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Abstract
Most existing distributed systems use logical clocks to order events in the imple-

mentation of various consistency models. Although logical clocks are straightforward

to implement and maintain, they may affect the scalability, availability, and latency

of the system when being used to totally order events in strong consistency models.

They can also incur considerable overhead when being used to track and check the

causal relationships among events in some weak consistency models.

In this thesis we explore how to efficiently implement different consistency models

using loosely synchronized physical clocks. Compared with logical clocks, physical

clocks move forward at approximately the same speed and can be loosely synchro-

nized with well-known standard protocols. Hence a group of physical clocks located

at different servers can be used to order events in a distributed system at very low cost.

We first describe Clock-SI, a fully distributed implementation of snapshot isolation

for partitioned data stores. It uses the local physical clock at each partition to assign

snapshot and commit timestamps to transactions. By avoiding a centralized service for

timestamp management, Clock-SI improves the throughput, latency, and availability

of the system.

We then introduce Clock-RSM, which is a low-latency state machine replication

protocol that provides linearizability. It totally orders state machine commands by

assigning them physical timestamps obtained from the local replica. By eliminating

the message step for command ordering in existing solutions, Clock-RSM reduces the

latency of consistent geo-replication across multiple data centers.

Finally, we present Orbe, which provides an efficient and scalable implementation

of causal consistency for both partitioned and replicated data stores. Orbe builds an

explicit total order, consistent with causality, among all operations using physical

timestamps. It reduces the number of dependencies that have to be carried in update

replication messages and checked on installation of replicated updates. As a result,

Orbe improves the throughput of the system.

Keywords : distributed systems, snapshot isolation, linearizability, causal consistency
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Résumé
La plupart des systèmes distribués existants utilisent des horloges logiques pour

ordonner les événements dans l’implémentation de différents modèles de cohérence.

Bien que les horloges logiques sont simples à implémenter et à entretenir, elles peu-

vent affecter l’adaptabilité, la disponibilité et le temps de latence du système lorsqu’il

est utilisé pour ordonner les événements dans des modèles de cohérence solides. Elles

peuvent aussi engager des dépenses considérables lorsqu’elles sont utilisées pour

suivre et vérifier les relations de causalité entre les événements dans certains modèles

de cohérence faibles.

Dans cette thèse, nous explorons la façon d’implémenter efficacement différents

modèles de cohérence en utilisant des horloges physiques. Par rapport aux horloges

logiques, les horloges physiques avancent automatiquement à la même vitesse et

peuvent être ainsi synchronisées avec des protocoles standards largement utilisés dans

la pratique. Ainsi, un groupe d’horloges physiques situées dans différents serveurs

peut être utilisé pour ordonner les événements d’un système distribué à un coût très

faible.

Nous décrivons d’abord Clock-SI, une implémentation entièrement distribuée de

l’isolement de cliché pour les banques de données partitionnées. Elle utilise l’hor-

loge physique locale à chaque partition afin d’affecter un cliché et d’attribuer des

horodatages à des transactions. En évitant un service centralisé pour la gestion d’horo-

datage, Clock-SI améliore le débit, la latence et la disponibilité du système.

Nous présentons ensuite Clock-RSM qui est une machine d’état à protocole de

réplication à faible latence et qui permet l’atomicité. Elle ordonne les commandes

de la machine d’état en leurs attribuant des horodateurs physiques obtenus à partir

de la réplique locale. En éliminant l’étape de message pour l’ordonnancement des

commandes dans les solutions existantes, Clock-RSM réduit la latence de la géo-

réplication à travers plusieurs centres de données.

Enfin, nous présentons Orbe qui fournit une implémentation efficace et évolutive

de consistance causale pour les banques de données partitionnées mais aussi ré-
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pliquées. Orbe construit un ordre total explicite entre toutes les opérations à l’aide de

l’horodatage physiques, et l’ordre est consistant avec la causalité. Il réduit le nombre

de dépendances prises en compte lors de la mise-à-jour des messages de réplica-

tions et vérifiés lors de l’installation de mise-à-jours répliquées. Par conséquent, Orbe

permet d’améliorer le débit du système.

Mots-clés : systèmes distribués, isolement de cliché, atomicité, consistance causale
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1 Introduction

This thesis is concerned with building distributed systems with both good perfor-

mance and desired consistency properties. We introduce protocols that efficiently

implement three widely used consistency models in a distributed system by using

loosely synchronized physical clocks.

1.1 Background and Motivation
Distributed systems overcome the limitations of a single server, such as compu-

tation and storage, by interconnecting a group of them to solve challenging prob-

lems [74]. They lay the foundation of recent trends in cloud computing and big data.

In a distributed environment, however, some properties provided by a centralized

system may not be satisfied easily. Hence various consistency models, from strong to

weak, are proposed to trade off consistency with performance for different types of

applications [22, 26, 58].

We focus on distributed data storage systems, which is an important category

of distributed systems targeting large-scale data management. To manage data in

huge volumes, a typical distributed data store normally partitions the managed data

set across a large number of commodity servers. For better performance and data

safety, it also replicates the data set by storing multiple copies of each data partition

at different servers. The data set may be placed at multiple data centers to improve

access latency and tolerate catastrophic failures.

One of the core challenges in building a distributed system is providing the re-

quired consistency properties efficiently. Event ordering, a fundamental concept in

distributed systems, plays an important role in defining and implementing consis-

tency models [50]. The performance of a distributed system is highly related to how

it orders events. Strongly consistent systems normally totally order events using a

single logical clock, which is typically implemented by a counting variable and main-
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tained by a single centralized service. Weakly consistency systems may partially order

events using a group of logical clocks to provide properties such as causality and

convergence [62].

Using logical clocks to order events has the following two potential problems,

although they are easy to implement and manage. First, a centralized logical clock

serves all ordering requests via messages over the network. It can easily become a

performance bottleneck and a single point of failure, which affects the scalability and

availability of a system. Second, when a group of logical clocks are used to track and

check the causal relationships among events, the dependency metadata may increase

linearly with the number of servers a system employs. Storing and transmitting meta-

data of large size and checking dependencies across a large number of servers affects

the performance of the system.

This thesis presents efficient solutions for building distributed data stores that re-

quires different consistency properties. All the solutions are based upon one essential

idea: using a group of loosely synchronized physical clocks to order events.

Compared with logical clocks, physical clocks move forward automatically at

roughly the same speed. They do not need be advanced after the occurrence of each

event. Commodity servers are all equipped with a reliable physical clock. The physical

clocks of a group of servers can be loosely synchronized by a clock synchronization

protocol, such as the Network Time Protocol (NTP) [2]. With the assistance of the

operating system, each physical clock provides monotonically increasing timestamps

very close to real time. With these properties, a group of physical clocks can help order

events in a distributed environment at very low cost.

Our solutions use loosely synchronized physical clocks to order events in a dis-

tributed system and overcome the limitations of logical clocks. We assign to each

event a timestamp obtained from the local physical clock and use this timestamp to

totally order all events across the whole system. As we show in this thesis, this simple

idea is very powerful and can be used to efficiently solve fundamental problems in

distributed computing.

In the rest of this chapter, we first briefly review a number of widely used consis-

tency models and show the important role of event ordering in their definitions and

implementations. We then describe the challenges of implementing three consistency

models, which are all related to event ordering. We also present an overview of our so-

lutions that efficiently implement these three consistency models with the assistance

of loosely synchronized physical clocks.
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1.2 Consistency Models
A consistency model is a contract between a data store and its clients. It specifies

the consistency properties that a data store promises to provide to its clients. In this

section we present a brief overview of various consistency models and show that event

ordering is key in characterizing these models.

For a centralized system that consists of a single process, events are naturally

ordered by the sequential execution of the process. For a distributed system that

orchestrates a large number of processes, determining the order of any two events

at different processes is not trivial. The stronger a consistency model is, the closer it

orders events to a single process. There exists a broad range of consistency models

that allow programmers to trade off consistency for a potential gain in performance.

1.2.1 Consistency of Replicated Data Stores
We first introduce four consistency models widely used in the context of data

replication. We assume that a data store provides two basic operations: read and

update the value of a data item atomically. The system consists of multiple replicas

that each store a full copy of the managed data set. Clients access the data store

concurrently from different replicas.

Linearizability [39] is a very strong consistency model. A linearizable replicated

data store provides to its clients the same behavior as an unreplicated data store.

A replicated data store is linearizable if it satisfies the following three properties: 1)

The result of any client operation is the same as if the operations by all clients were

executed in some sequential order. 2) The operations of each client appear in this

sequence in the order of its execution. 3) If any operation x finishes before operation y

starts in real time, then x precedes y in this sequence. Linearizability is a local property

and hence is composable. If every data item of a data store is linearizable, the data

store is also linearizable.

Sequential consistency [52] is also a strong consistency model but weaker than

linearizability. It provides the first two properties of linearizability but not the last one.

It does not require that two independent operations from different clients follow the

real time order in the global sequence. Sequential consistency is a global property

and is not composable. If two data items are replicated separately and each of them is

sequentially consistent, the combined data set is not guaranteed to provide sequential

consistency.

Global coordination among replicas is indispensable to implement strong con-

sistency models. To provide linearizability or sequential consistency, a data store
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normally executes client operations in the same total order at all replicas. Concurrent

operations are often ordered through a single sequencer node. Coordination services

such as Chubby [18] and Zookeeper [40] and distributed data stores such as MegaS-

tore [12] and Spanner [22] are examples of strongly consistent systems. They all use

Paxos [52, 53] or a similar protocol [43] to totally order operations from each replica

through a distributed leader replica.

Eventual consistency [76] is a weak consistency model. Its widely adopted informal

definition specifies a liveness property: If no new updates are applied to a data item,

eventually all reads to the item return the same value. A replicated data store that is

eventually consistent does not require coordinating client operations globally. Hence

it provides better performance than a strongly consistent data store. If the update

operations to an item are not commutative, eventual consistency still requires some

local coordination on them for convergence, i.e., all replicas reaching the same state

on that item.

Causal+ consistency [58] is a restriction of eventual consistency with the additional

requirement of causal consistency [7, 50]: an update becomes visible to clients only

after its causal dependency states are visible. For convenience, in this thesis we also

refer causal consistency to causal+ consistency, which requires both causality and

convergence. Essentially, causal consistency requires a partial order among causally

related events.

Guaranteeing causality is useful to a broad range of applications, such as online

social networks, which normally do not require strong consistency. Dynamo [26] and

COPS [58] are examples of eventually and causally consistent data stores, respectively,

which demonstrate the virtues of weak consistency models.

The fundamental difference between strong and weak consistency models is

whether global coordination of operations is required. Obviously, global coordination

is only possible if the replicas can communicate with each other through messages

over the network. The CAP theorem shows that, when the network partitions, a repli-

cated system can either have availability or consistency, but not both [17, 34]. In other

words, a strongly consistent system does not provide high availability while a weakly

consistent system does. In addition, a weakly consistent system also provides low

update latency, which is important for geo-replication. This is one of the most impor-

tant principles that guide the design of distributed systems. While respecting the CAP

theorem, we provide more efficient implementations of existing consistency models

by using loosely synchronized physical clocks.
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1.2.2 Transaction Isolation Levels
The concept of transaction is an important primitive and model in data manage-

ment. A transaction groups multiple read and/or update operations together while

still providing properties similar to a single operation.

A transaction concurrency control mechanism provides isolations between con-

current transactions [15]. Two transactions are concurrent if they access the same data

item(s) and their execution time overlaps. Isolation constraints what a transaction

can read and write at execution. Similar to consistency models we introduced before,

the isolation level of a transaction specifies the properties that a transaction needs

to maintain when executing concurrently with other transactions. People sometimes

also use consistency to refer to the isolation properties of a transaction.

We briefly explain two widely used transaction isolation levels in both commercial

and open-source database systems. We assume a data store that is not replicated. A

transaction consists of one or more read and update operations. It may complete

atomically with a commit, or with an abort. A transaction commits only if it satisfies

the properties specified by its isolation level.

Serializability [15] is the strongest level of isolation. It requires that the schedule for

executing concurrent transactions is equivalent to one that executes the transactions

serially in some order. Under serializability, a transaction does not interfere with

other transactions, i.e., it is totally isolated as if all transactions run serially. When

a serializable transactional data store is replicated, to still guarantee serializability,

every replica should commit transactions in the same serial order.

Snapshot isolation (SI) [13] is another popular strong isolation level, although it is

not serializable. An SI implementation must satisfy two properties: 1) A transaction

reads the most recent committed version as of the time when the transaction starts. 2)

The write sets of each pair of committed concurrent transactions do not intersect.

SI originates from multi-versioning concurrency control (MVCC), which naturally

relies on the notion of time in the definition and implementation. A typical imple-

mentation of SI normally totally orders transaction commits and provides consistent

snapshots using a logical clock. The commit of an update transaction advances the

clock. By reading the clock, a transaction obtains a consistent snapshot that includes

the updates of all transactions committed before the snapshot time.

Many other weak transaction isolation levels exist in the literature [4]. Similar

to consistency models, a weaker isolation level is also less expensive to implement

because it requires less coordination, i.e., looser ordering, among concurrent transac-

tions.
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1.2.3 Summary
Event ordering is one of the fundamental problems in distributed computing.

Based on our introduction above, it is not hard to observe that event ordering plays a

critical role in defining and implementing various consistency models and transaction

isolation levels. As we show next, using logical clocks for event ordering can hurt the

throughput, latency, or availability of a system. To avoid or mitigate these problems,

we use loosely synchronized physical clocks for event ordering in the implementation

of three consistency models in this thesis.

1.3 Problem Statement
In this section we identify problems in the implementations of three widely used

consistency models. These problems are all related to the usage of logical clocks for

event ordering.

1.3.1 Snapshot Isolation for Partitioned Data Stores
SI is one of the most widely used concurrency control schemes in both commercial

systems and research prototypes. A typical implementation of SI uses a logical clock

to order transactions and provide consistent snapshots. In a centralized data store,

the logical clock can be easily implemented by an atomic counter. Accessing the

counter is almost free because it is just local memory operations. However, when the

managed data set grows beyond the capacity of a single server, the data store has

to partition the data set across multiple servers. As a consequence, the logical clock

has to be maintained by a centralized time service running at a single server. The

time service then totally orders transactions from different partitions by assigning

them monotonically increasing commit timestamps. Percolator [67] and Omid [33]

are examples of distributed data stores that implements SI with such a centralized

time authority.

Lying on the critical path of transaction execution, the centralized time service af-

fects the throughput, latency, and availability of the system. When a transaction starts

at a partition, it obtains a consistent snapshot by requesting a snapshot timestamp

from the centralized time service. Similarly, when an update transaction commits, it

requests a commit timestamp from the time service. When the number of partitions is

large, the service becomes a performance bottleneck because every transaction needs

to access it through network messages. Transaction latency also increases because

of additional communication steps to the time service. Furthermore, it affects the

availability of the system, because it is a single point of failure.
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1.3.2 State Machine Replication across Data Centers
The state machine approach [71] is often used to replicate services consistently by

implementing a strong consistency model, such as linearizability and sequential con-

sistency. If replicas start from the same initial state and they behave in a deterministic

fashion, their states are consistent after executing the same sequence of commands,

because the state machine replication protocol guarantees that all replicas execute

the same set of commands in the same order.

To improve service availability and data locality, many online services replicate

their data consistently at multiple geographic locations. A geo-replicated system can

tolerate the failure of replicas due to server, network, and data center outage. It also

serves user requests using the nearby replica hence reducing service latency and

improving user experiences.

Although many protocols have been proposed to replicate state machines, they

are not well suited for geo-replication because of high replication latency. Multi-

Paxos [52, 53], a variant of Paxos, is the most widely used state machine replication

protocol in production. In this protocol, one replica is designated as the leader, which

orders commands by contacting a majority of replicas in one round trip of messages. A

non-leader replica forwards its command to the leader and later receives the commit

notification, adding the latency of another round trip. In a wide-area environment,

the latency of two message round trips is significant. Essentially, Multi-Paxos relies

on a logical clock at the leader replica to totally order commands. This incurs high

latency at the non-leader replicas because they have to contact the leader to order

each command.

1.3.3 Scalable Causally Consistent Data Replication
Many applications, such as online social networks, require high availability but

not strong consistency. For these applications, causal consistency is a good option

because it preserves the virtues of eventual consistency, namely high availability and

low update latency. In addition, it also provides stronger semantics than eventual

consistency by guaranteeing causality.

For purely replicated systems, causal consistency is implemented with version

vectors [7, 65]. Each replica totally orders its local updates and maintains a version

vector. The size of a version vector is equal to the total number of replicas. An element

of a version vector is a scalar value and denotes how many updates the replica has

applied from another replica. To track the dependencies of a local update, a replica

associates the latest version vector with the update as its dependency vector. When the
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update is sent to another replica for replication, it is not applied and does not become

visible until the version vector of that replica becomes equal to or greater than the

dependency vector of the update.

Implementing causal consistency in a data store that is both partitioned and

replicated is challenging [58]. As version vectors are designed for pure replicated

system and are not scalable for a large number of partitions, recent solutions track

every dependency at the client side and check during replication that the depen-

dencies of an update are present at a remote replica before install the update at

that replica [58, 59]. These solutions have a number of drawbacks. First, explicitly

storing every dependency and transmitting it to other replicas during replication

consumes CPU cycles and network bandwidth. Second, checking the dependencies of

each replicated update requires additional network messages to other data partitions,

which also consumes CPU cycles and bandwidth. Third, providing causally consistent

read-only transactions dramatically increases the number of tracked and checked de-

pendencies, because it cannot utilize the transitivity of causality and requires tracking

the complete set of dependencies.

1.4 Solution Overview
In this section, we introduce protocols that efficiently implement three consistent

models, snapshot isolation, linearizability, and causal consistency, in a distributed

environment. The protocols rely on physical clocks to solve most of the problems de-

scribed in the previous section. With a group of loosely synchronized physical clocks,

they either replace the existing centralized logical clock or impose explicit partial or-

ders on events. The precision of clock synchronization does not affect the correctness

of our solutions, although it may affect performance in unlikely circumstances where

clock skews are large.

1.4.1 Clock-SI
Clock-SI is a fully distributed implementation of SI for partitioned data stores. It

does not rely on a single logical clock to order transactions and provides snapshots.

A transaction obtains its snapshot timestamp by reading the physical clock of the

first partition it accesses. A single-partition update transaction obtains its commit

timestamp from the clock of the partition it updates. A transaction that updates multi-

ple partitions uses an augmented two-phase commit protocol to derive its commit

timestamp. By avoiding a centralized service on the critical path of transaction exe-

cution, Clock-SI improves the throughput and latency of both read-only and update
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transactions. The scalability of the system is not limited by the centralized service any

more. Clock-SI also improves the availability of the system by eliminating a single

point of failure.

There are two challenges of using loosely synchronized physical clocks. First, a

hardware physical clock only provides monotonically increasing timestamps. It is

less flexible than a logical clock implemented by a counter variable. Second, clocks

are loosely synchronized. The time indicated by a clock may drift from the standard

time by a small value. A snapshot taken at one server may not be available at another

server because the clock at that server is behind by some time. While these situations

happen relatively rarely, they must be handled for correctness. Clock-SI addresses

these challenges and preserves the properties of SI.

1.4.2 Clock-RSM
Clock-RSM is a low-latency linearizable state machine replication protocol that tar-

gets geo-replication. Replicas are placed at different data centers to provide low access

latency and tolerate disastrous failures. Clock-RSM does not rely on a distinguished

leader replica to orders commands. Instead, a replica assigns to each command from

its own clients a timestamp using the local physical clock. Commands from all replicas

are then totally ordered by their assigned physical timestamps. Hence, Clock-RSM is a

multi-leader protocol.

Clock-RSM requires three steps to commit a command: 1) Logging the command

at a majority of replicas. 2) Determining the stable order of the command. 3) Notifying

the commit of the command to all replicas. Clock-RSM overlaps these steps as much

as possible to reduce the replication latency. By avoiding a centralized logical clock

for command ordering, for many real world replica placements across data centers,

Clock-RSM needs only one round-trip latency to a majority of replicas to commit

a command. Since Clock-RSM does not mask replica failures as in Paxos, we also

introduce a reconfiguration protocol that automatically removes failed replicas and

reintegrates recovered replicas to the system.

1.4.3 Orbe
Orbe is a partitioned and replicated key-value store that provides causal consis-

tency. It is scalable because replicas of different partitions replicate their updates

independently in parallel. More importantly, it uses three techniques to reduce the

overhead of dependency tracking and checking in existing solutions.

First, Orbe totally orders updates at each replica of a partition. With this ordering,

9



Chapter 1. Introduction

it uses dependency matrices, a two-dimensional data structure, to compactly track

dependencies at the client side. Each element in a dependency matrix is a scalar value

that represents all dependencies from the corresponding data store server. The size of

dependency matrices is bounded by the total number of servers in the system.

Second, Orbe orders causally dependent states using loosely synchronized physi-

cal clocks. It assigns to each state an update timestamp obtained from a local physical

clock and guarantees that the update timestamp order of causally related states is

consistent with their causal order. Orbe provides causally consistent snapshots of the

data store to read-only transactions by assigning them a snapshot timestamp, which

is also obtained from a local physical clock.

Third, Orbe proposes dependency cleaning, an optimization that further reduces

the size of dependency metadata. It is based on the observation that once a state

and its dependencies are fully replicated, any subsequent read on the state does not

introduce new dependencies to the client session.

With the above techniques, Orbe effectively reduces the cost of implementing

causal consistency in a distributed data store. The improvement comes from imposing

orders on data store operations using both logical clocks and physical clocks.

1.5 Thesis Organization
The rest of this thesis is structured as follows: Chapter 2 describes Clock-SI, a

scalable implementation of SI for partitioned data stores. Chapter 3 presents Clock-

RSM, a low-latency state machine replication protocol for geographic replication.

Chapter 4 describes Orbe, a scalable implementation of causal consistency. Chapter 5

describes prior work on the implementations of different consistency models. Finally,

Chapter 6 concludes this thesis.
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tioned Data Stores
In this chapter, we introduce Clock-SI, a fully distributed implementation of snap-

shot isolation (SI) for partitioned data store systems.

2.1 Introduction
SI [13] is one of the most widely used concurrency control schemes. While allowing

some anomalies not possible with serializability [15], SI has significant performance

advantages. In particular, SI never aborts read-only transactions, and read-only trans-

actions do not block update transactions. SI is supported in several commercial

systems, such as Microsoft SQL Server, Oracle RDBMS, and Google Percolator [67], as

well as in many research prototypes [25, 30, 42, 77, 80].

2.1.1 SI Overview
Intuitively, under SI, a transaction takes a snapshot of the database when it starts.

A snapshot is equivalent to a logical copy of the database including all committed

updates. When an update transaction commits, its updates are applied atomically and

a new snapshot is created. Snapshots are totally ordered according to their creation

order using monotonically increasing timestamps. Snapshots are identified by times-

tamps: The snapshot taken by a transaction is identified by the transaction’s snapshot

timestamp. A new snapshot created by a committed update transaction is identified

by the transaction’s commit timestamp.

Managing timestamps in a centralized system is straightforward. Most SI imple-

mentations maintain a global variable, the database version, to assign snapshot and

commit timestamps to transactions.

When a transaction starts, its snapshot timestamp is set to the current value of

the database version. All its reads are satisfied from the corresponding snapshot. To

support snapshots, multiple versions of each data item are kept, each tagged with a
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version number equal to the commit timestamp of the transaction that creates the

version. The transaction reads the version with the largest version number smaller

than or equal to its snapshot timestamp. If the transaction is read-only, it always

commits without further checks. If the transaction makes updates, its writes are

buffered in a private workspace not visible to other transactions. When the update

transaction requests to commit, a certification check verifies that the transaction

writeset does not intersect with the writesets of concurrent committed transactions. If

the certification succeeds, the database version is incremented, and the transaction

commit timestamp is set to this value. The transaction’s updates are made durable

and visible, creating a new version of each updated data item with a version number

equal to the commit timestamp.

2.1.2 Problem Statement

Efficiently maintaining and accessing timestamps in a distributed system is chal-

lenging. We focus here on partitioning, which is the primary technique employed to

manage large data sets. Besides allowing for larger data sizes, partitioned systems

improve latency and throughput by allowing concurrent access to data in different

partitions. With current large main memory sizes, partitioning also makes it possible

to keep all data in memory, further improving performance.

Existing implementations of SI for a partitioned data store [42, 67, 78, 80] use a cen-

tralized time authority to manage timestamps. When a transaction starts, it requests

a snapshot timestamp from the centralized authority. Similarly, when a successfully

certified update transaction commits, it requests a commit timestamp from the cen-

tralized authority. Each partition does its own certification for update transactions,

and a two-phase commit (2PC) protocol is used to commit transactions that update

data items at multiple partitions. The centralized timestamp authority is a single

point of failure and a potential performance bottleneck. It negatively impacts system

availability, and increases transaction latency and messaging overhead. We refer to

the implementations of SI using a centralized timestamp authority as conventional SI.

2.1.3 Solution Overview

We introduce Clock-SI, a fully distributed implementation of SI for partitioned

data stores. Clock-SI uses loosely synchronized clocks to assign snapshot and commit

timestamps to transactions, avoiding the centralized timestamp authority in conven-

tional SI. Similar to conventional SI, partitions do their own certification, and a 2PC

protocol is used to commit transactions that update multiple partitions.
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Compared with conventional SI, Clock-SI improves system availability and perfor-

mance. Clock-SI does not have a single point of failure and a potential performance

bottleneck. It saves one round-trip message for a ready-only transaction (to obtain

the snapshot timestamp), and two round-trip messages for an update transaction

(to obtain the snapshot timestamp and the commit timestamp). These benefits are

significant when the workload consists of short transactions as in key-value stores,

and even more prominent when the data set is partitioned geographically across data

centers.

We build on earlier work [5,6,71] to totally order events using physical clocks in dis-

tributed systems. The novelty of Clock-SI is to efficiently create consistent snapshots

using loosely synchronized clocks. In particular, a transaction’s snapshot timestamp

is the value of the local clock at the partition where it starts. Similarly, the commit

timestamp of a local update transaction is obtained by reading the local clock.

The implementation of Clock-SI poses several challenges because of using loosely

synchronized clocks. The core of these challenges is that, due to a clock skew or

pending commit, a transaction may receive a snapshot timestamp for which the

corresponding snapshot is not yet fully available. We delay operations that access the

unavailable part of a snapshot until it becomes available. As an optimization, we can

assign to a transaction a snapshot timestamp that is slightly smaller than the clock

value to reduce the possibility of delayed operations.

We build an analytical model to study the properties of Clock-SI and analyze the

trade-offs of using old snapshots. We also verify the model using a system implementa-

tion. We demonstrate the performance benefits of Clock-SI on a partitioned key-value

store using a micro-benchmark (YCSB [21]) and application-level benchmark (Twitter

feed-following [73]). We show that Clock-SI has significant performance advantages.

In particular, for short read-only transactions, Clock-SI improves latency and through-

put by up to 50% over conventional SI. This performance improvement comes with

higher availability as well.

In this chapter, we make the following contributions:

– We present Clock-SI, a fully distributed protocol that implements SI for parti-

tioned data stores using loosely synchronized clocks (Section 2.4).

– We develop an analytical model to study the performance properties and trade-

offs of Clock-SI (Section 2.5).

– We build a partitioned key-value store and experimentally evaluate Clock-SI to

demonstrate its performance benefits (Section 2.6).
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2.2 Model and Definition
In this section, we describe the system model and define SI.

2.2.1 System Model
We consider a multiversion key-value store, in which the dataset is partitioned

and each partition resides on a single server. A server has a standard hardware clock.

Clocks are synchronized by a clock synchronization protocol, such as Network Time

Protocol (NTP) [2]. We assume that clocks always move forward, perhaps at different

speeds as provided by common clock synchronization protocols [2, 56]. The absolute

value of the difference between clocks on different servers is decided by the clock

synchronization skew.

The key-value store supports three basic operations: get, put, and delete. A

transaction consists of a sequence of basic operations. A client connects to a partition,

selected by a load balancing scheme, and issues transactions to that partition. We call

this partition the originating partition of these transactions. The originating partition

executes the operations of a transaction sequentially. If the originating partition does

not store a data item needed by an operation, it executes the operation at the remote

partition that stores the item.

The originating partition assigns the snapshot timestamp to a transaction by

reading its local clock. When an update transaction starts to commit, if it updates

data items at a single partition, the commit timestamp is assigned by reading the local

clock at that partition. We use a more complex protocol to commit a transaction that

updates multiple partitions.

2.2.2 SI Definition
Formally, SI is a multiversion concurrency control scheme with three main proper-

ties [4, 13, 31] that must be satisfied by the underlying implementation:

(1) Each transaction reads from a consistent snapshot, taken at the start of the

transaction and identified by a snapshot timestamp. A snapshot is consistent if

it includes all writes of transactions committed before the snapshot timestamp,

and if it does not include any writes of aborted transactions or transactions

committed after the snapshot timestamp.

(2) Update transactions commit in a total order. Every commit produces a new

database snapshot, identified by the commit timestamp.

(3) An update transaction aborts if it introduces a write-write conflict with a con-
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Figure 2.1 – Snapshot unavailability due to clock skew.

current committed transaction. Transaction T1 is concurrent with committed

update transaction T2, if T1 took its snapshot before T2 committed and T1 tries

to commit after T2 committed.

2.3 Challenges
Using loosely synchronized physical clocks to implement SI imposes a few chal-

lenges. We illustrate them in this section before presenting the details of the Clock-SI

protocol.

From the SI definition, a consistent snapshot with snapshot timestamp t includes,

for each data item, the version written by the transaction with the greatest commit

timestamp smaller than or equal to t . This property holds independent of where

a transaction starts and gets its snapshot timestamp, where an update transaction

gets its commit timestamp, and where the accessed data items reside. Ensuring this

property is challenging when assigning snapshot and commit timestamps using clocks

as we illustrate here. While these situations happen relatively rarely, they must be

handled for correctness. We show in detail how Clock-SI addresses these challenges in

Section 2.4.

Example 1: First, we show that clock skew may cause a snapshot to be unavail-

able. Figure 2.1 shows a transaction accessing two partitions. Transaction T1 starts

at partition P1, the originating partition. P1 assigns T1’s snapshot timestamp to the

value t . The clock at P2 is behind by some amount θ, and thus at time t on P1, P2’s

clock value is t −θ. Later on, T1 issues a read for data item x stored at partition P2.

The read arrives at time t ′ on P2’s clock, before P2’s clock has reached the value t , and

thus t ′ < t . The snapshot with timestamp t at P2 is therefore not yet available. Another

transaction on P2 could commit at time t ′′, between t ′ and t , and change the value of

x. This new value should be included in T1’s snapshot.

Example 2: Second, we show that the pending commit of an update transaction

can cause a snapshot to be unavailable. Figure 2.2 depicts two transactions running
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Figure 2.2 – Snapshot unavailability due to the pending commit of an update transac-
tion.

in a single partition. T2’s snapshot is unavailable due to the commit in progress of

transaction T1, which is assigned the value of the local clock, say t , as its commit

timestamp. T1 updates item x and commits. The commit operation involves a write to

stable storage and completes at time t ′. Transaction T2 starts between t and t ′, and

gets assigned a snapshot timestamp t ′′, t < t ′′ < t ′. If T2 issues a read for item x, we

cannot return the value written by T1, because we do not yet know if the commit will

succeed, but we can also not return the earlier value, because, if T1’s commit succeeds,

this older value will not be part of a consistent snapshot at t ′′.
Both examples are instances of a situation where the snapshot specified by the

snapshot timestamp of a transaction is not yet available. These situations arise be-

cause of using physical clocks at each partition to assign snapshot and commit times-

tamps in a distributed fashion. We deal with these situations by delaying the operation

until the snapshot becomes available.

As an optimization, the originating partition can assign to a transaction a snapshot

timestamp that is slightly smaller than its clock value, with the goal of reducing the

probability and duration that an operation needs to be delayed, albeit at the cost of

reading slightly stale data. Returning to Example 1, if we assign a snapshot timestamp

by subtracting the expected clock skew from the local clock, then the probability of

the snapshot not being available because of clock skew decreases substantially.

2.4 Clock-SI
We first present the read protocol, which provides transactions consistent snap-

shots across partitions, and the commit protocol. Next, we discuss correctness and

other properties of Clock-SI.

2.4.1 Read Protocol
The read protocol of Clock-SI provides transactions consistent snapshots across

multiple partitions. It has two important aspects: (1) the assignment of snapshot times-
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Algorithm 1 Clock-SI read protocol.
1: StartTransaction(transaction T)
2: T.SnapshotTime ← GetClockTime() − ∆ (∆≥ 0)
3: T.State ← active

4: ReadDataItem(transaction T, data item oid)
5: if oid ∈ T.WriteSet return T.WriteSet[oid]
6: // check if delay needed due to pending commit
7: if oid is updated by T′ ∧
8: T′.State = committing ∧
9: T.SnapshotTime ≥ T′.CommitTime

10: then wait until T′.State = committed
11: if oid is updated by T′ ∧
12: T′.State = prepared ∧
13: T.SnapshotTime ≥ T′.PrepareTime ∧
14: // Here T can obtain commit timestamp of T′

15: // from its originating partition by a RPC.
16: T.SnapshotTime ≥ T′.CommitTime
17: then wait until T′.State = committed
18: return latest version of oid created before T.SnapshotTime

19: upon transaction T arriving from a remote partition
20: // check if delay needed due to clock skew
21: if T.SnapshotTime > GetClockTime()
22: then wait until T.SnapshotTime < GetClockTime()
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tamps, and (2) delaying reads under certain conditions to guarantee that transactions

access consistent snapshots identified by their snapshot timestamps. Algorithm 1

presents the pseudocode of the read protocol.

Timestamp assignment. When transaction T is initialized at its originating parti-

tion (lines 1-3), it receives the snapshot timestamp by reading the local physical clock,

and possibly subtracting a parameter, ∆, to access an older snapshot as we explain in

Section 2.4.3. The assigned timestamp determines the snapshot of the transaction.

Consistent Snapshot Reads. A transaction reads a data item by its identifier de-

noted by oi d (lines 4-18). To guarantee that a transaction reads from a consistent

snapshot, Clock-SI delays a read operation until the required snapshot becomes

available in two cases.

Case 1: Snapshot unavailability due to pending commit. Transaction T tries to

access an item that is updated by another transaction T ′ which has a commit times-

tamp smaller than or equal to T ’s snapshot timestamp but has not yet completed the

commit. For example, T ′ is being committed locally but has not completely commit-

ted (lines 6-10) or T ′ is prepared in 2PC (lines 11-17). 1 We delay T ’s access to ensure

that a snapshot includes only committed updates and all the updates committed

before the snapshot timestamp. The delay is bounded by the time of synchronously

writing the update transaction’s commit record to stable storage, plus one round-trip

network latency in the case that a transaction updates multiple partitions.

Case 2: Snapshot unavailability due to clock skew. When a transaction tries to

access a data item on a remote partition and its snapshot timestamp is greater than

the clock time at the remote partition, Clock-SI delays the transaction until the clock

at the remote partition catches up (lines 19-22). The transaction, therefore, does not

miss any committed changes included in its snapshot. The delay is bounded by the

maximum clock skew allowed by the clock synchronization protocol minus one-way

network latency.

In both cases, delaying a read operation does not introduce deadlocks: An opera-

tion waits only for a finite time, until a commit operation completes, or a clock catches

up.

Clock-SI also delays an update request from a remote partition, under the same

condition that it delays a read request, so that the commit timestamp of an update

1. The question arises how T knows that it is reading a data item that has been written by a
transaction in the process of committing, since in SI a write is not visible outside a transaction until
it is committed. The problem is easily solved by creating, after assignment of a prepare or a commit
timestamp, a version of the data item with that timestamp as its version number, but by prohibiting
any transaction from reading that version until the transaction is fully committed.
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transaction is always greater than the snapshot timestamp (line 19).

Algorithm 2 Clock-SI commit protocol.
1: CommitTransaction(transaction T)
2: if T updates a single partition
3: then LocalCommit(T)
4: else DistributedCommit(T)

5: LocalCommit(transaction T)
6: if CertificationCheck(T) is successful
7: T.State ← committing
8: T.CommitTime ← GetClockTime()
9: log T.CommitTime and T.Writeset

10: T.State ← committed

11: // two-phase commit
12: DistributedCommit(transaction T)
13: for p in T.UpdatedPartitions
14: send prepare T to p
15: wait until receiving T prepared from participants
16: T.State ← committing
17: // choose transaction commit time
18: T.CommitTime ← max(all prepare timestamps)
19: log T.CommitTime and commit decision
20: T.State ← committed
21: for p in T.UpdatedPartitions
22: send commit T to p

23: upon receiving message prepare T

24: if CertificationCheck(T) is successful
25: log T.WriteSet and T’s coordinator ID
26: T.State ← prepared
27: T.PrepareTime ← GetClockTime()
28: send T prepared to T’s coordinator

29: upon receiving message commit T

30: log T.CommitTime
31: T.State ← committed

2.4.2 Commit Protocol
With Clock-SI, a read-only transaction reads from its snapshot and commits with-

out further checks, even if the transaction reads from multiple partitions. An update

transaction modifies items in its workspace. If the update transaction modifies a single

partition, it commits locally at that partition. Otherwise, we use a coordinator to either

commit or abort the update transaction at the updated partitions. One important

aspect is how to assign a commit timestamp to update transactions. Algorithm 2
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presents the pseudocode of the commit protocol.

Committing a single-partition update transaction. If a transaction updates only

one partition, it commits locally at the updated partition (lines 5-10). Clock-SI first

certifies the transaction by checking its writeset with concurrent committed transac-

tions [31]. Before assigning the commit timestamp, the transaction state changes from

active to committing. The updated partition reads its clock to determine the commit

timestamp, and writes the commit record to stable storage. Then, the transaction state

changes from committing to committed, and its effects are visible in snapshots taken

after the commit timestamp.

Committing a distributed update transaction. A multi-partition transaction, which

updates two or more partitions, commits using an augmented 2PC protocol (lines

11-31) [15].

The transaction coordinator runs at the originating partition. Certification is per-

formed locally at each partition that executed updates for the transaction (line 24).

Each participant writes its prepare record to stable storage, changes its state from ac-

tive to prepared, obtains the prepare timestamp from its local clock, sends the prepare

message with the prepare timestamp to the coordinator, and waits for the response

(line 25-28). The 2PC coordinator computes the commit timestamp as the maximum

prepare timestamp of all participants (line 18).

Choosing the maximum of all prepare timestamps as the commit timestamp for

a distributed update transaction is important for correctness. Remember from the

read protocol that, on a participant, reads from transactions with a snapshot times-

tamp greater than or equal to the prepare timestamp of the committing transaction

are delayed. If the coordinator were to return a commit timestamp smaller than the

prepare timestamp on any of the participants, then a read of a transaction with a

snapshot timestamp smaller than the prepare timestamp but greater than or equal

to that commit timestamp would not have been delayed and would have read an

incorrect version (i.e., a version other than the one created by the committing trans-

action). Correctness is still maintained if a participant receives a commit timestamp

greater than its current clock value. The effects of the update transaction will be visible

only to transactions with snapshot timestamps greater than or equal to its commit

timestamp.

2.4.3 Choosing Older Snapshots
In Clock-SI, the snapshot timestamp of a transaction is not restricted to the current

value of the physical clock. We can choose the snapshot timestamp to be smaller
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than the clock value by ∆, as shown on line 2 of Algorithm 1. We can choose ∆ to

be any non-negative value and make this choice on a per-transaction basis. If we

want a transaction to read fresh data, we set ∆ to 0. If we want to reduce the delay

probability of transactions close to zero, we choose an older snapshot by setting ∆

to the maximum of (1) the time required to commit a transaction to stable storage

synchronously plus one round-trip network latency, and (2) the maximum clock skew

minus one-way network latency between two partitions. These two values can be

measured and distributed to all partitions periodically. Since networks and storage

devices are asynchronous, such a choice of the snapshot age does not completely

prevent the delay of transactions, but it significantly reduces the probability.

While substantially reducing the delay probability of transactions, taking a slightly

older snapshot comes at a cost: The transaction observes slightly stale data, and the

transaction abort rate increases by a small fraction. We study this trade-off using an

analytical model in Section 2.5 and experiments on a prototype system in Section 2.6.

2.4.4 Correctness
We show that Clock-SI implements SI by satisfying the three properties that define

SI [31]. Furthermore, we show that safety is always maintained, regardless of clock

synchronization precision.

(1) Transactions commit in a total order. Clock-SI assigns commit timestamps to

update transactions by reading values from physical clocks. Ties are resolved based

on partition ids. The commit timestamp order produces a total order on transaction

commits.

(2) Transactions read consistent snapshots. The snapshot in Clock-SI is consistent

with respect to the total commit order of update transactions. The snapshot timestamp

specifies a snapshot from the totally ordered commit history. A transaction reads all

committed changes of transactions with a smaller commit timestamp. By delaying

transaction operations in the read protocol, a transaction never misses the version of

a data item it is supposed to read. A transaction does not read values from an aborted

transaction or from a transaction that commits with a greater commit timestamp.

(3) Committed concurrent transactions do not have write-write conflicts. Clock-SI

identifies concurrent transactions by checking whether their execution time overlaps

using the snapshot and commit timestamps. Clock skews do not affect the identifica-

tion of concurrent transactions according to their snapshot and commit timestamps.

Clock-SI aborts one of the two concurrent transactions with write-write conflicts.

We also point out an important property of Clock-SI: The precision of the clock
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synchronization protocol does not affect the correctness of Clock-SI but only the per-

formance. Large clock skews increase a transaction’s delay probability and duration;

safety is, however, always maintained, satisfying the three properties of SI.

Although it does not affect Clock-SI’s correctness, the transaction commit order in

Clock-SI may be different from the real time commit order (according to global time)

because of clock skews. This only happens to independent transactions at different

partitions whose commit timestamp difference is less than the clock synchroniza-

tion precision. This phenomenon also happens with conventional SI: A transaction

commits on a partition after it obtains the commit timestamp from the timestamp au-

thority. The asynchronous messages signaling the commit may arrive at the partitions

in a different order from the order specified by the timestamps. Clock-SI preserves the

commit order of dependent transactions when this dependency is expressed through

the database as performed in a centralized system [15].

2.4.5 Discussion
Clock-SI is a fully distributed protocol. Compared with conventional SI, Clock-SI

provides better availability and scalability. In addition, it also reduces transaction

latency and messaging overhead.

Availability. Conventional SI maintains timestamps using a centralized service,

which is a single point of failure. Although the timestamp service can be replicated

to tolerate certain number of replica failures, replication comes with performance

costs. In contrast, Clock-SI does not include such a single point of failure in the system.

The failure of a data partition only affects transactions accessing that partition. Other

partitions are still available.

Communication cost. With conventional SI, a transaction needs one round of

messages to obtain the snapshot timestamp. An update transaction needs another

round of messages to obtain the commit timestamp. In contrast, under Clock-SI, a

transaction obtains the snapshot and commit timestamps by reading local physical

clocks. As a result, Clock-SI reduces the latency of read-only transactions by one

round trip and the latency of update transactions by two round trips. By sending and

receiving fewer messages to start and commit a transaction, Clock-SI also reduces the

cost of transaction execution.

Scalability. Since Clock-SI is a fully distributed protocol, the throughput of single-

partition transactions increases as more partitions are added. In contrast, conven-

tional SI uses a centralized timestamp authority, which can limit system throughput

as it is on the critical path of transaction execution.
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Session consistency. Session consistency [24, 47] guarantees that, in a workflow

of transactions in a client session, each transaction sees (1) the updates of earlier com-

mitted transactions in the same session, and (2) non-decreasing snapshots of the data.

Session consistency can be supported under Clock-SI using the following standard

approach. When a client finishes a read-only transaction, its snapshot timestamp

is returned. When a client successfully commits an update transaction, its commit

timestamp is returned. LatestT i me maintained by a client is updated to the value

returned by the last transaction completed. When a client starts a new transaction,

it sends LatestT i me to the originating partition for that transaction. If LatestT i me

is greater than the current clock value at that partition, it is blocked until the clock

proceeds past LatestT i me. Otherwise, it starts immediately.

Recovery. We employ traditional recovery techniques to recover a partition in

Clock-SI. Each partition maintains a write-ahead log (WAL) containing the transac-

tion update records (as redo records), commit records, as well as 2PC prepare records

containing the identity of the coordinator. In addition, the partition uses checkpoint-

ing to reduce the recovery time. Taking a checkpoint is the same as reading a full

snapshot of the partition state. If a partition crashes, it recovers from the latest com-

plete checkpoint, replays the log, and determines the outcome of prepared but not

terminated transactions from their coordinators.

2.5 Analytical Model
In this section, we assess the performance properties of Clock-SI analytically. Our

objective is to reason about how various factors impact the performance of Clock-SI.

We show the following: (1) With normal database configurations, the delay probability

of a transaction is small and the delay duration is short. (2) Taking an older snapshot

reduces the delay probability and duration, but slightly increases the abort rate of

update transactions.

We derive formulas for transaction delay probability, delay duration, and abort

rate. We verify the model predictions in Section 2.6.5 using a distributed key-value

store. Readers who are not interested in the mathematical derivations of the analytical

model may skip this section.

2.5.1 Model Parameters
Our model is based on prior work that predicts the probability of conflicts in

centralized [36] and replicated databases [31, 35]. We consider a partitioned data store

that runs Clock-SI. The data store has a fixed set of items. The total number of items is
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DBSize. We assume all partitions have the same number of items. There are two types

of transactions: read transactions and update transactions. Each read transaction

reads R items and takes Lr time units to finish. Each update transaction updates

W items and takes Lu time units to finish. The data store processes T PSu update

transactions per unit time.

The committing window of update transaction Ti , denoted as CWi , is the time

interval during which Ti is in the committing state. On average, an update transaction

takes CW time units to persist its writeset to stable storage synchronously. We denote

RRD as the message request-reply delay, which includes one round-trip network

delay, data transfer time, and message processing time. We denote S as the time to

synchronously commit an update transaction to stable storage. ∆, the snapshot age, is

a non-negative value subtracted from the value read from the physical clock to obtain

an older snapshot, as shown in Algorithm 1.

2.5.2 Delay due to Pending Commit
A transaction might be delayed when it reads an item updated by another transac-

tion being committed to stable storage.

For a read transaction Ti , it takes its snapshot at time STi . Assume another update

transaction T j obtains its commit timestamp at time C T j . With Clock-SI, at time C T j ,

T j still needs CW time to synchronously persist its writeset to stable storage. Assume

T j obtains its commit timestamp before Ti takes its snapshot, i.e., C T j < STi . If

STi −C T j <CW , when Ti reads an item updated by T j , it is delayed until T j completes

the commit to stable storage. Other update transactions Tk , STi −C Tk >CW , do not

delay Ti , because at the time Ti reads items updated by Tk , Tk must have completed.

Taking a ∆ old snapshot is equivalent to shortening the committing window of update

transactions to CW −∆. In this case, Ti is delayed by T j if STi −C T j < CW −∆. If

∆>CW , CW −∆ effectively becomes zero.

During CW −∆, (CW −∆)∗T PSu transactions update (CW −∆)∗T PSu ∗W data

items. The probability that Ti reads any particular item in the database is R/DBSi ze.

If CW −∆ > Lr , then the probability that Ti is delayed is (CW −∆)∗T PSu ∗W ∗
(R/DBSi ze). If CW −∆< Lr , then only reading the first R∗(CW −∆)/Lr items possibly

delays Ti . The probability becomes (CW −∆)∗T PSu∗W ∗(R∗(CW −∆)/Lr /DBSi ze).

For a transaction that only updates one partition, its committing window is CW =
S and its commit timestamp is available at the updated partition. For a transaction that

updates multiple partitions, its commit timestamp is only available at its originating

partition before 2PC completely finishes. Hence a delayed transaction may take one
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extra round-trip network latency to obtain a commit timestamp from the update

transaction’s originating partition. We use CW = S +RRD as an estimation of the

committing window of a distributed update transaction.

We assume all update transactions update items at multiple partitions. Combining

the above analysis, the delay probability of short read transactions, i.e., CW −∆> Lr ,

is

(S +RRD −∆)∗T PSu ∗W ∗R/DBSi ze

The delay probability of long read transactions, i.e., CW −∆< Lr , is

(S +RRD −∆)2 ∗T PSu ∗W ∗R/(DBSi ze ∗Lr )

The expected delay duration of read transactions is

0.5∗ (S +RRD −∆)

The above results show that the delay duration is bounded and normally short.

Although the delay probability depends on various factors, we show that, with normal

database configurations and workloads, it is low by a numerical example in Section

2.5.5 and experiments in Section 2.6.5. By assigning an older snapshot to a transaction,

we can reduce its delay probability and shorten its delay duration.

2.5.3 Delay due to Clock Skew
Imperfect time synchronization causes clock skew. A transaction is delayed when

it accesses a remote partition and the remote clock time is smaller than its snapshot

timestamp. As we show in Section 2.6, common clock synchronization protocols, such

as NTP, work well in practice and the clock skew is very small. Hence, this type of delay

rarely happens.

We assume the clock skew SK between each pair of clocks follows normal dis-

tribution [32] with mean µ and standard deviation δ. The delay probability when a

transaction accesses a remote partition is

P (SK > 0.5∗RRD +∆) = 1−Φ((0.5∗RRD +∆−µ)/δ)

The expected delay duration is

∫ +∞
0.5∗RRD+∆ xe−(x−µ)2/(2δ2) d x∫ +∞
0.5∗RRD+∆ e−(x−µ)2/(2δ2) d x

− (0.5∗RRD +∆)
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The results show that if the clock skew is greater than one-way network latency,

it becomes possible that a transaction is delayed when accessing a remote partition,

because the requested snapshot is not yet available when the transaction arrives. By

assigning an older snapshot to a transaction, we can reduce its delay probability and

shorten its delay duration.

Suppose the maximum clock skew is SKmax time units. Taking an older snapshot

with ∆= max(CW,SKmax −0.5∗RRD) eliminates almost all the delays due to either

pending commits or clock skews.

2.5.4 Update Transaction Abort Probability

Assigning old snapshots to transactions reduces their delay probability and dura-

tion. However, this increases the abort rate of update transactions because the (logical)

execution time of an update transaction is extended and more update transactions

run concurrently with it.

We first compute the probability that a transaction Ti has to abort without ad-

justing the snapshot timestamp [31]. On average, the number of transactions that

commit in Lu , the life time of Ti , is T PSu ∗Lu . The number of data items updated by

the these transactions is W ∗T PSu ∗Lu . The probability that one particular item in

the database is updated during Lu is W ∗T PSu ∗Lu/DBSi ze. As Ti updates W items

in total, the probability that Ti has conflicts with its concurrent transactions and has

to abort is W 2 ∗T PSu ∗Lu/DBSi ze. The abort probability is directly proportional to

Lu , the duration of update transaction execution.

Clock-SI can assign to each transaction a snapshot that is ∆ older than the latest

snapshot. The transaction abort probability becomes

W 2 ∗T PSu ∗ (Lu +∆)/DBSi ze

With other parameters fixed, the longer a transaction executes, the more concur-

rent transactions run with it, increasing the likelihood of write-write conflicts with

other transactions. Assigning an older snapshot to a transaction increases its abort

probability.

2.5.5 Example

We provide a numerical example using the equations to calculate the transaction

delay probability and duration due to pending commits of update transactions. We

assume DBSi ze = 10,000,000, R = 10, W = 10, T PSu = 10,000, RRD = 0.2ms, ∆= 0,
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CW = 8ms and Lu = 32ms. If we use mechanical hard disks to persist transaction

updates, it takes a few milliseconds (e.g., 8ms) to commit an update transaction. The

delay probability is 0.08% and the expected delay time is 4.1ms. On average, each

transaction is delayed for 3.2µs. If a transaction takes a snapshot that is 8.2ms earlier

than the clock time, i.e., ∆= 8.2ms, both delay probability and time are zero, and the

transaction abort probability increases by 25% (from 0.0032 to 0.004). Therefore we

can almost eliminate transaction delays at the cost of a slight increase in the abort

rate.

2.6 Evaluation
We evaluate the performance benefits of Clock-SI using a micro-benchmark and

an application-level benchmark with a partitioned key-value store in both LAN and

WAN environments, and show the following: (1) Compared with conventional SI,

Clock-SI reduces transaction response time and increases throughput. (2) Selecting

a slightly older snapshot reduces the delay probability and duration of transactions.

Furthermore, we verify the predictions of our analytical model using experimental

measurements. We focus only on assessing the performance benefits of Clock-SI,

rather than the improvement in availability stemming from avoiding a single point of

failure.

2.6.1 Implementation and Setup
We build a partitioned multiversion key-value store in C++. It supports Clock-SI

as well as conventional SI as implemented in other systems [67]. With conventional

SI, a transaction communicates with a centralized timestamp authority running on a

separate server to retrieve timestamps. A transaction needs one round of messages

to obtain the snapshot timestamp. An update transaction needs another round of

messages to obtain the commit timestamp.

The data set is partitioned among a group of servers. Servers have standard hard-

ware clocks synchronized using NTP running in peer mode [2]. A key is assigned to a

partition based on its hash. The default size of a key and its value are 8 and 64 bytes,

respectively. We keep all key-value pairs in a group of hash tables in main memory. A

key points to a linked list that contains all the versions of the corresponding value. The

transaction commit log resides on the hard disk. The system performs group commit

to write multiple transaction commit records in one stable disk write.

We conduct experiments in both LAN and WAN environments. For LAN experi-

ments, we deploy our key-value store in a local cluster. Servers in our local cluster run
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Linux 3.2.0. Each server has two Intel Xeon processors with 4GB DDR2 memory. The

transaction log resides on a 7200rpm 160GB SATA disk. We disable the disk cache so

that synchronous writes reach the disk media. The average time of a synchronous disk

write is 6.7ms. The system has eight partitions. Each partition runs in one server and

manages one million keys in main memory. All machines are connected to a single

Gigabit Ethernet switch. The average round-trip network latency is 0.14 milliseconds.

For WAN experiments, we deploy our system on Amazon EC2 using medium instances

(size M1) at multiple data centers.

2.6.2 Micro-benchmarks

We implement a benchmark tool based on the Yahoo! Cloud Serving Benchmark

(YCSB) [21], which is designed to benchmark key-value stores. We extend YCSB to

support transactions.

Latency. Clock-SI takes shorter time to run a transaction because it does not

communicate with a timestamp authority for transaction snapshot and commit times-

tamps. Figure 2.3 shows the latency of read-only transactions in our local cluster. Both

the clients and servers are connected to the same switch. Each transaction reads eight

items at each partition, with keys chosen uniformly randomly. We vary the number of

partitions accessed by a transaction from one to three. Compared with conventional

SI, Clock-SI saves approximately one round-trip latency. For a single-partition read-

only transaction this amounts to about 50% latency savings. We also see consistent

savings of one round-trip latency for the other two cases.

We run the same experiment in a WAN environment on Amazon EC2 and measure

transaction latency. We place three data partitions at three data centers in different

geographical locations: US West, US East and Europe. The timestamp server is co-

located with the partition in US West. A client always chooses the nearest partition as

the originating partition of its transaction.

First, we run clients at our local cluster in Europe and the number of partitions

accessed by a transaction varies from one to three. Figure 2.4 shows the measured

latency. Compared with conventional SI, Clock-SI reduces the latency of each trans-

action by about 160 milliseconds since it does not contact the remote timestamp

server. Next, for transactions issued by the clients near US West and served by the par-

tition co-located with the timestamp server, the saved latency by Clock-SI becomes

sub-milliseconds and the latencies are similar to those in Figure 2.3. Last, for the

clients near US East, Clock-SI still reduces their transaction latency by one round-trip

between two data centers, which is about 170 milliseconds.
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For update transactions, the latency is reduced similarly by two network round

trips in both LAN and WAN environments.

Throughput. Next we compare the throughput of Clock-SI with conventional

SI. We run a large number of clients to saturate the servers that host the key-value

data partitions. Figure 2.5 shows the throughput of read-only and update-only single-

partition transactions. The number of partitions serving client requests varies from

one to eight. Each transaction reads or updates eight items randomly chosen at each

partition.

We first analyze read-only transactions. Below five partitions, the throughput

of Clock-SI is about twice of conventional SI. The cost of a read-only transaction

stems mainly from sending and receiving messages. As Clock-SI does not contact
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Figure 2.5 – Throughput comparison for single-partition read-only and update-only
transactions. Each transaction reads/updates eight items.

the timestamp authority to obtain snapshot timestamps, it sends and receives one

message for each transaction, while conventional SI sends and receives two messages.

Beyond five partitions, the throughput gap becomes larger: The throughput of Clock-

SI increases linearly as the number of partitions increases. For conventional SI, the

throughput levels off at around 64k transactions/second. The timestamp authority

becomes the bottleneck because it can only assign about 64k timestamps/second.

Update transactions show similar results in Figure 2.5. The throughput of update

transactions is lower than that of read-only transactions, because an update trans-

action does more work, including creating new versions of items, updating version

metadata, and performing I/O to make updates durable on the disk. Update trans-

actions require two timestamps from the timestamp authority. Given its limit of 64k

timestamps/second, the timestamp authority sustains only 32k update transaction-

s/second. The timestamp authority again becomes the bottleneck.

Batching timestamp requests from the data partitions to the timestamp authority

can improve the throughput of conventional SI. However, message batching comes

with the cost of increased latency. In addition, in a system with large number of data

partitions, even with message batching, the centralized timestamp authority can still

become a bottleneck under heavy workloads.

The results of our micro-benchmarks show that Clock-SI has better performance

than conventional SI in both LAN and WAN environments as it does less work per

transaction, improving both latency and throughput. We show the results of transac-

tions containing both read and update operations for an application benchmark in
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the next section.

2.6.3 Twitter Feed-Following Benchmark
We build a Twitter-like social networking application on top of the distributed

key-value store. The feed-following application supports read-tweet and post-tweet

transactions on a social graph. The transactions guarantee that a user always reads

consistent data. Each user in this application has a key to store the friend list, a key for

the total number of tweets, and one key for each tweet. There is a trade-off between

pushing tweets to the followers and pulling tweets from the followees [72]. We choose

the push model, which optimizes for the more common read transactions.

We model 800,000 users. The followers of a user are located at three partitions.

On average, each user follows 20 other users. The users accessed by the read-tweet

and post-tweet transactions are chosen uniformly randomly. A post-tweet transaction

pushes a tweet of 140 characters to the followers of a user at three different partitions. A

read-tweet transaction retrieves the 20 latest tweets from the followees, which accesses

one partition. The workload includes 90% read-tweet transactions and 10% post-tweet

transactions, as used in prior work [73].

Figure 2.6 shows the throughput of Clock-SI and conventional SI. With eight

partitions Clock-SI supports more than 38k transactions/second, while conventional

SI supports 33k transactions/second. The average transaction latency of Clock-SI is

also lower than that of conventional SI by one round-trip latency for the read-tweet

transactions and two round-trip latency for the post-tweet transactions (figure not

shown).

Since the transactions access a reasonably large data set uniformly randomly

and clocks are well synchronized by NTP, transaction delays rarely occur and do not

affect the overall performance. We discuss transaction delays with carefully designed

workloads further below.

2.6.4 Effects of Taking Older Snapshots
In previous experiments, the delay probabilities are very small because there are

few “conflicts” between reads and pending commits. Here we change the workload to

create more conflicts using a small data set. We show how choosing a proper value

for ∆, the snapshot age, in Clock-SI reduces the delay probability and duration. We

run a group of clients, each of which issues update transactions that modify ten items.

Another group of clients issue transactions that read ten of the items being updated

with varying probability. We vary ∆ and measure transaction throughput and latency.
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Figure 2.7 shows the throughput of read-only transactions with different ∆ values

against the probability of reading hot-spot items. Figure 2.8 shows the corresponding

latency. As ∆ becomes larger, the throughput increases and the latency decreases.

With ∆ greater than the duration of a commit, reads are not delayed by updates at all

(for curves with∆ = 14ms and∆ = 21ms). With smaller∆ values, the probability that

reads are delayed increases when the probability that a transaction reads the hot-spot

items increases. As a result, the transaction latency increases and the throughput

drops. Therefore, choosing a proper snapshot age in Clock-SI effectively reduces the

probability of transaction delays.

2.6.5 Model Verification
We run experiments to verify our analytical model and the effects of using different

∆ values in Clock-SI. Each transaction both reads and writes a fixed number of data

items at one partition. We check whether the delay probability and duration change

as the model in Section 2.5 predicts when we change the data set size and snapshot

age.

Figure 2.9 shows that the delay probability decreases with the size of the data

set. The numbers produced by the analytical model follow the same pattern as the

experimental results. As each transaction accesses items uniformly randomly, the

larger the data set, the less likely that a transaction reads an item updated by another

committing transaction.

Next we show that taking older snapshots reduces both the transaction delay
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Figure 2.9 – Transaction delay rate when ∆= 0 while varying the total number of data
items.

probability and duration. We choose a small data set with 50,000 items to make the

delays happen more often. Figure 2.10 and 2.11 demonstrate the effects of choosing

different snapshot ages. The older a snapshot, the lower the delay probability and the

shorter the delay duration. Figure 2.12 shows how the transaction abort rate changes.

As the analytical model predicts, the transaction abort rate increases as the age of the

snapshot increases.

2.6.6 NTP Precision

With Clock-SI, a transaction might be delayed when accessing a remote partition if

the remote clock time is smaller than the snapshot timestamp of the transaction. The

occurrence of this type of delay indicates that the clock skew is greater than one-way

network latency. In all the experiments, we observe that most of the transaction delays

are due to the pending commit of update transactions. Only very few delays are due

to clock skew.

We measure the synchronization precision of NTP indirectly on our local cluster

since it is difficult to measure the time difference of two clocks located at two different

servers directly. We record the clock time, t1, at server s1 and immediately send a short

message containing t1 to another server s2 over the network. After the message arrives

at s2, we record its clock time, t2. t2− t1 is the skew between the two clocks at s2 and s1

plus one-way network latency. If t2 − t1 > 0, Clock-SI does not delay transactions that

originate from s1 and access data items at s2. Figure 2.13 shows the distribution of

the clock skew between two clocks plus one-way network latency measured every 30
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Figure 2.10 – Transaction delay rate in a small data set while varying ∆, the snapshot
age.
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seconds in six weeks. A negative value on the x axis indicates the possibility of delaying

a transaction when accessing a remote partition. As we see from the figure, the delay

probability due to clock skew is very low and the delay duration is very short.

2.7 Summary
This chapter introduces Clock-SI, a fully distributed implementation of SI for par-

titioned data stores. The work described in this chapter appears in [28]. The novelty of

Clock-SI is the provision of consistent snapshots using loosely synchronized clocks.

Clock-SI uses physical clocks for assigning snapshot and commit timestamps. It im-

proves over existing systems that use a centralized timestamp authority, by eliminating

a single point of failure and a potential performance bottleneck. Moreover, Clock-SI

avoids the round-trip latency between the partitions and the timestamp authority,

showing better response times for both LAN and WAN environments.
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3 Clock-RSM: Low-Latency Inter-

Datacenter State Machine Replication
In this chapter, we describe Clock-RSM, a new state machine replication protocol.

Clock-RSM provides linearizable low-latency replication across multiple data centers.

3.1 Introduction
Many online services replicate their data at multiple geographic locations to im-

prove locality and availability [12,19,22]. User requests can be served at nearby replicas,

thus reducing latency. By deploying replicas at multiple data centers, a system can

tolerate the failure of some replicas due to server, network, and data center outage.

The state machine approach [71] is often used to replicate services consistently.

All replicas execute the same set of commands in the same order deterministically. If

replicas start from the same initial state, their states are consistent after executing the

same sequence of commands.

3.1.1 Problem Statement
Although many protocols have been proposed to implement the state machine

approach, they are not well suited for geo-replicated systems because of high replica-

tion latency. The latency of a protocol in this environment is dominated by message

transmission, rather than message processing and logging. A round trip between

two data centers can take hundreds of milliseconds. In contrast, message process-

ing and logging to stable storage takes much less time, from microseconds to a few

milliseconds. In addition, the latencies among data centers are not uniform and vary

depending on the physical distance as well as the wide-area network infrastructure.

Multi-Paxos [52, 53] is one of the most widely used state machine replication pro-

tocols. One replica is designated as the leader, which orders commands by contacting

a majority of replicas in one round of messages. A non-leader replica forwards its

command to the leader and later receives the commit notification, adding the latency
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of another message round, for a total of two round trips, which is significant in a wide-

area setting. Mencius [61] addresses this problem by avoiding a single leader. It rotates

the leader role among the replicas according to a predefined order. Committing a

command in Mencius takes one round of messages. However, Mencius suffers from

the delayed commit problem: A command can be delayed by another concurrent com-

mand from a different replica by up to one round-trip latency. In addition, in some

cases a replica needs to contact the furthest replica to commit a command while Multi-

Paxos only requires the leader plus a majority. With realistic non-uniform inter-data

center latencies, Mencius exhibits in many cases higher latency than Multi-Paxos.

3.1.2 Solution Overview

We describe Clock-RSM, a state machine replication protocol that provides low

latency for consistent replication across data centers. Clock-RSM uses loosely syn-

chronized physical clocks at each replica to totally order commands. It avoids both

the single leader required in Multi-Paxos and the delayed commit problem in Mencius.

Clock-RSM requires three steps to commit a command: 1) logging the command at a

majority of replicas, 2) determining the stable order of the command from the furthest

replica, and 3) notifying the commit of the command to all replicas. It overlaps these

steps to reduce replication latency. For many real world replica placements across

data centers, Clock-RSM needs only one round-trip latency to a majority of replicas

to commit a command. As Clock-RSM does not mask replica failures as in Paxos, we

also introduce a reconfiguration protocol that removes failed replicas and reintegrates

recovered replicas into the system.

We evaluate Clock-RSM analytically and experimentally, and compare it with

Paxos-bcast and Mencius-bcast, variants of Multi-Paxos and Mencius with latency

optimizations. We derive latency equations for these protocols. We also implement

these protocols in a replicated key-value store and deploy it across three and five

Amazon EC2 data centers. We find that Clock-RSM has lower latency than Paxos-bcast

at the non-leader replicas, and similar or slightly higher latency at the leader replicas.

In addition, Clock-RSM always provides lower latency than Mencius-bcast.

The key contributions of this chapter are the following:

– We describe Clock-RSM, a state machine replication protocol using loosely

synchronized physical clocks (Section 3.3).

– We derive the commit latency of Clock-RSM, Multi-Paxos, Paxos-bcast, and

Mencius-bcast analytically assuming non-uniform latencies (Section 3.4).

– We present a reconfiguration protocol for Clock-RSM that automatically re-
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moves failed replicas and reintegrates recovered ones (Section 3.5).

– We evaluate Clock-RSM on Amazon EC2 and demonstrate its latency benefits

by comparison with other protocols (Section 3.6).

3.2 Model and Definition
We describe our system model and define the properties that Clock-RSM guaran-

tees.

3.2.1 System Model
We assume a standard asynchronous system that consists of a set of interconnected

processes (clients and replicas). Processes communicate through message passing.

We assume that messages are eventually delivered by their receivers, and that there

is no bound on the time to deliver a message. To simplify the presentation of the

protocols, we assume that messages are delivered in FIFO order.

Processes may fail by crashing and can later recover. We exclude byzantine fail-

ures. Processes have access to stable storage, which survives failures. Processes are

equipped with a failure detector. We use failure detectors to ensure liveness. Failure

detectors may provide wrong results, but eventually all faulty processes are suspected

and at least one non-faulty process is not suspected. In practice, such a failure detector

can be implemented by timeouts.

We assume the server where a replica runs is equipped with a physical clock.

Clocks are loosely synchronized by a time synchronization protocol, such as NTP [2].

A clock provides monotonically increasing timestamps. The correctness of Clock-RSM

does not depend on the synchronization precision.

3.2.2 State Machine Replication
State machine replication is a technique for implementing fault-tolerant services

[71]. It replicates a state machine over a set of replicas. A state machine consists of a

set of commands that may read and/or write the current state and produce an output.

Replicas coordinate to execute commands issued by clients to achieve the desired

consistency criteria.

Clients observe linearizable executions [39]. An execution σ is linearizable if there

exists a permutation of all commands in σ such that: 1) it respects the semantics

of the commands, as defined in their sequential specification; and 2) it respects the

real-time ordering of commands across all clients. Linearizability can be achieved by

ensuring that each replica executes commands in the same order. This, together with
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the assumption that commands are deterministic and executed atomically, ensures

that replicas transit through the same states and produce the same output for each

command.

3.2.3 Geo-Replication
For a geo-replicated service, such as a data store, each replica is placed in a distinct

data center. Users issue requests to their nearest data center, and the requests are

handled by application servers, which contact the local replica of the service. Hence,

from the point of view of the service, the clients are the application servers and they

are local, i.e., they reside within the same data center as a replica of the geo-replicated

service.

3.3 Clock-RSM
Clock-RSM is a multi-leader protocol. A client connects to its nearby replica within

the same data center, and each replica coordinates the commands of its own clients.

A replica assigns a unique timestamp to a client command, broadcasts it, and waits

for the acknowledgements broadcast by other replicas once they have logged the

command on their stable storage. Every replica executes commands serially in the

timestamp order after they are committed. A replica knows that a command has

committed if the following three conditions hold:

(1) Majority replication. A majority of replicas have logged the command;

(2) Stable order. The replica has received all commands with a smaller timestamp;

(3) Prefix replication. All commands with a smaller timestamp have been repli-

cated by a majority.

Algorithm 3 gives the pseudocode of the Clock-RSM replication protocol. Table 3.1

defines the symbols used in the protocol.

3.3.1 Protocol States
Each replica maintains three hard states: (1) Spec, the specification of all replicas

in the system; (2) Con f i g , the current configuration that includes all active replicas

in Spec, Con f i g ⊆ Spec; (3) Log , the command log.

The system administrator specifies Spec before the system starts, and we assume

the specification of replicas is fixed during the lifetime of the system. Clock-RSM

requires a majority of replicas in the specification to be non-faulty, which means

Con f i g should contain at least a majority subset of Spec . The failure or recovery of a

42



3.3. Clock-RSM

Symbols Definitions
Spec all replicas, active or failed, in the system specified

by the system administrator
Con f i g current configuration that includes all active repli-

cas in Spec
Log command log on stable storage

C l ock latest time of the physical clock
Pendi ngC md s commands pending to commit

LatestT V latest clock timestamps from all replicas of Con f i g ,
|LatestT V | = |Con f i g |

RepCounter command replication counter

Table 3.1 – Definition of symbols used in Algorithm 3.

replica triggers changes in Con f i g . A reconfiguration protocol removes failed replicas

from and adds recovered replicas to Con f i g (Section 3.5). Without loss of generality,

our explanation and analysis of Clock-RSM assume that a failed replica recovers and

joins the replication fast, i.e., Spec =Con f i g .

Each replica also maintains some soft states when executing the protocol: (1)

Pendi ngC md s, a set containing the timestamps of the commands that have not

been committed yet; (2) RepCounter , a dictionary that stores the number of replicas

that have logged a command; (3) LatestT V , a vector of timestamps with the same size

as Con f i g . LatestT V [k], the kth element of LatestT V , contains the latest known

timestamp from replica rk . It indicates that all commands originated from rk with

timestamp smaller than LatestT V [k] have been received.

3.3.2 Protocol Execution
The Clock-RSM protocol is given in Algorithm 3. We explain how it totally orders

and executes client commands.

1. When a replica receives 〈REQUEST cmd〉 from a client, where cmd is the re-

quested command to execute, it assigns to the command its latest clock time. We

call this replica the originating replica of the command. The replica then sends a

prepare message, 〈PREPARE cmd , t s〉, to all replicas in Con f i g to replicate cmd . t s is

the assigned timestamp that uniquely identifies and orders cmd . Ties are resolved by

using the id of the command’s originating replica. (lines 1-3)

2. When a replica receives 〈PREPARE cmd , t s〉, the logging request, from replica rk ,

it adds the command to Pendi ngC md s, the set of pending commands not commit-

ted yet. It updates the kth element of LatestT V with t s, reflecting the latest time it

knows of rk . (lines 4-6)
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Algorithm 3 Replication Protocol at Replica rm

1: upon receive 〈REQUEST cmd〉 from client
2: t s ←C l ock
3: send 〈PREPARE cmd , t s〉 to replicas in Con f i g

4: upon receive 〈PREPARE cmd , t s〉 from rk

5: Pendi ngC md s ← Pendi ngC md s ∪ {〈cmd , t s,k〉}
6: LatestT V [k] ← t s
7: append 〈PREPARE cmd , t s〉 to Log
8: wait until t s <C l ock
9: clockTs ←C l ock

10: send 〈PREPAREOK t s,clockTs〉 to replicas in Con f i g

11: upon receive 〈PREPAREOK t s,clockTs〉 from rk

12: LatestT V [k] ← clockTs
13: RepCounter [t s] ← RepCounter [t s]+1

14: upon ∃〈cmd , t s,k〉 ∈ Pendi ngC md s, s.t. COMMITTED(t s)
15: append 〈COMMIT t s〉 to Log
16: r esul t ← execute cmd
17: if k = m then
18: send 〈REPLY r esul t〉 to client

19: remove t s from Pendi ngC md s, RepCounter

20: function COMMITTED(ts)
21: return RepCounter [t s] ≥ b|Spec|/2c+1 ∧
22: t s ≤ mi n(LatestT V ) ∧
23: @t s′ ∈ Pendi ngC md s, s.t. t s′ < t s

It appends the message to its log on stable storage and acknowledges that it has

logged the command with 〈PREPAREOK t s,clockTs〉, where clockTs is the replica’s

clock time. Before acknowledging the command, the replica waits until its local clock

time is greater than the timestamp of the command. That is, it promises not to send

any message with a timestamp smaller than t s afterwards. To reduce the total commit

latency, the acknowledgment is sent to all replicas. (lines 7-10)

The wait (at line 8) is highly unlikely with reasonably synchronized clocks, which

normally provide much smaller clock skew than one-way message latency between

data centers. Replicas send both PREPARE and PREPAREOK messages in timestamp

order (t s in PREPARE and clockTs in PREPAREOK). This guarantees replicas send

monotonically increasing timestamps carried by the two types of messages.

3. When a replica receives 〈PREPAREOK t s,clockTs〉 from replica rk , it learns its

latest timestamp and updates LatestT V with clockTs accordingly. The replica then

increments the replication counter RepCounter [t s] to record the number of replicas
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Algorithm 4 Periodic clock time broadcast at replica rm

1: upon C l ock ≥ LatestT V [m]+∆
2: t s ←C l ock
3: send 〈CLOCKTIME t s〉 to all replicas in Con f i g

4: upon receive 〈CLOCKTIME t s〉 from replica rk

5: Latest [k] ← t s

that have logged the command with t s. RepCounter [t s] has a default value of 0.

(lines 11-13)

4. A replica knows that a command has committed when the following three

conditions hold: (1) It receives replication acknowledgements from a majority of

replicas. (2) It will not receive any message with a smaller timestamp from any replica.

(3) All commands with a smaller timestamp have been replicated by a majority, and it

has executed them. (lines 20-23)

When a replica learns the commit of a command with timestamp t s, it appends

〈COMMIT t s〉, the commit mark, to its log and executes the command. Commit marks

are appended to the log in timestamp order. This helps a replica replay the log in the

correct order during recovery, as we show in Section 3.5. If the command is from one

of the replica’s clients, it sends the result back to the client. Finally, the replica removes

the command from Pendi ngC md s and RepCounter . (lines 14-19)

3.3.3 Extension

We present an extension to Algorithm 3 that further improves its latency. Algorithm

4 gives the pseudocode. Each replica periodically broadcasts its latest clock time if it

does not receive frequent enough client requests. ∆ is the minimum interval at which

a replica broadcasts its latest clock time. If there are frequent enough client requests,

a replica does not need to broadcast CLOCKTIME messages. When a replica receives

a CLOCKTIME message from replica rk , it updates LatestT V [k] accordingly. This

extension requires a replica to send PREPARE, PREPAREOK, and CLOCKTIME messages

in timestamp order.

This extension improves latency only in one case: Among all replicas, only one

replica serves very infrequent client requests while the other replicas do not serve

client requests at all. We explain why this is the case in Section 3.4. This extension

makes Clock-RSM non-quiescent, although it improves latency.
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3.4 Latency Analysis
In this section we analyze the latency of Clock-RSM (Algorithm 3) and its extension

(Algorithm 4). We also compare Clock-RSM with Paxos and Mencius analytically.

We assume N replicas deployed in different data centers, and denote the set of all

replicas by R, which is {rk | 0 ≤ k ≤ N −1}. We assume that latencies between replicas

are non-uniform, and define d(ri ,r j ) as the one-way message latency between replica

ri and r j . We assume symmetric network latency between two replicas: d(ri ,r j ) =
d(r j ,ri ). Given high network latencies in a WAN, we ignore the latency introduced by

local computation and disk I/O, as well as clock skew.

3.4.1 Clock-RSM
Assume that ri is the originating replica of command cmd and assigns timestamp

t s to it. As described in Section 3.3, a replica in Clock-RSM knows a command com-

mitted if three conditions hold. We analyze the latency requirement of each condition

and derive the latency required to commit cmd at ri below.

1) Majority replication requires cmd to be logged by a majority of replicas. To

satisfy this condition, ri needs to receive PREPAREOKs for cmd from a majority. The

required latency is one round trip from ri to a majority: 2∗medi an({d(ri ,rk ) | ∀rk ∈
R}). We denote lc1 the latency required to satisfy majority replication.

2) Stable order requires that cmd has the smallest timestamp among all commands

that have not committed.

In the worst case, if no replica sends a message to ri between the time that ri

assigns cmd a timestamp and cmd is logged at all replicas, ri has to rely on the

PREPAREOKs of cmd from all replicas to determine its stable order. The latency is

2∗max({d(ri ,rk ) | ∀rk ∈ R}). We denote this latency by lcwor st
2 .

In the best case, when ri assigns cmd a timestamp, around the same time, if every

replica sends a message with a timestamp greater than t s to ri , then ri knows that

cmd is stable once all these messages arrive at ri . The message can be either PREPARE

or PREPAREOK. The latency is max({d(ri ,rk ) | ∀rk ∈ R}). We denote this latency by

lcbest
2 .

If the extension in Algorithm 4 is enabled, replicas broadcast their clock time every

∆ time units. Therefore ri determines the stable order of cmd after lcbest
2 +∆ time

units, regardless of commands being submitted concurrently. In practice, we expect

∆ to be a small value. Hence lcwor st
2 is roughly the same as l cbest

2 with this extension

enabled.

3) Prefix replication is satisfied when all commands with a smaller timestamp than
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t s are replicated by a majority.

In the worst case, when ri assigns cmd a timestamp, around the same time, if

every other replica also assigns to its own command a slightly smaller timestamp than

t s, then ri needs to know that all of these commands are replicated by a majority,

after the command becomes stable. That is, for each of these commands, ri waits for

its PREPAREOK message from a majority. The latency is max({medi an({d(r j ,rk )+
d(rk ,ri ) | ∀rk ∈ R}) | ∀r j ∈ R}). We denote this latency by lcwor st

3 .

In the best case, when cmd becomes stable at ri , if all commands with a smaller

timestamp than t s have committed, this condition holds immediately. Hence it is

dominated by the previous two conditions, and its latency can be ignored when

computing the final commit latency. We denote by l cbest
3 the latency in this case. We

explain how this case happens later in the section.

We now derive the overall latency of committing a command under two different

workloads.

Balanced workloads. Each replica serves client requests at moderate or heavy

load. That is, every replica sends and receives PREPARE and PREPAREOK frequently.

This is the best case for condition 2 and the worst case for condition 3. For ri , the

latency of committing a command is max(lc1, lcbest
2 , lcwor st

3 ) = max(2∗medi an(

{d(ri ,rk ) | ∀rk ∈ R}),max({d(ri ,rk ) | ∀rk ∈ R}),max({medi an({d(r j ,rk )+ d(rk ,ri ) |
∀rk ∈ R}) | ∀r j ∈ R})).

Imbalanced workloads. Only one replica serves client requests. If the workload is

moderate or heavy, the replica sends PREPARE messages frequently. Since every replica

broadcasts PREPAREOK, these messages of previous commands carry back the latest

clock time of other replicas and help reduce the stable order duration of the current

one. This is the best case for condition 2. As only one replica proposes commands,

when the replica knows the current command is replicated by a majority and is

stable, all previous commands must have committed. Hence it is also the best case

for condition 3. The latency is max(lc1, lcbest
2 , lcbest

3 ) = max(2∗medi an({d(ri ,rk ) |
∀rk ∈ R}),max({d(ri ,rk ) | ∀rk ∈ R})).

If the workload is light and the replica sends PREPARE messages infrequently, the

PREPAREOK messages of previous commands do not help the stable order condition

any more. This is the worst case for condition 2 and the best case for condition 3. The la-

tency is max(l c1, l cwor st
2 , l cbest

3 ) = 2∗max({d(ri ,rk ) | ∀rk ∈ R}). With the extension in

Algorithm 4 enabled, lcwor st
2 is roughly the same as lcbest

2 . Hence the latency becomes

max(lc1, lcbest
2 +∆, lcbest

3 ) = max(2∗medi an({d(ri ,rk ) | ∀rk ∈ R}),max({d(ri ,rk ) |
∀rk ∈ R})+∆). This is the only case where enabling the extension given in Algorithm 4
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helps latency.

In summary, the latency of Clock-RSM depends on the locations of the replicas

and the workloads. lc1 is the round-trip latency between the originating replica and

a majority of all replicas. lc2 is bounded by the maximum one-way latency between

the originating replica and other replicas. lc3 is bounded by the maximum two-hop

latency between the originating replica and other replicas via a majority. The message

complexity of Clock-RSM is O (N 2) as every replica broadcasts PREPAREOK messages.

3.4.2 Paxos
Multi-Paxos [52, 53] is the most widely used Paxos variant. We use Paxos to refer

to Multi-Paxos in the rest of the chapter. With Paxos, one replica is designated as the

leader, which coordinates replication and totally orders commands. We denote the

leader in Paxos by rl .

A non-leader replica ri in Paxos experiences the following latency to commit a

command. ri needs d(ri ,rl ) time to forward the command it proposes to leader rl .

rl sends phase 2a messages to all replicas. All replicas reply to the leader with phase

2b messages. In order for rl to learn that a command is committed, it waits for phase

2b messages from a majority. This takes 2∗medi an({d(rl ,rk ) | ∀rk ∈ R}) time. Finally,

the leader needs d(rl ,ri ) time to notify ri the commit of its command. Thus, the

overall latency is 2∗d(ri ,rl )+2∗medi an({d(rl ,rk ) | ∀rk ∈ R}). If the leader proposes

a command, the latency reduces to 2∗medi an({d(rl ,rk ) | ∀rk ∈ R}).

A well-known optimization allows Paxos replicas to broadcast phase 2b messages,

thus saving the last message from the leader to the originating replica of a command.

Replicas learn the outcome of a command without the assistance of the leader. In this

case, ri waits for phase 2b messages from a majority. The overall latency is d(ri ,rl )+
medi an({d(rl ,rk )+d(rk ,ri ) | ∀rk ∈ R}). For the leader replica, the latency is still 2∗
medi an({d(rl ,rk ) | ∀rk ∈ R}). We use Paxos-bcast to refer to the Paxos variant that

broadcasts its phase 2b message.

Although Paxos-bcast improves latency, it increases the message complexity of

Paxos from O (N ) to O (N 2).

3.4.3 Mencius
Mencius [61] rotates the leader role among all the replicas based on a predefined

order. Each replica serves client requests at the rounds it coordinates. Mencius can

also save the last step message, which is used to notify the commit of a command,

by broadcasting the replication acknowledgement message. We use Mencius-bcast to
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Protocol Steps Latency

Paxos 4 / 2
Leader: 2∗medi an({d(rl ,rk ) | ∀rk ∈ R})
Non-leader: 2∗d(ri ,rl )+2∗medi an({d(rl ,rk ) | ∀rk ∈ R})

Paxos-bcast 3 / 2
Leader: 2∗medi an({d(rl ,rk ) | ∀rk ∈ R})
Non-leader: d(ri ,rl )+2∗medi an({d(rl ,rk ) | ∀rk ∈ R})

Mencius-bcast 2
Imbalanced: 2∗max({d(ri ,rk ) | ∀rk ∈ R})
Balanced: [q, q +max({d(ri ,rk ) | ∀rk ∈ R})],
q is latency of Clock-RSM

Clock-RSM 2

Imbalanced:
max(2∗medi an({d(ri ,rk ) | ∀rk ∈ R}),max({d(ri ,rk ) | ∀rk ∈ R}))
Balanced:
max(2∗medi an({d(ri ,rk ) | ∀rk ∈ R}),max({d(ri ,rk ) | ∀rk ∈ R}),
max({medi an({d(r j ,rk )+d(rk ,ri ) | ∀rk ∈ R}) | ∀r j ∈ R}))

Table 3.2 – Number of message steps, message complexity, and command commit
latency of Paxos, Paxos-bcast, Mencius-bcast, and Clock-RSM.

refer to Mencius with this latency optimization.

Under imbalanced workloads when only one replica proposes commands, regard-

less of light or heavy load, Mencius-bcast always needs one round-trip message from

the replica to all replicas to commit a command. Hence, it takes 2∗max({d(ri ,rk ) |
∀rk ∈ R}) time to commit a command at replica ri .

Under balanced workloads, due to the delayed commit problem, the commit

latency at ri is between q and q +max({d(ri ,rk ) | ∀rk ∈ R}), where q is the latency of

Clock-RSM with the same workloads. Clock-RSM does not suffer from the delayed

commit problem, because it uses physical clocks to assign command timestamps 1.

Therefore, compared with Clock-RSM, Mencius-bcast always requires higher la-

tency or at most the same in “lucky” cases. Similar to Paxos-bcast, Mencius-bcast

increases the message complexity of Mencius from O (N ) to O (N 2).

3.4.4 Intuition and Comparison
We summarize our latency analysis of the four protocols in Table 3.2, and com-

pare Clock-RSM and Paxos-bcast below. We do not discuss Mencius-bcast and Paxos

because they have higher latency than Clock-RSM and Paxos-bcast, respectively.

At non-leader replicas, Paxos-bcast requires more message steps than Clock-RSM.

If we assume that the latencies between any two replicas are the same, Clock-RSM

provides lower latency. In practice, latencies among data centers are not uniform.

Simply counting message steps is not sufficient to determine how a protocol performs.

1. This can be easily verified in Figure 3 in [61].
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For both protocols, a replica needs to log a command at a majority. The replica that

sends the logging requests, the replica that receives the logging confirmations, and the

majority replicas that log the commands may be different. However, communicating

with a majority means median latency, which avoids the paths of high latency between

far away replicas. For Clock-RSM, the prefix replication condition also requires a

majority, and it overlaps with majority replication, hence it does not increase the

overall commit latency much. As a result, as long as replicas are not too far apart, such

as one replica is far away from the rest, logging a command at a majority replicas does

not differ much in these two protocols.

The two protocols differ mainly in command ordering. For Paxos-bcast, a non-

leader replica needs one additional message to forward a command to the leader.

We denote the forwarding latency by d f wd . For Clock-RSM, the originating replica

of a command requires a message from every other replica to determine the stable

order of the command. Only a message with a greater timestamp than the command

timestamp helps the stable order process. In the best case, this message is sent out

roughly at the same time when the command is sent out for majority replication.

Receiving the message from the furthest replica, taking dmax = lcbest
2 time, overlaps

with the round-trip latency of majority replication, taking 2∗ dmedi an = l c1 time.

Hence, dmax −2∗dmedi an is the latency introduced by command ordering in Clock-

RSM.

Combining the above analysis, Clock-RSM provides lower latency than Paxos-

bcast at a non-leader replica as long as dmax −2∗dmedi an < d f wd , which means the

highest latency is smaller than the sum of twice median latency and one forwarding

latency. This condition is not demanding. Our measurements of latencies among

Amazon EC2 data centers in Section 3.6 show that it holds in most cases. At the leader

replica, Clock-RSM provides the same latency if dmax −2∗dmedi an ≤ 0, which means

the highest latency is smaller than or equal to twice of median latency. In this case,

majority replication dominates the overall commit latency. Our measurements show

that this condition does not hold all the time. However, even when it does not hold,

dmax is not much greater than 2∗dmedi an , meaning that Clock-RSM does not lose

much in those cases.

In summary, Clock-RSM provides lower latency than Paxos-bcast under conditions

that are easy to satisfy in practice. In general, the more uniform the latencies among

replicas are, the more likely Clock-RSM provides lower latency.
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3.5 Failure Handling
To order commands, replicas rely on knowing the latest clock time of every replica

in the current configuration. As a consequence, Clock-RSM may stall in case of failure

of a replica or network partitions in the current configuration. In this section, we

describe a reconfiguration protocol for Clock-RSM, which removes failed replicas and

reintegrates recovered ones.

3.5.1 Reconfiguration
The reconfiguration protocol is given in Algorithm 5. It exposes a RECONFIGURE

function that is triggered when a failure detector suspects that a replica has failed,

or a recovered replica asks to rejoin. RECONFIGURE takes a new configuration as the

argument, which specifies the new membership of the system after reconfiguration.

The protocol uses primitives PROPOSE(k,mp ) and DECIDE(k,md ) of consensus. In

practice one can use a protocol like Paxos [52,53] to implement the primitives. A replica

proposes value mp as kth consensus instance. Eventually, all correct processes decide

on the same final value md , among the ones proposed. We use consensus because

two or more replicas may trigger RECONFIGURE with a different configuration. The

protocol also introduces a new hard state: a monotonically increasing E poch number.

E poch is initially 0, and is incremented after each reconfiguration. This allows us to

ignore messages from older epochs, issued by replicas which have not reconfigured yet.

Notice that we do not assume Con f i g = Spec in this section, because reconfiguration

changes Con f i g . The protocol works as follows.

1. A replica rk that triggers RECONFIGURE sends a 〈SUSPEND e,ct s〉 message to

all replicas in Spec. e is the next epoch number and ct s is the timestamp of the last

commit mark in rk ’s Log . rk then waits for SUSPENDOK replies from a majority in Spec .

The purpose of this phase is two-fold. First, replicas that receive a SUSPEND message

stop handling PREPARE requests from other replicas and REQUEST messages from

clients, essentially freezing their logs. Second, rk collects all logged commands with a

timestamp greater than ct s, from a majority in Spec . This includes all commands that

could have been committed by a failed replica. Finally, rk invokes the eth consensus

instance over all replicas in Spec by proposing con f i gnew , the next configuration to

use, timestamp ct s, and the above set of commands.

2. Eventually all non-faulty replicas learn about the decision for the eth consensus

instance. The decision includes enough information to start a new epoch such that

all replicas in con f i gnew start from the same state. To do so, replicas remove all

entries with timestamp greater than t s from their Log , where t s is the timestamp in
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the consensus decision and apply all commands that could have been committed

in timestamp order. Replicas then install the new epoch number and configuration.

They also resize LatestT V based on the new configuration and update its elements.

Finally, the normal case replication protocol can resume. Notice that some replicas

may lag behind when the last commit mark in their Log is smaller than the decided

timestamp. In such a case, a replica initiates a state transfer to fetch all commands up

to t s, before applying the commands decided by consensus.

Algorithm 5 Reconfiguration protocol at Replica rm

1: function RECONFIGURE(con f i gnew )
2: e ← E poch +1
3: ct s ← timestamp of the last commit mark in Log
4: send 〈SUSPEND e,ct s〉 to all replicas in Spec
5: wait for 〈SUSPENDOK e,cmd sk〉 from a majority of Spec
6: PROPOSE(e,con f i gnew ,ct s,

⋃
k cmd sk )

7: upon receive 〈SUSPEND e,ct s〉 from rk

8: stop processing REQUEST and PREPARE messages
9: cmd s ← {∀〈cmd , t s〉 ∈ Log | t s > ct s}

10: send 〈SUSPENDOK e,cmd s〉 to rk

11: upon DECIDE(e,con f i gnew , t s,cmd s)
12: ct s ← timestamp of the last commit mark in Log
13: if t s > ct s then
14: cmd s ← cmd s ∪STATETRANSFER(ct s, t s)

15: remove all 〈PREPARE c, t〉 from Log , s.t. t > t s and c is not executed yet
16: for all 〈cmd , t s〉 ∈ cmd s do . in order of t s
17: if 〈PREPARE cmd , t s,k〉 ∉ Log then
18: append 〈PREPARE cmd , t s〉 to Log
19: append 〈COMMIT t s〉 to Log
20: execute cmd
21: E poch ← e
22: Con f i g ← con f i gnew

23: resize and update LatestT V
24: resume processing REQUEST and PREPARE messages

25: function STATETRANSFER( f r om, to)
26: send 〈RETRIEVECMDS f r om, to〉 to all replicas in Spec
27: wait for 〈RETRIEVEREPLY cmd sk〉 from majority of Spec
28: return

⋃
k cmd sk

29: upon receive 〈RETRIEVECMDS f r om, to〉 from rk

30: cmd s ← {∀〈cmd , t s〉 ∈ Log | f r om < t s ≤ to}
31: send 〈RETRIEVEREPLY cmd s〉 to rk
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3.5.2 Recovery and reintegration
We next discuss how a replica recovers from its Log and is reintegrated to the

existing active replicas. A replica may fail and recover in a short time, without triggering

the reconfiguration process. The E poch number is used to determine whether a

reconfiguration has meantime happened or not. Log is used to replay the history

of commands up to the point in which the replica failed. Recall that log entries are

of two types in Clock-RSM, either PREPARE or COMMIT. A PREPARE entry contains a

command with the timestamp, but they do not necessarily appear in timestamp order

in Log . A COMMIT entry contains a timestamp only and is logged in timestamp order.

In addition, Clock-RSM guarantees that a COMMIT entry is appended to Log after the

corresponding PREPARE.

Recovery from the log proceeds as follows. The failed replica scans log entries

serially, starting from the head of the log. While scanning, each PREPARE entry in

the Log is inserted into a hash table, indexed by the entry’s timestamp. Whenever a

COMMIT entry with the timestamp is encountered, the corresponding PREPARE entry is

removed from the hash table and executed. When the replica finishes scanning the log,

it has executed all committed commands in timestamp order. However, towards the

end of Log there might be some PREPARE entries which do not have the corresponding

COMMIT in Log . To recover these entries, a replica sends RETRIEVECMDS to a majority

of replicas in Spec , and only executes commands that have been logged by a majority.

Finally, the replica triggers reconfiguration to join the current configuration, using

Algorithm 5. Checkpointing can be used to avoid replaying the whole log and speed

up the recovery process.

3.5.3 Discussion
The overall time to exclude a failed replica from the current configuration is the

time to detect the failure, plus the time to reconfigure. Reconfiguration requires one

initial exchange with a majority for SUSPENDing the replicated state machine, one

exchange with a majority to agree on a timestamp and the set of commands that

could have been committed. Some replicas might require an additional exchange for

STATETRANSFER. When replicas are deployed at multiple data centers, the timeout for

failure detection normally dominates the reconfiguration duration, similar to other

existing protocols.

In practice failures within a replication group do not happen often, because the

replication degree of a service is normally small, such as five or seven, and data centers

have redundant network connections to the Internet. Therefore, we do not expect
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reconfiguration to be triggered frequently and affect the availability of the replicated

service.

Temporary latency variations due to network congestions on the paths between

data centers may affect the commit latency of Clock-RSM. A managed WAN among

data centers, which provides stable network latency, can solve this problem [41].

3.6 Evaluation
We evaluate the latency of Clock-RSM and other protocols with experiments

on Amazon EC2 and numerical analysis. Our evaluation shows that: 1) Clock-RSM

provides lower latency than Mencius-bcast. 2) With five and seven replicas, Clock-

RSM provides lower latency than Paxos-bcast at the non-leader replicas in most cases,

and it provides similar or slightly higher latency at the leader replicas. 3) With three

replicas, a special case for Paxos-bcast, Clock-RSM provides similar or slightly higher

(about 6% on average) latency than Paxos-bcast at all replicas.

We also evaluate the throughput of the four protocols on a local cluster. Our results

show that: 1) Clock-RSM and Mencius have similar throughput for all command sizes.

2) They provide higher throughput than Paxos and Paxos-bcast for commands of large

size while their throughput is lower for small and medium size commands.

3.6.1 Implementation
We implement Clock-RSM, Paxos, Paxos-bcast and Mencius-bcast in C++, using

Google’s Protocol Buffers library for message serialization. The implementation is

event-driven and fully asynchronous. The protocol is divided into steps, and each

step is executed by a different thread. When a thread of one step finishes processing a

command, it pushes the command to the input queue of the next step. The thread ex-

ecuting a step batches the same type of messages being processed whenever possible.

However, to avoid increasing latency, if no messages are available to be processed, it

does not delay to try to batch more messages.

To evaluate the protocols, we also implement an in-memory key-value store which

we replicate using the above protocols. In all experiments, clients send commands to

replicas of the key-value store to update the value of a randomly selected key. Each

protocol replicates the update commands and executes them in total order.

For Clock-RSM, we run NTP to keep the physical clock at each replica synchronized

with a nearby public NTP server. With the proper configuration of NTP and the as-

sistance of clock_gettime system call in Linux, we obtain monotonically increasing

timestamps.
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VA IR JP SG AU BR
CA 83 170 125 171 187 212
VA - 101 215 254 220 137
IR - - 280 216 305 216
JP - - - 77 129 368
SG - - - - 188 369
AU - - - - - 349

Table 3.3 – Average round-trip latencies (ms) between EC2 data centers. CA, VA, EU,
JP, SG, and BR correspond to California, Virginia, Ireland, Japan (Tokyo), Singapore,
Australia, and Brazil (São Paulo), respectively.

3.6.2 Latency in Wide Area Replication
We evaluate the latency of Clock-RSM and compare it with other protocols with

three and five replicas. We place the replicas at Amazon EC2 data centers in California

(CA), Virginia (VA) and Ireland (IR), plus Japan (JP) and Singapore (SG) for the five-

replica experiments. To help reason about the experimental results and numerical

analysis later, we measure the round-trip latencies between data centers using ping

and report them in Table 3.3.

We run both replicas and clients on large EC2 instances that run Ubuntu 12.04.

The typical RTT in an EC2 data center is about 0.6ms. There are 40 clients issuing

requests of 64B to a replica at each data center. Clients send requests in a closed

loop with a think time selected uniformly randomly between 0 and 80ms. We enable

the extension of Clock-RSM given in Algorithm 4 and set ∆ to 5ms. We consider two

types of workloads: With balanced workloads all replicas serve client requests; with

imbalanced workloads only one replica serves client requests.

Balanced Workloads

The first group of experiments use balanced workloads, where clients of each

replica simultaneously generate requests.

Figure 3.1 and 3.2 shows the average and 95%ile (percentile) latency at each of five

replicas. Designating the replica at VA as the leader gives the best overall latency for

Paxos and Paxos-bcast. Clock-RSM provides lower latency at all replicas except the

leader of Paxos and Paxos-bcast.

For Paxos and Paxos-bcast, a leader replica needs only one round trip to a majority

replicas to commit a command. For Clock-RSM, a replica requires contacting a major-

ity plus the extra latency possibly introduced by the overlapping the stable order and

prefix replication processes. In these two experiments, the stable order process con-
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Figure 3.1 – Average (bars) and 95%ile (lines atop bars) commit latency at each of five
replicas. Workload is balanced. Leader is placed at CA.
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Figure 3.2 – Average (bars) and 95%ile (lines atop bars) commit latency at each of five
replicas. Workload is balanced. Leader is placed at VA.
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Figure 3.3 – Average (bars) and 95%ile (lines atop bars) commit latency at each of three
replicas. Workload is balanced. Leader is placed at CA.

tributes to the commit latency, because the highest latencies between two replicas are

quite significant. The round-trip latency between JP and IR is up to 280ms. This means

the command latency at JP and IR is at least 140ms. As a consequence, Clock-RSM has

higher latency at leader replicas. However, the extra latency contributed by command

ordering in Clock-RSM is smaller than the latency of forwarding a command from a

non-leader replica to the leader in Paxos and Paxos-bcast. Hence, Clock-RSM provides

lower latency at all non-leader replicas.

We point out that the highest latency of Clock-RSM at all replicas is lower than

Paxos and Paxos-bcast. The latencies of Clock-RSM at all replicas are more uniform.

For the average latency of all replicas, Clock-RSM is also better.

Clock-RSM provides lower latency than Mencius-bcast at all replicas. The 95%ile

latency of Mencius-bcast is much higher than its average, because the commit of a

command may be delayed by another concurrent command from a different replica.

The delay varies from zero up to the one-way latency between two replicas. Paxos-

bcast is also better than Mencius-bcast in most cases. Mencius-bcast sometimes

provides lower latency than Paxos at non-leader replicas, because it requires fewer

steps and concurrent commands from all replicas help the stable order process.

Figure 3.3 and 3.4 shows the average commit latency and 95%ile latency at each of

three replicas. Designating the replica at VA as the leader gives the best overall latency

for Paxos and Paxos-bcast.

A three-replica setup is a special case for both Clock-RSM and Paxos-bcast. For

Paxos-bcast, the leader replica commits a command after it receives the logging
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Figure 3.4 – Average (bars) and 95%ile (lines atop bars) commit latency at each of three
replicas. Workload is balanced. Leader is placed at VA.

confirmation from the nearest replica. For a non-leader replica, it first forwards the

command to the leader and then waits for the logging confirmation from a majority.

Most likely after it logs its own command, the logging confirmation of the leader

arrives, if triangle inequality still holds with latencies. Hence, all replicas in Paxos-

bcast require one round trip to another replica to commit a command. When we

designate the replica with the smallest weighted degree as the leader, Paxos-bcast

always needs one round trip to the nearest replica to commit a command.

For Clock-RSM, prefix replication does not affect latency anymore, because it is

dominated by stable order. A replica commits a command after it receives the corre-

sponding PREPAREOK from the nearest replica (majority replication) and a greater

timestamp from the furthest replica (stable order). For the three locations in this

experiment, the highest latency (between VA and IR) is roughly twice of the lowest

(between CA and VA). Hence, Clock-RSM also needs one round trip to the nearest

replica to commit a command.

In Figure 3.3, the Paxos-bcast leader (CA) and its nearest non-leader replica (VA)

have similar commit latency to Clock-RSM since they both require one round-trip

messages to the nearest replica. For the other non-leader replica (IR), it has to use the

longest path. Hence, the commit latency is much higher than Clock-RSM. In Figure 3.4,

the Paxos-bcast leader (VA) avoids the longest path. Both protocols require one round

trip to the nearest replica. Hence, they have similar latencies at all replicas.

To further clarify the latency characteristics of each protocol, we also present their

latency distributions. Figure 3.5 shows the latency distribution at JP when there are
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Figure 3.5 – Latency distribution at JP with five replicas. The leader is at CA. Workload
is balanced.
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Figure 3.6 – Latency distribution at CA with three replicas. The leader is at VA. Workload
is balanced.

five replicas and the leader is at CA. Both Paxos and Paxos-bcast have very predictable

latency as the commit of a command is not affected by other commands. The latency

of Mencius-bcast varies from 134ms to 230ms because of the delayed commit prob-

lem. Clock-RSM has some variance because, with this particular layout, the latency

required by prefix replication sometimes dominates. Figure 3.6 shows the latency

distribution at CA when there are three replicas and the leader is at VA. The results

are similar to the ones in Figure 3.5 except that, with this replica layout, the latency

of Clock-RSM almost does not vary, because prefix replication is dominated by the

stable order process.

Imbalanced Workloads

We next evaluate the latency of the four protocols under imbalanced workloads.

For each run of the experiment, clients issue requests to only one replica. Figure 3.7

shows the results for five replicas. This experiment is the same as the one used in

Figure 3.1 except that the workload is imbalanced.

Paxos and Paxos-bcast provide the same latency for both balanced and imbalanced
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Figure 3.8 – Latency distribution at SG with five replicas. The leader of Paxos and
Paxos-bcast is at CA. Workload is imbalanced.

workloads. Clock-RSM also provides similar predictable latency to both imbalanced

and balanced workloads, because of the PREPAREOKs of previous commands and

CLOCKTIMEs that carry the latest clock time of other replicas. The average latency of

Mencius-bcast becomes much higher when it has imbalanced workloads, because

Mencius-bcast needs to receive logging acknowledgements with skipped rounds from

every replica to make sure that other replicas do not propose a command in a previous

round. The 95%ile latency is close to the average because the delayed commit problem

does not happen when there is no concurrent command at any replica. Figure 3.8

shows the latency distribution.

In summary, with realistic latencies among data centers, Clock-RSM provides

lower latency in most cases. The experiment results above also confirm our analysis

in Section 3.4.

60



3.6. Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

3 replicas 5 replicas 7 replicas

L
a

te
n

c
y
 (

m
s
)

Paxos-bcast all
Clock-RSM all
Paxos-bcast highest
Clock-RSM highest

Figure 3.9 – Average commit latency. all includes latencies at all replicas of a group
while highest only includes the latency at one replica that provides the highest latency.

3.6.3 Numerical Comparison of Latency
Our above experiments on EC2 show that Clock-RSM provides lower latency than

other protocols in most cases with two groups of replicas of different sizes. To complete

the evaluation, we compare Clock-RSM with Paxos-bcast numerically with all possible

data center combinations on EC2.

We use all combinations of three, five, and seven replicas located at different EC2

data centers from Table 3.3. We plug the measured latencies in Table 3.3 into the

latency formulas in Table 3.2. Paxos-bcast always chooses the best leader replica that

provides the lowest average latency of all replicas in the group.

Figure 3.9 shows the average latency of replicas from all groups of the same size.

We compute two types of average latency: average all latency includes latencies at

all replicas of a group while average highest latency only includes the latency at one

replica that provides the highest latency in the group. As the figure shows, Clock-

RSM provides lower latency for both five and seven replicas. Its improvement for

the average highest latency is greater, because for Paxos-bcast, latencies at different

replicas are more spread out. The latency at a non-leader replica is much higher than

the leader replica, as it needs one extra message to forward a command to the leader.

In contrast, latencies in Clock-RSM are closer to each other because every replica

requires the same number of steps to commit a command.

With three replicas, Paxos-bcast is slightly better than Clock-RSM, because we

always choose the best leader for it, which leads to optimal commit latency at all

replicas. This also validates our previous analysis of the protocols with three replicas.

61



Chapter 3. Clock-RSM: Low-Latency Inter-Datacenter State Machine Replication

Replica
Percentage

Absolute
Reduction

Relative
Reduction

3 replicas 0.0% 0.0ms 0.0%
100.0% -9.9ms -6.2%

5 replicas 68.6% 31.9ms 15.2%
31.4% -30.6ms -14.6%

7 replicas 85.7% 50.2ms 21.5%
14.3% -39.4ms -16.9%

Table 3.4 – Latency reduction of Clock-RSM over Paxos-bcast. Negative latency reduc-
tion means Clock-RSM provides higher latency.

Table 3.4 shows the latency reduction of Clock-RSM over Paxos-bcast at all replicas

for different replication groups. For instance, for all replicas in the groups with five

replicas, the latency of Clock-RSM at 68.6% of the replicas is lower than Paxos-bcast.

On average, it reduces the latency by 31.9ms, i.e., by 15.2%, at those replicas. For

31.4% of the replicas, the latency of Clock-RSM is higher. On average, it increases

the latency by 30.6ms, i.e., by 14.3%, at those replicas. We look into all these 31.4%

replicas and find that most of them are the leader replica in their group and a few are

the non-leader replica that are very close to the leader. For groups with seven replicas,

we have similar results. For groups with three replicas, the latency of Paxos-bcast is

slightly better, because it provides optimal latency in this special case.

3.6.4 Throughput on A Local Cluster

Although the goal of Clock-RSM is to provide low commit latency in a WAN envi-

ronment, for completeness, we also evaluate its throughput and compare it with other

protocols. Our experimental results show that Clock-RSM has competitive throughput.

To avoid the network bandwidth limit on EC2 across data centers, we run experi-

ments on a local cluster. Each server has two Intel Xeon processors with 4GB DDR2

memory. All servers are connected to a single Gigabit Ethernet switch. A replica runs

on one server exclusively. Replicas log commands to main memory to avoid the disk

being the bottleneck. Clients send commands to all replicas with sufficient frequency

to saturate them.

Figure 3.10 reports the throughputs for five replicas and command sizes of 10B,

100B, and 1000B. In all cases, CPU is the bottleneck and message sending and receiving

is the major consumer of CPU cycles.

For 10B and 100B commands, Paxos and Paxos-bcast have higher throughput

than Mencius-bcast and Clock-RSM, because all the non-leader replicas forward
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Figure 3.10 – Throughput for small (10B), medium (100B), and large (1000B) com-
mands with five replicas on a local cluster.

commands to the leader in Paxos and Paxos-bcast, which can batch more commands

when sending and receiving messages. For large commands of size 1000B, Paxos and

Paxos-bcast have lower throughput. The leader replica becomes the performance

bottleneck, because batching large messages does not help throughput very much

anymore.

Clock-RSM and Mencius have similar throughput as they have the same com-

munication pattern and message complexity. Paxos provides better throughput than

Paxos-bcast because its message complexity is lower, but the improvement is not

significant since Paxos requires one more message step.

Our measurements do not support the claim, made in other works [61, 63], that

a multi-leader protocol always provides better throughput than Paxos because the

leader in Paxos is the performance bottleneck. When replicas batch messages op-

portunistically, without waiting intentionally, the leader replica of Paxos has more

chances to batch and hence increases throughput in the case of small and medium

commands. Prior work evaluates throughput using different implementations or con-

figurations. For the evaluations in Mencius [61], replicas do not batch messages. For

the experiments in Egalitarian Paxos [63], although replicas batch messages, the Paxos

leader handles all client messages, while the other replicas only process replication

messages. Hence, the leader limits the throughput of the whole system because it

processes considerably more messages than the other replicas.
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3.7 Correctness
We provide a proof sketch for the correctness of Clock-RSM (Algorithm 3) and

its reconfiguration protocol (Algorithm 5, Section 3.5). We first argue that replicas

execute commands in the same order and that every correct replica executes every

command (agreement). Then, we show that linearizability, as defined in Section 3.2.2,

follows from the above properties.

Claim 1. If any replica rm executes command ci followed by command c j with

timestamps t si and t s j respectively, then t si < t s j .

Proof sketch. Suppose replica rm executes command ci (at line 16 of alg. 1). We

distinguish two cases:

Case (a): rm ’s Pendi ngC md s contains 〈c j , t s j ,k〉. Notice that function COMMITTED(t s)

evaluates to true only if the given timestamp t s is the smallest timestamp among all

commands in Pendi ngC md s (line 23, alg. 1). Since ci is executed, the invocation

COMMITTED(t si ) must have returned true. Therefore t si < t s j .

Case (b): rm ’s Pendi ngC md s does not contain 〈c j , t s j ,k〉. Assume c j originated at

replica rk . By line 22 of alg. 1, t si ≤ LatestT V [k], which implies rm received a PREPARE

or a PREPAREOK message from rk tagged with a timestamp greater than t si . Since

channels are FIFO and messages are sent in timestamp order, LatestT V [k] < t s j .

Therefore t si < t s j .

Claim 2. (Total order). If a replica executes commands ci and c j , in this order, then

no replica executes c j before ci .

Proof sketch. By Claim 1, any replica executes commands in clock timestamp order.

What remains to show is that the timestamp order is a total order. Replicas assign

monotonically increasing clock timestamps to each command. The clock timestamp,

together with the unique replica id forms a total order. Moreover, timestamps are

assigned once by one replica, and never change.

Claim 3. If any replica executes command c in epoch e, then every correct replica in

epoch e +1 has executed c.

Proof sketch. Assume that some replica has executed command c with times-

tamp t s in epoch e. It means that a majority of replicas has acknowledged a message

〈PREPARE c, t s〉 and logged it to their stable storage.

Let r be the replica that triggers function RECONFIGURE (Algorithm 5) in epoch e

and whose proposal (line 6, alg. 3) is decided by all correct replicas. We next consider

ct s, the largest commit timestamp in r ’s Log , and distinguish two cases:

64



3.7. Correctness

Case (a): t s > ct s. That is, r has not executed c yet. In this case r fetches all

commands with timestamps greater than ct s from a majority of replicas (lines 4-5,

alg. 3). Since any two majorities intersect it must be that at least one replica returned

command c to replica r . Replica r included command c in its consensus proposal

(line 6, alg. 3), and all correct replicas eventually deliver c.

Case (b): t s ≤ ct s. In this case r has already executed c and therefore does not

include c in its proposal. All correct replicas eventually deliver the consensus decision

for epoch e +1. If a replica has not executed c yet, its last commit mark in the log is

smaller than t s (line 13, alg. 3), in which case it fetches c from a majority of replicas in

function STATETRANSFER.

In both cases, a replica has either already executed c or its set of commands cmd s

after line 14 of alg. 3 includes c, in which case c is executed in lines 16-20 of alg. 3

before transitioning to epoch e +1.

Claim 4. (Agreement) If a replica executes command c, then every correct replica

eventually executes c.

Proof sketch. Suppose replica r executes command c. We have to show that every

correct replica eventually executes c, both during normal case operation and across

subsequent epochs. Algorithm 3 ensures that during normal case operation every

replica eventually delivers PREPARE message and therefore replicas include c in their

set of pending commands. Since timestamps are monotonically increasing, it must be

that c eventually becomes the command with smallest timestamp (line 23, alg. 1), and

that all replicas have proposed or reported higher timestamps (line 22, alg. 1). Finally,

every replica will receive enough acknowledgments (line 21, alg. 1) to execute c. In

case of failures, we rely on a correct replica that triggers function RECONFIGURE. And

by Claim 3, any command that has committed in the current epoch will be executed

by every correct replica before transitioning to the subsequent epoch.

Claim 5. (Linearizability) Clock-RSM is linearizable.

Proof sketch. Letσbe an execution of client commands that consists of 〈REQUEST cmd〉
and their corresponding 〈REPLY r esul t〉. We have to show that there exists a permuta-

tion π of σ such that: 1) π respects the semantics of the commands, as defined in their

sequential specification; and 2) π respects the real-time ordering of commands across

all clients. Let π be a permutation of σ ordered according to the clock timestamp

ordering provided by Algorithm 3.

We first show that π respects the sequential semantics of the commands. The

replication protocol executes commands in total order (Claim 2), and replicas execute
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each and every command (Claim 4). Which means that every replica executes the upon

clause of lines 14-19 of alg. 1 for each command in the same order. Moreover, every

command is execute serially, one command at a time, thus satisfying the semantics of

commands.

We next claim that π satisfies the real-time ordering of commands in σ. Suppose

command ci finishes before command c j begins in σ. This implies that ci ’s client has

received a reply for ci before c j is submitted to a replica. Obviously, Algorithm 3 orders

c j after ci . Thus ci precedes c j in π.

3.8 Summary
In this chapter, we introduce Clock-RSM, a state machine replication protocol

that pushes the latency limit for strongly consistent replication. The work described

in this chapter appears in [29]. Clock-RSM relies on loosely synchronized clocks to

reduce latency. We evaluate our protocol extensively with realistic workloads, where

latencies among data centers are non-uniform. We show that, compared with state

of the art protocols, Clock-RSM reduces latency in most cases with real world replica

placements.
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In this chapter, we introduce Orbe, a partitioned and replicated data store that

implements causal consistency in a scalable and efficient fashion.

4.1 Introduction
Distributed data stores are a critical infrastructure component of many online

services. Choosing a consistency model for such data stores is difficult. The CAP

theorem [17, 34] shows that among Consistency, Availability, and (network) Partition-

tolerance, a replicated system can only have two properties out of the three.

A strong consistency model, such as linearizability [39] and sequential consistency

[51], does not allow high availability under network partitions. In contrast, eventual

consistency [76], a weak model, provides high availability and partition-tolerance,

as well as low update latency. It guarantees that replicas eventually converge to the

same state provided no updates take place for a long time. However, it does not

guarantee any order on applying replicated updates. Causal consistency [7] is weaker

than sequential consistency but stronger than eventual consistency. It guarantees that

replicated updates are applied at each replica in an order that preserves causality [7,50]

while providing availability under network partitions. Furthermore, client operations

have low latency because they are executed at a local replica and do not require

coordination with other replicas.

4.1.1 Problem Statement
The problem addressed in this chapter is providing a scalable and efficient imple-

mentation of causal consistency for both partitioned and replicated data stores. Most

existing causally consistent systems [48, 60, 68] adopt variants of version vectors [7, 65],

which are designed for purely replicated data stores. Version vectors do not scale when

partitioning is added to support a data set that is too large to fit on a single server.
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They still view all partitions as one logical replica and require a single serialization

point across partitions for replication, which limits the replication throughput [58]. A

scalable solution should allow replicas of different partitions to exchange updates in

parallel without serializing them at a centralized component.

COPS [58] identifies this problem and provides a solution that explicitly tracks

causal dependencies at the client side. A client stores every accessed item as depen-

dency metadata and associates this metadata with each update operation issued to the

data store. When an update is propagated from one replica to another for replication,

it carries the dependency metadata. The update is applied at the remote replica only

when all its dependencies are satisfied at that replica. COPS provides good scalability.

However, tracking every accessed item explicitly can lead to large dependency meta-

data, which increases storage and communication overhead and affects throughput.

Although COPS employs a number of techniques to reduce the size of dependency

metadata, it does not fundamentally solve the problem. When supporting causally

consistent read-only transactions, the dependency metadata overhead is still high

under many workloads.

4.1.2 Solution Overview

In this chapter, we present two protocols and one optimization that provide a

scalable and efficient implementation of causal consistency for both partitioned and

replicated data stores.

The first protocol uses two-dimensional dependency matrices (DMs) to compactly

track dependencies at the client side. We call it the DM protocol. This protocol supports

basic read and update operations. It associates with each update the dependency

matrix of its client session. Each element in a dependency matrix is a scalar value

that represents all dependencies from the corresponding data store server. The size

of dependency matrices is bounded by the total number of servers in the system.

Furthermore, the DM protocol resets the dependency matrix of a client session after

each update operation, because prior dependencies need not to be tracked due to

the transitivity of causality. With sparse matrix encoding, the DM protocol keeps the

dependency metadata of each update small.

The second protocol extends the DM protocol to support causally consistent read-

only transactions by using loosely synchronized physical clocks. We call it the DM-

Clock protocol. In addition to the dependency metadata required by the DM protocol,

this protocol assigns to each state an update timestamp obtained from a local physical

clock and guarantees that the update timestamp order of causally related states is
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consistent with their causal order. With this property, the DM-Clock protocol provides

causally consistent snapshots of the data store to read-only transactions by assigning

them a snapshot timestamp, which is also obtained from a local physical clock.

We also propose dependency cleaning, an optimization that further reduces the

size of dependency metadata in the DM and DM-Clock protocols. It is based on the

observation that once a state and its dependencies are fully replicated, any subsequent

read on the state does not introduce new dependencies to the client session. More

messages need to be exchanged, however, for a server to be able to decide that a state

is fully replicated, which leads to a tradeoff which we study. Dependency cleaning is a

general technique and can be applied to other causally consistent systems.

We implement the two protocols and dependency cleaning in Orbe, a distributed

key-value store, and evaluate them experimentally. Our evaluation shows that Orbe

scales out as the number of data partitions increases. Compared with an eventually

consistent system, it incurs relatively little performance overhead for a large spectrum

of workloads. It outperforms COPS under many workloads when supporting read-only

transactions.

In this chapter, we make the following contributions:

– The DM protocol that provides scalable causal consistency and uses dependency

matrices to keep the size of dependency metadata under control.

– The DM-Clock protocol that provides read-only transactions with causal snap-

shots using loosely synchronized physical clocks by extending the DM protocol.

– The dependency cleaning optimization that reduces the size of dependency

metadata.

– An implementation of the above protocols and optimization in Orbe as well as

an extensive performance evaluation.

4.2 Model and Definition

4.2.1 Architecture

We assume a distributed key-value store that manages a large set of data items.

The key-value store provides two basic operations to the clients:

– PUT(key, val): A PUT operation assigns value val to an item identified by ke y . If

item ke y does not exist, the system creates a new item with initial value val . If

ke y exists, a new version storing val is created.

– val ← GET(key): The GET operation returns the value of the item identified by

ke y .
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Data Server Data Server

Client Client Client

Application Tier

Data Center

Data Center
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Figure 4.1 – System architecture. The data set is replicated by multiple data centers.
Clients are collocated with the data store in the data center and are used by the
application tier to access the data store.

An additional operation that provides read-only transactions is introduced later in

Section 4.4.

The data store is partitioned into N partitions, and each partition is replicated by

M replicas. A data item is assigned to a partition based on the hash value of its key.

In a typical configuration, as shown in Figure 4.1, the data store is replicated at M

different data centers for high availability and low operation latency. The data store is

fully replicated. All N partitions are present at each data center.

The application tier relies on the clients to access the underlying data store. A client

is collocated with the data store servers in a particular data center and only accesses

those servers in the same data center. A client does not issue the next operation until

it receives the reply to the current one. Each operation happens in the context of a

client session. A client session maintains a small amount of metadata that tracks the

dependencies of the session.

4.2.2 Causal Consistency
Causality is a happens-before relationship between two events [7, 50]. We denote

causal order by . For two operations a and b, if a b, we say b depends on a or a is

a dependency of b. a b if and only if one of the following three rules holds:

1. Thread-of-execution. a and b are in a single thread of execution. a happens

before b.

2. Reads-from. a is a write operation and b is a read operation. b reads the state

created by a.
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3. Transitivity. There is some other operation c that a c and c b.

We define the nearest dependencies of a state as all the states that it directly depends

on, without relying on the transitivity of causality.

To provide causal consistency when replicating updates, a replica does not apply

an update propagated from another replica until all its causal dependency states are

installed locally. The original definition of causal consistency does not require that

replicas of the same partition eventually reach the same state [7]. Causal+ consis-

tency, a stronger consistency model, requires convergent conflict handling on top of

causal consistency [58]. For convenience, we use causal consistency to refer to causal+

consistency in this thesis.

4.3 DM Protocol
In this section, we present the DM protocol that provides scalable causal con-

sistency using dependency matrices. This protocol is scalable because replicas of

different partitions exchange updates for replication in parallel, without requiring a

global serialization point.

Dependency matrices are, for systems that support both replication and partition-

ing, the natural extension of version vectors, for systems that support only replication.

A row of a dependency matrix is a version vector that stores the dependencies from

replicas of a partition.

A client stores the nearest dependencies of its session in a dependency matrix and

associates it with each update request to the data store. After a partition at the client’s

local data center executes the update, it propagates the update with its dependency

matrix to the replicas of that partition at remote data centers. Using the dependency

matrix of the received update, a remote replica waits to apply the update until all

partitions at its data center store the dependency states of the update.

4.3.1 Definitions
The DM protocol introduces dependency tracking data structures at both the

client and server side. It also associates dependency metadata for each item. Table 4.1

provides a summary of the symbols used in the protocol. We explain their meanings

in detail below.

Client States. Without losing generality, we assume a client has one session to the

data store. A client c maintains for its session a dependency matrix, DMc , which con-

sists of N ×M non-negative integer elements. DMc tracks the nearest dependencies

of a client session. DMc [n][m] indicates that the client session potentially depends
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Symbols Definitions
N number of partitions
M number of replicas per partition
c a client
DMc dependency matrix of c, N ×M elements
PDTc physical dependency timestamp of c
pm

n a server that runs mth replica of nth partition
V V m

n (logical) version vector of pm
n , M elements

PV V m
n physical version vector of pm

n , M elements
C l ockm

n current physical clock time of pm
n

d an item, tuple 〈k, v,ut , put ,dm,r i d〉
k item key
v item value
ut (logical) update timestamp
put physical update timestamp
dm dependency matrix, N ×M elements
r i d source replica id
t a read-only transaction, tuple 〈st ,r s〉
st (physical) snapshot timestamp
r s readset, a set of read items

Table 4.1 – Definition of symbols.

on the first DMc [n][m] updates at partition pm
n , the mth replica of the nth partition.

Server States. Each partition maintains a version vector (VV) [7, 65]. The version

vector of partition pm
n is V V m

n , which consists of M non-negative integer elements.

V V m
n [m] counts the number of updates pm

n has executed locally. V V m
n [i ] (i 6= m)

indicates that pm
n has applied the first V V m

n [i ] updates propagated from p i
n , a replica

of the same partition.

A partition updates an item by either executing an update request from its clients

or by applying a propagated update from one of its replicas at other data centers.

We call the partition that updates an item to the current value by executing a client

request the source partition of the item.

Item Metadata. We represent an item d as a tuple 〈k, v,ut ,dm,r i d〉. k is a unique

key that identifies the item. v is the value of the item. ut is the update timestamp,

the logical creation time of the item at its source partition. dm is the dependency

matrix, which consists of N ×M non-negative integer elements. dm[n][m] indicates

that d potentially depends on the first dm[n][m] updates at partition pm
n , a prefix

of its update history. r i d is the source replica id, the replica id of the item’s source

partition.

We use sparse matrix encoding to encode dependency matrices. Zero elements in
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a dependency matrix do not use up any space after encoding. Only non-zero elements

contribute to the actual size.

4.3.2 Protocol
We now describe how the DM protocol executes GET and PUT operations and

replicates PUTs.

GET. Client c sends a request 〈GET k〉 to a partition at the local data center,

where k is the key of the item to read. Upon receiving the request, partition pm
n ob-

tains the read item, d , and sends a reply 〈GETREPLY vd ,utd ,r i dd 〉 back to the client.

Upon receiving the reply, the client updates its dependency matrix: DMc [n][r i dd ] ←
max(DMc [n][r i dd ],utd ). It then hands the read value, vd , to the caller of GET.

PUT. Client c sends a request 〈PUT k, v,DMc〉 to a partition at the local data center,

where k is the item key and v is the update value. Upon receiving the request, pm
n

performs the following steps: 1) Increment V V m
n [m]; 2) Create a new version d for the

item identified by k; 3) Assign item key: kd ← k; 4) Assign item value: vd ← v ; 5) Assign

update timestamp: utd ← V V m
n [m]; 6) Assign dependency matrix: dmd ← DMc ; 7)

Assign source replica id: r i dd ← m. These steps form one atomic operation, and

none of them is blocking. pm
n stores d on stable storage and overwrites the existing

version if there is one. It then sends a reply 〈PUTREPLY utdd ,r i dd 〉 back to the client.

Upon receiving the reply, the client updates its dependency matrix: DMc ← 0 (reset

all elements to zero) and DMc [n][r i dd ] ← utd .

Update Replication. A partition propagates its local updates to its replicas at

remote data centers in update timestamp order. To replicate a newly updated item, d ,

partition p s
n sends an update replication request 〈REPLICATE kd , vd ,utd ,dmd ,r i dd 〉

to all other replicas.

A partition also applies updates propagated from other replicas in their update

timestamp order. Upon receiving the request, partition pm
n guarantees causal consis-

tency by performing the following steps:

1. pm
n checks if it has installed the dependency states of d specified by dmd [n].

pm
n waits until V V m

n > dmd [n], i.e., V V m
n [i ]> dmd [n][i ], for 06 i 6M −1.

2. pm
n checks if causality is satisfied at the other local partitions. pm

n waits until,

V V m
j > dmd [ j ], for 06 j 6N −1 and j 6= n. It needs to send a message to pm

j

for dependency checking if dmd [ j ] contains at least one non-zero element.

3. If there is currently no value stored for item kd at pm
n , it simply stores d . If

pm
n has an existing version d ′ such that kd ′ = kd , it orders the two versions

deterministically by concatenating the update timestamp (high order bits) and
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Replica 0

Partition 0
X

X

Y

Y

Client
DM = [[0,0] [0,0]] DM = [[1,0] [0,0]] DM = [[0,0] [1,0]]

dmY = [[1,0] [0,0]] dmX = [[0,0] [0,0]]

VV = [0,0] VV = [1,0]

Replica 1

Partition 1

Partition 0

Partition 1
VV = [0,0] VV = [1,0]

PUT(Y)

PUT(X)

Figure 4.2 – An example of the DM protocol with two partitions replicated at two
data centers. A client updates item X and then item Y at two partitions. X and Y are
propagated concurrently, but their installation at the remote data center is constrained
by causality.

source replica id (low order bits). If d is ordered after d ′, pm
n overwrites d ′ with

d . Otherwise, d is discarded.

4. pm
n updates its version vector: V V m

n [s] ← utd . As updates are propagated in

order, we have the invariant before V V m
n [s] is updated: V V m

n [s]+1 = utd .

Example. We give an example to explain the necessity for dependency matrices.

Consider a system with two partitions replicated at two data centers (N = 2 and M = 2)

in Figure 4.2. The client first updates item X at the local data center. The update

is handled by partition p0
0. Upon receiving a response the client updates item Y at

partition p0
1. Causality through the client session dictates that X  Y . At the other

data center, p1
1 applies Y only after p1

0 applies X. The figure shows the dependency

matrices propagated with the updates. p1
1 waits until the version vector of p1

0 is no less

than [1,0], which guarantees that X has been replicated.

Correctness. The DM protocol uses dependency matrices to track the nearest

dependencies of a client session or an item. It resets the dependency matrix of a

client session after each PUT to keep its size after encoding small. This does not affect

correctness. By only remembering the update timestamp of the PUT, the protocol

utilizes the transitivity of causality to track dependencies correctly.

An element in a dependency matrix, a scalar value, is the maximum update times-

tamp of all the nearest dependency items from the corresponding partition. Since a

partition always propagates local updates to and applies remote updates from other

replicas in their update timestamp order, once it applies an update from another
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replica, it must have applied all the other updates with a smaller update timestamp

from the same replica. Therefore, if a partition satisfies the dependency requirement

specified by the dependency matrix of an update, it must have installed all the depen-

dencies of the update.

4.3.3 Cost over Eventual Consistency
Compared with typical implementations of eventual consistency, the DM protocol

introduces some overhead to capture causality. This is a reasonable price to pay for

the stronger semantics.

Storage Overhead. The protocol keeps a dependency matrix and other metadata

for each item. The per-item dependency metadata is the major storage overhead of

causal consistency. We keep it small by only tracking the nearest dependencies and

compressing it by sparse matrix encoding. In addition, the protocol requires that a

client session maintains a dependency matrix and a partition maintains a version

vector. These global states are small and negligible.

Communication Overhead. Checking dependencies of an update during replica-

tion requires a partition to send a maximum of N−1 messages to other local partitions.

If a row in the dependency matrix contains all zeros, then the corresponding parti-

tion does not need to be checked, since the update does not directly depend on any

states managed by all replicas of that partition. In addition, the dependency metadata

carried by update replication messages also contributes to inter-datacenter network

traffic.

4.3.4 Conflict Detection and Resolution
The above protocol orders updates of the same item deterministically by using the

update timestamp and source replica id. If there are no updates for a long enough time,

replicas of the same partition eventually converge to the same state while respecting

causality. However, the dependency metadata does not indicate whether two updates

from different replicas are conflicting or not.

To support conflict detection, we extend the DM protocol by introducing one more

element to the dependency metadata: the item dependency timestamp. We denote

the item dependency timestamp of an item d by i d td . When d ’s source partition p s
n

creates d , it assigns to i d td the update timestamp of the existing version of item kd

if it exists or -1 otherwise. When partition pm
n applies d after dependency checking,

it handles the existing version d ′ as below. If d is created after d ′ is replicated at p s
n ,

i d td = utd ′ , then d and d ′ do not conflict. pm
n overwrites d ′ with d . If d and d ′ are
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created concurrently by different replicas, i d td 6= utd ′ , they conflict. In that case, either

the application can be notified to resolve the conflict using application semantics, or

pm
n orders the two conflicting updates deterministically as outlined in Section 4.3.2.

4.4 DM-Clock Protocol
The DM-Clock protocol extends the DM protocol to support causally consistent

read-only transactions. Many applications can benefit from a programming interface

that provides a causally consistent view on multiple items, as an example later in this

section shows.

Compared with the DM protocol, the DM-Clock protocol keeps multiple versions

of each item. It also requires access to physical clocks. It assigns each item version a

physical update timestamp, which imposes on causally related item versions a total

order consistent with the (partial) causal order. A read-only transaction obtains its

snapshot timestamp by reading the physical clock at the first partition it accesses,

its originating partition. The DM-Clock protocol then provides a causally consistent

snapshot of the data store, including the latest item versions with a physical update

timestamp no greater than the transaction’s snapshot timestamp.

4.4.1 Read-Only Transaction
With the DM-Clock protocol, the key-value store also provides a transactional read

operation:

– 〈vals〉 ← GET-TX(〈keys〉): This operation returns the values of a set of items

identified by ke y s. The returned values are causally consistent.

A read-only transaction provides a causally consistent snapshot of the data store.

Assume xr and yr are two versions of items X and Y , respectively. If a read-only

transaction reads xr and yr , and xr  yr , then there does not exist another version of

X , xo , such that xr  xo yr .

We give a concrete example to illustrate the application of read-only transactions.

Assume Alice wants to share some photos with friends through an online social

network such as Facebook. She first changes the permission of an album from “public"

to “friends-only" and then uploads some photos to that album. When these two

updates are propagated to and applied at remote replicas, causality ensures that

their occurrence order is preserved: the permission update operation happens before

the photo upload operation. However, it is possible that Bob, not a friend of Alice,

first reads the permission of the album as “public” and then sees the photos that

were uploaded after the album was changed to “friends-only”. Enclosing the album
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permission check and the viewing of the photos in a causally consistent read-only

transaction prevents this undesirable outcome. In a causally consistent snapshot,

the photos cannot be viewed if the permission change that causally precedes their

uploads is not observed.

4.4.2 Definitions
Physical Clocks. The DM-Clock protocol uses loosely synchronized physical clocks.

We assume each server is equipped with a hardware clock that increases monotoni-

cally. A clock synchronization protocol, such as the Network Time Protocol (NTP) [2],

keeps the clock skew under control. The clock synchronization precision does not

affect the correctness of our protocol. We use C l ockm
n to denote the current physical

clock time at partition pm
n .

Dependency Metadata. Compared with the DM protocol, the DM-Clock protocol

introduces additional dependency metadata. Each version of an item d has a physical

update timestamp, putd , which is the physical clock time at the source partition of d

when it is created. Different versions of an item are sorted in the item’s version chain

using their physical update timestamps. A client c maintains a physical dependency

time, PDTc , for its session. This variable stores the greatest physical update timestamp

of all the states a client session depends on. Each partition pm
n maintains a physical

version vector, PV V m
n , a vector of M physical timestamps. PV V m

n [i ] (0 6 i 6 M −
1, i 6= m) indicates the physical time of p i

n seen by pm
n . This value comes either from

replicated updates or from heartbeat messages.

4.4.3 Protocol
We now describe how the DM-Clock protocol extends the DM protocol to support

read-only transactions.

GET. When a partition returns the read version d back to the client, it also includes

its physical update timestamp putd . Upon receiving the reply, the client updates its

physical dependency time: PDTc ← max(PDTc , putd ).

PUT. An update request from client c to partition pm
n also includes PDTc . When

pm
n receives the request, it first checks whether PDTc <C l ockm

n . If not, it delays the

update request until the condition holds. When pm
n creates a new version d for the

item identified by kd , it also assigns d the physical update time: putd ←C l ockm
n . It

then inserts d to the version chain of item kd using utd . The reply message back to

the client also includes putd . Upon receiving the reply message, the client updates its

physical dependency time: PDTc ← max(PDTc , putd ).
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With the above read and update rules, our protocol provides the following property

on causally related states: For any two item versions x and y, if x y, then putx <
puty .

Update Replication. An update replication request of d also includes putd . When

partition pm
n receives d from p s

n and after d ’s dependencies are satisfied, it inserts d

into the version chain of item kd using putd . pm
n then updates its physical version

vector: PV V m
n [s] ← putd .

Heartbeat Broadcasting. A partition periodically broadcasts its current physical

clock time to its replicas at remote data centers. It sends out heartbeat messages and

updates in the physical timestamp order.

When pm
n receives a heartbeat message with physical time pt from p s

n , it updates

its physical version vector: PV V m
n [s] ← pt . We use ∆ to denote the heartbeat broad-

casting interval. A partition skips sending a heartbeat message to a replica if there

was an outgoing update replication message to that replica within the previous ∆

time. Hence, heartbeat messages are not needed when replicas exchange updates

frequently enough.

GET-TX. A read-only transaction t maintains a physical snapshot timestamp stt

and a readset r st . Client c sends a request 〈GETTX kset〉 to a partition by some load

balancing algorithm, where kset is the set of items to read.

When t is initialized at pm
o , the originating partition, it reads the local hardware

clock to obtain its snapshot timestamp: stt ←C l ockm
o −∆. We provide a slightly older

snapshot to a transaction, by subtracting some amount of time from the latest physical

clock time, to reduce the probability of a transaction being delayed and the duration

of the delay. pm
o reads the items specified by kset one by one. If pm

o does not store an

item required by t , it reads the item from another local partition that stores the item.

Before t reads an item at partition pm
n , it first waits until two conditions hold:

1) C l ockm
n > stt ; 2) mi n({PV V m

n [i ] | 0 ≤ i ≤ M −1, i 6= m})> stt . t then chooses the

latest version d such that putd 6 stt from the version chain of the read item and adds

d to its readset r st . After t finishes reading all the requested items, it sends a reply

〈GETTXREPLY r st 〉 back to the client. The client handles each retrieved item version

in r st one by one in the same way as for a GET operation.

By delaying a read-only transaction under the above conditions, our protocol

achieves the following property: The snapshot of a transaction includes all item versions

with a physical update timestamp no greater than its snapshot timestamp, if no failure

happens.

If failure happens, a read-only transaction may be blocked. We provide solutions
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to this in Section 4.5, where we discuss failure handling.

Correctness. To see why our protocol provides causally consistent read-only trans-

actions, consider xr  yr in the definition in Section 4.4.1 again. With the first prop-

erty, if a transaction t reads xr and yr , then putxr < putyr ≤ stt . With the second

property, t only reads the latest version of an item with a physical update timestamp

no greater than stt . Hence there does not exist xo such that putxr < putxo ≤ stt . There-

fore, it is impossible that there exists xo such that xr  xo . Our protocol provides

causally consistent read-only transactions.

Conflict Detection and Resolution. The above DM-Clock protocol cannot tell

whether two updates conflict or not. We employ the same technique used by the DM

protocol in Section 4.3.4 to detect conflicts. We do not need the conflict resolution

part here since the DM-Clock protocol uses physical update timestamps to totally

order different versions of the same item.

4.4.4 Garbage Collection

The DM-Clock protocol stores multiple versions of each item. We briefly describe

how to garbage-collect old item versions to keep the storage footprint small. Partitions

within the same data center periodically exchange snapshot timestamps of the oldest

active transactions. If a partition does not have any active read-only transactions,

it sends out the latest physical clock time. At each round of garbage collection, a

partition chooses the minimum one among the received timestamps as the safe

garbage collection timestamp. With this timestamp, a partition scans the version

chain of each item it stores. It only keeps the latest item version created before the

safe garbage collection timestamp (if there is one) and the versions created after the

timestamp. It removes all the other versions that are not needed by active and future

read-only transactions.

4.5 Failure Handling

4.5.1 DM Protocol

Client Failures. When a client fails, it stops issuing new requests to the data store.

The failure of a client does not affect other clients and the data store. Recovery is not

needed since a client only stores soft states for dependency tracking.

Partition Server Failures. A partition maintains a redo log on stable storage, which

stores all installed update operations in the update timestamp order. A failed partition

recovers by replaying the log. Checkpointing can be used to accelerate the recovery
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process. The partition then synchronizes its state with other replicas at remote data

centers by exchanging locally installed updates.

The current design of the DM protocol does not tolerate partition failures within a

data center. However, it can be extended to tolerate failures by replicating each data

partition within the same data center using standard techniques, such as primary

copy [9, 64], Paxos [52] and chain replication [75].

Data Center Failures. The DM protocol tolerates the failure of an entire data

center, for example due to power outage, and network partitions among data centers.

If a data center fails and recovers later, it rebuilds the data store states by recovering

each partition in parallel. If the network partitions and heals later, it updates the

data store states by synchronizing the operation logs within each replication group in

parallel. If a data center fails permanently and cannot recover, any updates originated

in the failed data center, which are not propagated out, will be lost. This is inevitable

due to the nature of causally consistent replication, which allows low-latency local

updates without requiring coordination across data centers.

4.5.2 DM-Clock Protocol

The DM-Clock protocol uses the same failure handling techniques as the DM

protocol, except that it treats read-only transactions specially.

With the DM-Clock protocol, before reading an item at a partition, a read-only

transaction requires that the partition has executed all local updates and applied all

remote updates with update timestamps no greater than the snapshot timestamp of

the transaction. However, if a remote replica fails or the network among data centers

partitions, a transaction might be delayed for a long time because it does not know

whether there are any updates from a remote replica that should be included in its

snapshot but have not been propagated.

Two approaches can solve this problem. If a transaction is delayed longer than

a certain threshold, its originating partition re-executes it using a smaller snapshot

timestamp to avoid blocking on the (presumably) failed or disconnected remote

partition. With this approach, the transaction provides relatively stale item versions

until the remote partition reconnects. A transaction delayed for enough long time can

also switch to a two-round protocol similar to the one used in Eiger [59]. In this case,

the transaction returns relatively fresh data but may need two rounds of messages to

finish.
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4.6 Dependency Cleaning

Dependency cleaning is a technique that further reduces the size of dependency

metadata in the DM and DM-Clock protocols. This idea is general and can be applied

to other causally consistency systems.

4.6.1 Intuition

Although our DM and DM-Clock protocols effectively reduce the size of depen-

dency metadata by using dependency matrices and loosely synchronized physical

clocks, for big data sets managed by a large number of servers, it is still possible that

the dependency matrix of an update has many non-zero elements. For instance, a

client may scan a large number of items located at many different partitions and up-

date a single item in some statistics workloads. In this case, the dependency metadata

can be many times bigger than the actual application payload, which incurs more

inter-datacenter traffic for update replication. In addition, checking dependencies of

such an update during replication requires a large number of messages.

The hidden assumption behind tracking dependencies at the client side is that

a client does not know whether a state it accesses has been fully replicated by all

replicas. To guarantee causal consistency, the client has to remember all the nearest

dependency states it accesses and associate them to subsequent update operations.

Hence when an update is propagated to a remote replica, the remote replica uses

its dependency metadata to check whether all its dependency states are present

there. This approach is pessimistic, because it assumes the dependency states are not

replicated by all replicas. Most existing solutions for causal consistency are built on

this assumption. This is a valid assumption if the network connecting the replicas fails

or disconnects often, which the early works are based upon [65, 68]. However, it is not

realistic for modern data center applications. Data centers of the same organization

are often connected by high speed and reliable fiber links. Most of the time, network

partitions among data centers only happen because of accidents, and they are rare.

Therefore, we argue that one should not be pessimistic about dependency tracking

for this type of applications. If a state and its dependencies are known to be fully

replicated by all replicas, a client does not need to include it in the dependency

metadata when reading it. With this observation, we can substantially reduce the size

of the dependency metadata.
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4.6.2 Protocol Extension
We describe how to extend the DM and DM-Clock protocols to support depen-

dency cleaning. To track updates that are replicated by all replicas, we introduce a full

replication version vector (RVV) at each partition. At partition pm
n , RV V m

n indicates

that the first RV V m
n [i ] updates of p i

n (06 i 6M −1) have been fully replicated.

Update Replication. We add the following extensions to the update replication

process. After pm
n propagates an item version d to all other replicas, it requires them to

send back a replication acknowledgment message after they apply d . Similar to propa-

gating local updates in their update timestamp order, a partition also sends replication

acknowledgments in the same order. Once pm
n receives replication acknowledgments

of d from all other replicas, it increments RV V m
n [m]. pm

n then sends a full-replication

completion message of d to other replicas. Similarly, the full-replication completion

messages are also sent in the update timestamp order. When partition p i
n receives the

full-replication completed message for d , it increments RV V i
n [m] (06 i 6M −1 and

i 6= m). Since partition pm
n increments an element of V V m

n when applying a replicated

update, but increments the corresponding element in RV V m
n only after that update is

fully replicated, RV V m
n 6V V m

n always holds.

GET and GET-TX. We now describe how RVV is used to perform dependency

cleaning when the data store handles read operations. Assume a client sends a read

request to partition pm
n and an item version d is selected. If RV V m

n [r i dd ]> utd , pm
n

knows that d and all its dependency states have been fully replicated and there is no

need to include d in the dependencies of the client session. pm
n sends a reply message

back to the client without including d ’s update timestamp. Upon receiving the reply,

the client keeps its dependency matrix unchanged. This technique can also be applied

to read-only transactions. Therefore, by marking an item version as fully replicated,

this technique “cleans” the dependency introduced to the client that reads the item.

Normally, the duration that RV V m
n [r i dd ] < utd holds is short. Under moderate

system loads, this duration is roughly 1.5 WAN round-trip latency plus two times the

write latency of stable storage , which is normally a few hundreds milliseconds. As

a consequence, for a broad spectrum of applications, most read operations do not

generate dependencies, which keeps the dependency metadata small.

4.6.3 Message Overhead
Dependency cleaning has a tradeoff. It reduces the size of dependency metadata

and the cost of dependency checking at the expense of more network messages for

sending replication acknowledgments and full-replication completions.
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Assume an update depends on states from k partitions except its source parti-

tion. For a system with M replicas, without dependency cleaning, it takes M −1 WAN

messages to propagate the update to all other replicas at remote data centers. The

dependency matrix in each of the M −1 WAN messages has at least k non-zero rows.

(M −1)k LAN messages are required for checking dependencies of the propagated up-

date at remote replicas. With dependency cleaning, it requires 3(M−1) WAN messages

to replicate an update. For many workloads, the dependency matrix of an update

contains mostly zero elements. Very few LAN messages are needed for dependency

checking.

4.7 Evaluation
We evaluate the DM protocol, DM-Clock protocol, and dependency cleaning in

Orbe, a multiversion key-value store that supports both partitioning and replication.

In particular, we answer the following questions:

– Does Orbe scale as the number of partitions increases?

– What is the overhead of providing causal consistency compared with eventual

consistency?

– How does Orbe compare with COPS [58]?

– Is dependency cleaning an effective technique for reducing the size of depen-

dency metadata?

4.7.1 Implementation and Setup
We implement Orbe in C++ and use Google’s Protocol Buffers for message serializa-

tion. We partition the data set to a group of servers using consistent hashing [44]. We

run NTP to keep physical clocks loosely synchronized. We configure NTP to gradually

catch up or fall back to a target during synchronization. Hence, physical clocks always

move forward, a requirement for correctness in Orbe.

As part of the application tier, servers that run Orbe clients are in the same data

center with Orbe partition servers. A client chooses a partition in its local data center

as its originating partition by a load balancing scheme. The client then issues all its

operations to its originating partition. If the originating partition does not store an

item required by a client request, it executes the operation at the local partition that

manages the required item.

Orbe’s underlying key-value store keeps all key-value pairs in main memory. A key

points to a linked list that contains different versions of the same item. The operation

log resides on disk. The system performs group commit to write multiple updates
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in one disk write. A PUT operation inserts a new version to the version chain of the

updated item and adds a record to the operation log. During replication, replicas of

the same partition exchange their operation logs. Each replica replays the log from

other replicas and applies the updates one by one after dependency checking.

We run the DM-Clock protocol in all experiments, even where the DM protocol

would suffice, because it is a superset of the DM protocol. We set the heartbeat broad-

casting interval ∆ to 10ms. By default, dependency cleaning is disabled. We enable it

in one experiment, where we mention its use explicitly (see Section 4.7.6).

We run experiments on a local cluster where all servers are connected by a single

GigE switch. All servers in the cluster are Dell PowerEdge SC1425 running Linux 3.2.0.

Each server has two Intel Xeon processors, 4GB of DDR2 memory, one 7200rpm 160GB

SATA disk, and one GigE network port. The round-trip network latency in our local

cluster is between 120 to 180 microseconds. We enable the hardware cache of the

disk. The latency of writing a small amount of data (64B) to the disk is around 450

microsecond. We partition the local cluster into multiple logical “data centers” as

necessary. We introduce an additional 120 milliseconds network latency for messages

among replicas of the same partition located at different logical data centers.

4.7.2 Microbenchmarks
We first evaluate the basic performance characteristics of Orbe through microbench-

marks. We replicate the data set in two data centers. At each data center, the data set

is partitioned on eight servers. Each partition loads one million data items during

initialization. For each preloaded item, the size of a key is eight bytes and the value is

ten bytes.

In the first experiment, we examine the capability of a single partition server.

We launch enough clients to saturate the server. A GET operation reads a randomly

selected item from its originating partition. The PUT operation also operates on the

originating partition by updating a random item with different sizes of update values.

For comparison, we also introduce an Echo operation, which simply returns the

operation argument to the clients.

As shown in Table 4.2, a partition server can process Echo operations at about 70K

ops/s, GET operations at about 60K ops/s, and PUT operations at about 30K ops/s.

The throughput of Echo indicates the message processing capability of our hardware.

As the update value size increases in PUT, the throughput drops slightly due to the

increased cost of memory copies. In all cases, CPU is the bottleneck.

In the second experiment, we measure operation latencies. For this experiment,
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Operation Echo GET-10B PUT-1B PUT-16B PUT-128B
Throughput
(K op/s)

71.3 61.4 36.8 36.4 30.2

Table 4.2 – Maximum throughput of client operations on a single partition server
without replication.
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Figure 4.3 – Latency distribution of client operations.

GET and PUT choose items located at the originating partition with a probability of

50% and at other local partitions with the other 50%. A GET-TX operation reads six

items in total. One is from its originating partition while the other five are from other

local partitions.

Figure 4.3 shows the latency distribution of the four operations. The Echo oper-

ation shows the baseline as it only takes one round-trip latency to finish. Each GET

and PUT requires either one or two rounds of messages within the same data center

(depending on the location of the requested item), which results in two clear groups

of latencies. The latency of executing a client operation is low, because Orbe does

not require a partition server to coordinate with its replicas at other data centers to

process GET and PUT operations. None of the (microsecond-scale) client operations

depend on replication operations that incur the 120ms latency between data centers.

4.7.3 Scalability

We now examine the scalability of Orbe with an increasing number of partitions.

We set up two data centers with two to eight partitions at each.

We first use three workloads which are a configurable mix of PUTs and GETs. Items

are selected from the originating partition with a probability of 50% and from other

local partitions for the other 50%. PUT operations update items with ten bytes values.

For the workload of read-only transactions, each GET-TX reads one item from its

originating partition and five from other local partitions. Figure 4.4 shows the through-
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Figure 4.4 – Maximum throughput of varied workloads with two to eight partitions.
The legend gives the put:get ratio.

put of Orbe as the number of partitions increases. Regardless of the put:get ratio,

Orbe scales out with an increasing number of partitions. Because Orbe propagates

updates across partitions in parallel, it is able to utilize more servers to provide higher

throughput.

4.7.4 Comparison with Eventual Consistency
To show the overhead of providing causal consistency in our protocols, we compare

Orbe with an eventually consistent key-value store, which is implemented in Orbe’s

codebase. We set up two data centers of three partitions each. A client accesses items

randomly selected from the three local partitions with different put:get ratios. PUT

updates an item with a value of 60 bytes.

Figure 4.5 shows the throughput of Orbe and the eventually consistent key-value

store. For an almost read-only workload, they have similar throughputs. For an almost

update-only workload, Orbe’s throughput is about 24% lower. The minor degradation

in throughput is a reasonable price to pay for the much improved semantics over

eventual consistency.

The major overhead of implementing causal consistency comes from 1) network

messages for dependency checking and 2) processing, storing and transmitting the

dependency metadata. Figure 4.6 shows this overhead with two curves. The first is the

average number of dependency checking messages per replicated update. The second

is the percentage of the dependency metadata in the update replication traffic in Orbe.

When the workload is almost update-only, the metadata percentage is small and so
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Figure 4.5 – Maximum throughput of workloads with varied put:get ratios for both
Orbe (causal consistency) and eventual consistency.
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is the number of dependency checking messages per replicated update. When the

workload becomes read-heavy, the numbers go up, but level off after GETs dominate

the workload.

The contents of dependency matrices explain the numbers in Figure 4.6. As Orbe

tracks only the nearest dependencies, an update depends only on the previous update

and the reads since the previous update in the same client session. With a high put:get

ratio, the dependency matrix contains only a few non-zero elements. With a low

put:get ratio, reads generate a large number of dependencies, but the total number of

elements in a dependency matrix is bounded by the number of partition servers in

the data store.
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4.7.5 Comparison with COPS
We compare Orbe with COPS [58], which also provides causal consistency for both

partitioned and replicated data stores. We implement COPS in Orbe’s codebase. For

an apples-to-apples comparison, we enable read-only transaction support in both

Orbe and COPS (which is called COPS-GT in prior work [58]).

COPS explicitly tracks each item version read and updated at the client side. It

associates a set of dependency item versions with each update. A dependency matrix

in Orbe plays the same role as a set of dependency item versions in COPS, but most of

the time it takes less space using sparse encoding.

Although COPS relies on a number of techniques to reduce the size of depen-

dency metadata, it can still become considerable since COPS has to track the complete

dependencies to support read-only transactions while Orbe only tracks the nearest

dependencies. In addition, the execution time of the two-round transactional reading

protocol in COPS limits the frequency of garbage-collecting the dependency meta-

data. During the fixed interval between two successive garbage collections, the more

operations a client issues, the more dependency states it creates. Hence, the size of

dependency metadata is highly related to the inter-operation delays at each client.

COPS sets the garbage collection interval to six seconds [58]. We use the same value in

our COPS implementation.

We set up two data centers of three partitions each. A client accesses data items

randomly selected from the three partitions with a configurable put:get ratio. Figure

4.7 illustrates the throughput of Orbe and COPS with different client inter-operation

delays. Figure 4.8 shows the average number of states on which an update depends. For

COPS, this is the number of dependency item versions. For Orbe, this is the number

of non-zero elements in the dependency matrix. Orbe provides consistently higher

throughput than COPS as it tracks fewer dependency states and spends fewer CPU

cycles on message serialization and transmission. Figure 4.8 suggests that Orbe and

COPS should have similar throughput when the inter-operation delays are longer than

one second.

By tracking fewer dependency states and efficiently encoding the dependency

matrix, Orbe also reduces the inter-datacenter network traffic for update replication

among replicas of the same partition. Figure 4.9 compares the aggregated replication

traffic (transmission only) between Orbe and COPS.

Tracking fewer states at the client side reduces the client’s memory footprint, but

also consumes fewer CPU cycles as fewer temporary objects are created and destroyed

for tracking dependencies. Figure 4.10 shows the CPU utilization of a server that
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for both Orbe and COPS. The legend gives the put:get ratio.
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Figure 4.9 – Aggregated replication transmission traffic across data centers with varied
inter-operation delays for both Orbe and COPS. The legend gives the put:get ratio.

runs a group of clients for Orbe and COPS, separately. For this measurement, we run

all clients at a single powerful server to saturate the data store and record the CPU

utilization of the server. Orbe is more efficient. It uses fewer CPU cycles per operation

as it manages fewer states.

4.7.6 Dependency Cleaning
Dependency cleaning removes the necessity for dependency tracking when a

client reads a fully replicated item version. However, it increases the cost of update

replication as it requires additional inter-datacenter messages to mark an item version

as fully replicated.

In this experiment, we show the benefits of dependency cleaning for workloads

that read from a large number of partitions and update only a few. We set up two data

centers and vary the number of partitions from one to eight at each data center. A

client reads a randomly selected item from each of the local partitions and updates

one random item at its originating partition.

Figure 4.11 shows the maximum throughput of Orbe with and without dependency

cleaning enabled. When the system has only one partition, all reads and updates go to

that partition. Dependency cleaning does not help as no network message is required

for dependency checking. In this case, the throughput of Orbe with dependency

cleaning enabled is slightly lower, because it requires more messages for update

replication. However, the throughput drop is small, because we let update replication

messages piggyback replication acknowledgement and full-replication completion
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Figure 4.11 – Maximum throughput of operations with and without dependency
cleaning enabled.

messages and batch these messages whenever possible.

As we increase the number of partitions, the throughput of Orbe with dependency

cleaning enabled is higher. The throughput gap increases as the system has more

partitions. With dependency cleaning, an update does not depend on states from

other partitions most of the time, although it reads states from those partitions. As a

result, dependency checking on replicated updates does not incur network messages

at the remote data center. By removing this part of the overhead, dependency cleaning

helps the overall throughput.

Dependency cleaning also reduces the size of dependency metadata for an update.

Figure 4.12 shows the aggregated replication traffic from all partitions. The traffic

decreases as the number of partitions increases because the put:get ratio decreases.

Figure 4.13 shows the average percentage of metadata in the update replication traffic.
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Figure 4.12 – Aggregated replication transmission traffic with and without dependency
cleaning enabled.
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4.8 Summary
In this chapter, we introduce two scalable protocols that efficiently provide causal

consistency for partitioned and replicated data stores. The DM protocol extends

version vectors to two-dimensional dependency matrices and relies on the transitivity

of causality to keep dependency metadata small and bounded. The DM-Clock protocol

relies on loosely synchronized physical clocks to provide causally consistent read-

only transactions. We implement the two protocols in a distributed key-value store.

We show that they incur relatively small overhead for tracking causal dependencies

and outperform a prior approach based on explicit dependency tracking. The work

described in this chapter appears in [27].
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5 Related Work

This thesis introduces protocols that efficiently implement three consistency mod-

els by using loosely synchronized physical clocks to order events. In this chapter we

present the related work, which can be generally divided into two categories: (1) using

different techniques to implement the same or similar consistency models and (2)

relying on physical clocks to implement other consistency models.

5.1 Distributed Transactions
SI in distributed systems. A number of large-scale distributed data stores use SI

to support distributed transactions. These systems all rely on a centralized service for

timestamp management.

Percolator [67] adds distributed SI transactions to Bigtable [20] to support incre-

mental building of web search index. It assigns snapshot and commit timestamps to

transactions using a centralized timestamp oracle. It adds additional columns to each

row to store transaction metadata such as update timestamps and locks. Percolator is

not designed for OLTP applications and a transaction can potentially be blocked for

tens of seconds due to its lazy approach to clean up locks left by failed machines.

Zhang and Sterck [80] implement SI on top of HBase [1] in a system that stores all

the transaction metadata in a number of global tables. The system manages times-

tamps by using a centralized shared table. ReTSO [42] implements lock-free SI for

HBase using a centralized service to detect write-write conflicts and to assign times-

tamps. Similarly, an implementation of write snapshot isolation (WSI) using a central-

ized transaction certifier is given in [78].

The centralized timestamp services in these systems affect their throughput, la-

tency, and availability. In contrast, Clock-SI uses a group of loosely synchronized

physical clocks rather than a centralized authority for timestamp management, with

the attendant benefits shown in this thesis.
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Relaxing SI in distributed systems. Saeida Ardekani et al. [10] study the scalability

of SI. They decouple SI to a few simple properties and show that a system cannot have

both SI and genuine partial replication (GPR) at the same time. In other words, SI is

not scalable in a partitioned and replicated system when transactions are ordered by

logical clocks. Hence, prior work proposes relaxing the total order property of SI to

achieve better performance in partitioned and replicated systems.

Walter [73] is a transactional geo-replicated key-value store that uses parallel

snapshot isolation (PSI), which orders transactions only within a site and tracks

causally dependent transactions using a vector clock at each site, leaving independent

transactions unordered among sites. PSI relaxes SI by not enforcing a total commit

order among all transactions. With PSI, data items are partitioned into different sites.

Within a site, transaction commit is totally ordered. Across sites, PSI enforces only

causal ordering which allows the system to replicate transactions asynchronously

across sites.

Non-monotonic snapshot isolation (NMSI) [69, 70] provides non-monotonic snap-

shots. NMSI does not explicitly order transactions but uses dependency vectors to

track causally dependent transactions. There is no global time that totally orders

all transaction commits. This reduces the message complexity of SI in a partitioned

system. Compared with PSI, NMSI supports genuine partial replication and reduces

abort rates by reading fresher data.

The relaxations of SI may fail to provide application developers with the familiar

isolation levels and requires extra effort to guarantee that transactions read consistent

and monotonic snapshots as in SI. In contrast, Clock-SI provides a complete imple-

mentation of SI, including a total order on transaction commits and a guarantee that

transactions read consistent and monotonic snapshots across partitions.

Relaxing freshness. Some systems relax freshness to improve performance at the

cost of serving stale data. Relaxed currency models [14, 37, 38] allow each transaction

to have a freshness constraint. Continuous consistency [79] bounds staleness using

a real-time vector. These systems do not use physical clocks to assign transaction

snapshot and commit timestamps. Clock-SI provides each transaction with either the

latest snapshot or a slightly older snapshot (tunable per transaction) to reduce the

delay probability and duration of transactions. In both cases, all the properties of SI

are maintained.

Generalized snapshot isolation (GSI) [31] generalizes SI to replicated databases.

It uses older snapshots to avoid the delay of waiting for committed updates to be

propagated from the certifier to the replicas. In contrast, Clock-SI targets concur-
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rency control for partitioned data stores using physical time. It allows assigning older

snapshots to reduce the delay probability and duration of transactions.

5.2 State Machine Replication
In addition to Multi-Paxos [52, 53] and Mencius [61], which we compare with

Clock-RSM in details in Chapter 3, Clock-RSM is also related to the following work.

Fast Paxos [55] allows clients to send commands directly to all replicas to reduce

commit latency. In good runs, it requires two message delays to commit a command.

However, under collisions due to concurrent proposals, Fast Paxos requires at least two

additional messages for collision recovery. Collisions are frequent in a geo-replicated

environment with balanced workloads, and thus Fast Paxos results in significantly

higher latency than Clock-RSM.

Some protocols relax the total order property of state machine replication. Gener-

alized Paxos [54] and Generic Broadcast [66] commits commands that do not interfere

out of order in one round trip. It requires a stable leader to order interfering com-

mands, which takes at least two additional round trips. Egalitarian Paxos [63], also

called EPaxos, does not require a designated leader. Every replica in EPaxos can serve

client requests and submit commands. EPaxos also commits non-interfering com-

mands out of order in two message delays, which is one round-trip latency to (at

least) a majority of replicas. The slow path, which resolves conflicts, requires one

additional round trip. EPaxos provides linearizability. However, local reads in EPaxos

may see updates in different orders at different replicas. In contrast, Clock-RSM pro-

vides linearizability and maintains an explicit total order over updates. Database

replication, one of the most popular applications of state machine replication, often

requires total order replication to maintain strong transaction isolation levels, such as

serializability [15] and snapshot isolation [13], as in a single-copy database [45].

MDCC [46] uses Generalized Paxos to build a replicated partitioned key-value

store across data centers. MDCC reduces replication latency by running one instance

of Generalized Paxos per key. An update to a key commits in one round trip using

the fast path, under the assumption that conflicting updates on the same key are

rare. However, MDCC provides “read committed” guarantee to transactions, a weaker

isolation level than both serializability and snapshot isolation. In contrast, Clock-RSM

can be used for total order replication across all keys while providing low latency and

strong transaction isolation.

Using physical clocks for state machine replication is discussed in [50] and [71].

However, neither of them provides a complete solution. Clock-RSM is a clearly speci-
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fied protocol with reconfiguration for failure handling. It relies on physical clocks to

reduce replication latency across data centers.

An atomic broadcast algorithm using physical clocks is introduced in [81]. This

algorithm relies on ordinary broadcast and generic broadcast and delivers a message

with two message delays in good runs. Similar to Clock-RSM, each replica coordinates

its own commands and commands are totally ordered by physical time intervals. In

contrast, Clock-RSM is a simpler and more efficient state machine replication proto-

col that includes recovery and reconfiguration and targets realistic geo-replication

environments.

S-Paxos [16] optimizes Multi-Paxos for throughput. It offloads the command dis-

tribution work from the leader to all replicas. The leader only handles command

ordering. With aggressive message batching at the leader, S-Paxos alleviates the per-

formance bottleneck at the leader. However, the commit latency remains the same

because the ordering metadata of each command still goes through the same message

steps as in Multi-Paxos.

5.3 Causal Consistency
There have been many causally consistent systems in the literature, such as lazy

replication [48], Bayou [68], and WinFS [60]. They use various techniques derived from

the causal memory algorithm [7]. However, these systems target only full replication.

None of them considers scalable causal consistency for partitioned and replicated

data stores, to which Orbe provides a solution.

COPS [58] identifies the problem of causal consistency for both partitioned and

replicated data stores and gives a solution. It tracks every accessed state as dependency

metadata at the client side. To support causally consistent read-only transactions,

a client has to track the complete dependencies explicitly. Although COPS garbage-

collects the dependency metadata periodically, the metadata size may still be large

under many workloads and can affect performance. In comparison, Orbe relies on

dependency matrices to track the nearest dependencies and keeps the dependency

metadata small and bounded. Orbe provides causally consistent read-only transac-

tions using loosely synchronized clocks. Orbe requires one round of messages to

execute a read-only transaction in the failure-free mode while COPS requires maxi-

mum two rounds.

Eiger [59] is recent follow-up work on COPS and provides causal consistency for a

distributed column store. It proposes a new protocol for read-only transactions using

Lamport clock [50]. Although Eiger also needs maximum two rounds of messages
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to execute a read-only transaction, a client tracks only the nearest dependencies. In

addition, Eiger provides causally consistent update-only transactions. Eiger still tracks

every accessed state at the client side. All its improvements to COPS are different from

the techniques Orbe uses.

ChainReaction [8] implements causal consistency on top of chain replication

[75]. ChainReaction also tracks every accessed state at the client side. To solve the

problem of large dependency metadata when providing read-only transactions, it uses

a global sequencer service at each data center to totally order update operations and

read-only transactions. However, the sequencer service increases the latency of all

update operations by one round-trip network latency within the data center and is a

potential performance bottleneck. In comparison, Orbe does not have any centralized

component. It provides causal consistency for update-anywhere replication and relies

on loosely synchronized physical clocks to implement read-only transactions.

Bolt-on causal consistency [11] provides causal consistency to existing eventu-

ally consistent data stores. It inserts a shim-layer between the data store and the

application layer to insure the safety properties of causal consistency. It relies on

the application to maintain explicit causality relationships. Tracking causality based

on application semantics is precise but requires the application developers to spec-

ify causal relationships among application operations. In contrast, Orbe provides

causal consistency directly in the data store, without requiring coordination from the

application.

5.4 Physical Clocks in Distributed Systems
Liskov provides a survey of the use of loosely synchronized clocks in distributed

systems long time ago [56]. Since then, physical clocks have been used in a few new

research and commercial systems for data management. We briefly describe them

below.

The Thor project explores the use of loosely synchronized clocks for distributed

concurrency control [5, 6, 57]. Transactions in Thor execute on cached objects at the

client side. They commit/abort at the server side after a validation phase. AOCC [5]

assigns to committed transactions unique commit timestamps from physical clocks.

Transactions running under AOCC may, however, read inconsistent states of the

database. Therefore, read-only transactions need to be validated on commit and

therefore may need to abort, an undesirable situation which does not happen in

Clock-SI.

An extension to AOCC lets running transactions read lazily consistent states [6]
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according to a dependency relation providing lazy consistency (LC). LC is weaker than

SI [4]. Some read histories allowed under LC are forbidden by SI. For example, assume

two items x0 and y0. Transaction T1 writes x1 and commits. Then transaction T2 writes

y1 and commits. Next, transaction T3 reads the two items. Under LC, T3 is allowed to

read x0 and y1, which is not serializable and also not allowed under SI. Therefore, even

with AOCC+LC read-only transactions need to be validated and may have to abort.

Both AOCC and AOCC+LC do not provide consistent snapshots for running trans-

actions. In comparison, transactions in Clock-SI always receive consistent snapshots

and read-only transactions do not abort.

Granola [23] runs single-partition and independent multi-partition transactions

serially at each partition to remove the cost of concurrency control. Such a transaction

obtains a timestamp before execution, and transactions execute serially in times-

tamp order. Coordinated multi-partition transactions use traditional concurrency

control and commit protocols. To increase concurrency on multicore servers, Granola

partitions the database among CPU cores. This increases the cost of transaction exe-

cution, because transactions that access multiple partitions on the same node need

distributed coordination. In contrast, Clock-SI runs all transactions concurrently and

does not require partitioning the data set among CPU cores.

Spanner [22] is a geographically replicated and partitioned data store built at

Google. It provides linearizability or external consistency based on synchronized

clocks with bounded uncertainty, called TrueTime, requiring access to GPS and atomic

clocks. Spanner executes update transactions at the leader replica using conventional

two-phase locking to provide serializability. In addition, transactions can be anno-

tated as read-only and executed according to SI. In comparison, Clock-SI relies solely

on physical time to implement SI. Spanner relies on conventional Multi-Paxos to

replicate each partition. Replica leaders order transactions with physical timestamps.

In comparison, Clock-RSM is a new state machine replication protocol and uses phys-

ical clocks to improve latency. Spanner’s provision of external consistency requires

high-precision clocks, and its correctness depends on clock synchrony. In contrast,

both Clock-SI and Clock-RSM use conventional physical clocks available on today’s

commodity servers, and its correctness does not depend on clock synchrony.

VoltDB [3] uses physical clocks to pre-order transactions and executes update

transactions serially on each replica of the same partition. Cassandra [49] imple-

ments the last-writer-wins rule by using physical clocks to order concurrent update

operations on the same items.
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6 Conclusion

In this thesis, we introduce protocols that implement three widely used consis-

tency models efficiently and correctly by using loosely synchronized physical clocks.

We demonstrate the feasibility and benefits of using loosely synchronized physi-

cal clocks to order events in a distributed system. Because physical clocks advance

automatically at roughly the same speed and can be well synchronized by standard

protocols, they can be used to order events across a large number of servers at very low

cost. Although physical clocks are less flexible than logical clocks and have synchro-

nization skews, we show that they can be used to implement the required consistency

properties correctly.

We first introduce Clock-SI for transaction management in partitioned data stores.

Clock-SI is fully distributed implementation of SI. It uses a group of distributed physi-

cal clocks at each partition for snapshot and commit timestamp assignment. Clock-SI

improves over existing solutions that use a centralized timestamp service, by eliminat-

ing a potential performance bottleneck and a single point of failure. Moreover, it also

avoids the round-trip messages between the partitions and the timestamp service,

resulting in lower transaction commit latency.

We then introduce Clock-RSM for strongly consistent geo-replication. Clock-RSM

is a new state machine replication protocol that provides linearizability. It uses the

physical clocks at each replica to totally order state machine commands. Compared

with existing solutions that rely on the leader replica to order commands, Clock-RSM

eliminates the messages to the leader for command ordering at the follower replicas. It

hence reduces the latency of consistent geo-replication across multiple data centers.

We also describe Orbe, which provides a scalable and efficient implementation of

causal consistency for both partitioned and replicated data stores. Compared with

existing solutions that explicitly track every dependency, Orbe extends version vectors

to two-dimensional dependency matrices to keep the dependency metadata small
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Chapter 6. Conclusion

and bounded. It also relies on physical clocks to assign a total order over all operations

and guarantees that the order is consistent with causality. With these two techniques,

Orbe efficiently provides causally consistent read-only transactions in a distributed

key-value that also supports basic read and write operations.
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