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Abstract— Most users of online services have unique behavioral
or usage patterns. These behavioral patterns can be exploited to
identify and track users by using only the observed patterns in
the behavior. We study the task of identifying users from statistics
of their behavioral patterns. In particular, we focus on the setting
in which we are given histograms of users’ data collected during
two different experiments. We assume that, in the first data
set, the users’ identities are anonymized or hidden and that,
in the second data set, their identities are known. We study the
task of identifying the users by matching the histograms of their
data in the first data set with the histograms from the second
data set. In recent works, the optimal algorithm for this user
identification task is introduced. In this paper, we evaluate the
effectiveness of this method on three different types of data sets
with up to 50 000 users, and in multiple scenarios. Using data
sets such as call data records, web browsing histories, and GPS
trajectories, we demonstrate that a large fraction of users can be
easily identified given only histograms of their data; hence, these
histograms can act as users’ fingerprints. We also verify that
simultaneous identification of users achieves better performance
compared with one-by-one user identification. Furthermore, we
show that using the optimal method for identification indeed
gives higher identification accuracy than the heuristics-based
approaches in the practical scenarios. The accuracy obtained
under this optimal method can thus be used to quantify the
maximum level of user identification that is possible in such
settings. We show that the key factors affecting the accuracy of
the optimal identification algorithm are the duration of the data
collection, the number of users in the anonymized data set, and
the resolution of the data set. We also analyze the effectiveness of
k-anonymization in resisting user identification attacks on these
data sets.

Index Terms— Data privacy, de-anonymization, identification
of persons.

I. INTRODUCTION

ACOMMON task in data analysis is to identify users by
exploiting statistics of their data. In many applications,

we have access to some information about a set of users
from one source, and some other information about the set of
users from another source, and the task is to match pieces of
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information from the first source to pieces of information from
the second source that correspond to the same underlying user.
If the identities of the users in the two sets are known, then
this is a trivial task. However, in many practical applications,
the identities of the users are unknown either in the first set
or in the second set or in both; therefore, in such cases,
the task becomes non-trivial. For example, the two datasets
might contain information about location statistics of users
in a city measured over distinct time periods. The first set
can be obtained by tracking cell phone connections to cell-
towers and the second set can be obtained from credit-card
usage patterns. In this case, the task is to identify the correct
matching from the users’ phone numbers to their credit card
numbers. Another example of the matching problem is relevant
to datasets collected from the same service during two different
time periods. For instance, the users on a website might choose
to change their online user identities for privacy purposes;
but given the statistics of the users’ data measured prior to
the change and after the change, it might still be possible to
identify the users by matching the statistics across the two
time periods. Matching users between two datasets increases
the net information available about the users, which in turn
is useful for providing better targeted advertisements and
recommendations for products and services [3].

The problem of matching users is also relevant in the context
of privacy of an anonymized database. In recent years, many
datasets containing information about individuals have been
released into the public domain in order to provide open
access to statistics or to facilitate data-mining research. Often
these databases are anonymized by suppressing identifiers that
reveal the identities of the users, such as names or social
security numbers. Nevertheless, recent research has revealed
that the privacy offered by such anonymized databases could
be compromised, if an adversary correlates the revealed
information with auxiliary information about the users from
publicly available databases. A famous example of such a
de-anonymization attack was shown in [4], in which anony-
mous movie ratings released during the Netflix Prize contest
were de-anonymized by using public user reviews from the
Internet Movie Database (IMDB). In such attacks, the adver-
sary’s task of de-anonymization is essentially a matching task.
The objective is to identify users in the anonymized dataset
by matching their data to the publicly available auxiliary
information.

As the question of matching users is relevant in many
applications, this problem has been studied by many authors
in different fields, including database management [5], infor-
mation retrieval [6], natural language processing [7], author
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TABLE I

AN ILLUSTRATIVE EXAMPLE OF USER IDENTIFICATION TASK ON

HISTOGRAMS. LOCATION STATISTICS IN THE FORM OF HISTOGRAMS OF

SOME USERS ARE RELEASED (IN (a)), WHERE THE USER IDENTITIES

ARE REMOVED. AN ADVERSARY HAS ACCESS TO SOME AUXILIARY

HISTOGRAMS (IN (b)) ABOUT THE SAME USERS WHERE THE USER

IDENTITIES ARE KNOWN. THE TIME PERIOD DURING WHICH THE

HISTOGRAMS IN (a) ARE COLLECTED DOES NOT OVERLAP WITH THE

TIME PERIOD DURING WHICH THE HISTOGRAMS IN (b) ARE

COLLECTED. THE OBJECTIVE OF THE ADVERSARY IS TO MATCH THE

USERS (i.e., ROWS) ACROSS THE TWO TABLES

identification [8], [9], and privacy [4]. Nevertheless, most
solutions to the matching problem rely on heuristics that are
relevant for specific applications, but not for other applications.
In this paper, we present a systematic study of the matching
problem under a general setting. The problem we study differs
from typical approaches in data analysis in that we focus on
the setting in which the available information about a user’s
data is in the form of histograms of the user’s data. The
histograms capture the habits of the users. In the case of
mobility traces, such histograms could be the average time
spent by each user at different locations during a day, or
during different time intervals. In some applications, such
as urban planning, the data collected naturally contains only
the statistics of the data, as they are sufficient for such
applications. In other applications, the data is intentionally
stripped of timing information to enhance the privacy of the
users; in which case, all that remains are histograms. We study
the problem of matching histograms of users’ data measured in
two independent experiments as a hypothesis testing problem.
This novel formulation has the advantage of making it possible
to rigorously define the accuracy of a matching scheme and
to identify an algorithm that is provably more accurate than
other schemes.

An example of a user identification task, is to consider
a dataset comprised of unlabeled location histograms, given
in Table I(a), where the user identities are removed. Now
consider an adversary who has access to the labeled location
histograms of the same users in an independent experiment
where the user identities are known (refer to Table I(b)).
This information could be obtained, for instance, by tracking
the users during a different time-period compared to those
in Table I(a). The histograms corresponding to each user in
the two tables are expected to be similar, as the habits of
the user are expected to remain the same across the two
datasets; but they might not be exactly identical due to the
inherent randomness in the user’s behavior. The objective of
the adversary is to match the user identities (i.e., the rows)
across the two tables.

In the next section, we provide a detailed comparison of
this problem with existing literature on user identification
and highlight the new contributions of this work. We state
the problem in mathematical form and propose our solution
in Section III. We experimentally evaluate our solution by
using three different datasets in Section IV.1 In Section V,
we analyze the efficacy of our algorithm if additional privacy
enhancing techniques, such as k-anonymization, are applied to
histograms of users’ data. We conclude the paper with some
discussions in Section VI.

II. RELATED WORK AND CONTRIBUTIONS

The user matching studied in this paper is closely related
to several problems that have been studied in other different
communities. In this section, we present a comparison of
our approach with related problems from several areas, and
highlight our contributions relative to existing work.

A. Entity Resolution

A matching problem studied in the database community
is that of identifying different data records that refer to the
same real-world object [5]. Similarly, in natural-language
processing, the problem of linking different mentions of the
same underlying entity in text [7] is analogous to the objective
in the user-matching problem. Another example from the
information-retrieval literature is the problem of classifying
documents by their authors, given documents from different
authors with the same name [6]. User matching has also
been studied in the social-networks community in which
the objective is to identify different profiles that belong to
the same underlying user [10]. Such problems fall under
the umbrella-term entity resolution (ER) [11]. In these prob-
lems, the available information about the users is often not
in the form of histograms, and the solutions proposed are
often based on heuristics and practical convenience; whereas
the solution we propose in this paper is specific to the
setting in which the only information available about the
users is in the form of histograms, and in this setting,
the solution is optimal for minimizing the probability of
misclassification.

B. De-Anonymization Attacks

Our work is also closely related to the literature on
de-anonymization methods [4], [12] studied in the literature
on privacy. A number of works on de-anonymization focus
on demonstrating that even when users’ data are anonymized,
the data belonging to each user is often unique. In such
examples, an adversary who has access to auxiliary infor-
mation about the users can de-anonymize the anonymized
datasets by exploiting the uniqueness of the data belonging
to each user. For example, in [13] the authors perform a
study on the top k locations most frequently visited by
users in a nationwide call-data record (CDR) dataset. They

1Following the principle of reproducible research, the code for performing
user matching and for generating the figures related to the publicly available
data sets are made available for download at rr.epfl.ch.
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consider various levels of spatial granularity (such as sector,
cell, zip code, city, state, and country) and temporal gran-
ularity (such as day and month), and they show that the
most frequently visited locations can act as quasi-identifiers
to re-identify anonymous users. Thus an adversary can de-
anonymize such a dataset by obtaining access to auxiliary
information about the users’ zip codes and times of activity.
The adversary’s goal is essentially a matching task, i.e., the
adversary seeks to match the auxiliary information about the
users with the unique aspects of the users’ data. Some other
works such as [13]–[19] study the uniqueness of mobility
data traces. There is a line of work on studying the unique-
ness of web browsing history patterns of users [20], [21].
In [20] the authors consider a dataset where every record is the
set of visited websites by a user during some period of time.
The authors investigate how unique is a single user’s record
compared to other users’ records in the dataset.

Although our work is related to de-anonymization, it differs
in several aspects. First, we assume that the only information
about the users in the two datasets are time-averaged statistics
of the users’ data. In most works on user matching and
de-anonymization [4], [22], [23], the vulnerability to privacy
breaches often arises due to the sparsity of the temporal
evolution of the users’ data. For instance, the fact that a
user watched and rated a movie during a particular time-
period or was at a specific location during a particular time
can be used to easily identify the user’s data from the
anonymized dataset. Other de-anonymization works focus on
identifying the temporal patterns of the data collected from
the users. For example, in [17] and [18], a Markov model is
constructed based on the temporal evolution of the mobility
patterns of the users, and then similarity measures are used for
de-anonymization. Such temporal information in the users’
data, however, is removed when only statistics in the form
of histograms from each user is collected or released. Often
this results in a much lower uniqueness in the information
available about the users; hence matching users’ statistics is,
in general, much more difficult than matching users’ datasets.

Second, we assume that the two sets of the statistical
information are mutually statistically independent. For exam-
ple, in the case of mobility data, this could be because
the two datasets were obtained over different time periods.
We seek to perform the matching by only exploiting the fact
that users’ habits remain stationary and ergodic across the
two datasets. This is in contrast to the approach of works
such as [15], [16], and [24] that perform de-anonymization by
using auxiliary information collected over the same period of
time as the anonymized dataset. In such cases, the auxiliary
information is not independent of the anonymized user data.
In [20], the authors investigate the stability of the set of visited
websites by a user across time. In particular, they record
the set of visited websites by a user during one day. They
use the Jaccard index to measure the similarity between the
sets collected for one user over different days. They show
that the set of visited websites by a user is stable during
a four-week period. A special case of our work is when
the labeled and unlabeled histograms are obtained from the
same source in different time periods. The accuracy of our

Fig. 1. (a) The problem of histogram classification, which is to to classify
the test histogram to the correct class based on the training histograms.
(b) The problem of histogram matching studied in this paper, which is to
simultaneously classify the test histograms to the training histograms subject
to the constraint that each test histogram belongs to a distinct class.

matching algorithm in such cases is dependent on how how
much the statistical characteristics of the data is preserved over
time.

Third, we perform simultaneous matching of the informa-
tion available about all users and not one user at a time.
Simultaneous matching takes into account all the informa-
tion available about the users at the same time, and hence
outperforms matching users one at a time. Simultaneously
taking into account all the information for various attacks has
already been employed in different domains [9], [25]–[27]
and in this paper we employ it in the domain of histogram
matching.

There is also a related line of work on graph de-ano-
nymization, also known as graph alignment [22], [23], [28].
It is the problem of matching the nodes across two similar
graphs, where the only available information is the two graphs.
For example, given the graph of connections between users on
two different social networks (e.g., Facebook and LinkedIn),
it might be possible to match users across the two social
networks by exploiting the fact that the structure of the
underlying graphs are expected to be similar. This problem
is different from that studied in the present paper because, in
our setting, the graph-based connections among the users are
not available.

C. Supervised Learning

The matching task studied in this paper is closely related
to the classification task studied in supervised learning [29],
where the objective is to classify test data to the correct class
based on labeled training data observed under each of the
classes. Nevertheless, a key aspect of our approach that differs
from supervised learning is that we seek to simultaneously
classify test data that belong to a group of users subject
to the constraint that each user belongs to a distinct class
(refer to Figure 1). Thus our solution, originally introduced
in [1] and [2], can be interpreted as a solution to a constrained
classification problem. Our solution is tailored to the setting in
which the available information is in the form of histograms.
It could be possible to extend this solution to more general
kinds of data by combining the matching algorithm presented
in this work with feature extraction techniques in machine
learning [29].
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D. Contributions

Compared to existing works on the user-matching problem,
our work is unique in several respects. Our main contributions
can be summarized as follows:

• We demonstrate that statistics about users’ behaviors
contain a significant amount of information that can be
used as fingerprints to uniquely identify users, by an
adversary who has access to auxiliary information about
the users. Moreover, we show that identification by using
only data statistics can sometimes result in accuracy
higher than existing methods based on more complicated
data models (e.g., Markov Chains).

• We evaluate a provably optimal algorithm for matching
users’ statistics on three datasets of diverse nature and
demonstrate that it outperforms heuristics-based methods.
We address the practical setting of performing the match-
ing across distinct sets of users.

• We compare the performance of our algorithm with
different parameters and under different settings, such as
user configuration and data resolution. We verify that,
in particular, matching users simultaneously leads to a
matching accuracy significantly higher than matching one
user at a time.

• We analyze the performance of the matching algorithm
under different privacy-preserving mechanisms such as
data obfuscation and k-anonymization.

III. PROBLEM STATEMENT AND PROPOSED SOLUTION

We assume that the data belonging to each user in our
system follows some fixed underlying probability law that is
unknown a priori. The probability law associated with each
user is unique and captures the habits of the user. For example,
in the case of web-browsing histories, the probability law
captures the user’s relative preferences for various websites.
Similarly, in the case of shopping data, the probability law
could represent shopping preferences and, in the case of
mobility data, the law could represent the preferences for
visiting various locations. In the basic version of the user-
matching problem, we are given two datasets corresponding
to the same set of users, and the task is to match users across
the two datasets by exploiting the fact that the underlying
probability law of each user is unique. We will later generalize
this to the setting in which the two datasets belong to different
sets of users. Throughout this paper, we focus on the specific
setting in which each dataset reveals only the histograms of
each user’s data and not the data itself. We use the term
adversary to denote the entity that performs the user-matching
task. We use feminine pronouns for referring to the users
and masculine pronoun for referring to the adversary. In the
following, we state the problem mathematically.

A. Problem Statement

Consider a discrete alphabet set S = {S1, S2, . . . , SK } of
size |S| = K and a set of N users labeled 1, 2, . . . , N . The set
S represents the set of all possible values that can be taken by
each instance of the data belonging to each user. For example,
in the case of web-browsing data, S is the set of all websites

that a user could visit, and in the case of mobility data, S is
the set of all possible locations (e.g., regions of a city) that a
user could visit. For the purpose of illustration, in the rest of
this section, we will focus on the example of mobility data.

For a data string s = [s(1), s(2), . . . , s(T )] ∈ ST of
length T , we use �s to denote the histogram (i.e., empirical
distribution) of the string defined as

�s(l) = 1

T

T∑

t=1

I{s(t) = Sl}, l = 1, 2, . . . , K . (1)

In the simplest version of the user-matching problem studied in
this paper, we are given two sets of histograms of the data gen-
erated by each of the users. Let set ψ1 = {�x1, �x2 , . . . , �xN }
represent a set of unlabeled histograms each generated by a
distinct user, and let ψ2 = {�y1, �y2, . . . , �yN } represent a set
of labeled histograms each generated by a distinct user. Here
ψ1 and ψ2 represent the histograms contained in two datasets.
In the case of mobility data, ψ1 is a set of anonymized
histograms of users’ mobility traces that are released, and
ψ2 represents the auxiliary histograms of the users’ mobility
traces, which is obtained by an adversary by tracking the
users over a time period. In other applications, the auxiliary
histograms can be obtained by the adversary by using publicly
available information. In both cases, the adversary is aware
of the users’ identities in the second dataset, and seeks to
decode the identities of the users in the first anonymized set
of histograms. The histograms of each user are assumed to
be statistically independent of those of others. Furthermore,
for each user, the histogram generated by the user in the first
dataset is assumed to be independent of the histogram in the
second dataset. In the mobility example, independence is a rea-
sonable assumption provided that there is no overlap between
the time-periods over which the histograms in ψ1 and ψ2
are computed. For example, ψ1 contains histograms collected
over a week and ψ2 contains histograms collected over the
following week.

In the matching problem, the objective of the adversary is
to determine the true matching between the histograms of
ψ1 and ψ2. We represent the ground truth via an unknown
permutation function,

σ : {1, 2, . . . , N} �→ {1, 2, . . . , N} (2)

such that, in reality, for each i ∈ {1, 2, . . . , N}, the histograms
�xσ (i) and �yi are generated by the same user i . The objective
in the matching problem is, equivalently, to estimate σ .
In Section III-D, we discuss the practical setting where the
histograms in the sets ψ1 and ψ2 are generated by different
sets of users.

B. Potential Approach: Weighted Bipartite Matching

The problem of matching histograms across two sets can
be best visualized as a matching problem on a bipartite graph.
Let G = (V1, V2, E) be a complete bipartite graph where each
vertex in the set V1 (respectively, set V2) is associated with a
unique histogram in the set ψ1 (respectively, set ψ2). There
exists an edge from each element in V1 to each element in V2
and no edges between elements in V1 or V2. Hence we have a
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Fig. 2. The problem of matching histograms across two sets can be visualized
as a matching problem on a weighted bipartite graph. Corresponding to the
N ! different permutations, there are N ! possible maximal matchings on G .
The green edges represents the correct matching associated with σ in (2). The
solution can be obtained via a weighted bipartite matching algorithm on the
graph with appropriate edge weights.

complete bipartite graph where V1 and V2 form the two parts.
Let node j in set V1 and node i in set V2 be associated with
histogram �x j in ψ1 and �yi in ψ2, respectively. The graph G
is illustrated in Figure 2.

A matching in graph G is a subset of edges E of G such that
no two edges in the subset share a vertex. A maximal matching
is a matching such that the addition of any edge to the subset
violates the matching property. Let σm be a permutation of
{1, 2, . . . , N}, for m = 1, 2, . . . , N !. There are N ! possible
maximal matchings on G corresponding to the N ! different
permutations. The matching corresponding to permutation σm

is the matching in which each node i from set V2 is mapped
to node σm(i) in V1; in other words, histogram �yi in ψ2 is
mapped to histogram �xσm (i)

in ψ1. The matching associated
with σ in (2) is shown by green edges in Figure 2.

An intuitive approach for estimating the correct matching
between the histograms is as follows. Define a weight for every
edge in G such that the weight of the edge w j i from j to i
is equal to some appropriately defined distance between the
histograms �x j and �yi , i.e.,

w j i = d(�x j , �yi ) (3)

for some distance measure d(.). Now perform a minimum-
weight maximal bipartite matching on the resultant weighted
bipartite graph. The minimum-weight maximal matching cor-
responds to a configuration where the sum of the distances
between the matched histograms is minimum, hence expected
to provide a good estimate for the correct matching.

The relevant questions that arise here are: What is a good
choice for the distance measure between histograms and does
the choice of measure depend on the nature of the data or can
there be a general-purpose measure? The literature contains
various choices of prevalent distance measures that can be used
in the weight function. For example, in [13] the authors use
the cosine distance between the histograms of the number of
calls of users at different GSM antennas as a distance measure
for analyzing the call behavior of users. The cosine distance
between histograms �x j and �yi is defines as

wcos
j i = 1 −

〈
�x j , �yi

〉
∥∥�x j

∥∥
2

∥∥�yi

∥∥
2

, (4)

where
〈
�x j , �yi

〉
is the dot product between the histograms,

which we denote by wdot
j i ,

wdot
j i = 〈

�x j , �yi

〉 =
K∑

l=1

�x j (l)�yi (l), (5)

and ‖�s‖2 =
√∑K

l=1 �s(l)2. Another heuristic measure often
used in the machine learning community is the l1 distance
between the histograms, given by

wl1
j i = ∥∥�x j − �yi

∥∥
1

=
K∑

l=1

∣∣�x j (l)− �yi (l)
∣∣ . (6)

Alternatively, we can use a similarity measure, such as the
dot product defined in (5) as the weight function in (3).
We then identify the best permutation by using a maximum
weight matching on the resultant weighted bipartite graph.
In the next subsection, we present a new choice of the weight
function and argue that it is a judicious choice.

C. Optimal Solution via Hypothesis Testing Interpretation

The problem of finding the matching between the his-
tograms of ψ1 and ψ2 can be viewed as a multi-hypothesis
testing problem with N ! hypotheses, {H1, H2, . . . , HN !},
where hypothesis Hm corresponds to permutation σm , for
m = 1, 2, . . . , N !. In the hypothesis testing framework, we
study decision rules by using probability of error under the dif-
ferent hypotheses as the performance metric. Typical solutions
to hypothesis testing problems seek the decision rule that leads
to an optimal trade off between various error probabilities
under the different hypotheses. In our prior works [1], [2], we
showed that, when each user’s data is generated by an i.i.d.
process governed by her probability law, an optimal trade-off
between the various error probabilities for the matching
problem is obtained by deciding in favor of the hypothesis
corresponding to the minimum-weight maximal matching on
the bipartite graph G with edge weights

w j i = D(�x j ‖ 1
2 (�x j + �yi ))+ D(�yi ‖ 1

2 (�x j + �yi )). (7)

In (7), D(·‖·) is the Kullback-Leibler divergence function [30],
defined as

D(π‖μ) =
K∑

l=1

π(l) log (π(l)/μ(l)) .

The weight w j i in (7) satisfies 0 ≤ w j i ≤ 2 log(2) and it
is equal to 0 when �x j = �yi and equal to 2 log(2) when
the histograms have disjoint support (i.e., when � l such that
�x j (l), �yi (l) > 0). The exact optimality result is based on an
asymptotic analysis of error probabilities as the length T of
the data strings increases to infinity. It is shown in [1] and [2]
that a variant of this test yields optimal trade-offs between the
error exponents under the different hypotheses. For the sake
of completeness, we provide the intuition behind the choice
of the metric (7) in the following setting. To every user i , we
associate a probability distribution πi ∈ PK−1. The probability
distributions are distinct, which means that πi �= πm for
i �= m, but they are unknown. Suppose that each user i
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generates data in an i.i.d. manner from the distribution πi .
Consider a set ψ1 = {x1, x2, . . . , xN } of unlabeled strings of
length T each generated by a distinct user, and an independent
set ψ2 = {y1, y2, . . . , yN } of labeled strings of length T
each generated by a distinct user. Let i denote the user who
generated strings xσ (i) ∈ ST and yi ∈ ST where σ is given
in (2).

A commonly used solution for multi-hypothesis testing
problems is to identify the maximum-likelihood (ML) hypoth-
esis, which is the hypothesis under which the log-likelihood
of the observations is maximized. In our problem, however,
the underlying probability distributions πi ’s of the users are
unknown, thus the log-likelihood has to be replaced with
the generalized log-likelihood. The first step is therefore to
compute the generalized log-likelihood. For hypothesis Hm

the generalized likelihood is obtained by maximizing the
likelihood function over all possible choices of the πi ’s, and
is given by

L(Hm) = sup
π1,π2,...,πN

N∑

i=1

T∑

t=1

[
log

(
πi (xσm(i)(t))

)

+ log (πi (yi (t)))
]
. (8)

It is known that for an i.i.d.-generated string, the maximum
likelihood estimator of the underlying distribution is given by
the empirical distribution of the string. Hence, it is easy to see
that each of the N terms in the summation (8) is maximized
by setting πi = 1

2 (�xσm (i)
+ �yi ), for i = 1, 2, . . . , N . We can

therefore rewrite (8) as

L(Hm) = −2T
N∑

i=1

{
H(�xσm (i)

)+ H(�yi )

+ D(�xσm (i)
‖ 1

2 (�xσm (i)
+ �yi ))

+ D(�yi ‖ 1
2 (�xσm (i)

+ �yi ))
}
, (9)

where H(.) is the Shannon entropy function [30], defined as
H(π) = − ∑K

l=1 π(l) log (π(l)).
The maximum generalized likelihood solution is given by

Ĥ = arg maxHm
L(Hm). Given the sets of histograms {�x j }

and {�yi }, the term
∑N

i=1 H(�xσm (i)
) + H(�yi ) in (9) is a

constant term that does not depend on the hypothesis Hm .
Hence, by removing this constant term we can show that
Ĥ = arg min Hm

D(Hm), where D(Hm) = ∑N
i=1 wσm(i)i with

w j i given in (7). Hence, Ĥ can be interpreted as the hypothesis
corresponding to the minimum-weight maximal matching on
the complete bipartite graph G in Figure 2 with weights (7).

Although this optimality result was established for i.i.d.
processes, we argue that the solution is a reasonable approach
to use for the matching problem, provided that each user’s
habits follow a probability law that is stationary and ergodic.
In such cases, we expect the histograms of each user in the
two datasets to be similar, hence the solution for i.i.d. data
is well-justified. Therefore, in this paper, we propose to use
the solution given by the minimum-weight maximal matching
on G with the weight metric in (7). We demonstrate, in
our experiments in Section IV, that the matching accuracy

obtained by using (7) is indeed higher than those obtained by
using (4), (5), and (6) under various settings.

D. Generalization to Different Sets of Distinct Users

Denote by U1 the set of users who generate the histograms
ψ1 and by U2 the set of users who generate the histograms ψ2.
So far, we have assumed that the two sets of histograms
ψ1 and ψ2 are generated by the same set of N users;
i.e., U1 = U2 with |U1| = N . In practice, however, the
histograms in sets ψ1 and ψ2 can belong to different sets of
distinct users, that is, U1 �= U2. When U1 �= U2, the adversary
needs to solve the matching problem of identifying the set
U1 ∩ U2 and of identifying the matching between the labeled
and the unlabeled histograms belonging to the users in the set
U1 ∩ U2. Our matching solution and optimality result can be
extended to the case U1 �= U2 [2]. Let the number of users in
sets U1 and U2 (i.e, number of histograms in sets ψ1 and ψ2)
be N and N ′, respectively. We assume that the probability
law of every user in the set U1 ∪ U2 is distinct. Without loss
of generality, we assume that N ′ > N , i.e., there are more
labeled histograms than unlabeled histograms.

First, consider the case U1 ⊂ U2. Here |U1 ∩ U2| = N .
It represents the scenario where for each unlabeled histogram
in set ψ1 there exists an associated labeled histogram in set ψ2
that is generated by the same user, but not vice versa. As before
we construct the complete bipartite graph G = (V1, V2, E),
where |V1| = N , |V2| = N ′, and edge weights are as in (7).
The graph is illustrated in Figure 3(a). A matching between
all the N unlabeled histograms and N out of N ′ of the labeled
histograms is a maximal matching on the graph G. Similarly
to the case where U1 = U2, the optimal solution is given by
the minimum-weight maximal matching in the graph G.

Now consider the more general case where |U1 ∩ U2| =
r < N . Furthermore, let the value of r be known to the
adversary. This case represents the scenario where some
labeled histograms in set ψ2 are not associated with any
unlabeled histograms in ψ1 and vice versa. The graph G for
this case is illustrated in Figure 3(b). If the adversary knows
the value of r , he can try to match only a set of r unlabeled
histograms to the labeled histograms such that the two sets
are as close as possible to each other. In other words, the
adversary can try to choose r out of N unlabeled histograms
and match them to r out of N ′ labeled histograms such that the
summation of the distances between the matched pairs (given
in (7)) is minimized. Such a matching can be obtained from a
minimum-weight matching with cardinality r on the graph G.
This problem is also known as the minimum-cost imperfect
matching [31]. We experimentally evaluate this approach in
Section IV-A4. If the adversary does not know the value of r ,
he can still try to match min{N, N ′ } users. However this leads
to a larger fraction of incorrect matches, as we demonstrate in
the experiments of Section IV-A4.

E. Algorithms and Complexity

An important practical aspect of the user-matching task
is the algorithm for obtaining the matching solution on
the weighted graph G and the associated time-complexity.
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Fig. 3. Matching problem when the histograms in sets ψ1 and ψ2 belong to
different sets of distinct users (i.e., U1 �= U2). Histograms belonging to users
in U1 ∩ U2 are marked by black circles and histograms in the sets U1\U2
and U2\U1 are marked by black triangles and squares, respectively. In (a),
U1 ⊂ U2 with |U1| = N . The proposed solution is given by the minimum-
weight maximal matching of the graph. In (b), |U1 ∩ U2| = r < N . In this
case, the proposed solution is given by the minimum-weight matching with
cardinality r on the graph. The green edges represent the correct matching
between the histograms in the set U1 ∩ U2.

In Sections III-B and III-D, we discussed three different
settings for finding the matching solution between ψ1 and
ψ2 on the graph G: (i) case U1 = U2 depicted in Figure 2;
(ii) case U1 ⊂ U2 depicted in Figure 3(a); and (iii) the case
|U1 ∩ U2| = r < N depicted in Figure 3(b). We require two
kinds of algorithms to identify the solutions:

(A1) Algorithm for identifying the minimum-weight maximal
matching on G,

(A2) Algorithm for identifying the minimum-weight match-
ing with a fixed cardinality r on G.

The matching solution on G can be obtained via (A1) in cases
(i) and (ii), and via (A2) in case (iii). We note that in case
of using a similarity measure such as (5) as the choice of
the weight function in G, the matching solution is identified
via the maximum-weight matching on G. In this case, after
negating all the edge-weight values and shifting them to make
them positive, (A1) and (A2) can be used to identify the
matching solution.

The Hungarian algorithm [32] is a popular and efficient
algorithm for (A1) and can be adapted to solve (A2) as
explained in [31]. In our experiments, we use the Hungarian
algorithm for (A1) and a polynomial-time algorithm, based
on the theory of matroids (see, e.g., [33, Ch. 8]), for (A2).
The time-complexity of obtaining the matching solution on
the graph G by using the Hungarian algorithm is O(|U1||U2||
U1 ∩ U2|); i.e., it is O(N3), O(N2 N ′), and O(N N ′r) for
(i), (ii), and (iii), respectively. In practice, the complexity can
often be reduced significantly. For instance, when histograms
�x j and �yi have disjoint support, then w j i in (7) takes its
maximum value, which is 2 log(2). Then the edge connecting
the corresponding vertices in G can be removed, as it will
almost certainly not be selected in the minimum-weight max-
imal matching. If the resulting graph has E edges, then the
complexity is O(E |U1 ∩ U2|).

In a practical implementation of this de-anonymization
approach, the overall complexity depends on both the

complexity of computing the edge weights in graph G and of
running the matching algorithm (A1) or (A2) on graph G. The
former has complexity O(N N ′ K ) where K is the number of
locations. In Section IV-D we present detailed time-complexity
results of our de-anonymization approach.

An alternative approach for solving (A1) and (A2) is
to use an approximate minimum-weight matching algorithm
on graph G instead of the Hungarian algorithm. Although
finding the exact minimum-weight matching solution has the
advantage of obtaining the maximum matching accuracy, it
brings the inherent computational complexity of weighted
bipartite matching into our solution. This could hinder the
applicability of our solution to very large datasets as the
number of histograms becomes very large. An alternative
approach in dealing with very large datasets is to obtain
an approximate minimum-weight matching solution on graph
G [34]. Although this approach reduces the matching accu-
racy, it makes it possible to find an approximate solution in
reasonable time. For example by using the approach in [34],
a (1 − ε)-approximate matching solution to (A1) in case (i)
can be obtained with complexity O(N2ε−1 log ε−1) instead
of O(N3).

IV. EXPERIMENTAL EVALUATIONS

In this section we compare the performance of the proposed
matching algorithm with other methods for user identifica-
tion. Although numerous identification algorithms exist in the
literature, we perform comparisons primarily with identifi-
cation methods that rely only on histogram information as
the focus of this paper is on such methods. Nevertheless,
in Section IV-C4 we compare our approach with an existing
Markov-based method, for which histograms are only a subset
of the information available to the method. We show that by
using only histograms we can still get better de-anonymization
accuracy than the Markov-based approach that exploits more
information from the dataset. Following the principle of repro-
ducible research, the code for performing user matching and
for generating the figures related to the publicly available data
sets are made available for download at rr.epfl.ch.

We test our matching algorithms on three datasets of
different nature. The first is a call-data records dataset, the
second is a web browsing-history dataset, and the third is a
dataset of GPS mobility traces. In our experiments, a location
represents the coverage region of a GSM antenna, a website,
and a region on the map in the first, second, and third dataset,
respectively. We interpret the sequence of locations visited by
a user as a data string. Thus a user’s histogram is simply
the relative fractions of visits of the user to the different
locations, within the time period considered. For each dataset,
we compute the histograms of the users over two different
non-overlapping time periods to obtain the sets ψ1 and ψ2
described in Section III-A. We then construct the complete
bipartite graphs G shown in Figures 2, 3(a), and 3(b) and apply
the matching algorithms proposed in Sections III and III-D
on this graph with appropriately chosen edge-weights. We esti-
mate the matching accuracy obtained with the different
algorithms by calculating the percentage of common users
(i.e., users in the set U1 ∩ U2) whose histograms are correctly
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Fig. 4. Position of Orange’s GSM antennas in Ivory Coast [35]. The
sub-prefectures are shown by different colors.

matched. We recall that we focus on the privacy from the
perspective of the adversary and not of the users; hence, this
particular choice for notion of accuracy is reasonable.

A. Experiments on Call-Data Records (CDR)

1) Dataset Description and Preprocessing: The call-data
records (CDR) dataset consists of anonymized records of
phone calls between 50, 000 Orange customers (i.e., users)
in Ivory Coast [35], chosen randomly from millions of users.
The dataset covers the two-week period from Monday 9th to
Sunday 22nd of April 2012 and contains the time of every call
made by every user and the identifier of the antenna to which
the user was connected when making the call. Figure 4 shows
a map of Ivory Coast with the positions of 1237 antennas in
the country indicated by black circles [35].

We first split the CDR dataset into two parts, where part
one corresponds to the calls made in the first one-week period
from the 9th to 15th of April, and part two corresponds
to the calls made in the second one-week period from the
16th to 22nd of April. We then restrict our attention only
to users who are active in both weeks, i.e., the users who
made at least one call in each of the two weeks. There
are N = 46986 such users, and overall they connected to
K = 1211 antennas. Each user, on average, made 101.2 calls
and connected to 6.7 different antennas. We consider the cov-
erage region of each antenna to be a location. We disregard the
timing information of the calls and construct the histograms
of the calling patterns of each user in each week. Thus,
the histogram �xσ (i) (respectively, �yi ) of user i in the first
(respectively, second) week gives the relative fractions of calls
made by the user in various locations in the first (respectively,
second) week. The set ψ1 (respectively, ψ2) consists of the
histograms computed over the first week (respectively, second
week).

2) Matching Accuracy With Different Metrics: After com-
puting the histograms, we construct the complete bipartite
graph G shown in Figure 2 and described in Section III-B.
We choose edge weights w j i given in (7) and compute, by
using (A1), a minimum-weight maximal matching on G. The
obtained result is shown in the first row of Table II. Of 46986
users, 9927 are correctly matched, which gives an accuracy
of 21.1%. This means that, given the proportions of calls of
users from different antennas during two consecutive weeks,
we are able to correctly match more than one-fifth of them.

TABLE II

MATCHING ACCURACY OBTAINED ON G IN FIGURE 2 BY USING (A1)
WITH VARIOUS CHOICES FOR THE DISTANCE/SIMILARITY MEASURES

BETWEEN THE HISTOGRAMS DEFINED IN (7), (6), (5), AND (4).
THE PROPOSED WEIGHT FUNCTION CONSISTENTLY YIELDS

THE HIGHEST ACCURACY FOR ALL THREE DATASETS

We also compare the matching accuracy obtained by using the
distance measure (7) with the accuracy obtained by using the
distance measures given in (4) and (6), as well as the similarity
measure of (5). We observe from the table that the matching
accuracy obtained by using the weight function proposed in (7)
is significantly higher than that obtained by using any of the
other heuristic measures. We remark that the naive approach of
deciding on a purely random matching between the histograms
yields, on average, one correctly matched user. The resulting
accuracy (0.002%) is negligible compared to those obtained
in Table II.

3) Effect of Varying the Number N of Users: In this
experiment, we keep U1 = U2 but vary |U1|. We first choose
uniformly at random a subset of the 46986 users considered
in the previous experiment. We denote the subset size by N .
We then choose sets ψ1 and ψ2 to be the histograms associated
with the N chosen users in the first week and the second week,
respectively. We then apply (A1) to the graph G of Figure 2
with different choices of edge weights. For each value of N
we repeat the experiment several times, choosing the subset
randomly and performing the matching. The obtained average
accuracies are shown in Figure 5 as a function of N for each
choice of edge weight. We observe from Figure 5 that as
the value of N increases, the matching accuracy under all
metrics decreases. This is expected because as N increases,
the habits of the users start resembling those of others, and
it becomes more difficult to distinguish the histograms of
one user from those of others. Hence, the matching accuracy
decreases. Furthermore, although the 21.1% accuracy obtained
with the proposed metric of (7) in Table II might seem small
at first, it is associated with a large value of N . If the number
of users were smaller, the accuracy would be higher (e.g., 78%
for 1000 users).

4) Matching Different Subsets of Users: Following the
discussion in Section III-D, here we investigate the practical
scenario where the histograms in sets ψ1 and ψ2 belong
to different sets of distinct users. In other words, in this
experiment U1 �= U2. We first consider the setting in which
we are given histograms of all users on the second week but
only a subset of users on the first week. That is, U1 ⊂ U2, as
depicted in Figure 3(a).

We let ψ2 be the collection of histograms of all the
N = 46986 users on the second week. For ψ1 we use the
collection of histograms of a randomly chosen subset of users
on the first week. We construct G in Figure 3(a) with edge
weights in (7) and run (A1). The resulting matching has a size
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Fig. 5. The obtained average accuracy by using different edge weights as a
function of the number of users N , in the setting where the histograms in sets
ψ1 and ψ2 are generated by the same set of N users (i.e., U1 = U2). The
measures are defined in (7), (6), (4), and (5). The 90% confidence interval is
also shown for our proposed metric. We observe that increasing the number
of users N leads to a reduction in the matching accuracy.

Fig. 6. The average number of correct matches and the average accuracy
as a function of |ψ1| in the setting where we are given histograms of all
users on the second week (i.e., |ψ2| = N ) but only a subset of users on the
first week (i.e., |ψ1| < N ). The leftmost point represents one-by-one user
matching approach, which yields the smallest accuracy.

equal to |ψ1|. The number of correctly matched histograms
in the set ψ1 divided by |ψ1| defines the obtained accuracy.
Figure 6 shows the average number of correct matches and
the average accuracy obtained for different values of |ψ1|,
where the results are averaged over several repetitions of the
experiment. The leftmost point represents one-by-one user
matching approach, which yields the smallest accuracy. From
a user’s perspective, as |ψ1| increases, the adversary has more
information available and thus can obtain a better matching.
Hence, the obtained matching accuracy increases. This obser-
vation has important implications in the perspective of privacy
of anonymized statistics. A user’s privacy depends not only
on how much her trajectory is revealed to the adversary, but
also on how much of others’ trajectories are revealed to the
adversary.

In the second part of this experiment, we consider the setting
where |U1 ∩ U2| = r < N . This is the setting depicted
in Figure 3(b). We choose uniformly at random a set of
histograms from the first week and from the second week,
such that |U1| = |U2| = 5000, and |U1 ∩ U2| = 3750.
We choose these values as an example. We then construct G
in Figure 3(b) with edge weights given in (7). We first
choose 3750 of the unlabeled histograms in U1 and matched
them to 3750 of the labeled histograms in U2, such that
the summation of the distance between the matched pairs is
minimized. We do this by applying (A2) with r = 3750 to G.
Alternatively, we match all the 5000 unlabeled histograms

TABLE III

OBTAINED MATCHING RESULT FOR THE CASE |U1 ∩ U2| = r < N
DEPICTED IN FIGURE 3(B) WITH r = 3750 AND N = 5000. COMPARED

TO THE SECOND APPROACH, THE FIRST APPROACH YIELDS

A SMALLER NUMBER OF CORRECT MATCHES BUT A

LARGER PERCENTAGE OF CORRECT MATCHES

Fig. 7. The obtained matching accuracy (N = 30937) with different choices
of edge weights as a function of time-duration over which users’ statistics
are computed. The measures are defined in (7), (6), (4), and (5). As long as
users’ habits remain stationary and ergodic, by increasing the time-duration
over which statistics are computed, histograms belonging to each user become
closer to each other, and thus the overall matching accuracy increases.

in U1 to the labeled histograms in U2 by applying (A1) to G.
The obtained results are shown in Table III. Although the
first approach yields a smaller number of correct matches
(1340 versus 1672) compared to the second approach, it yields
a larger percentage of correct matches (36% versus 33%).
Therefore, it makes sense to use (A2) instead of (A1) when the
adversary is interested in maximizing his percentage accuracy
(i.e., number of correct matches divided by the size of the
outputted matching).

5) Effect of Varying the Time-Duration of Data Collection:
We now investigate how the matching accuracy is affected by
the time-duration over which users’ statistics are computed.
We consider all users who were active on each Monday of
the two-week period, i.e., users who made at least one call
on Monday 9th and on Monday 16th of April. There are
N = 30937 such users. In the first part of this experiment,
the set ψ1 (respectively, ψ2) corresponds to the histograms
of the number of calls of this N users from the K locations
(i.e., GSM antennas) during the first Monday (respectively,
second Monday). We then construct graph G illustrated in
Figure 2 with different choices of edge weights, and run (A1).
The obtained accuracy, marked on the x-axis by “Mon”, is
shown in Figure 7.

In the second part of this experiment, we increase the time-
duration over which we compute users’ statistics. We compute
the statistics of the same N users during the Monday and
Tuesday of the first week and of the second week. Thus, the
set ψ1 (respectively, ψ2) now corresponds to the histograms of
the number of calls of the N users from the K locations during
the first (respectively, second) Monday and Tuesday. We then
construct the graph G with different choices of edge weights
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and run (A1). The obtained matching accuracy, marked by
“Mon-Tue”, is shown in Figure 7. Similarly, we increase the
number of considered days for every user and repeat the
experiment. These results are shown in the figure as well.
As can be seen from Figure 7, the matching accuracy increases
as we include more days in the dataset. This is because as long
as users’ habits remain stationary and ergodic, by increasing
the time-duration over which statistics are computed, the two
histograms belonging to each user become closer to each other,
and thus the overall matching accuracy increases. Furthermore,
the matching accuracy obtained by using the weight function
proposed in (7) is significantly higher than that obtained by
using any of the other heuristic measures. A standout feature in
Figure 7 is the fact that the incremental improvement in going
from Mon to Mon-Tue is lower than that observed in other
data points in the graph. This is probably because Monday,
April 9th was White Monday, a public holiday in Ivory Coast.
On the following day (i.e., Tuesday 10th of April) the users
made on average only 1.9 calls compared to the average of
7.2 calls per day.

6) Effect of Location Aggregation: In addition to
the removal of user identifiers (i.e., anonymization), an
additional well-known privacy-protection mechanism that
is usually applied to mobility traces is spatial-resolution
reduction, which is known also as location obfuscation or
location aggregation [36], [37]. Here we investigate the effect
of location aggregation on the matching accuracy.

The Orange call-data records dataset also includes a low-
spatial resolution version [35] that contains the time of every
call made by 500, 000 randomly chosen users and the sub-
prefectures (i.e., administrative divisions within the provinces)
of the antennas to which they were connected while mak-
ing the call. The sub-prefectures, shown by different colors
in Figure 4, in general contain multiple antennas, thus the
dataset has a spatial resolution lower than the original dataset.
We consider a two-week period and randomly choose a subset
of size N = 46986 active users out of the total 500, 000 users.
The set ψ1 (respectively, ψ2) corresponds to the histograms
of the number of calls of the N users from each sub-
prefectures (i.e., location) during the first week (respectively,
second week). Users, in total, made calls from K = 237 sub-
prefectures. We then construct the complete bipartite graph G
illustrated in Figure 2 with edge weights given in (7), and
run (A1). There are 2070 correctly matched users, which
gives an accuracy of 4.40%. The obtained accuracy is much
lower than the 21.1% obtained for the same number of
users in the original high-resolution dataset. As antennas are
aggregated into sub-prefectures, users’ histograms become less
distinguishable and, as a result, the matching accuracy drops
significantly.

B. Experiments on Web Browsing History (WBH) Dataset

1) Dataset Description and Preprocessing: The Web His-
tory Repository [38] consists of anonymized detailed web
browsing history of hundreds of users. Users can upload
their anonymized usage data to the repository by using
a Mozilla Firefox add-on. In order to protect the users’
privacy, all URLs and hosts are represented by a global

Fig. 8. The total number of visits (i.e., popularity) to the K websites by all
the users in the two-week period. The figure is plotted in a log-log scale and
the websites are indexed according to their popularity.

unique identifier. The web browsing history (WBH) dataset
contains the browsing history of 472 users. Users participated
in the data collection for different time-periods during the
course of several years. For each user, the dataset contains
every visited URL (with encrypted name), the favicon identi-
fier associated with the URL, and the time of visit to the URL.
The favicon, also known as a shortcut icon, is a small icon
associated with a particular website. Generally, different URLs
associated with the same website (e.g., domain name) have the
same favicon and hence can be mapped to a single website.
For example, if a user visits the URLs “news.yahoo.com”
and “mail.yahoo.com”, the URLs will appear with differ-
ent encrypted names in the database; however, both URLs
will have the same favicon identifier (e.g., “1”). Thus, we
can learn that the user has visited a particular website
(i.e., “yahoo.com”) twice.

We remove from the dataset all URLs that do not have a
favicon. We consider each website (e.g., “yahoo.com”) to be a
location and treat the favicon identifier as the website identifier
for each URL. We then identify the period of two consecutive
weeks that has the maximum number of active users (i.e., users
who visit at least one website during each of the two weeks).
There are N = 121 active users in this two-week period. They
visited K = 83219 different websites, 77935 of which were
visited by not more than one user. Figure 8 shows a log-log
plot of the total number of visits to the websites by all the
users in the two-week period. The y-axis values represent the
popularity of the websites.

We disregard the timing information of the visited websites
and construct the histograms of the browsing patterns of each
user in each week. Thus, the histogram �xσ (i) (respectively,
�yi ) of user i in the first (respectively, second) week gives
the relative fractions of the visits to various websites by
that user in the first (respectively, second) week. The set ψ1
(respectively, ψ2) consists of the histograms computed over
the first week (respectively, second week).

2) Matching Accuracy With Different Metrics: We construct
the graph G shown in Figure 2 from the histograms and
apply (A1) to G with different choices of edge weights. The
obtained results are shown in the second row of Table II.
We observe that the matching accuracy obtained by using the
weight function proposed in (7) is significantly higher than
that obtained by using any of the other heuristic measures.
Furthermore, given the proportions of visited websites during
two consecutive weeks, we are able to correctly match almost
all of them.
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Fig. 9. Matching accuracy for the WBH dataset with N = 102 users by
using different measures when only a subset of the popular websites are
considered. The measures are defined in (7), (6), (4), and (5). The proposed
weight function yields the highest percentage accuracy in the matching. The
popularity of the websites is shown in Figure 8.

3) Considering Popular Websites: One reason we obtain a
high matching accuracy is that some websites are visited by
only a small number of users during the two-week period,
hence it is easy to match those users. We investigate this effect
as follows. We consider all users who visited at least one of
the top 5 popular websites, in Figure 8. There are N = 102
such users. We consider a subset (of size not less than 5) of
the most popular of the visited websites (refer to Figure 8).
We then keep for every user i (1 ≤ i ≤ 102) the elements
of �xσ (i) and �yi that correspond to the considered subset of
websites, and we set the remaining elements equal to zero.
We then re-normalize the remaining histograms such that they
sum to one. We reconstruct, by using different choices of edge
weights, the bipartite graph G in Figure 2 and run (A1) on
the graph. We repeat the experiment by varying the size of the
considered subset of popular websites. The result is shown
in Figure 9. As expected, as fewer websites are considered,
we have less information available for matching; hence the
matching accuracy drops. However, by considering merely the
top 60 most popular websites, we can still correctly match
more than 50% of users. Moreover, as in Table II, the matching
accuracy obtained by using the weight function in (7) is
consistently higher than that obtained by using any of the other
heuristic measures.

C. Experiments on GeoLife (GL) GPS Dataset

1) Dataset Description and Preprocessing: The
Geolife (GL) dataset [39] contains the GPS traces of
182 users collected over five years. The user traces in this
dataset are represented by a sequence of time-stamped points,
each of which contains the information of latitude and
longitude. The trajectories are widely distributed over many
cities in China and even some in the USA and Europe, but the
majority of the data is created in the city of Beijing. In our
experiments, we focus on the trajectories collected within
the 5th ring road of Beijing, which is an area approximately
39 km × 39 km. We first grid this area into 100 m × 100 m
squares. Each square represents a location. Figure 10(a) shows
the considered area, where all the locations with a recorded
GPS position are darkened. We call a particular one-week
period active for a user if she has at least one recorded
GPS position during the week. Figure 10(b) shows the active

Fig. 10. (a) Gridding of the 5th ring road of Beijing into squares of 100 m×
100 m. In area has approximate size of 39 Km × 39 Km. The grids in which
a GPS position is recorded for a user is darkened. (b) The active weeks for
each user during the data collection campaign.

weeks for each user during the data collection campaign.
As can be seen from Figure 10(b), the users contributed to
the dataset during different periods.

We filtered out all users with number of active weeks equal
to 1 and were left with N = 154 users. The users have
on average 15.4 active weeks of data. We split each user’s
trajectories into two parts, where part one corresponds to the
trajectories recorded in the first half of her active weeks,
and part two corresponds to the trajectories recorded in the
second half of her active weeks. We construct histograms of
the locations visited by each user in each week. Thus, the
histogram �xσ (i) (respectively, �yi ) of user i in the first (respec-
tively, second) part gives the relative fractions of recorded GPS
positions from various locations (i.e., grid squares on the map)
in the first (respectively, second) part of her data. The set ψ1
(respectively, ψ2) corresponds to the histograms of the number
of recorded GPS positions of the N users from the K locations
in their first parts (respectively, second parts).

2) Matching Accuracy With Different Metrics: We set the
side length of grid squares equal to 1000 m, and we compute
the histograms and apply (A1) to the graph G of Figure 2
with different choices of edge weights. The obtained matching
accuracy, when the side length of grid squares is 1000 m,
is shown in the last row of Table II. The accuracy obtained
by using the weight function proposed in (7) is significantly
higher than that obtained by using any of the other heuristic
measures.

3) Effect of Spatial Resolution: We repeat the previous
experiment with varying choices for the side lengths of
grid squares. The resulting matching accuracies are shown
in Figure 11 as a function of the side lengths. For very
large side-lengths, the spatial resolution is low, hence the
users’ location traces are easily confused, thus leading to low
matching accuracy. For very small side-lengths, there are too
many locations in the sense that the inherent noise in the
GPS trajectories come into effect, which leads to an over-
fitting of the data, and thus the matching accuracy is again
low. Therefore, the accuracy is maximum for moderate side-
lengths – around 100 m in the figure.

4) Comparison With Existing Work: In [17] the authors
propose a de-anonymization scheme based on a mobility
model called the Mobility Markov Chain (MMC) and applied
it to the GL dataset. In their approach, an MMC is constructed
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Fig. 11. The evolution of the matching accuracy for the GL dataset
(N = 154) as a function of the grid side-length by using different metrics.
The measures are defined in (7), (6), (4), and (5). The accuracy is maximum
for moderate side-lengths.

for each user from her mobility traces observed during the
training phase and during the test phase. Distance metrics
between MMCs are then used to link a user’s trace from the
test phase to the corresponding trace in the training phase.
There are three main differences between their approach and
ours. First, in their approach, the set of locations that a user
visits is learned by applying a clustering algorithm to the
user’s GPS trajectories. The clustering algorithm identifies
the accumulation regions of the user’s trajectory that is then
used to represent the set of locations that the user visits,
whereas in our approach, we partition the map area into
squares that represent the set of locations. Second, they
use the timing information present in the users’ trajectories
to learn the MMCs, whereas in our case we disregard all
the timing information present in the trajectories and only
consider the fraction of visits to different locations. Third, they
de-anonymize the users one-by-one, whereas we simultane-
ously de-anonymize all the users.

In [17], the authors report a de-anonymization accuracy
of up to 45% on 77 users in the setting where the regions
identified from the clustering algorithm have a maximum
radius equal to 500 m. In comparison, our scheme obtains
a de-anonymization accuracy of up to 60% for 154 users in
the setting where the side lengths of grid squares range from
300 m to 1000 m. If we do one-by-one user de-anonymization,
this accuracy drops down to 50%, however it still remains
higher than the 45% reported in [17]. We believe that this is
because by using a complicated and dynamic model such as
MMC, there is a substantial over fitting of the user data to the
model. In [17], a K × K transition probability matrix is fitted
to each trace, whereas in our approach a K -length probability
vector is fitted. This leads to poorer performances because the
model learned from the first dataset does not “generalize” well
to the second dataset.

D. Running Time

Here we present the timing information of performing
the de-anonymization attacks that are given in Table II.
We consider only the case where our proposed metric is used.
The running times are given for MATLAB version 8.3.0.532
running on a Lenovo Thinkpad T410 equipped with Intel i7
processor with clock speed of 2.67 GHz, with 8 Gb of RAM,
and with Microsoft Windows 7 64-bit operating system.

The running time for computing the edge weights
(w j i in (7)) of graph G and for running (A1) on G are
41 min and 432 min, respectively, for the CDR dataset. The
respective numbers for the WBH dataset are 6 sec and 0.1 sec
for computing the edge weights of G and for running (A1)
on G, respectively, The respective numbers for the GL dataset
are 0.9 sec and 0.2 sec for computing the edge weights of G
and for running (A1) on G, respectively. Note that the reported
numbers do not include the preprocessing time, that is, the time
required for computing the histograms from the raw data.

V. PRIVACY ENHANCING MECHANISMS

We demonstrated by our experiments in Section IV that
applying anonymization to histograms of users’ behavior is not
effective in protecting the users’ identities from an adversary
who has access to auxiliary knowledge about the users. In this
section, we discuss additional privacy-preserving mechanisms
that can be applied to the histograms in order to make
it difficult for the adversary to identify the users. These
mechanisms essentially make the released histograms closer
to each other so that there is greater scope for confusion in
distinguishing them from each other, and thus the matching
accuracy declines.

A. Basic Data Coarsening and Data Suppression

Two popular categories of privacy-preserving mechanisms
are data obfuscation and data suppression methods [40].
An example of data coarsening is spatial resolution reduction,
which can be achieved by aggregating different locations
into one. We investigated the latter in our experiments in
Section IV-A6 and in Figure 11. Data suppression is the
process of restricting the released data associated with each
user. For example, in our experiment in Figure 9 for the
WBH dataset, we consider only the subset of popular websites
(i.e., websites that are visited by most users) and publish
the histograms values associated with this subset. Another
example is time-domain restriction, which refers to the process
of limiting the time-period over which the histograms are
computed. We investigated this approach in our experiment
in Figure 7 for the CDR dataset. Another popular privacy-
preserving mechanism is k-anonymization, which we investi-
gate in the next subsection.

B. k-Anonymization via Micro-Aggregation

A released dataset is said to have the k-anonymity property
if the data for each user contained in the dataset is identical to
the data for at least k −1 other users [41]. One mechanism for
guaranteeing k-anonymity for a dataset is by means of micro-
aggregation [42]. In micro-aggregation, users’ data are parti-
tioned into different clusters such that each cluster contains
data of at least k users. The average of the data within each
cluster is computed and then used to replace the original data
values of all the users within the cluster. These new data values
are then released, resulting in a dataset with the k-anonymity
property. In micro-aggregation, the partitioning is done by
using a criterion of minimum within-cluster information loss,
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and it has been shown that finding the optimal partitioning is
NP-hard [43]. In the following, we define micro-aggregation
in mathematical terms, and describe how our matching method
can be adapted to de-anonymize micro-aggregated histograms
of users’ data.

1) Micro-Aggregation: Let
{
C1,C2, . . . ,Cg

}
be a partition-

ing of the users U1 (i.e., the users who generate the histograms
ψ1) into g clusters. That is, U1 = ∪g

q=1Cq and Cq ∩ Cq ′ = ∅
for q �= q ′. We later elaborate on the criteria for choosing the
set

{
Cq

}
1≤q≤g . Furthermore, define k = min1≤q≤g |Cq |, and

�Cq = 1

|Cq |
∑

j∈Cq

�x j , (10)

for 1 ≤ q ≤ g, which represent the average of histograms of
all users within each cluster. In micro-aggregation, instead of
releasing the set of histograms ψ1, the set of micro-aggregated
histograms ψ̃1 = {

�̃x j

}
is released, where �̃x j = �Cq for

j ∈ Cq and for 1 ≤ q ≤ g. It is straightforward to see
that when ψ̃1 is released, every user in set U1 is guaranteed
k-anonymity.

Although micro-aggregation guarantees k-anonymity to the
users, it distorts the released dataset. Specifically, every his-
togram �x j is replaced by �̃x j . The criteria for obtaining{
Cq

}
1≤q≤g in micro-aggregation is to minimize the total

distortion to the data, for a given value of k. In the literature,
the l2-norm is often used to measure the distortion [44],
however because the histograms lie on the probability simplex,
we use the l1-norm to measure the distortion. In particular the
total added distortion, which is also called information loss,
is

∑g
q=1

∑
j∈Cq

∥∥�x j − �Cq

∥∥
1
. The maximum information

loss occurs when all the users are partitioned into a single
cluster, i.e., when g = 1. The information loss in this case is∑N

j=1

∥∥�x j − �x
∥∥

1
, where �x = ∑N

j=1 �x j /N . Consequently,
we can define a normalized information loss measure as
follows:

L =
g∑

q=1

∑

j∈Cq

∥∥�x j − �Cq

∥∥
1

/
N∑

j=1

∥∥�x j − �x
∥∥

1
. (11)

The extreme case, L = 0, represents the scenario where no
micro-aggregation is performed (i.e., g = N) and where all
users are guaranteed 1-anonymity. The other extreme case,
L = 1, represents the scenario where g = 1 and where
all users are guaranteed N-anonymity. For a given value
of k, we seek the partitioning

{
Cq

}
1≤q≤g whose normalized

information loss L given in (11) is as small as possible.
In our following experiment, we use the algorithm proposed
in [44] for performing micro-aggregation, where we adapt the
algorithm to measure the distortion by using l1-norm.

2) Experimental Evaluations: Here we evaluate the effec-
tiveness of the matching algorithm when micro-aggregation
is performed on the unlabeled histograms ψ1. We consider
an adversary who has access to the labeled histograms ψ2
and is interested in matching these histograms to the micro-
aggregated ones in ψ̃1. We consider two different notions of
accuracy for the matching. Let the labeled histogram �yi be

matched to the unlabeled micro-aggregated histogram �̃x j .

Fig. 12. The trade-off between user-level (denoted by U-Lev.) and
cluster-level (denoted by C-Lev.) matching accuracies and the informa-
tion loss L as k-anonymity is guaranteed to the users. As k increases,
more distortion is added to the histograms (i.e., more information is lost)
but the user-level accuracy drops meaning that the users enjoy higher
privacy with respect to the adversary. The cluster-level accuracy how-
ever experiences much less fluctuation. (a) CDR dataset (N = 1000).
(b) WBH dataset (N = 102). (c) GL dataset (N = 154).

According to our first notion, there is a correct match if
j = σ (i), where σ is defined in (2). According to our second
notion, there is a correct match if �̃x j = �̃xσ (i) . The former
notion of accuracy (called user-level) measures the number of
correctly matched users and is the same notion that we used
in our experiments in Section IV, whereas the latter notion
(called cluster-level) measures the number of users whose
k-anonymity class (i.e., cluster) is correctly identified.

For the CDR dataset, we consider the setting described in
Section IV-A3. In particular, we randomly choose N = 1000
out of the 46986 users and construct the sets ψ1 and ψ2.
For the WBH dataset, we consider the subset of the top
K = 100 popular websites and construct the sets of histograms
ψ1 and ψ2 as described in Section IV-B3. For the GL dataset,
we consider the setting described in Section IV-C2 when grid
side-length is set equal to 1000 m.

For each dataset, we perform micro-aggregation with dif-
ferent values of k on the set ψ1. We then perform the
matching between ψ̃1 and ψ2 by using only the pro-
posed metric of (7). The obtained accuracies are shown
in Figure 12(a) and 12(b) and 12(c) for the CDR, WBH, and
GL dataset, respectively. The figures also show the normalized
information loss L defined in (11) and the normalized number
of clusters (i.e, g/N), expressed in percentages. In the extreme
case with k = 1, no micro-aggregation is performed; therefore,
g = N , L = 0, and the user-level accuracy is equal to the
cluster-level accuracy. In the other extreme case, k = N , and
all the released unlabeled histograms are identical; therefore,
the information loss is maximum (L = 1), and while the
user-level accuracy is minimum, the cluster-level accuracy is
maximum. As k increases to about 10, the user-level accuracy
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dramatically drops, hence the users enjoy an increased level of
privacy guarantee, whereas the cluster-level accuracy remains
almost the same for all values of k.

VI. CONCLUSION

We have studied the task of identifying users from the
statistics of their behavioral patterns. Specifically, given an
anonymized dataset in the form of histograms belonging to
a set of users and another independent set of histograms
generated by the same set of users, we have shown that it is
possible to identify the identities of the users in the first dataset
to a surprising level of accuracy by matching the statistical
characteristics of the users’ behaviors across the two datasets.
Thus data histograms act as fingerprints for identifying users.
Our proposed solution can be implemented via a minimum-
weight maximal matching algorithm on a complete weighted
bipartite graph and yields higher accuracy than heuristics-
based methods on three different datasets of different nature.
We have studied the performance of the algorithm over a
wide range of experimental conditions and demonstrated the
effect of various factors, such as the number of users, the
resolution of the data, the duration of the data collection, and
the amount of data suppressed, on the accuracy of the matching
algorithm. We have gained the insight that the simultaneous
matching of the users yields higher accuracy compared to
one-by-one user matching. Furthermore, we have demon-
strated the power of simplicity of statistics: Identification
based only on data statistics can sometimes result in higher
accuracy than existing methods based on more complicated
data models. We have further studied the performance of
the algorithm under privacy-enhancement techniques, such as
k-anonymization, and demonstrated the effect of k on the
matching accuracy. Our results suggest that users can be
identified, to a surprisingly high level of accuracy, even from
the statistics of their behavior. Moreover, using the correct
metric and optimal matching algorithm can lead to a sig-
nificant improvement in matching accuracy over heuristics-
based methods. Privacy enhancement via k-anonymization and
data obfuscation can reduce identification accuracy, but the
accuracy remains non-negligible for moderate levels of data
distortion.
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