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Abstract

Can a machine learn how to segment different objects in real world images without
having any prior knowledge about the delineation of the classes? In this paper, we
demonstrate that this task is indeed possible. We address the problem by training
a Convolutional Neural Networks (CNN) model with weakly labeled images, i.e.,
images in which the only knowledge assumed on each sample is the presence or
not of an object. The model, trained in an one—vs-all scheme, learns representa-
tions that distinguish image patches that belong to the class of interest from those
that belong to the background. The per-pixel segmentation is obtained by apply-
ing the model to the patch surrounding the pixel and assigning the inferred class
to that pixel. Our system is trained using a subset of the Imagenet dataset. The
experiments are validated on two challenging classes for segmentation: cats and
dogs. We show both quantitatively and qualitatively that the model achieves good
accuracy results for these classes on the Pascal VOC 2012 competition, without
using any prior segmentation knowledge. This model is powerful in the sense that
it learns how to segment objects without the use of costly fully-labeled segmenta-
tion datasets.

1 Introduction

Object segmentation, i.e., the process of selecting a set of pixels of an image such that all the pixels
in the set belongs to a given object, is one of the fundamental problems in computer vision. Its main
difficulty consists on the fact that each object in the world generates an infinite number of images
as the position, pose, lightning, texture, geometrical form and background varies. An useful natural
image segmenter might take all those variations into account and be able to segment a given object
independent of them.

Much of the progress in the field was achieved by efficient feature descriptors for images such as
SIFT/HOG features, bag-of-word image representations [1, 2] or deformable part models [3, 4].
Another technological advance that enabled improvement in recognition systems in natural images
is the increasing computing power of machines and larger — and more realistic — datasets providing
annotation for training, such as Pascal VOC [5] and Imagenet [6].

A different paradigm for object recognition systems that has been around for a while are the so called
Convolutional Neural Networks (CNN) [7] models. More recently, with the increasing success
of deep learning models, the interest for CNN in vision tasks has been reborn. They have been
applied in different computer vision areas in the last few years, usually achieving state-of-the-art
results or breaking records: 1000-category Imagenet object classification [8, 9] and detection [10],
pedestrian detection [11], complete scene labeling [12, 13], multi-digit recognition [14] and face
verification [15]. CNN main disadvantage, however, is the need of large number of fully-labeled
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Figure 1: Cats and dogs present unconstrained variation in shape and pose, as well as a huge intra-
class variation. These characteristics pose a particular challenge for segmentation.

data for training. Some tasks (e.g. segmentation) are much more expensive to annotate than others
(e.g. classification), as can be seen on the different size of PascalVOC and Imagenet datasets.

In this paper, we propose a model based on CNN capable of segmenting objects that is able to (hope-
fully) circumvent the issue of fully-annotated data. Instead of using any segmentation (or bounding
box) annotation for the training, the model is trained assuming only weakly labeled images, i.e, im-
ages in which the sole annotation is the class of the main object present on them. The main idea is to
learn how to segment given objects by simply training a model, in an end-to-end manner, that takes
as input raw data (RGB natural image) with a label of the object. This is achieved by hierarchically
learning features that differentiate the class of interest and the background. Our model is trained on
a large subset of the Imagenet dataset and validated on the Pascal VOC 2012 dataset (which contains
segmentation annotation and thus allows quantitative analysis).

We choose two different classes to validate our model: cat and dog. These classes represent a
particular challenge for classical segmentation models, as they consist of very flexible, deformable
and often occluded objects. To make it even more challenging, these classes also have an enormous
intra-class variation (Figure 1).

The interest of this problem is to learn where a given class of object is located in an image with no
prior knowledge of where or how the object is. The task can be formulated as a multiple instance
learning (MIL) [16]. In this formulation, no information of where the object is located is given
during training. Our system learns the visual features that are present in positive images but not in
negative images.

The paper is organized as follows. Section 2 presents related works. Section 3 describes the pro-
posed strategy. Section 4 presents the results of our experiments on Pascal VOC 2012 dataset.
Finally, Section 5 provides a conclusion of the paper.

2 Related Works

Parkhi er al [4] study a problem similar to ours: the segmentation of both cat and dog classes.
The authors propose to use template-based model to detect a distinctive part for the class, followed
by detecting the rest of the object via segmentation on image specific information learned from that
part. Although the final objective of their work is similar to ours, their model differentiates from
ours in the sense that we do not consider any annotation to achieve our results.

After the important publication of Krizhevsky ez al [8], an increasing interest for CNN models in ob-
ject recognition applications has emerged. All these models share the advantages and disadvantages
of typical CNN models. Sermanet et al [10] present the very powerful Overfeat feature extractor.
It consists of an improvement over [8]’s CNN model that is suitable to object classification and
localization by learning to predict object boundaries. The authors achieve good results for both
classification and localization. Their model is trained and validated on Imagenet and uses object
localization information for a completely supervised training. Our approach differs from theirs in
three important aspects: (i) we attack the much more fine-grained problem of object segmentation
instead of localization, (ii) we do not use any object localization information during the training and
(iii) we validate our model in a completely different dataset.

Oquab et al [17] shows how image representation learned from a large-scale labeled dataset (Im-
agenet) can be efficiently transfered to a different visual recognition task with lesser number of



training data (Pascal VOC). On the same direction, Girshick et al [18] shows that a model trained
for classification on Imagenet can be adapted for object detection in Pascal VOC. Their results are
achieved by combining techniques for generating bottom-up region proposals with CNNs. The au-
thors achieve state-of-the-art performance in object detection. They also achieve competitive results
on the segmentation task with some modifications in their model.

Like us, both [17, 18] train a model on a large-scale dataset and test them on a smaller one. Unlike
us, both train a network for classification on Imagenet (very similar to [8]) and modify it to adapt
to the Pascal VOC taking into account the extra information of localization of object on the new
dataset. These models consist of complete supervised tasks. On the other hand, we train our model
for object segmentation solely on Imagenet (and considering only its weak label). No knowledge
of object localization in Pascal VOC is used during the training. The second dataset is used only to
validate the segmentation results.

In [19], Simonyan et al address the visualization of image classification models, learned using CNN.
One of the two proposed visualization techniques computes a class saliency map (specific to a given
image and class), which can be used for weakly supervised object segmentation, with the use of
GraphCut color segmentation. This approach is similar to ours in the sense that the system learn to
segment objects despite being trained on image labels only. Unfortunately this algorithm was not
evaluated on public benchmarks, making a direct comparison difficult.

Finally, Song et al [20] also consider a problem vaguely similar to ours: localizing objects with
weakly labeled data. However, they attack the simpler problem of detection instead of segmentation.
Their model combines discriminative submodular cover problem for automatically discovering a set
of positive object windows with a smoothed latent SVM formulation. They demonstrate relative
improvement compared to previous weakly supervised object detection approach on Pascal VOC
2007.

To the best of our knowledge, this work is the first attempt to directly segment objects with only
weakly supervised data.

3 Proposed Method

Convolutional Neural Network models are very powerful types of algorithms when it comes to
learning representations. Its main downside, however, is that a large amount of data is necessary for
these models to learn.

Among computer vision tasks, object segmentation is arguably the most expensive to label, as it
requires tedious labor to precisely annotate different objects in different images at a pixel scale. On
the other hand, simple object labeling is a much cheaper task. As a result, we can easily find very
large scale dataset of labeled images (such as Imagenet), but not yet a large enough dataset for object
segmentation.

Motivated by these previous remarks, we propose a deep learning system based on CNN that is able
to segment objects and is trained only on weakly labeled data. The model is considerably simple and
has a straight end-to-end training, unlike most of other approaches, which use engineered features,
object detection results and graph cut algorithms to achieve segmentation.

As the objective of our model differs from traditional use of CNN in image tasks ([8, 10, 17]), we
describe in detail our approach. We will start by describing the data used for train, then the training
procedure and the approach for pixel inference in complete images during the test phase.

3.1 Data

We demonstrate the efficiency of our approach by training the model in two distinct classes, namely
cats and dogs. These classes represent a particularly challenging problem in object segmentation.
While they have a characteristic texture and anatomical format, they can appear in many different
poses, possibly highly occluded, and also possess a very large intra-class variation.

We create a large training dataset from Imagenet containing images of both classes and also a third
class labeled as background — set of images in which neither of the classes appear. This is
important for the model to distinguish in a pixel level the difference between the foreground and
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Figure 2: Each training image is scaled and cropped such that its final size is 300 x 300. The image
is divided into IV (in the example, N = 9) parts and a patch is randomly extracted from each part to
be fed to the network.

the background. We consider all the sub-classes located below the class cat (wnid n02121620, 30
sub-classes and a total of 37345 images) and dog (wnid n02084071, 164 sub-classes and a total of
187775 images) in Imagenet. For the background, we choose a subset of Imagenet consisting of a
total of around 1.2M images not containing the classes of interest.

As it is typical for convolutional network models, the size of the input image must be fixed. The
variable size images from Imagenet are therefore down-sampled to a fixed 300 x 300 resolution.
In case of rectangular images, the image is rescaled such that the shorter dimension has size 300
and then cropped out the central 300 x 300 patch. To increase even more the dataset, jitter is
added to the image every time it is used during the training. These jitters consist of horizontal flip,
rotation, scaling, brightness and contrast modification. Each image is then normalized so that their
pixel values are in the range [—1, 1] for each RGB channel. No other preprocessing is done during
training.

3.2 Training

We train one architecture for each class in the one-vs-all scheme. Each model is trained to segment
one specific class. We give the weak label y = 1, if the object appears in the image and 2 otherwise.
Although each class is trained separately, the model for both architecture is identical.

The main idea of our approach consists on training a network to differentiate pixels as being either
from foreground (cat or dog class) or background. As no segmentation (or bounding box) infor-
mation is used, the model is trained in a way that it learns how to spot the differences between the
foreground and the background class in RGB patches.

To achieve this objective, at each training step, the model is fed with a set of IV different patches
from an image x, and its weak label (y;, € {1,2}). In order to guarantee that at least one of the
patches contains a part of the foreground, they are extracted from the image in a way that they do
not intersect and cover 3%106 ma;foignum area of the image. First, the 300 x 300 image is divided into

N sub-images of size TN X UN The patches are randomly extracted (uniform distribution) from

each sub-image (see Figure 2).

The architecture of our network is illustrated in Figure 3. It is composed of five learning layers: three
convolutional layers (responsible for hierarchical feature learning) and two fully-connected layers
for classification. The final score of the network is computed by combining the output of each patch
through a log-sum-exp (LSE) function, Ise : RN — R, define as

N
lse(xh ,SUN) = IOg(Z 63?1,) =x,+ 10g<1 + Zexi—ac*) (1)

i=1 it
where x, = max; x;. The right hand side trick is done to avoid the numerical overflow

Ise(x1, ..., £ ) — oo in the case where one score is much bigger than the rest.
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Figure 3: Diagram of the segmentation system. N patches are randomly extracted from the image
and fed to the system. After three convolutional and two fully-connected layers, the system outputs
a N x 2 matrix F which contains the score of the foreground and background for each patch. This
matrix passes through a column-wise LSE function that outputs one score per class. The model is
trained by maximizing the log-likelihood of the score in the LSE space through SGD.

The LSE function is increasing with respect to each argument, and convex. This function can be
seen as a differentiable soft version of the max function. In the limit case that z, > x;,i # *, lse
— max.

The intuition behind choosing LSE over max lies in the fact that, in a given training image, the
class of interest might be present in more than one patch (e.g. in figure 2, the cat is located in
various patches). LSE allows that all patches containing the object receive similar gradient during
backpropagation rather than encouraging only one patch. For example, if two patches are equally
likely to contain the class, they receive the same gradient.

We now describe in detail each component of the system.

The first part of the network is responsible for learning the appropriate features for distinguishing
a foreground patch from a background patch. It follows the regular CNN architecture: a series
of convolutional, hyperbolic tangent non-linearity and (optional) max-pooling layers. Our proposed
model consists of a stack of three blocks: the first two made of a convolutional, an hyperbolic tangent
and a max-pooling layer and the last just a convolutional and non-linearity layer. The network
receives as input N RGB patches of fixed size, X (a tensor of dimension N x 3 X sz X sz, where
sz is the size of the patch which depends on the filter and pooling sizes, see Section 4). The output
of the feature extraction layer Y ;(X) can be written as

Y ;(X) = tanh(W?H? + b?)
H? = tanh(pool(W?H! 4 b?)) (2)
H' = tanh(pool(W'X + b'))

where (W', b?) are the parameters of the i'" convolutional layer, pool is the max-pooling operation
and tanh represents the hyperbolic tangent. The two fully-connected layers are then computed as
Y1 = tanh(W*Y ¢ (x) + b?) and F = tanh(W5Y % + b%). The output F is a N x 2 matrix,
in which each row represents a patch and the columns represent the score for each class (foreground
and background).

The final score of the network is computed by applying a LSE function at F., the ¢ column of F

N
fo=1se(F1,....Fyo) =log(}_eFir) 3)
=1

where f. represents the final score of class ¢ (¢ = 1 for foreground or ¢ = 2 for background) for the
training sample xy.

Finally the scores are transformed into probabilities by applying a soffmax function p(c|f1, f2) =
efe /(eft +-ef2). The model is trained by maximizing the log-likelihood of the log-sum-exp result for



each patch using the cross-entropy criterion. More precisely, the parameters (W, b) of the network
are learned in an end-to-end way by minimizing the negative log-likelihood over the training data

L(W.b) = = "log(p(ykl ff, £5)) 4)

where yy, represents the weak ground truth label of the training sample xj, (y;, = 1 if class of interest
is present, and 2 otherwise) and, ff and f5 represent the score of the training sample in the LSE
space. The minimization is achieved with backpropagation and stochastic gradient descent (SGD)
algorithm [21], considering a fixed learning rate.

After the training is finished, a second round of training was initialized to decrease the number of
false positives. To this end, the segmentation model was applied to a new set of data. We infer the
results (see Section 3.3) on the validation set and include all the patches in which the central pixel
was falsely labeled as positive to the dataset. On the retraining, the positive sample remain the same
while the negative samples were randomly chosen (with a probability of 0.5) between the original
negative samples (image not containing the class) and IV patches from the false positive labeled set.
Note that a retraining using the misclassifications of a previous training has been shown in [22] to
improve the classifier (for face detection application) .

3.3 Inference

Given a patch xy, (; ;) of a test image x;, with central pixel (4, j), the network makes a first label
prediction for the central pixel as

~ {]—a if p(C = 1|Xk,(i,j), (Wab)) >0 (5)

Yr.(ig) = 2, otherwise

where 6 (0 < 6 < 1) is a confidence threshold for the classification. If the inferred output at a
particular pixel is bigger than the threshold, it is classified as foreground object.

Extracting patches x;, (; ;) and then feeding them through the network for all pixels of a test image
is computationally very inefficient. We consider the approach proposed by [13] for an efficient
inference throughout the whole test image.

Predicting the class of each pixel independently from its neighbors yields noisy predictions. We
impose local regions of the same color intensities to be assigned the same label. Following the
method proposed by [23], we generate superpixel segmentation of the image. To each superpixel k,
we assign the class in which the majority of pixels are labeled. Figure 4 shows this procedure and
illustrates the improvements of this smoothing technique.

Inference B—I@l—*

*

Figure 4: Example of inference in a test image. First, a per-pixel inference is made. The left image
in the center shows the output score transformed into the probability of pixel (¢, j) belonging to
foreground (warm color means higher probability). The right one shows the per-pixel inference
result. In parallel, a superpixel segmentation is computed to exploit natural contours of the image.
Finally, the per-pixel inference is smoothed to give the final output. In green are the pixels labeled
as ‘cat’ while the background is kept with the original color.

Per-pixel




Table 1: Architectures used in our experiments.

LSE; LSE;
Layer 1 2 3 4 5 1 2 3 4 5
Stage conv+max conv+max conv  full full conv+max conv+max conv  full full
# Hidden Units 40 80 160 320 2 40 80 160 320 2
Filter size 8 x8 3x3 5x5 - - 6 x6 3x3 Tx7 - -
Conv. stride 1x1 1x1 1x1 - - 1x1 1x1 1x1 - -
Pool. size 4 x4 4x4 - - - 8 x8 2x2 - - -
Pool. stride 1x1 1x1 - - - 1x1 1x1 - - -
Input Size, sz 95 x 95 22 x 22 5x5 1x1 1x1 133 x 133 16 x 16 Tx7 1x1 1x1
# Patches, N 9 4
# Parameters 408922 886872

4 Experiments

Experimental Setup We consider two different network architectures for our experiments: LS E;
and LSFE,. Both models are as described in Section 3.2, differentiating only on the number of
patches extracted per training image, IV, and the size of the convolution filter and max-pooling size
(and therefore the size of the input patches). Table 1 describes these architectures. Each model is
validated in the two classes previously mentioned. The choice of these models represent the trade-
off between two very important parameters: the number of patches that the model takes as input at
each training step and the context seen by each patch. We conclude from the results that the number
of patches has a more important role in this task than the context captured by each patch.

For benchmark comparison, we also show results for a simpler version of the model in which the
LSE layer is replaced by a max operation (models max; and mazs). The difference between these
two sets of architectures is that in the max layer, the forward operation consist of applying the max
operation in each row of F and the backpropagation is realized only on the maximum value of each
column of F (for each positive training sample). Results show that, as expected, the softer Log-sum-
exp models perform better than the max models. This improvement is due to the fact that LSE takes
into account all the patches containing the object of interest instead of just one.

Design architecture and hyper-parameters were chosen
considering the training data of the Pascal VOC 2012
dataset. For all the experiments, the weights in the net-
work were randomly initialized from an uniform distribu-
tion of mean zero and variance o = \/Fn where m is the
fan-in. We considered a fixed learning rate of A = 0.001.
The confidence threshold was selected through a grid
search (Figure 5 shows how the AP varies in function of
the confidence threshold). We pick 6 = 0.6 for cat and
f# = 0.8 for dog. All the experiments were conducted
using Torch7'. 0

35
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20

Average Precision [%)]

LSET1, cat ——
LSE2, cat ---e---
LSE1, dog
LSE2, dog

0 0.1 02 03 04 05 06 07 08 09 1
Confidence Threshold 6

Experimental Results Table 2 shows our results on the

complete Pascal VOC 2012 validation dataset (total of Figure 5: Average precision score vs.
1449 images, containing 132 cats and 150 dogs). The the confidence threshold 6 for each ar-
performance of the segmentation task for each class is chitecture and each class.

measured by two metrics: (i) the per-class accuracy and

(ii) the mean average precision metric (AP). The former

is defined by the ratio of correct classified pixels of each class (foreground and background) and the
latter is defined as the number of correctly labeled pixels of that class, divided by the number of
pixels labeled with that class in either the ground truth labeling or the inferred labeling?.

We also note that our approach achieves good results for the classification task (the number of images
correctly classified according to its weak label). The classification result is done by forwarding N

'nttp://torch.ch
ZAP _ TruePositive
" TruePositive+FalsePositive+FalseNegative




Table 2: Per-class accuracy (%) for foreground/background and segmentation average precision (%)
for each architecture and each class on VOC 2012 validation set.

cat dog
foreground background APy foreground  background APy,
maxg 32.29 99.02 2291 56.66 96.28 19.24
LSE, 49.25 98.96 34.36 49.33 97.97 21.15
max; 40.46 97.93 21.70 40.96 96.89 16.52
LSE, 56.50 97.74 29.07 43.12 96.89 17.65

patches through the system and taking the maximum score as the image-level label (foreground or
background). We achieve a classification score of 92.48% for cat and 85.70% for dog with the
LS FE, architecture.

The winning models of the Pascal VOC 2012 segmentation competition® achieve average precision
accuracy of 53.5%/42.2% [24] and 49.0%/47.4% [25] for cat/dog classes, respectively. Note that
these models, different from ours, were trained with fully annotated segmentation data. Figure 6
illustrates the output of our system in images containing the two classes despite different fur color,
variety of posture, occlusion, etc.

Figure 6: Cat and dog segmentation results. At each column, we show the original image, the output
of the model in terms of probability of each pixel belonging to the class and the final result smoothed
with superpixel.

5 Conclusion

We propose an innovative framework to segment objects with weakly supervision only. Our al-
gorithm is able to distinguish, in a pixel level, the differences between a class of interest and the
background without assuming any prior knowledge about segmentation. This is an interesting result
as one might circumvent the necessity of using the very costly segmentation datasets and use only
image-level annotations (which is extremely easier to acquire). We achieve promising results on a
subset of classes of Pascal VOC 2012 segmentation competition consisting of two very challenging
classes for the problem of segmentation. Moreover, our model is trained in a straight end-to-end
fashion, considering as input only RGB raw pixels (contrary to competitive models, which use dif-
ferent features, object detection results and graph cut algorithms to achieve segmentation).

Shttp://host.robots.ox.ac.uk:8080/leaderboard/main4 .php
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