1
EC 65.3 59.2 339 30.4
COPS 65.3 58.4 33.6 30.2

Table 2. Throughput in Kops/sec for client operations on a
single partition server without replication.

Oregon 81.2ms, Oregon to Ireland 166.1ms, and Ireland to
Virginia 87.5ms. Partitions in a datacenter form a binary tree
for the purposes of GST computation. Unless stated other-
wise, in all experiments below, the aggregation tree protocol
to compute GST is run every 5 milliseconds.

6.2 Microbenchmarks

We first examine the throughput that can be achieved by
a single partition server in all three systems. We launch
enough clients to saturate the server. GET operations read
a randomly selected item, and PUT operations update a ran-
domly selected item. For comparison, we also measure the
throughput of Echo operations, in which the server simply
returns the arguments to the client.

As shown in Table 2, a GentleRain partition server can pro-
cess Echo operations at about 65 Kops/sec, GET opera-
tions at about 58 Kops/sec, and PUT operations at about 30
Kops/sec. The results are similar for the other two systems.

The throughput of Echo indicates the message processing
capability of our hardware. The throughput of GET is within
10% of the throughput of Echo, which indicates the speed of
the hardware in terms of message handling. PUT operations
are more expensive, primarily because of the cost of creat-
ing a new version. As the update value size increases, the
throughput drops slightly due to the need for a larger mem-
ory copy. In all cases, the CPU is the bottleneck.

6.3 Throughput

We examine the throughput of GentleRain in comparison
to EC and COPS, for various workloads while varying the
number of partitions.

In the first experiment, each client reads a randomly selected
item from every partition and updates a randomly selected
item at one partition. The write operation depends on the
previous write and the read operations in between. Figure 3
shows the throughput of GentleRain, COPS, and EC. Gen-
tleRain performs as well as EC for all number of partitions,
and performs significantly better than COPS. At 32 parti-
tions, both EC and GentleRain achieve a throughput of 1670
Kops/sec, while COPS achieves 748 Kops/sec. The differ-
ence between GentleRain and COPS stems from the fact that
in this experiment, which is a worst case scenario for COPS,
it needs to send dependency check messages to all partitions.
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Figure 3. Throughput of 1 to 32 partitions. A client reads
an item from every partition and updates an item at one
partition.
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Figure 4. Throughput of 1 to 32 partitions. A client reads an
item from every partition and updates an item at one partition
with a 1KB value.

Dependency check messages are a source of overhead even
with large updates, as Figure 4 shows where we replace the
64 byte updates with 1KB ones.

In the second experiment, each client updates a randomly
selected item from each partition in a round-robin fashion.
Each write depends only on the previous write. Figure 5
shows the throughput of GentleRain, COPS, and EC. The
same general trend shows in these results, but the difference
between COPS and GentleRain is smaller because only one
dependency check message is required in COPS: at 32 par-
titions, GentleRain sustains 937 Kops/sec, while COPS sus-
tains 717 Kops/sec.

In the third experiment, a client reads N randomly selected
items from randomly selected partitions and writes one
randomly selected item to each of M randomly selected
partitions. We vary the ratio of N to M. Figure 6 shows
the throughput results. Overall, GentleRain is close to the
throughput of eventual consistency. GentleRain provides far
better throughput than COPS for read-heavy workloads. This
performance gap decreases as we move towards the update-
heavy end, as COPS no longer needs to track or check as
many dependencies for each update.
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Figure 5. Throughput of 1 to 32 partitions. A client updates
an item at each partition in a round-robin fashion.
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Figure 7. Throughput of snapshot reads.

In the fourth experiment, a client issues snapshot reads. We
vary the number of items a snapshot reads. The throughput
results for GentleRain and EC (treating the reads as normal
reads) are reported in Figure 7. The cost of a causally consis-
tent read-only transaction is almost the same as a snapshot
read when the two-round read protocol of Eiger is not se-
lected. Hence, we do not present its throughput numbers in
the paper.

In our last throughput experiment, we evaluate the overhead
of the GST computation, which requires partitions within the
same datacenter to periodically exchange messages. Figure
8 shows throughput as a function of the interval at which the

Figure 8. Varying GST computation intervals.
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Figure 9. Visibility latency of remote updates replicated
from Ireland and Virginia to Oregon

GST computation is carried out for an experiment in which
a client reads all partitions and updates one of them. Increas-
ing the value of the interval by 256X causes an increase in
throughput of only 1.15X, demonstrating that the throughput
is relatively unaffected by the rate at which GST computa-
tion messages are exchanged in the same datacenter.

6.4 Update Visibility Latency

We measure the update visibility latency by storing the phys-
ical time when an update is installed at its origin (in the value
of its key-value pair), and subtracting it from the physical
time when the update becomes visible at a remote datacenter.
The clock skew between clocks on different servers causes
this measurement to be only an approximation of the update
visibility latency, but it is a good approximation, because the
clock skew is much smaller than the network travel times
between datacenters.

Figure 9 shows a cumulative distribution of the latency be-
fore updates originating in Ireland and Virginia become vis-
ible in Oregon. The results confirm the discussion in Sec-
tion 5. For EC and COPS the vast majority of the updates
become visible at a time equal to the network travel time
between the datacenters: about half of the updates originate
in Ireland and about half in Virginia, and each half becomes
visible in Oregon after the network travel time from their
origin to their destination. For GentleRain the update visi-
bility is roughly equal to the longest network travel time, in
this case from Ireland to Oregon, plus the GST computation
interval.
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Figure 10. Visibility latency of remote updates replicated
from Ireland and Oregon to Virginia

Figure 10 shows a cumulative distribution of the latency
before updates originating in Oregon and Ireland become
visible in Virginia. The results are less distinct here, because
the network travel times from both the other datacenters to
Virginia do not differ by much.

7. Related Work

The choice of consistency for replicated systems has been
the subject of much research, with models ranging from
strong consistency [16] to eventual consistency [29] over
various intermediate models such as causal consistency [2,
20], and combinations of various models.

At one end, there are a number of systems that provide
only eventual consistency, such as Dynamo [11]. We have
demonstrated that we can achieve the stronger semantics
of causal consistency, with similar throughput, by allowing
a modest increase in remote update visibility. At the other
end, there are systems that provide strong consistency, such
Spanner [10] and MegaStore [5]. While providing a simple
programming model, such systems provably must exhibit
much longer latencies [9, 14]. Some recent systems employ
multiple consistency models within a single system [21, 28].
The system chooses which consistency to use for what data
item based on SLAs or ordering constraints imposed by the
user.

The concept of causality in distributed systems was intro-
duced by Lamport [20]. Lamport also discussed the use of
physical clocks instead of logical Lamport clocks. How-
ever, the physical clocks there were used as a mechanism
to incorporate out-of-band causality beyond the causality
propagated through message exchange. Consequently, those
clocks required a tight enough synchronization bound to
subsume any such causality. In contrast, physical clocks in
GentleRain do not require any synchronization bounds to of-
fer causal consistency. Rather, they are more similar to logi-
cal Lamport Clocks with the coupling to physical time made
to ensure that clocks on different servers progress at a rea-
sonably similar rate to aid update visibility.

Bayou [27], lazy replication [19], ISIS [8], causal memory
[2], and PRACTI [6] implement causal consistency, but all
assume single-machine replicas and do not consider parti-

tions. COPS was the first system to implement causal consis-
tency in a partitioned replicated data store [23]. The authors
also introduce the concept of a causally consistent read-only
transaction, and in a later system, Eiger [24], the concept
of a causally consistent write-only transaction. Later sys-
tems along the same lines include ChainReaction [3] and
Orbe [12]. In terms of maintaining causal consistency, all
four systems (COPS, Eiger, ChainReaction, and Orbe) rely
on maintaining detailed dependency information and explicit
dependency check messages to verify that an update can be
installed according to the rules of causal consistency. They
also employ various optimizations to reduce the number of
dependencies and the number of dependency check mes-
sages, by relying on the transitivity of causality and only
tracking nearest dependencies [23, 24] or by using a sparse
representation of a dependency matrix [12]. Nonetheless,
their worst-case behavior remains linear in the number of
partitions. In contrast, GentleRain needs only a single scalar
to track dependencies, independent of any workload charac-
teristics.

Our work has in part been inspired by the use of physical
clocks to implement causal read-only transactions in Orbe
[12]. Physical clocks have also been used in many other dis-
tributed systems. In recent examples, Spanner implements
serializable transactions with external consistency [16] in
a geographically replicated and partitioned data store [10].
Unlike GentleRain, Spanner uses synchronized clocks with
bounded uncertainty, called TrueTime, requiring access to
GPS and atomic clocks. Clock-SI [13] uses loosely synchro-
nized clocks to provide snapshot isolation [7] in a partitioned
data store.

GentleRain supports only a mapping from variable length
keys to values, and does not explicitly support more complex
schemas such as column families [24]. One could add sup-
port for columns and column families, if desired, by treat-
ing the key as multidimensional with one dimension per-
column.

8. Conclusion

We have presented a new protocol for implementing causal
consistency for geo-replicated partitioned data stores. The
protocol trades remote update visibility latency for improved
throughput. We have demonstrated by means of measure-
ments that for a variety of workloads GentleRain indeed pro-
vides very good throughput, close to eventual consistency,
and considerably better than existing solutions.
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