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Abstract

The operational range of MEMS electrostatic parallel plate actuators can be extended be-

yond pull-in with the presence of an intermediate dielectric layer, which has a significant

effect on the behaviour of such actuators. Here we study the behaviour of cantilever beam

electrostatic actuators beyond pull-in using a beam model along with a dielectric layer.

Three possible static configurations of the beam are identified over the operational voltage

range. We call them floating, pinned and flat: the latter two are also called arc-type and

S-type in the literature. We compute the voltage ranges over which the three configu-

rations can exist, and the points where transitions occur between these configurations.

Voltage ranges are identified where bi-stable and tri-stable states exist. A classification

of all possible transitions (pull-in and pull-out as well as transitions we term pull-down

and pull-up) is presented based on the dielectric layer parameters. A scaling law is found

in the flat configuration. Dynamic stability analyses are presented for the floating and

pinned configurations. For high dielectric layer thickness, discontinuous transitions be-

tween configurations disappear and the actuator has smooth predictable behaviour, but

at the expense of lower tunability. Hence, designs with variable dielectric layer thickness

can be studied in future to obtain both regularity/predictability as well as high tunability.
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Chapter 1

Introduction

This thesis presents a study of cantilever beam MEMS electrostatic actuators beyond pull-

in. The effects are studied of an intermediate dielectric layer on the possible configurations

of the actuator and transitions between them.

1.1 Background and Motivation

MEMS (Micro-Electro-Mechanical-Systems) are the microscopic structures integrated onto

silicon (or similar substrate) that combine mechanical, optical, fluidic and other elements

with electronics. These devices enable the realization of complete system-on-a-chip.

MEMS make it possible for systems to be smaller, faster, more energy efficient, more

functional and less expensive. In a typical MEMS configuration, integrated circuits (ICs)

provide the “thinking part” of the system, while MEMS complement this intelligence with

active perception and control functions.

Electrostatic actuation is one of the most commonly used schemes for MEMS devices.

In MEMS electrostatic parallel plate actuators (discussed in detail in the next section),

the moving plate comes to equilibrium when the electrostatic force is balanced by the

restoring mechanical force. The restoring force increases (approximately) linearly with

deflection whereas the electrostatic force is inversely proportional to the square of the

distance between the plates. Due to this nonlinear nature of the electrostatic force, as

1



CHAPTER 1. INTRODUCTION 2

the moving plate traverses about one third of the total distance between the plates, the

restoring force can no longer be able to balance the electrostatic force and hence, the

moving plate (electrode) flaps onto the other plate. This is known as pull-in phenomena

and the corresponding voltage is called pull-in voltage.

Thus the operational range of MEMS electrostatic parallel plate actuators is limited by

the pull-in phenomena. The behaviour of the MEMS actuators before pull-in is studied

extensively in the literature [1–11]. With the presence of an intermediate dielectric

layer between the electrodes, the operational range can be extended beyond the pull-in

and they can be meaningfully modeled over the entire operational range. Many MEMS

devices operate beyond pull-in, e.g. capacitive switches [12, 13], zipper varactors [14, 15]

and CPW resonators [16]. However, the behaviour of MEMS devices beyond the pull-in

has not been studied in greater detail in the literature. This thesis presents a detailed

analysis of the cantilever beam MEMS electrostatic actuators, particularly beyond the

pull-in. The effects of an intermediate dielectric layer are also studied in detail and a

frame work of all possible types of transitions between the configuration is made based

on the dielectric layer thickness.

Simple lumped element models of MEMS actuators with a single degree of freedom

[17–20] result in easy calculations but fail to capture details of the behaviour beyond the

pull-in. At the other end of modeling complexities, simulations of MEMS actuators beyond

the pull-in have been done using 3-D models [21]. Similar approaches have been used in

studying the hysteresis characteristics of electrostatic actuators [22]. 3-D models [2,21,22]

lead to a detailed and accurate prediction, but simulations are expensive in time and

computation, particularly for problems involving mechanical contacts. In this thesis, we

employ a 1-D analysis that, at an intermediate level of complexity, gives useful results

with reasonable effort. Note that existing comparisons between 1-D and more detailed

models show that 1-D analysis can in fact provide useful results and insights [23,24].

The following section provides an introduction to MEMS electrostatic parallel plate

actuators with an intermediate dielectric layer between the electrodes, using a simple

lumped element spring-mass-damper model.
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1.2 MEMS Parallel Plate Electrostatic Actuators

V

k

m

b

z
g

Movable plate

Fixed ground plate

Dielectric layer

Figure 1.1: Simple lumped-element model of MEMS electrostatic parallel plate actuator
with 1 degree of freedom

MEMS parallel plate actuators typically consist of a fixed bottom plate and an upper

plate fixed at either one end or two ends. Actuators with one end of the upper electrode

fixed and the other end being free to move are called cantilever beam actuators and the

actuators with two ends of the upper electrode fixed are called fixed-fixed beam actuators.

1.2.1 Simple Lumped-Element Model

Fig. 1.1 shows the simple lumped element model of the MEMS electrostatic parallel plate

actuators with one degree of freedom. The actuator has an intermediate dielectric layer

deposited over the bottom electrode. The quantities m, k, b in the figure represent the

mass, spring constant and damping coefficient respectively; g is the initial gap between the

electrodes; td and εr are the dielectric thickness and relative permittivity of the dielectric

layer respectively.

The equation governing the deflection of the moving electrode shown Fig. 1.1 is [6]

m
d2z

dt2
+ b

dz

dt
+ k z = Fe (1.1)

where Fe is the electrostatic force and is derived as follows. The capacitance of the
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electrostatic actuator is

C =
ε0A

g − z + td
εr

(1.2)

where A is area of the plate and ε0 is permittivity of free space. The effect of fringing is

not considered throughout in order to simplify the analysis. The electrical energy stored

in the parallel plate actuator is

E =
1

2
C V 2 =

ε0AV
2

2
(
g − z + td

εr

) . (1.3)

The electrostatic force is

Fe =
dE

dz
=

ε0AV
2

2
(
g − z + td

εr

)2 . (1.4)

Substituting Fe in Eq. 1.1,

m
d2z

dt2
+ b

dz

dt
+ k z =

ε0AV
2

2
(
g − z + td

εr

)2 . (1.5)

When a DC potential is applied across the electrodes, at steady state, the above equation

reduces to

k z =
ε0AV

2

2
(
g − z + td

εr

)2 . (1.6)

Note that the mechanical restoring force is given by the term on the left side of the above

equation and it varies linearly with deflection whereas the electrostatic force is given by

the right side term and is inversely proportional to the square of the deflection.

1.2.2 Pull-in Voltage

The expression for voltage, derived from Eq. 1.6 is

V =

√
2 k

ε0A
z

(
g − z +

td
εr

)2

. (1.7)
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Pull-in corresponds to the voltage at which maximum deflection occurs. Hence, by taking

the derivative of Eq. 1.7 with respect to deflection and equating it to zero, we get

z =
1

3

(
g +

td
εr

)
. (1.8)

The pull-in voltage is computed by substituting the the above value in Eq. 1.7 and is

given by

Vpull−in =

√
8 k

27 ε0A

(
g +

td
εr

)3

. (1.9)

The following observations can be made from the Eq. 1.8 & 1.9.

1. When there is no dielectric layer (td = 0), pull-in occurs as the electrode traverses

one third of the initial gap.

2. With the increase in dielectric layer thickness, the electrode can smoothly traverse

over larger distances. For td
εr
≥ 2 g, there is no pull-in discontinuity and the electrode

traverses smoothly over the entire gap.

1.2.3 Deflection

The lumped model for electrostatic actuators has analytical solutions for steady state

deflection. By expanding and cross multiplying the terms of Eq. 1.6, it can be written in

the following form.

z3 − 2

(
g +

td
εr

)
z2 +

(
g +

td
εr

)2

z −
(
ε0AV

2

2 k

)
= 0 (1.10)

The above equation is a cubic algebraic equation in z and is solved through the standard

solution procedures [25,26]. The following variables are defined in order to represent the
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final solutions in a convenient form.

ĝ = g +
td

εr
; l =

ε0A

2 k
; n =

2 ĝ

3
;

u =

(
ĝ

3

)2

; w =

(
ĝ3

27
− l V 2

)
;

P =
(
w +
√
w2 − u3

)1/3

Q =
(
w −
√
w2 − u3

)1/3

The three solutions of Eq. 1.10 in terms of the above defined variables are as follows.

z1 = −(P +Q) +
2 ĝ

3
(1.11)

z2 =
1

2
(P +Q) + i

√
3

2
(P −Q) +

2 ĝ

3
(1.12)

z3 =
1

2
(P +Q)− i

√
3

2
(P −Q) +

2 ĝ

3
(1.13)

The behaviour of these solutions is illustrated by considering examples with k = 4N/m,

A = 250 × 50 µm2, g = 1.5 µm, εr = 4.5 and for varying dielectric layer thickness. The

values of P and Q are found to be complex conjugates and hence, all the three solutions

are real. Fig. 1.2 shows the solutions when there is no dielectric layer. z1, z2 and z3

are shown by the solid, dashed and dotted lines respectively. z1 is a stable equilibrium

solution and z2 is an unstable equilibrium solution. The stability of these solutions can be

determined from the approach discussed in chapter 5. z3 is an infeasible solution since the

deflection value cannot exceed g. Note that at z = g
3
, pull-in occurs and stable equilibrium

solution does not exist beyond this deflection. Fig. 1.3 shows the possible solutions at

different values of dielectric layer thickness. The parameter h in the figure is proportional

to the dielectric thickness and is defined as,

h =
td
g εr

. (1.14)

Note that with the increase in dielectric layer thickness, the stable operating distance
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increases and for h ≥ 2, the actuator traverses smoothly over the entire distance without

any discontinuity.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Applied Voltge (V)

D
ef

le
ct

io
n 

(µ
 m

)

V
Pullin

 

g

Stable 

Unstable 

Infeasible 

g/3

Figure 1.2: Solutions of MEMS electrostatic actuator without dielectric layer

1.2.4 Applications

Two of the important applications of MEMS parallel plate actuators are as variable ca-

pacitors (varactors) and RF switches.

MEMS Varactor

Varactor application requires a continuous and reversible variation in capacitance with the

applied voltage. Due to the discontinuous transition at the pull-in voltage, the capacitance

variations till pull-in can only be utilized for varactor applications in the pull-in regime.

Tunability is defined as

Tunability =

(
Cmax − Cmin

Cmin

)
× 100 (1.15)
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Figure 1.3: Solutions of MEMS electrostatic actuator for different dielectric layer thickness
values

where Cmax and Cmin are the maximum and minimum capacitances respectively. Capac-

itance is minimum when no voltage is applied and is given by

Cmin =
ε0A

g + td
εr

. (1.16)

For h ≤ 2, the upper electrode traverses a maximum distance of 1
3

(
g + td

εr

)
before the

pull-in and the corresponding maximum capacitance is

Cmax =
3 ε0A

2
(
g + td

εr

) . (1.17)

Substituting Eq. 1.16 & 1.17 in Eq. 1.15, the tunability is found to be 50%. Note that

Cmax value for all values of h > 2 is constant since the maximum deflection cannot exceed

g and given by

Cmax =
ε0 εr A

td
. (1.18)

On the other hand, Cmin always decreases with the increase in h.
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Hence, for h ≤ 2, tunability for varactor applications (in the pull-in regime) is constant

and is 50% whereas for h > 2, tunability decreases with the increase in dielectric thickness.

Fig 1.4 shows the capacitance-voltage (C-V) characteristics for different values of dielectric

layer thickness. The capacitance values are normalized with respect to Cmin.

0 5 10 15 20 25 30 35
1

1.1

1.2

1.3

1.4

1.5

Applied Voltge (V)

C
 / 

C
m

in

h = 0 h = 1 h = 1.5 h = 2 

Figure 1.4: C-V characteristics of MEMS electrostatic actuator for different dielectric
layer thickness values

MEMS Switch

MEMS switches are the devices that use mechanical movement to achieve a short circuit

or an open circuit in the RF transmission line. RF MEMS switches are the specific

micromechanical switches that are designed to operate RF to millimeter-wave frequencies

(0.1 to 100 GHz) [13, 27]. MEMS switches have several advantages over p-i-n or FET

switches like low power consumption, large down-to-up-state capacitance ratios, low inter-

modulation products and very low costs. The up-state capacitance is same as Cmin and

is

Cu =
ε0A

g + td
εr

. (1.19)
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When the applied voltage exceeds pull-in voltage, the upper plate comes in contact with

the dielectric layer and the corresponding down-state capacitance is given by

Cd =
ε0 εr A

td
. (1.20)

The down-state/up-state capacitance ratio is

Cd
Cu

=

(
1 +

εr g

td

)
. (1.21)

The capacitance ratio increases with the decrease in dielectric layer thickness. However,

it is impractical to deposit a dielectric layer which is thinner than 100 A◦ [13] due to

pin-hole problems in dielectric layers. Also, dielectric layer must be able to withstand the

actuation voltage without dielectric breakdown.

1.2.5 Limitations of Lumped Model

In the lumped spring-mass-damper model discussed so far, the upper electrode completely

comes in contact with the dielectric layer at the pull-in voltage it self. There is no further

change in the deflection of this model beyond the pull-in voltage. Hence this model is

not useful in understanding the behaviour of the actuators beyond the pull-in. Further,

the magnitudes of tunability, pull-in voltage, capacitance ratio and other numerical limits

that are computed above using the lumped model deviate considerably with the actual

values. Hence, all further analysis in this thesis is carried out using a 1-D beam model

along with a dielectric layer.

1.3 Thesis Organization

The thesis is organized as follows. In chapter 2, we present the details of mathematical

modeling and numerical simulations using modal expansion method and finite difference

scheme. In chapter 3, we study the effects of an intermediate dielectric layer on the

transitions and bi-stable states of the actuator. In chapter 4, dynamic stability analysis
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of equilibrium solutions is performed for two of the configurations. In chapter 5, a case

study example is considered and the results are analyzed. Finally, chapter 6 summarizes

the conclusions of the analysis and future scope of the work.



Chapter 2

Mathematical Modeling and

Simulations

2.1 Introduction

In this thesis, we study the behaviour of cantilever beam MEMS electrostatic actuators

beyond the pull-in. Simple lumped-element models fail to capture the behaviour beyond

the pull-in. Hence, the analysis is performed using a 1-D beam model. This chapter

presents the details of the possible configurations along with the boundary conditions,

governing equation, normalization and simulation techniques that uses modal expansion

method and finite difference method. A scaling law observed in the flat configuration is

also presented.

2.2 Possible Configurations

The cantilever beam electrostatic actuator is illustrated in Fig. 2.1. It has three possible

configurations in the entire operational range. These configurations differ in the boundary

conditions at the free end of the cantilever beam and are as follows.

1. Floating Configuration: The cantilever beam has no contact with the dielectric layer

and is illustrated in Fig. 2.2(a). The bending moment and shear force at the free

12
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Figure 2.1: Schematic view of the cantilever beam electrostatic actuator.

end are zero.

2. Pinned Configuration: The free end of the cantilever beam touches the dielectric

layer but is free to pivot about the contact point and is illustrated in Fig. 2.2(b).

The deflection (measured from the dielectric layer) and the bending moment are

zero at the touching end.

3. Flat Configuration: A non-zero length of the beam is in contact with the dielectric

layer, as illustrated in Fig. 2.2(c). The contact length of the cantilever beam varies

with the applied voltage. Deflection measured from the dielectric layer, slope and

moment are zero at the point separating the contact and the non-contact regions

of the cantilever. The point is denoted by x = a in Fig. 2.2(c). Note that, unlike

the previous two configurations, The shear force is the only unknown boundary

condition at this point. Here the extent of the domain (the non-contacting region)

is not known in advance; the previous two configurations represent boundary value

problems, while the flat configuration represents a free boundary problem. We will

not concern ourselves unduly with this distinction, as will be seen below.

The boundary conditions discussed so far are summarized in Table 2.1. The parameter

l in the table denotes the length of the beam. At the clamped end of the cantilever beam,

the boundary conditions are the same for all the configurations: the slope is zero and
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Dielectric Layer 

Substrate 

z 

x 

(a) Floating configuration. (b) Pinned configuration.

x = a 

(c) Flat configuration.

Figure 2.2: Possible configurations of the cantilever beam actuator. (The scale in the
vertical direction is exaggerated.)

Table 2.1: Boundary conditions at the free end of the cantilever beam for the three
configurations.

Type of configuration Boundary conditions
Floating z′′(l) = 0; z′′′(l) = 0
Pinned z(l) = 0; z′′(l) = 0
Flat z(a) = 0; z′(a) = 0; z′′(a) = 0

the deflection (measured from the dielectric layer) is equal to the zero bias height of the

cantilever beam (g).

Note that pinned and flat configurations are also called arc-type and S-type respec-

tively in the literature [28,29].

The non-contact portion of the beam for all the three configurations is governed by

the same equation.

2.3 Governing Equation

The 1-D equation governing the mechanical deformation of an Euler-Bernoulli beam is

E I
∂4z

∂x4
+ ρ

∂2z

∂t2
= Fe (2.1)

where Fe = − ε0w V
2

2

(
z +

td
εr

)2 (2.2)
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Table 2.2: Description of the parameters in the governing equation.

Parameter Description
l Beam length
w Beam width
tb Beam thickness
td Dielectric layer thickness
ρ Mass per unit length of the beam
g Zero bias height of the cantilever beam
A Beam cross-sectional area (= w tb)

I Moment of inertia of the beam cross-section

(
=
w t3b
12

)
E Young’s modulus of the beam material
ε0 Permittivity of free space
εr Relative permittivity of the dielectric or dielectric constant
V Applied voltage

Fe is the electrical force per unit length. The derivation for Fe is along the lines of

derivation in section 1.2.1 except that there is a change in the sign convention of coordinate

axes. The variables x and z in the above equations denote the position along the length

and the lateral deflection of the beam respectively; and t is time. Effects like step-

ups, stress-stiffening and softened contact surfaces are not included in this model. The

parameters in the governing equation are described in Table 2.2.

The common practice [7] of using a fringing field correction such as 0.65 (z+td/εr)
w

is

not adopted here. In the post-pull-in regime, the cantilever beam has portions very close

to the dielectric, where the fringing field is small. Further, neglecting the fringing field

makes the analysis simpler and provides useful insights. Finally, calculations including

the fringing field, though slightly complex, could if necessary be carried out using the

approach adopted in this thesis.

2.4 Normalized Equation

The length quantities x and z (refer to Fig. 2.1) are normalized with respect to the

length and zero bias height of the beam. Time t is normalized with respect to a constant

T , defined in such a way that the parameter ρ in Eq. 2.1 becomes unity. All the further
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analysis is carried out on the normalized equation and the results thus obtained are finally

scaled to the actual parameters. The normalized quantities are as follows.

x̂ =
x

l
(2.3)

ẑ =
z

g
(2.4)

t̂ =
t

T
(2.5)

where T =

√
ρ l4

E I
(2.6)

Two other non-dimensional quantities are defined as follows.

V̂ =

√
ε0w l4

2E I g3
V , (2.7)

h =
td
g εr

. (2.8)

The governing equation becomes

∂4ẑ

∂x̂4
+
∂2ẑ

∂t̂2
= − V̂ 2

(ẑ + h)2 (2.9)

For static analysis, there is no time dependence and the equation reduces to

d4ẑ

dx̂4
= − V̂ 2

(ẑ + h)2 (2.10)

The hats in the normalized equation are dropped for convenience in the following analysis.

The following sections present the details simulation techniques.
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2.5 Modal Expansion Method

2.5.1 Modal Expansion Method in General

The coupled electro-mechanical equation of the electrostatically actuated beams (Eq. 2.10)

can be solved using modal expansion method. The deflection of the beam is expressed as a

superposition of its modes. The modes are constructed in such a way that the mechanical

force per unit length on any mode is proportional to the mode deflection. So, if the force

per unit length on a mode is known, the corresponding deflection can be calculated by

multiplying it with the suitable proportionality constant and vice versa. Mechanical force

per unit length (Fmech) is the fourth order derivative of beam deflection z. The fourth

order derivatives of sin, cos, sinh and cosh functions are proportional to the respective

functions themselves. So, each mode is constructed as a combination of these functions.

Let

ψj(x) = jth mode of the beam.

z(x) = Beam deflection.

z0(x) = Initial position of the beam.

w(x) = Beam deflection from the initial position.

z(x) can be expressed as

z(x) = z0(x) + w(x). (2.11)

ψj(x) is expressed as

ψj(x) = B1j sin(λj x) +B2j cos(λj x) +B3j sinh(λj x) +B4j cosh(λj x). (2.12)

The values of B1j, B2j, B3j,B4j and λj are evaluated from the boundary conditions. w(x)

is expressed as

w(x) =
N∑
j=1

aj ψj(x). (2.13)

⇒ z(x) = z0(x) +
N∑
j=1

aj ψj(x) (2.14)
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where aj is the participation factor associated with the jth mode and is called modal

amplitude of jth mode.

When the applied voltage is zero,

z(x) = z0(x).

Then the mechanical force per unit length should also be zero.

⇒ Fmech =
d4z

dx4
=
d4z0

dx4
= 0

⇒ d4z0

dx4
= 0 (2.15)

So, mechanical force per unit length can be expressed as

Fmech =
d4z

dx4
=
d4w

dx4
=

N∑
j=1

λ4
j aj ψj(x). (2.16)

The boundary conditions at the clamped end are same for all the configurations and are

z(0) = 1⇒ ψj(0) = 0

z′(0) = 0⇒ ψ′j(0) = 0.

From these boundary conditions and by taking B4j = 1, B3j = Bj, Eq. 2.12 reduces to

the following form.

ψj(x) = cosh (λj x)− cos (λj x)−Bj (sinh (λj x)− sin (λj x)) (2.17)
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Bj and λj are computed from the boundary conditions at the free end of the cantilever

beam. The derivatives of ψj w.r.t. x are

ψ′j(x) = λj (sinh (λj x) + sin (λj x)−Bj (cosh (λj x)− cos (λj x))) (2.18)

ψ′′j (x) = λ2
j (cosh (λj x) + cos (λj x)−Bj (sinh (λj x) + sin (λj x))) (2.19)

ψ′′′j (x) = λ3
j (sinh (λj x)− sin (λj x)−Bj (cosh (λj x) + cos (λj x))) (2.20)

ψ′′′′j (x) = λ4
j (cosh (λj x)− cos (λj x)−Bj (sinh (λj x)− sin (λj x))) = λ4

jψj(x). (2.21)

The modes possess the following orthogonality relation:

1∫
0

ψi(x)ψj(x) dx =

 1 if i = j

0 Otherwise
(2.22)

Computation of Modal Amplitudes

The modal amplitudes are computed using the orthogonality relation in Eq. 2.22. The

procedure is as follows:

Multiplying Eq. 2.16, with ψi(x) on both sides and integrating from 0 to 1 w.r.t x,

1∫
0

Fmech ψi(x) dx =

1∫
0

N∑
j=1

aj ψj(x)ψi(x) dx.

Interchanging summation and integration on the right hand side of the above equation,

1∫
0

Fmech ψi(x) dx =
N∑
j=1

1∫
0

ajψj(x)ψi(x) dx

⇒
1∫

0

Fmech ψi(x) dx =
N∑

j=1
j 6=i

aj

1∫
0

ψj(x)ψi(x) dx+ ai

1∫
0

ψ2
i (x) dx.



CHAPTER 2. MATHEMATICAL MODELING AND SIMULATIONS 20

From the orthogonality relation in Eq. 2.22, above equation reduces to to the following

form.

ai =

1∫
0

Fmech ψi(x) dx (2.23)

In this equation, i is varied from 1 to N and the corresponding modal amplitudes are

computed.

The boundary conditions of the configurations are discussed in section 2.2 and are

summarized in Table 2.1. The necessary equations for solving the floating and pinned

configurations are derived in the following subsections.

2.5.2 Floating Configuration

Each mode of the floating configuration shown in Fig. 2.2(a) has to satisfy the following

boundary conditions at x = 1.

ψ′′j (1) = 0 (2.24)

ψ′′′j (1) = 0 (2.25)

From Eq. 2.19 and 2.24,

cosh (λj) + cos (λj)−Bj (sinh (λj) + sin (λj)) = 0. (2.26)

From Eq. 2.20 and 2.25,

sinh (λj)− sin (λj)−Bj (cosh (λj) + cos (λj)) = 0. (2.27)

Bj from Eq. 2.27 is

Bj =
sinh (λj)− sin (λj)

cosh (λj) + cos (λj)
. (2.28)

For high values of λj, sinh(λj) and cosh(λj) are approximately equal and are very large

compared to sin(λj) and cos(λj). Hence, Bj approches unity for large values of λj.
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Table 2.3: Roots and coefficient values of various modes of the floating configuration.

Modes of Vibration (j) λj Bj

1 1.8751 0.73409
2 4.6941 1.01847
3 7.8548 0.99922
4 10.9955 1 + 3.35× 10−5

5 14.1372 1
6 17.2788 1

Substituting Bj in Eq. 2.26,

cosh (λj) + cos (λj)− sinh (λj)− sin (λj)

cosh (λj) + cos (λj)
(sinh (λj) + sin (λj)) = 0

⇒ cosh2 (λj) + cos2 (λj) + 2 cosh (λj) cos (λj)− sinh2 (λj) + cos2 (λj) = 0

⇒ 1 + cosh (λj) cos (λj) = 0 (2.29)

Eq. 2.29 is the characteristic equation of the floating configuration. The roots of the

characteristic equation can be determined using numerical methods like Newton-Raphson

method. Table 2.3 summarizes the roots (λj) and the coefficient values (Bj) of the first

six modes of operation.

Deflection of the beam

The initial position of the floating configuration is

z0(x) = 1

⇒ z(x) = 1 +
N∑
j=1

ajψj(x) (2.30)
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2.5.3 Pinned Configuration

Each mode of the pinned configuration shown in Fig. 2.2(b) has to satisfy the following

boundary conditions at x = 1.

ψj(1) = 0 (2.31)

ψ′′j (1) = 0 (2.32)

From Eq. 2.17 and 2.31,

cosh (λj)− cos (λj)−Bj (sinh (λj)− sin (λj)) = 0. (2.33)

From Eq. 2.19 and 2.32,

cosh (λj) + cos (λj)−Bj (sinh (λj) + sin (λj)) = 0. (2.34)

Adding Eq. 2.33 & 2.34 and solving for Bj,

Bj = coth(λj). (2.35)

For large values of λj, cosh(λj) and sinh(λj) are approximately equal and hence, Bj

approches unity.

Substituting Bj in Eq. 2.33,

cosh (λj) sin (λj)− sinh (λj) cos (λj) = 0.

Dividing the above equation by sinh (λj) sin (λj),

coth (λj)− cot (λj) = 0. (2.36)

Eq. 2.36 is the characteristic equation of the pinned configuration. Table 2.4 summarizes

the roots (λj) and the coefficient values (Bj) of the first six modes of operation.
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Table 2.4: Roots and coefficient values of various modes of the pinned configuration.

Modes of Vibration (j) λj Bj

1 3.9266 1 + 7.8× 10−4

2 7.0686 1
3 10.2102 1
4 13.3518 1
5 16.4934 1
6 19.6350 1

Deflection of the beam

Let the initial position of the beam in pinned configuration be expressed as a polynomial

in x as follows.

z0(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·+ anx

n (2.37)

When no voltage is applied, from Eq. 2.15 and 2.37,

a4 = a5 = · · · = an = 0

⇒ z0(x) = a0 + a1x+ a2x
2 + a3x

3. (2.38)

The boundary conditions at the clamped end are,

z0(0) = 1⇒ ao = 1

z′0(0) = 0⇒ a1 = 0

⇒ z0(x) = 1 + a2x
2 + a3x

3. (2.39)

The boundary conditions at the pinned end are,

z0(1) = 0⇒ 1 + a2 + a3 = 0

z′′0 (1) = 0⇒ a2 + 3a3 = 0
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Table 2.5: Characteristic equations, coefficient values and Initial position of the beam for
various configurations.

Type of configuration Characteristic Equation Coefficient value z0(x)

Floating 1 + cosh (λj) cos (λj) = 0
sinh(λj)−sin(λj)

cosh(λj)+cos(λj)
1

Pinned coth (λj)− cot (λj) = 0 coth(λj) 1− 3
2
x2 + 1

2
x

Solving the above equations, we get

z0(x) = 1− 3

2
x2 +

1

2
x3.

⇒ z(x) =

(
1− 3

2
x2 +

1

2
x3

)
+

N∑
j=1

ajψj(x) (2.40)

Table 2.5 summarizes the characteristic equations, Bj values and initial positions of the

beam for the floating and pinned configurations.

2.5.4 Procedure to Solve the Coupled Equation

The iterative procedure to solve the coupled electro-mechanical equation using modal ex-

pansion method is described here.

Input: The dimensions and material properties of the beam, dielectric constant, dielectric

layer thickness, zero bias height and the applied voltage are given as inputs to the method.

Initialization: The deflection of the beam from the initial position i.e., w(x) is initialized

to zero. In other words, all the modal amplitudes are initialized to zero.

The non-dimensional quantities in the normalized equation are computed and the follow-

ing steps are followed.

Step 1: Compute Electrostatic Force

Electrostatic force per unit length is computed from the relation

Fe = − V 2

(z + h)2

Step 2: Find the Modal Expansion of the Force

All the modal amplitudes (ai values) of the force are computed from Eq. 2.23.
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Step 3: Check the Convergence of Modal Amplitudes

If the maximum of absolute differences between the ai values before and after Step 2

is greater than tolerance value, go to Step 4.

If it is less than tolerance value, it implies that the solution is converged and the aj values

computed in Step 2 represent the final modal amplitudes. Jump to step 5.

Step 4: Find out the deflection

The beam shape is computed from the relation

z(x)− z0(x) =
N∑
j=1

aj
λ4
j

ψj(x)

and the procedure is repeated from Step 2.

Step 5: Output the Results

The results are scaled to the actual input parameters and are outputted.

The above algorithm is illustrated in the flow chart shown in Fig. 2.5.4

2.5.5 Modified Procedure using Newton’s Method

The convergence of modal amplitudes in the iterative procedure described in previous

subsection can be improved by employing Newton’s method [30].

Let ~a denote the vector of modal amplitudes and δ~a denote the difference in ~a from

the next iteration.

~a = [ a1, a2, a3, . . . , aN ]T (2.41)

δ~a = [ δa1, δa2, δa3, . . . , δaN ]T (2.42)

Let ~anew indicate the vector with the modified modal amplitudes.

~anew = ~a+ δ~a (2.43)

⇒ ~anew = [ a1 + δa1, a2 + δa2, a3 + δa3, . . . , aN + δaN ]T (2.44)
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Figure 2.3: Flow chart for Modal Expansion Method.
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If ~anew represents the exact modal amplitudes,

n∑
j=1

(~anew)j λ
4
jψj(x) = − V 2

(z(x) + h)2 (2.45)

where (~anew)j represents the jth component of ~anew.

Multiplying Eq. 2.45 with ψi(x) on both sides and integrating from 0 to 1 w.r.t. x,

1∫
0

N∑
j=1

(~anew)j λ
4
jψj(x)ψi(x) dx = −

1∫
0

V 2

(z(x) + h)2ψi(x) dx.

The variable i in the above equation can have any value from 0 to N . Interchanging inte-

gration and summation on the left hand side of the above equation and using orthogonal

relation of modes specified in Eq. 2.22, the above equation reduces to the following form.

(~anew)i λ
4
i = −

1∫
0

V 2

(z(x) + h)2ψi(x) dx (2.46)

Let

Fi (~anew) = Fi (~a+ δ~a) = (~anew)i λ
4
i +

1∫
0

V 2

(z(x) + h)2ψi(x) dx = 0 (2.47)

For i = 1 to N , we get N such equations. Let

~F (~anew) = [ F1 (~anew) , F2 (~anew) , F3 (~anew) , . . . , FN (~anew) ]T . (2.48)

Writing Eq. 2.47 in vector form taking all values of i,

~F (~a+ δ~a) = 0⇒ ~F (~a) + J δ~a = 0. (2.49)

where J is the Jacobian matrix defined as

Ji,j =
∂Fi
∂aj

. (2.50)
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From Eq. 2.49,

δ~a = −J−1 ~F (~a) (2.51)

where

Fi (~a) = aiλ
4
i +

1∫
0

V 2

(z(x) + h)2ψi(x) dx. (2.52)

Let

fi = − V 2

(z(x) + h)2 ψi(x). (2.53)

⇒ ∂fi
∂aj

=
∂fi
∂z

∂z

∂aj
(2.54)

Substituting Eq. 2.53 in Eq. 2.52,

Fi (~a) = ai λ
4
i −

1∫
0

fi dx. (2.55)

From Eq. 2.53,
∂fi
∂z

=
2V 2

(z(x) + h)3ψi(x).

From Eq. 2.14,

∂z

∂aj
= ψj(x).

⇒ ∂fi
∂aj

=
2V 2

(z(x) + h)3ψi(x)ψj(x) (2.56)

From Eq. 2.55 and 2.56,

∂Fi
∂aj

=


λ4
i −

1∫
0

∂fi

∂aj
dx if i = j

−
1∫
0

∂fi

∂aj
dx Otherwise.

(2.57)
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From Eq. 2.50, 2.56 and 2.57,

Ji,j =


λ4
i −

1∫
0

2V 2

(z(x)+h)3
ψ2
i (x) dx if i = j

−
1∫
0

2V 2

(z(x)+h)3
ψi(x)ψj(x) dx Otherwise.

(2.58)

From the above equation, it is evident that

∂Fi (~a)

∂aj
=
∂Fj (~a)

∂ai
⇒ Ji,j = Jj,i. (2.59)

Hence, Jacobian in this case is a symmetric matrix.

Algorithm

The input and the initialization part are similar to the general method discussed in the

previous subsection. The steps are as follows:

Step 1: Compute Fi (~a) from Eq. 2.52, for all values of i from 1 to N

Step 2: Compute Jacobian matrix J from Eq. 2.58, and δ~a from Eq. 2.51.

Step 3: If max(abs(δ~a)) < tolerance value, the solution is converged and jump to Step 5.

else, go to Step 4

Step 4: ~anew is computed from Eq. 2.43. ~a is replaced with ~anew and the the procedure

repeated from Step 1.

Step 5: The results are scaled to the actual input parameters and are outputted

The above procedure is illustrated in detail in the flow chart shown in Fig. 2.5.5

Finite difference scheme is developed in the following section to solve all the three

configurations.
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2.6 Finite Difference Approximation

2.6.1 Method

In finite difference (F.D.) scheme, the derivatives are replaced by finite difference approx-

imations and the resulting system of algebraic equations is solved. Where the boundary

conditions involve derivatives, we introduce suitable fictitious points beyond the physical

boundaries.

Specifically, a five point central difference scheme is implemented because a fourth

order derivative is involved. Two fictitious points are introduced on each side of the

non-contact length of the cantilever beam.

The governing Eq. 2.10 to be solved can be wriiten as,

d4z

dx4
+

V 2

(z + h)2 = 0. (2.60)

The non-contact length of the cantilever beam is divided into a uniform grid of N points

along the x-axis with a step size of ∆x. These points are denoted by x1, x2, · · · xN−1, xN .

Let zi denote the beam deflection at x = xi, i = 1, 2, · · · , N . Let the fictitious points be

denoted by z0, z−1 on the left side and zN+1, zN+2 on the right side of the non-contact

length with the same step size, ∆x. Hence, totally N + 4 points are considered along the

x-axis.

Finite diiference approximations are derived as follows. From Taylor’s series expansion,

z values at xi+1, xi−1, xi+2, xi−2 can be written as,

zi+1 = zi + (∆x) z′i +
(∆x)2

2
z′′i +

(∆x)3

6
z′′′i +

(∆x)4

24
z′′′′i (2.61)

zi−1 = zi − (∆x) z′i +
(∆x)2

2
z′′i −

(∆x)3

6
z′′′i +

(∆x)4

24
z′′′′i (2.62)

zi+2 = zi + 2 (∆x) z′i +
4 (∆x)2

2
z′′i +

8 (∆x)3

6
z′′′i +

16 (∆x)4

24
z′′′′i (2.63)

zi−2 = zi − 2 (∆x) z′i +
4 (∆x)2

2
z′′i −

8 (∆x)3

6
z′′′i +

16 (∆x)4

24
z′′′′i . (2.64)

The finite difference approximations of the derivatives are computed by solving the above
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equations and are as follows.

z′i =
zi−2 − 8 zi−1 + 8 zi+1 − zi+2

12 (∆x)
(2.65)

z′′i =
−zi−2 + 16 zi−1 − 30 zi + 16 zi+1 − zi+2

12 (∆x)2 (2.66)

z′′′i =
−zi−2 + 2 zi−1 − 2 zi+1 + zi+2

2 (∆x)3 (2.67)

z′′′′i =
zi−2 − 4 zi−1 + 6 zi − 4 zi+1 + zi+2

(∆x)4 (2.68)

for i = 1, 2, · · ·N .

The governing Eq. 2.60 in terms of finite differences is

zi−2 − 4 zi−1 + 6 zi − 4 zi+1 + zi+2 +
(∆x)4 V 2

(zi + h)2 = 0. (2.69)

The solution procedure to solve the system of nonlinear algebraic equations is described

below. Newton’s method [30] is used to improve the convergence of the solution scheme.

Let z = [ z−1, z0, z1, . . . zN , zN+1, zN+2 ]T (2.70)

fi(z) = zi−2 − 4 zi−1 + 6 zi − 4 zi+1 + zi+2 +
(∆x)4 V 2

(zi + h)2
, for i = 1to N. (2.71)

Let F (z) be defined as

F (z) = [ f1(z), f2(z), . . . fN(z), fN+1(z), fN+2(z), fN+3(z), fN+4(z) ]T . (2.72)

f1 to fN are computed from Eq. 2.71 and fN+1 to fN+4 are computed from the boundary

conditions of the corresponding configurations as described later.

Let δz = [ δz−1, δz0, δz1, . . . δzN+2 ]T (2.73)

be the correction vector such that F (z + δz) = 0.

⇒ F (z) + J δz = 0 (2.74)
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where J is the Jacobian matrix with,

Ji, j =
∂fi
∂zj

, for i = 1 to N + 4, j = −1 to N + 2. (2.75)

From Eq. 2.74,

δz = −J−1 F (z). (2.76)

The non-zero elements of Jacobian matrix for i = 1 to N can be computed from the

derivatives Eq. 2.71 and are as follows:

Ji, i−2 = Ji, i+2 = 1 ;

Ji, i−1 = Ji, i+1 = −4 ;

Ji, i = 6− 2 (∆x)4 V 2

(zi + h)3
. (2.77)

The elements of J and F for i = N+1 to N+4 are computed from boundary conditions

and hence, they are configuration specific. These details along with the solution procedure

are presented in the following subsections.

2.6.2 Floating Configuration

At the clamped end of the cantilever beam, deflection is 1 and slope is 0. Replacing the

derivatives in the boundary conditions by finite differences and considering them as fN+1

and fN+2,

fN+1 = z1 − 1 (2.78)

fN+2 = z−1 − 8 z0 + 8 z2 − z3 (2.79)
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At the free end, bending moment (z′′) and shear force (z′′′) are zero. Replacing these

derivatives by finite differences, we get the following equations.

fN+3 = −zN−2 + 16 zN−1 − 30 zN + 16zN+1 − zN+2 (2.80)

fN+4 = −zN−2 + 2 zN−1 − 2 zN+1 + zN+2 (2.81)

The non-zero values of Jacobian matrix for these boundary conditions are

JN+1, 1 = 1 ; (2.82)

JN+2,−1 = 1 ; JN+2, 0 = −8 ; JN+2, 2 = 8 ; JN+2, 3 = −1 ; (2.83)

JN+3, N−2 = JN+3,N+2 = −1 ; JN+3, N−1 = JN+3,N+1 = 16 ; JN+3, N) = −30 ; (2.84)

JN+4, N−2 = −1 ; JN+4, N−1 = 2 ; JN+4, N+1 = −2 ; JN+4, N+2 = 1 ; (2.85)

In this configuration, the non-contact length is known and is equal to 1 for the nor-

malized case. Hence, z value at N+4 points are the only unknowns. The system of N+4

nonlinear equations (Eq. 2.72) is solved through an iterative procedure and z values are

computed. The procedure is outlined in the flow chart shown in Fig. 2.6.2.

2.6.3 Pinned Configuration

The boundary conditions at the clamped end are same as floating configuration. fN+1

and fN+2 are same as floating equation and are shown in Eq. 2.78 and 2.79. Hence, the

corresponding Jacobian matrix values are also same as Eq. 2.82 and 2.83.

At the touching end, deflection (z) and bending moment (z′′) are zero and in terms of

finite differences, they are expressed as follows.

fN+3 = zN (2.86)

fN+4 = −zN−2 + 16 zN−1 − 30 zN + 16zN+1 − zN+2 (2.87)
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Figure 2.5: Flow chart for Finite difference approximation of floating and pinned config-
urations.



CHAPTER 2. MATHEMATICAL MODELING AND SIMULATIONS 36

The corresponding Jacobian matrix elements are,

JN+3, N = 1 ; (2.88)

JN+4, N−2 = JN+4,N+2 = −1 ; JN+4, N−1 = JN+4,N+1 = 16 ; JN+4, N) = −30 ; (2.89)

The non-contact length, number of unknowns and solution procedure are exactly identical

to the floating configuration as outlined in the flow chart shown in Fig. 2.6.2.

2.6.4 Flat Configuration

In this configuration, the non-contact length varies with the applied voltage and hence,

is an unknown quantity. This problem turns out to be a free boundary problem. The

solution procedure has a minor adition to the previous two configurations. The bound-

ary conditions at the clamped end are same as other configurations. At the other end,

deflection (z), slope (z′) and bending moment (z′′) are zero. Hence, unlike the other two

configurations, 5 boundary conditions are known in the flat configuration.

For the flat configuration, any one solution determines all other solutions by a scaling

law discussed in the following section. The procedure to find one solution, for which we

assume the non-contacting length is unity, is as follows. V is initialized with an arbitrary

value. The corresponding value of z is computed using the three boundary conditions at

the flat end (at zN) and zero slope condition at the fixed end (at z1). In other words,

the boundary condition that z1 = 1 is initially ignored. With V given, this is enough

to determine the solution. The computed value of z1 should be unity. The chosen V is

iteratively modified to match this condition. Once this V is found, all other flat solutions

for the same h can be found by scaling as discussed in the following section.
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The function values considered from the boundary conditions are as follows.

fN+1 = z−1 − 8 z0 + 8 z2 − z3 (2.90)

fN+2 = zN (2.91)

fN+3 = zN−2 − 8 zN−1 + 8 zN+1 − zN+2 (2.92)

fN+4 = −zN−2 + 16 zN−1 − 30 zN + 16zN+1 − zN+2 (2.93)

The non-zero elements of the Jacobian matrix associated with these functions are

JN+1,−1 = 1 ; JN+1, 0 = −8 ; JN+1, 2 = 8 ; JN+1, 3 = −1 ; (2.94)

JN+2, N = 1 ; (2.95)

JN+3, N−2 = 1 ; JN+3, N−1 = −8 ; JN+3, N+1 = 8 ; JN+3, N+2 = −1 ; (2.96)

JN+4, N−2 = JN+4,N+2 = −1 ; JN+4, N−1 = JN+4,N+1 = 16 ; JN+4, N) = −30 ; (2.97)

2.7 Scaling Law in the Flat Configuration

In the flat regime, a scaling law is found. Due to this scaling, if the solution is computed

at one voltage, solutions at all other voltages can be found out with out actually solving

the governing equation again. The solution computed at one voltage can be scaled ap-

propriately to get the solutions at all other voltages. The scaling law is deduced from the

following analysis.

Let

ζ = x
√
V (2.98)

The governing Eq.2.10, in terms of ζ is

d4z

dζ4
=

−1

(z + h)2
(2.99)
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Let the ζ value at x = a be denoted by ζ0. The boundary conditions expressed in terms

of ζ and are

z (ζ = 0) = 1 and z′ (ζ = 0) = 0

z (ζ = ζ0) = z′ (ζ = ζ0) = z′′ (ζ = ζ0) = 0 (2.100)

It is evident from Eq. 2.99 and 2.100 that neither the governing equation nor the boundary

conditions are dependent on the applied voltage. The values of ζ0, z (ζ) for a given voltage

can be computed from the numerical procedure described previously and they are constant

for a given value of h. Let α be the non-contact length of the beam for an applied voltage

of V . As ζ0 is constant for a given h,

α
√
V = ζ0 = constant (2.101)

Hence, ζ0 computed at any voltage determines the constant value and can be subsequently

used to compute the non-contact lengths at all other voltages. Similarly, z value computed

at one voltage can be used to compute the z values at all other voltages. Another point

to be noted is that this scaling law is applicable even to the models [7, 23] that account

for fringing field.

2.8 Discussion and Conclusions

Cantilever beam MEMS electrostatic actuators with an intermediate dielectric layer or

modeled over the entire operational range. Three possible static configurations are iden-

tified in the operational range: floating, pinned and flat configurations. The non-contact

length in all the configurations is governed by the same equation but they differ in the

boundary conditions. Modal expansion method and finite difference method are devel-

oped to perform the simulations. A scaling law is found in the flat configuration. Using

this scaling, solution computed at one voltage is aprropriately scaled to get the solutions

at all other voltages in the flat configuration. The governing Eq. 2.10 along with the

boundary conditions constitutes a nonlinear boundary value problem for the floating and
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pinned configurations and a nonlinear free boundary problem for the flat configuration.

The free boundary problem is transformed into an iterative boundary value problem by

using the additionally available boundary condition.



Chapter 3

Effects of Dielectric Layer

3.1 Introduction

The governing Eq. 2.10 has only two parameters V and h. h is proportional to the

dielectric thickness for a given zero bias height and dielectric constant. Similarly, V is

proportional to the applied voltage. The effects of dielectric layer thickness are studied

by finding out the solutions for fixed h and varying V , for a range of values of h.

The following section gives details regarding voltage limits of the three possible con-

figurations of the beam.

3.2 Normalized Voltage (V ) Limits of Configurations

1. Floating Configuration: The lower limit (V min
float) is, trivially, zero. The upper limit

(V max
float) is decided either by disappearance of solutions via a so-called turning point

(for small h, as discussed later), or (for large h) contact with the dielectric layer.

Beyond this upper limit, the actuator switches to the pinned or flat configuration.

2. Pinned Configuration: The end of the beam can, in principle, always be held pinned

(say, by an external agent) against the dielectric layer by a suitable additional

vertical force at the end point. If that force needs to act downwards, then such

a pinned solution is physically unfeasible because when we remove that force the

40
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end point moves up. Upward acting forces are feasible because when we remove

that force the end point tends to move down and presses against the dielectric layer

which, through mechanical contact, can apply an upward force.

The lower limit (V min
pin ) is therefore voltage at which shear force at the contacting end

of the cantilever beam becomes zero (and the boundary conditions of the pinned

configuration are also satisfied). Below V min
pin , the dielectric layer would have to

mechanically pull down on the free end: since it cannot do so, the actuator is in the

floating configuration. The upper limit (V max
pin ) is decided either by disappearance

of solutions via a so-called turning point (for small h, as discussed later), or (for

large h) extended contact with the dielectric layer (zero slope at the end). Beyond

this upper limit, the actuator switches to the flat configuration. The transition at

(V max
pin ) has not been elucidated in the literature, and is one of post-pull-in insights

offered in this thesis.

3. Flat configuration: The lower limit (V min
flat ) is that at which the non-contacting length

of the beam equals the total length of the beam. There is no upper V limit for the

flat configuration. The non-contacting length approaches zero as V →∞.

V limits for the three configurations, computed for varying h values, are shown in Fig. 3.1.

Possible transitions between configurations are shown in Fig. 3.2, based on Fig. 3.1.

3.3 Transitions

Four transitions are identified, as suggested by Fig. 3.2. The following insights into

transitions from one configuration to another would be impossible with lumped parameter

models, and somewhat obscured with 3-D models. These simple insights form one of the

main benefits of the beam model for the actuator.
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Figure 3.3: Variation of the magnitude of the pull-in discontinuity with h.

3.3.1 Pull-In

Pull-in occurs when the floating configuration solution disappears, as discussed earlier.

Figure 3.3 shows the magnitude of the pull-in discontinuity for varying h values. The jump

in the height at the free end of the beam at the point of transition results from a turning

point bifurcation, as discussed later. Here, we note (Fig. 3.3) that the magnitude decreases

essentially linearly with increasing h. It is interesting to note that for h < 0.03 (Fig.

3.2(a)), the transition from floating has to be to the flat configuration. For 0.03 < h < 0.07

(Fig. 3.2(b)), the transition could be to either the pinned or the flat configuration, and only

a full nonlinear dynamic analysis (not attempted here) can resolve which configuration is

reached immediately after pull-in. For h > 0.07, the transition has to be to the pinned

configuration. Upon increasing the voltage, regardless of h, any pinned configuration will

transition to a flat configuration.
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3.3.2 Pull-Down

The transition from the pinned to the flat configuration is referred to here as pull-down.

The pinned configuration has a nonzero slope at the beam’s end point, while the flat

configuration has zero slope. As is the case for pull-in, a discontinuous transition from

pinned to flat occurs due to a turning point bifurcation, as discussed later. Figure 3.4

shows the pull-down discontinuity decreases faster and faster, until the curve turns around

(not shown here; see discussion later) and the pinned solution disappears. Figure 3.5

shows the magnitude of the pull-down slope discontinuity for different h. For h > 0.4, the

discontinuity in the transition disappears.

3.3.3 Pull-Up

Starting in the flat configuration, a transition is possible to a pinned configuration. Here,

we refer to such a transition as pull-up. Again, for h > 0.4, pull-up is continuous (Fig. 3.2).



CHAPTER 3. EFFECTS OF DIELECTRIC LAYER 45

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→ h

→
 M

ag
ni

tu
td

e 
of

 ju
m

p 
in

 th
e 

sl
op

e

Figure 3.5: Variation of the magnitude of the pull-down discontinuity with h.

In addition, for h < 0.07, it is not clear without nonlinear dynamics analysis (not con-

ducted here) whether the transition at V min
flat occurs to the pinned or the floating config-

uration. Note that any pinned configuration must eventually transition to the floating

configuration as V is decreased.

3.3.4 Pull-out

Finally, the transition from either pinned or flat to floating is called pull-out. Note that, as

is widely observed in experiments, pull-out does not in general occur at the same voltage

as pull-in; however, for large enough h, it does. This consistency in physical behaviour

may be useful in applications.

3.4 Bi-stability

It can be seen from Fig. 3.2 that below a certain value of h, there is a overlap between the

voltage ranges of two different configurations. It means that the actuator has two stable
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Figure 3.6: Variation of width of bi-stability region with h.

solutions in the overlap region and it can stay in either of the states. This is known as

hysteresis or bi-stability.

The width of bi-stability regions between the floating-pinned and the pinned-flat con-

figurations, as a function of h, is shown in Fig. 3.6. Bi-stability between the pinned

and flat configurations disappears for h > 0.4. Similarly, there is no bi-stability between

floating and pinned configurations for h > 1.24.

Note that for h < 0.07, there are three stable states for certain values of V . Therefore,

there is a tri-stability for h < 0.07. The existence of tri-stable states has not previously

been noted for such actuators in the literature.

3.5 Discussion and Conclusions

Voltage limits are computed for all the three possible configurations. A frame work of

all possible types of transitions is made based on the overlaps in voltage ranges of these

configurations. Tri-stable states are observed for the first time for very small values of h.

With the increase in dielectric layer thickness, magnitude of the discontinuities and width
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of bi-stability regions decreases. For h > 1.24, all the transitions are continuous and the

bi-stable states disappear. Hence, the actuator has a smooth, predictable and reversible

behaviour for larger value of h.



Chapter 4

Dynamic Stability of Equilibrium

Solutions

4.1 Introduction

The governing Eq. 2.10 is nonlinear and hence, it can have multiple equilibrium solutions.

The solution obtained depends on the initial guess. Some of these solutions are infeasible

as they penetrate into the dielectric layer. Physically feasible equilibrium solutions may or

not be dynamically stable. In this chapter, we perform the dynamic stability analysis of

all the physically feasible equilibrium solutions in the floating and pinned configurations.

The correlation of these results to chapter 3 is also discussed.

4.2 Method

The dynamic stability of an equilibrium solution can be determined by considering small

variations of that solution, and is governed by an eigenvalue problem.

Let zeq be an equilibrium solution. Then

∂4zeq
∂x4

= − V 2

(zeq + h)2 (4.1)

48
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Let ζ be a small perturbation to zeq. Putting

z = zeq + ζ (4.2)

in Eq. 2.9,
∂4 (zeq + ζ)

∂x4
+
∂2 (zeq + ζ)

∂t2
= − V 2

(zeq + ζ + h)2 .

Linearizing for small ζ using Taylor series expansion,

∂4 (zeq + ζ)

∂x4
+
∂2 (zeq + ζ)

∂t2
= − V 2

(zeq + h)2 +
2V 2

(zeq + h)3 ζ. (4.3)

By Eq. 4.1,
∂4ζ

∂x4
+
∂2ζ

∂t2
=

2V 2

(zeq + h)3 ζ. (4.4)

The above system is discretized using modal expansion [31] along the lines of chap-

ter 2.5, by letting

ζ(x, t) =
n∑
i=1

ai(t)ψi(x) (4.5)

where ψi(x) is the ith normal (or natural) mode of the beam in the absence of electrostatic

forces, and ai(t) is the associated modal coordinate or participation factor. Large n gives

high accuracy. The normal modes used are

ψi(x) = cosh (λi x)− cos (λi x)−Bi (sinh (λi x)− sin (λi x)) . (4.6)

We have the following results from the derivations in chapter 2.5.

1. Floating :

λi is the ith root of

1 + cosh (λi) cos (λi) = 0 (4.7)

and

Bi =
sinh (λi)− sin (λi)

cosh (λi) + cos (λi)
. (4.8)
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2. Pinned :

λi is the ith root of

coth (λi)− cot (λi) = 0 (4.9)

and

Bi = coth (λi) . (4.10)

Stability analysis of the flat configuration is more difficult because the contacting length of

the beam changes during motion. Such an analysis is not attempted here. Note, however,

that an extended contact region suggests, intuitively, that the flat configuration is stable.

The normal modes are, as the name suggests, orthonormal:

1∫
0

ψi(x)ψj(x) dx =

 1 if i = j,

0 otherwise.
(4.11)

From Eq. 4.6,
∂4ψi(x)

∂x4
= λ4

iψi(x) (4.12)

Equation 4.4 becomes

n∑
i=1

[
∂2ai(t)

∂t2
ψi(x) + λ4

i ai(t)ψi(x)

]
≈ 2V 2

(zeq + h)3

n∑
i=1

ai(t)ψi(x), (4.13)

where we write “≈” instead of “=” to emphasize that a finite-n approximation is being

made.

Multiplying the above with ψj(x), j = 1, 2, · · · , n, and integrating over the length, we

obtain

∂2aj(t)

∂t2
+ λ4

j aj(t) =
n∑
i=1

ai(t)

1∫
0

2V 2

(zeq + h)3 ψi(x)ψj(x) dx, (4.14)

where we have reintroduced “=” instead of “≈” for convenience, although the finite-n

approximation remains. Note, also, that the integral on the right hand side requires

knowledge of zeq(x) from a separate calculation.
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In matrix form,
∂2~a

∂t2
+ Λ4~a−B~a = 0 (4.15)

where

~a = [ a1(t), a2(t), a3(t), · · · · · · an(t) ]T (4.16)

and Λ is a diagonal matrix with Λjj = λj. Also, B is a square matrix with

Bij =

1∫
0

2V 2

(zeq + h)3 ψi(x)ψj(x) dx. (4.17)

Let ~a = ~u eσt. Substituting in Eq. 4.15,

(−Λ4 +B
)
~u = σ2 ~u. (4.18)

The eigenvalues of the above system determine stability. By the symmetry of Λ and

B, all σ2 are real. If all σ2 are negative, then all solutions are linear combinations of

sinusoidal oscillations; and the original equilibrium solution is dynamically stable. A

positive σ2 implies instability. At a stability boundary, one eigenvalue will be σ2 = 0 (a

degenerate case).

Rigorous analysts will note that such stability only holds within the linear approx-

imation and is neutral at best; deeper analysis is required, in principle and for general

problems, to resolve rigorously whether small perturbations or nonlinearities or errors

from finite n can actually make the system unstable. However, experience with vibra-

tions of other conservative systems in engineering suggests that the stability condition

used here is reliable. The results obtained below are also intuitively acceptable. In any

case, an equilibrium solution found to be unstable by this method certainly is much more

unstable than any weak instabilities that might conceivably exist in the solutions found to

be stable by the truncated (finite-n) linear analysis. Thus, this analysis acts as a reliable

discriminator between strongly unstable solutions and solutions that are probably stable

but failing that are, at most, very weakly unstable.
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Note that the numerical integration to be performed in Eq. 4.17 requires zeq and ψ

values at the mesh points. Of these, zeq was computed above at a number of mesh points;

and ψ was given above. All integrations were performed using Simpson’s rule. Three

normal modes were used in the stability analysis.

4.3 Stability Results

Figures 4.1 and 4.2 show the results of stability analysis for the floating and pinned

configurations respectively. Each point on each curve represents an equilibrium solution

(floating or pinned). Solid lines indicate stable, and dashed lines unstable solutions.

Where the two branches coalesce in a turning point, the solution is borderline unstable

by linear analysis. The value of V at the turning point represents pull-in and pull-down

in the floating and pinned configurations respectively.
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Figure 4.1: Stability analysis of the floating configuration.
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Figure 4.2: Stability analysis of the pinned configuration.

4.4 Discussion and Conclusions

The stability results plotted above also include families of equilibrium solutions plotted

therein. It is useful to discuss these plots in light of chapter 3.

1. In Fig. 4.1, turning points indicate V max
float. If there are no turning points (large h),

intersection with the horizontal axis indicates V max
float. Whether a turning point exists

or not, intersection with the horizontal axis always indicates a floating solution where

the beam tip just contacts the dielectric surface; the same solution happens to be a

pinned solution as well, with the contact force equal to zero. The corresponding V

is therefore V min
pin (recall discussion of chapter 3.2).

The above result, though probably not new, is apparently not well known in the

MEMS community. We discuss it further, briefly, from a mechanical point of view.

If there is no turning point in the curve, then the slope of the curve is negative; this

means decreasing V tends to raise the beam tip off the dielectric surface, following

a stable solution curve. Thus, reducing V causes disappearance of the pinned solu-

tion. Conversely, increasing V would tend to lower the beam tip into the dielectric
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surface, bringing a vertical contact force into play and producing a pinned solution.

Hence, the intersection marks V min
pin .

On the other hand, if there is a turning point, then slightly raising V produces a

floating solution where the beam tip is slightly above the dielectric surface. How-

ever, that solution is unstable, and so a slight downward perturbation to it will cause

the beam tip to come down further until it touches the dielectric surface, producing

a pinned solution. Conversely, lowering V slightly would make the beam tip tend

to dip below the dielectric surface; this would bring into play an upward acting

contact force, disturbing the solution; and, the solution being unstable, would make

the beam move further up, away from the pinned state.

In this way, simultaneous consideration of equilibrium and stability helps us under-

stand why the intersection point of the floating solution curve with the horizontal

axis indicates V min
pin .

2. Similarly, considering the pinned configuration illustrated in Fig. 4.2 (the vertical

axis shows the slope at the end of the beam), we observe that V max
pin is the maximum

V at which a stable solution exists (whether there is a turning point or not), and

the solution curve intersects the horizontal-axis at V min
flat .

3. For h > 0.4, all pinned solutions are stable. In other words, V max
pin = V min

flat . Simulta-

neously stable pinned and flat solutions no longer coexist (this mode of bi-stability

disappears).

4. For h > 1.24, all floating solutions are stable, and V max
float = V min

pin . Simultaneous

multiple stable solutions of any kind no longer exist.



Chapter 5

Case Study

The analysis carried out so far was in terms of normalized, non-dimensional quantities.

Such analysis, though broadly applicable, need to be recast or reinterpreted in terms

of actual lengths, voltages, and material properties for developing insight into specific

physical applications. With this view, in this chapter, typical dimensions of a MEMS

actuator are assumed and the foregoing results are cast in terms of physical variables.

The dimensions and material properties considered are shown in Table 5.1. These

parameters correspond to h = 0.1.

Figure 5.1 shows the variation of height at the free end of the beam with applied

voltage. Pull-in occurs at 1.46 V and there is a jump in the height of the free end from

0.96µm to 0µm. Stability analysis shows, as expected, that equilibrium solutions with

end point heights below 0.96µ m (represented by a dashed line) are dynamically unstable.

The solution space intersects the horizontal axis at 0.73 V.

Table 5.1: Dimensions and material properties of a MEMS actuator.

Parameter Value
Plate dimensions 400× 100 µm2

Plate thickness 1 µm
Zero bias gap 2 µm
Young’s modulus 160 GPa
Dielectric material Si3N4

Dielectric constant 7
Dielectric thickness 1.4 µm
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Figure 5.1: Floating configuration: Variation of height at the free end of the beam with
applied voltage.

Figure 5.2 shows the force at the contact point of the cantilever beam vs. applied

voltage for the pinned beam boundary conditions. The sign convention is that negative

values indicate an upward mechanical contact force acting from the dielectric on the end

point of the beam. At 0.73 V, the contact force is zero, corresponding to V min
pin as discussed

above. This voltage matches, as it must, the voltage at which the floating solution curve

intersects the x-axis. Figure 5.3 shows the variation of slope at the contact point with

the applied voltage. Pull-down occurs at 2.05 V and the slope at the contact point jumps

from −2.99 × 10−3 to 0. Note that this (non-dimensional) slope is small compared to

unity, showing post facto that the linear behaviour assumed in the beam mechanics (as

opposed to the electrostatic loading) is valid.

Solutions with contact point slope below −2.99× 10−3 (represented by a dashed line)

are unstable. The solution space intersects the x-axis at 1.76 V.

Figure 5.4 shows the variation of the contact length of the cantilever beam vs. applied

voltage in the flat configuration. V min
flat from the figure is 1.76 V. As discussed above, this

voltage matches the voltage at which the pinned solution curve intersects the horizontal
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Figure 5.2: Pinned configuration: Contact force at the touching end of the beam vs.
applied voltage.

axis. Figure 5.5 summarizes the voltage ranges of all the three configurations.

Figure 5.6 shows the capacitance-voltage (C-V) characteristics of the actuator in the

floating configuration. The capacitance at zero potential is 0.161 pF and at the pull-in

voltage is 0.201 pF. Hence, within the restrictions of the present model, the actuator has

a tunability of 25 % in the floating configuration (this proportion turns out to be only

weakly dependent on dielectric layer thickness for small values thereof, because the beam

tip is still far from the dielectric layer).

Maximum capacitance in the flat configuration is achieved when the upper plate com-

pletely comes in contact with the dielectric layer: this limit corresponds to V = ∞ and

a breakdown of the beam theory assumptions made in the model. We will retreat from

this limit later; but for now, we write

Cmax =
ε0 εr w l

td
. (5.1)

For the parameter values used here, Cmax = 1.771 pF. Let C∗ denote the capacitance for



CHAPTER 5. CASE STUDY 58

0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7
x 10

−3

→ Applied voltage (V)

→
 −

(S
lo

pe
)

Stable 

Unstable 

V
flat
min 

V
pin
max=V

pulldown
 

Figure 5.3: Pinned configuration: Slope at the contact point of the cantilever beam vs.
applied voltage.

a non-contact length of l in the flat configuration and let the corresponding voltage be

V ∗. For the parameter values used here, C∗ = 0.621 pF and V ∗ = 1.76 V.

For an arbitrary applied voltage V in the flat regime, let the non-contact length and

the capacitance be a and C respectively.Then

C =
a

l
C∗ +

ε0 εr w (l − a)

td
. (5.2)

Fig. 5.7 shows the C-V characteristics when the minimum non-contact length is limited

to 20 % of the total length of the beam. The voltage range considered is 2.05 – 44 V

to ensure that we stay within the same (flat) configuration. The capacitance range is

0.705 – 1.541 pF, with a tunability of 120 %. Thus, the actuator offers larger tunability

in the flat configuration than in the conventional floating configuration. Unlike in the

floating configuration, the maximum variation in capacitance occurs in the initial part of

the applied voltage range.

We end this chapter with a few qualitative observations. Low dielectric thickness gives
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Figure 5.5: Voltage ranges of the three configurations.

greater tunability, but at the cost of discontinuous transitions, multiple coexisting stable

states, and hence less predictable behaviour. These problems can be eliminated with a

high dielectric thickness near the beam tip. However, lower dielectric thickness away from

the beam tip will not cause such problems, while increasing the tunability. In this way, we

anticipate that a dielectric layer of suitably varying thickness may give a large operational

voltage range with both predictable behaviour as well as high tunability.
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Figure 5.6: C-V characteristics in the floating configuration.
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Figure 5.7: C-V characteristics in the flat configuration.



Chapter 6

Conclusions and Further Work

Cantilever beam electrostatic actuators with an intermediate dielectric layer have been

analyzed in detail over the entire operational range using a beam model.

Three qualitatively different configurations, here called floating, pinned and flat, have

been identified and studied. A scaling law is found in the flat configuration. Transitions

from and to the floating configuration (pull-in and pull-out) and transitions from pinned to

flat (pull-down) and flat to pinned (pull-up) have been studied as well. Bi-stable and tri-

stable states have been found. A classification of all possible types of transitions is made

based on the dielectric layer parameters. Dynamic stability analyses have complemented

the study of these configurations and transitions.

Substrate

Dielectric

Figure 6.1: Proposed designs to achieve more regular and reversible behaviour as well as
higher tunability
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Higher dielectric thickness gives more regular and predictable behaviour, at the cost

of lower overall tunability in device characteristics. Hence, designs similar to Fig. 6.1,

with higher dielectric thickness near the free end may result in more regular and reversible

behaviour as well as higher tunability. In the first proposed design, the dielectric thickness

is low over most of the beam and is smoothly increasing to a significantly larger value

near the free end. In the second design, the thickness of the substrate is decreased in

steps near the right end and a dielectric layer is deposited over the substrate with its

outer surface being at a constant height. Such designs may also be useful in achieving

the desired C-V characteristics.

In future works, behaviour of MEMS actuators with varying dielectric thickness can

be studied in detail. Similar analysis can be carried out for fixed-fixed and circularly

clamped MEMS electrostatic actuators.
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