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ABSTRACT

We propose a Bayesian approach where the signal struc-

ture can be represented by a mixture model with a sub-

modular prior. We consider an observation model that

leads to Lipschitz functions. Due to its combinatorial

nature, computing the maximum a posteriori estimate

for this model is NP-Hard, nonetheless our converging

majorization-minimization scheme yields approximate

estimates that, in practice, outperform state-of-the-art

methods.

Index Terms— Mixture models, Submodular, MAP

estimate, Compressive sensing

1. INTRODUCTION

The problem of recovering a signal x ∈ R
N from lin-

ear measurements y ∈ R
M is ubiquitous, appearing in

fields ranging from compressive sensing, linear regres-

sion and sparse linear models in machine learning. For

instance, obtaining x from y = Ax + ε, where A is a

M ×N measurement matrix with M < N and ε ∈ R
M

is a random noise vector, is an ill-posed problem with in-

finitely many solutions. It is therefore necessary to have

some prior structural information on the signal x in order

to successfully recover it. In a Bayesian framework, this

is done by placing a prior distribution on the signal that

favors the desired structure.

For example, in compressive sensing, x is assumed

to be sparse, that is only K ≪ N of its components are

non-zero. This allows to circumvent the ill-posedeness

of the problem and achieve guaranteed recovery using

only O(K log(K/N)) samples [1, 2]. However, signals

encountered in practice usually present more elaborate

structures than simple sparsity. Exploiting this structure

can help reduce the number of required samples, decrease

recovery error, and allow better interpretability [3, 4].

We differentiate between two kinds of prior knowl-

edge: a discrete structure on the state (e.g., zero/non-zero,

or small/large) of the coefficients (e.g., the non-zero co-

efficients are grouped in given index sets [5]), and a con-

tinuous structure on the values of the coefficients of the

signal (e.g., the coefficients are sampled from a Gaussian
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distribution with fixed variance). In this paper, we inves-

tigate models that leverage both types of structure.

We consider Bayesian mixture models where the sig-

nal is generated by a mixture of probability distributions.

Mixture models provide flexibility to model real-world

signals, and are often used as priors in practice (cf., Sect.

4.2). In particular, we assume each component xi is in-

dependently drawn from one of two possible distributions

Q0 and Q1, which corresponds to two possible states of

xi. To this end, we introduce for each xi a latent binary

random state variable si ∈ {0, 1} which indicates the dis-

tribution xi was drawn from, i.e., xi ∼ Qsi(θi,si) where

θi,si are the parameters of Qsi . The discrete structure is

encoded by a prior distribution over the state vector s that

ensures that certain state configurations are more likely

than others. In particular, we assume that the discrete

structure can be captured by a prior p(s) = exp(−R(S)),
where R is a submodular set function (cf., Definition 3)

with parameters ψ and S = {i|si = 1} (we will use s

and S interchangeably). Submodular set functions ap-

pear widely in applications, see for example [6, 7, 8, 9].

For simplicity, we assume all hyperparameters in our

model (θi,1, θi,0, ψ) are known. Learning the hyperpa-

rameters is deferred to future work. A graphical sum-

mary of the considered model is depicted in Figure 1, for

the case where the noise ε ∼ N (0, σ2I) (cf., Sect. 4.1).

We propose to estimate x by computing its maximum

a posteriori (MAP) estimate x̂. However, the presence

of the discrete component R(S) in our model renders

the optimization difficult. We present an extension of

the efficient Majorization-Minimization algorithm intro-

duced in [10] that iteratively maximizes the log-posterior

log p(x, s|y), with guaranteed convergence. Our numeri-

cal results show that the proposed algorithm can take full

advantage of all available prior information on the signal,

while for non-truly sparse signals, state-of-the-art meth-

ods are capable of leveraging only a part of it. For sparse

signals, our algorithm can be used to further improve on

convex methods.

2. NOTATION AND PRELIMINARIES

We denote scalars by lowercase letters, vectors by low-

ercase boldface letters, matrices by boldface uppercase

letters, and sets by uppercase script letters. We represent
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Fig. 1: Graphical model

the ground set of N indices by N = {1, . . . , N}. The

i-th entry of a vector x is xi. We now introduce some

definitions that will be used in the following.

Definition 1. A function f : R
N → R is a smooth Lip-

schitz continuous gradient function if ∀ x,x′ ∈ dom(f),
‖∇f(x) − ∇f(x′)‖2 ≤ L‖x − x′‖2, for some global

constant L > 0.

Definition 2. We define the proximity operator of a func-

tion g : RN → R, as proxλg(z) := argmin
x∈RN

1
2‖z −

x‖22 +λg(x), where λ > 0 is a regularization parameter.

Definition 3. A set function R : 2N → R is submodular

iff it satisfies the following diminishing returns property:

∀S ⊆ T ⊆ N , ∀e ∈ N \ T , R(S ∪ {e}) − R(S) ≥
R(T ∪ {e}) − R(T ). If this inequality is satisfied with

equality everywhere, the functionR is said to be modular.

Submodularity is considered the discrete equivalent

of convexity in the sense that submodular function min-

imization (SFM) admits efficient algorithms, with best

known complexity of O(N5T + N6), where T is the

function evaluation complexity [11]. In practice, how-

ever, the minimum-norm point algorithm is usually used,

which commonly runs inO(N2), but has no known com-

plexity [12]. Furthermore, for certain functions which are

“graph representable” [13, 14], SFM is equivalent to the

minimum s-t cut on an appropriate graph G(V, E), with

time complexity1 Õ(|E|min{|V|2/3, |E|1/2}) [15].

3. OPTIMIZATION

In what follows, we denote the likelihood distribution by

p(y|x) = exp(−Ly(x)), where Ly(x) is some suitable

data fidelity term. In our model, we make the following

assumptions:

A1 The loss function Ly(x) = − log p(y|x) is smooth

with L-Lipschitz continuous gradient (cf., Def. 1).

A2 The variables xi are independent given si, i.e.

log p(x|s) = ∑N
i=1 log p(xi|si).

A3 The function G(x|s) = −∑N
i=1 log p(xi|si) has

an easy to compute proximal operator (cf., Def. 2).

A4 The regularizer on the state vectorR(S) = − log p(s)
is submodular (cf., Def. 3).

1the notation Õ(·) ignores log terms

We want to compute the MAP estimate of [x, s].

[x̂, ŝ] = argmax
x,s

p(x, s|y)

= argmin
x,s

− log p(y|x)− log p(x|s)− log p(s)

= argmin
x,s

Ly(x)−
N∑

i=1

log p(xi|si) +R(S) (1)

Unfortunately, computing the MAP estimate (1) is NP-

Hard: for instance the NP-Hard problem of minimizing

the least square with ℓ0 regularization [16] can be cast

as a special case. Here, we aim to efficiently compute

numerically good approximations to the MAP estimator.

Given our assumptions, the objective function in

(1) can be iteratively minimized by the majorization-

minimization scheme of Algorithm 1, see also [10]. The

main idea is to majorize the continuous part Ly(x) +
G(x|s) at each iteration by a modular upper bound, and

then solve the resulting SFM. By assumption A1, the loss

function admits the following quadratic upper bound:

Ly(x) ≤ Ly(x
′) + 〈∇Ly(x

′),x− x′〉+ L

2
‖x− x′‖22

= C(x′) +
L

2
‖x− (x′ − 1

L
∇Ly(x

′))‖22
:= Q(x,x′) (2)

∀ x,x′ ∈ R
N , and where C(x′) depends only on x′.

Therefore, the objective function in (1) is upper

bounded byQ(x,x′)+G(x|s)+R(S). At each iteration

j + 1, we minimize this upper bound with x′ = xj , the

estimate obtained at the previous iteration,

min
x,s

Q(x,xj) +G(x|s) +R(S) = (3)

min
s

min
x

L

2
‖x− (xj − 1

L
∇Ly(x

j))‖22 +G(x|s) +R(S)

Fixing the support s, the minimization with respect

to x reduces to a simple proximity operation, which

by assumption A2 is easy to compute. Let x̂j
s

=
proxG(·|s)/L(x

j − 1
L∇Ly(x

j)) and define M(S) :=
N∑

i=1

(
L

2

(
x̂ji,s − (xji −

1

L
∇iLy(x

j))
)2

− log p(x̂ji,s|si)
)

Then the minimization in (3) is equivalent to:

min
S
M(S) +R(S) (4)

Since M(S) is modular, (4) is a SFM that can be solved

efficiently (cf., Sect. 2). Given the optimal state vector

sj+1, we update our estimate xj+1 by minimizing the

original objective function with s = sj+1, if it can be

done efficiently, otherwise we use xj+1 = x̂
j
sj+1 .

Proposition 1 (Convergence). Algorithm 1 produces a

sequence xj+1 that satisfies p(xj+1, sj+1|y) ≥ p(xj , sj |y)
which implies convergence in the objective value.

The proof of Proposition 1 follows from similar argu-

ments as in [10].



Algorithm 1 MAP-MM algorithm

Input: x0 ∈ R
N

while not converged do

x̂j
s
= proxG(·|s)/L(x

j − 1
L∇Ly(x

j))

sj+1 = argmin
s
Q(x̂j

s
,xj) +G(x̂j

s
|s) +R(S)

xj+1 = argmin
x
Ly(x) +G(x|sj+1)

end while

4. MODELS

In this section, we present some examples of signal priors

that fit in our framework.

4.1. Priors on the noise

By assumption A1, we consider noise priors that lead

to Lipchitz continuous loss functions. For example

when ε is a zero-mean Gaussian noise with covari-

ance σ2I , i.e., p(y|x) = N (Ax, σ2I), the data fidelity

term is the usual least squares loss function Ly(x) =
1

2σ2 ‖y − Ax‖22 + M log(
√
2πσ). Another example is

the logistic loss function, commonly used in classifica-

tion, Ly(x) =
∑M

i=1 log(1 + exp(−yi(aTi x))), where

ai is the i-th row of A, which corresponds to the prior

p(y|x) = ∏M
i=1

1
1+exp(−yi(aT

i
x))

.

4.2. Priors on the continuous structure of signal

We consider each coefficient xi to be the mixture of

two distributions that results in a separable function

G(x|s) with an easy to compute proximity operator

(cf., A2 and A3). The Gaussian and Laplacian distri-

butions are examples of distributions that can be used,

since both have closed form proximity operators. For

p(xi|si) = N (µi,si , σ
2
i,si

), the proximity operation used

in Algorithm 1 reduces to:

x̂j+1
i,s =

L(xji − 1
L∇iLy(x

j)) + µi,si/σ
2
i,si

L+ 1/σ2
i,si

And for p(xi|si) = Laplace(µi,si , σi,si), it becomes:

x̂j+1
i,si

= µi,si+Soft
(
xj− 1

L
∇iLy(x

j)−µi,si , 1/(Lσi,si)
)

where Soft(x, τ) = max(|x| − τ, 0)sign(x) is the stan-

dard soft-thresholding operator.

The mixture of two (or more) Gaussians, i.e Qsi(θi,si) =
N (µi,si , σ

2
i,si

) such that σi,1 > σi,0, is ubiquitous

in literature (See for e.g., [17, 18, 19]), due to their

simplicity and effectiveness in modeling real-world

signals. One can also use a Gaussian-Laplacian mix-

ture, i.e Qs1(θi,s1) = N (µi,1, σ
2
i,1), and Qs0(θi,s0) =

Laplace(µi,0, σi,0) where the Laplacian distribution is

used as sparsity promoting prior [20]. Another example

is the laplacian mixture model, an analogue to the Gaus-

sian mixture model, that is better suited to model signals

with “peaky” distributions (See for e.g., [21, 22, 23]).

4.3. Priors on the discrete structure of signal

We consider priors on the hidden binary variables s that

yield a submodular function R(S), with S = {i|si = 1}
(cf., A4). We provide below 3 examples of discrete struc-

tures, encountered in practice, that satisfy this assump-

tion. In what follows, we refer to coefficients with si = 1
(si = 0) as “large” (“small”) coefficients, since this state

is associated with the distribution of larger (smaller) vari-

ance σi,1 (σi,0) (cf., Sect. 4.2).

4.3.1. Approximately sparse model

The simplest discrete prior on x is the expected num-

ber K of large coefficients, which is the sparsity for sig-

nals whose “small” coefficients are exactly zero. In this

model, each binary variable si is drawn independently

from the same Bernoulli distribution with known param-

eterK/N . We then have p(s) =
∏N

i=1(
K
N )si(1−K

N )1−si

and

− log p(s) =
N∑

i=1

(
si log

(
N −K

K

)
− log

(
1− K

N

))

which is a modular function over the indicator variable s.

WhenK ≪ N , this discrete prior used in conjunction

with the mixture model (cf., Sect. 4.2) captures well the

structure of approximately sparse signals, where “small”

values are not small enough to be ignored. Note that for

σ0 = 0, we recover the standard sparsity model.

Sparse Gaussian mixtures were also considered in

[24] for compressive sensing with approximately sparse

signals, but the proposed method relies on a particular

measurement scheme, while our approach assumes that

the measurement matrix is general.

4.3.2. Markov Tree model

Moving beyond simple sparsity priors, one can consider

priors where each binary variable si is drawn from a

Bernoulli distribution with parameters that depends on

the index i. In particular, we consider the Markov Tree

Gaussian mixture model described in [17] which assumes

that the variables xi are organized over a given tree, and

their values tend to decay from root to leaves. This model

provides a good description of wavelet coefficients en-

countered in many classes of signals [17].

Formally, we have p(s) =
∏N

i=1 B(1, pi), where pi
depend on the level of the variable xi in the tree, so that

− log p(s) =
N∑

i=1

(
si log

(
1− pi
pi

)
− log (1− pi)

)

which is again modular.

4.3.3. Ising model

The Ising model [25] is used to capture the clustering of

“large” coefficients in a signal, a desired structure for ex-

ample in background subtraction in images or videos [7].



The signal structure is encoded on a graph G = (V, E)
where the vertices are the indices V = N and the edges

connect neighboring coefficients. For example, for im-

ages, the vertices are the pixels of the image and edges

connect pixels next to each other, forming the so-called

two dimensional lattice Ising model. The Ising penalty is

then expressed via the following symmetric submodular

function:

RISING(s) =
∑

(i,j)∈E

ι(si 6= sj) (5)

where ι is an indicator function such that ι(si 6= sj) = 1
if si 6= sj , 0 otherwise. A clustered sparse signal can be

modelled by the following prior:

p(s) ∝ exp(−λRISING(S)− ρ|S|)

for certain parameters λ, ρ ≥ 0 that control the level of

sparsity and “clusteredness”.

Remark 1. Note that, since the Approximately sparse

model and Markov Tree model yield modular regulariz-

ers, our algorithm can easily handle more than 2 states

with these priors.

5. SIMULATIONS

We demonstrate our approach on the two state Gaussian

mixture model in conjunction with the 3 discrete priors

described in Section 4.3. An example of a signal gener-

ated by each model is shown in Figure 2.

We consider a linear model, y = Ax + ε, with ε ∼
N (0, σ2I) and A a random normalized Gaussian ma-

trix. We measure the relative recovery error with E =
‖x − x̂‖2/‖x‖2 and the state variables recovery quality

with Q = ‖ŝ − s‖0. We fix σ = 0.01, σ0 = 1 and

σ1 = r, with r = 10 and r = 100. The value of r
controls the sparsity of the signal; a small r leads to sig-

nals not truly sparse (cf., Fig.2), while a large r leads to

sparser signals. We adopt two initializations for our pro-

posed algorithm, MAP-MM starts with x0 = 0, while

MAP-MM-I starts with the estimate of the best convex

competing method. Figures 3, 4, and 5 (left) illustrate the

importance of a correct initialization of MAP-MM in the

sparse case r = 100, where convex approaches capture

well the structure of the signal: starting from their esti-

mate allows MAP-MM to achieve further improvement.

For the non sparse case r = 10, even MAP-MM obtains

excellent performance, as shown in Figures 3, 4, and 5

(middle).

We fix the dimension N = 1024, and vary M from

128 to 1024 measurements. For each M we perform 50

simulations using different randomly generated signals

and measurement matrices.

For recovery of the state variables, we only consider

MAP-MM and Orthogonal Matching Pursuit (OMP)

[26], since all the other algorithms considered cannot

recover the state variables. As a baseline, we compare

against the recovery quality Q achieved by always guess-

ing small (red dashed line). MAP-MM (or MAP-MM-I

for r = 100) always outperforms OMP in terms of re-

covering the correct states (Figs. 3, 4, and 5 (right))

5.1. Approximately Sparse Gaussian mixture model

We consider signals where each si is sampled from

B(0, KN ) with K = 128, then each xi is independently

drawn from N (0, σ2
si) with the same large/small vari-

ances for all i ∈ N . Figure 3 shows the performance of

MAP-MM, OMP and Basis pursuit denoising (BPDN)

[27], as we vary M . OMP only exploits the true number

of large coefficients in x which is clearly not enough for

signals with non-negligible small coefficients (middle).

BPDN uses the true variance of the noise and also ac-

counts for sparsity by way of the ℓ1-norm, yielding better

estimated than OMP, but still worse than MAP-MM.

5.2. Hidden Markov Tree Gaussian mixture model

We consider the Markov Tree Model proposed in [17]

using a binary tree. We assume that the root is always

picked as a “large” coefficient with variance σ2
1 , while

its child is either large with probability pi = 0.9 and

variance σ2
1 , or small with probability 0.1 and variance

σ2
0 . The large and small variances decay according to the

level and pi depends both on the level and the state of its

parent. For details, we refer to [17]. We use the following

parameters: α0 = 0.2, α1 = 0.1, C11 = 0.5, C00 = 2,

γ0 = 5 and γ1 = 0.5. This choice implies that the coeffi-

cients states are persistent across levels and the variances

decay slowly, so that small coefficients at deep levels are

still not negligible.

Figure 4 shows the performance of MAP-MM, OMP,

BPDN, Hierarchical group lasso (HGL) [28] and the

weighted BP algorithm with weights defined as the prob-

ability of being large (WBPDN) [17], as we vary M .

MAP-MM-I outperforms all the other algorithms for

both r = 10 and r = 100. Even though WBPDN and

HGL leverage the tree structure, they do not take into

account the coefficients variances and hence produce

poorer results.

5.3. Sparse Ising Gaussian mixture model

We consider the one dimensional Ising model over a

chain. We sample s from p(s) ∝ exp(−λRISING(S) −
ρ|S|) with the parameters λ = 5 and ρ = 1.0986 that

yield an average sparsity of 113. Each xi is then indepen-

dently drawn from N (0, σ2
si), with the same large/small

variances for all i ∈ N .

Figure 5 shows the performance of MAP-MM, OMP,

BPDN, overlapping group lasso (OGL) [5] with sequen-

tial groups of length 2 and overlap 1 and Fused Lasso



Approximately sparse model Hidden Markov Tree sparse model Ising sparse model

0 100 200 300 400 500 600 700 800 900 1000

−30

−20

−10

0

10

20

30

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

−30

−20

−10

0

10

20

30

Fig. 2: Signals sampled from each model, for σ1/σ0 = 10 and other parameters as described in the text.

(FLasso) [29], as we vary M . MAP-MM-I again out-

performs all the other algorithms. Both OGL and FLasso

promote a clustering and sparsification of the coefficients,

but do not exploit the continuous prior, yielding subopti-

mal performance.

6. CONCLUSIONS

We proposed a Bayesian approach for recovering struc-

tured signals generated by mixtures models with sub-

modular priors and a majorization-minimization iterative

scheme for obtaining the corresponding MAP estimate.

In contrast to convex methods, our mixed convex-discrete

criterion can exploit all available prior information on the

structure of the signals and improve on the convex esti-

mates. We are currently investigating theoretical char-

acterizations of the best achievable performance of this

approach.
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Fig. 3: Performance of MAP-MM compared to other state-of-the arts algorithms for the approximately sparse Gaussian mixture model, in terms

of signal recovery error E for σ = 0.01, r = 100 (right) and r = 10 (middle), and in terms of state recovery quality Q for σ = 0.01, r = 10 (left).

The average number of large coefficients over the 50 simulations is 129.
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Fig. 4: Performance of MAP-MM compared to other state-of-the arts algorithms for the Hidden Markov Tree Gaussian mixture model, in terms of

signal recovery error E for σ = 0.01, r = 100 (right) and r = 10 (middle), and in terms of state recovery quality Q for σ = 0.01, r = 10 (left).

The average number of large coefficients over the 50 simulations is 27.

200 300 400 500 600 700 800 900 1000

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

 

 

MAP−MM

MAP−MM−I

BPDN

OMP

OGL

Flasso

200 300 400 500 600 700 800 900 1000

10
−1

10
0

Number of measurements, M

N
or

m
al

iz
ed

 e
rr

or
, E

 (
lo

gs
ca

le
)

 

 

MAP−MM

MAP−MM−I

BPDN

OMP

OGL

Flasso

200 300 400 500 600 700 800 900 1000

820

840

860

880

900

920

940

960

980

1000

1020

Number of measurements, M

S
ta

te
 r

ec
ov

er
y 

qu
al

ity
, Q

 

 

MAP−MM

MAP−MM−I

OMP

All small Guess

Fig. 5: Performance of MAP-MM compared to other state-of-the arts algorithms for the sparse Ising Gaussian mixture model, in terms of signal

recovery error E for σ = 0.01, r = 100 (right) and r = 10 (middle), and in terms of state recovery quality Q for σ = 0.01, r = 10 (left). The

average number of large coefficients over the 50 simulations is 113.


