
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Reconstructing Curvilinear Networks using
Path Classifiers and Integer Programming

Engin Türetken, Fethallah Benmansour, Bjoern Andres, Przemysław Głowacki,
Hanspeter Pfister, Senior Member, IEEE , and Pascal Fua, Fellow, IEEE

Abstract—We propose a novel approach to automated delineation of curvilinear structures that form complex and potentially
loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using
discriminatively-trained classifiers that are both robust and generic enough to be applied to very different imaging modalities.
We then present an Integer Programming approach to finding the optimal subset of paths, subject to structural and topological
constraints that eliminate implausible solutions. Unlike earlier approaches that assume a tree topology for the networks, ours
explicitly models the fact that the networks may contain loops, and can reconstruct both cyclic and acyclic ones. We demonstrate
the effectiveness of our approach on a variety of challenging datasets including aerial images of road networks and micrographs
of neural arbors, and show that it outperforms state-of-the-art techniques.

Index Terms—Curvilinear networks, tubular structures, curvilinear structures, automated reconstruction, integer programming,
path classification, minimum arborescence.

F

1 INTRODUCTION

N ETWORKS of curvilinear structures are pervasive both
in nature and man-made systems. They appear at

all possible scales, ranging from nanometers in Electron
Microscopy image stacks of neurons to petameters in dark-
matter arbors binding massive galaxy clusters. Modern
imaging systems can produce vast amounts of data featuring
them. However, in spite of many years of sustained effort,
fully automated exploitation remains elusive, especially
when the images are noisy and the linear structures exhibit
a complex morphology.

As a result, practical systems require extensive manual
intervention that is both time-consuming and tedious. For
example, in the DIADEM challenge to map nerve cells [2],
the results of the finalist algorithms, which proved best at
tracing axonal and dendritic networks, required substantial
time and effort to proofread and correct [3]. Such editing
dramatically slows down the analysis process and makes it
impossible to exploit the large volumes of imagery being

• Engin Türetken is with the Computer Vision Laboratory, EPFL, Lau-
sanne, and the Swiss Center for Electronics and Microtechnology
(CSEM), Neuchâtel, Switzerland.
E-mail: engin.tueretken@alumni.epfl.ch

• Przemysław Głowacki and Pascal Fua are with the Computer Vision
Laboratory, EPFL, Lausanne, Switzerland.
E-mail: przemyslaw.glowacki@epfl.ch, pascal.fua@epfl.ch

• Fethallah Benmansour is with Roche Pharma Research and Early
Development, Roche Innovation Center, Basel, Switzerland.
E-mail: fethallah.benmansour@roche.com

• Bjoern Andres is with the School of Engineering and Applied Sciences,
Harvard University, Cambridge, US.
E-mail: bjoern@andres.sc

• Hanspeter Pfister is with the Visual Computing Group, Harvard Uni-
versity, Cambridge, US.
E-mail: pfister@seas.harvard.edu

produced for neuroscience and medical research.
Part of the problem comes from the fact that scoring

paths by integrating pixel values along their length, as
is done in many automated methods, often fails to ade-
quately penalize short-cuts and makes it difficult to com-
pute commensurate scores for paths of different lengths.
An additional difficulty comes from the fact that many
interesting networks, such as those formed by roads and
blood vessels depicted by Fig. 1 contain loops, which few
existing methods attempt to model explicitly. Furthermore,
even among structures that really are trees, such as the
neurites of Fig. 1, the imaging resolution is often so low
that the branches appear to cross, thus introducing several
spurious cycles that can only be recognized once the whole
structure has been recovered. In fact, this is widely reported
as a major source of error [4], [5], [6], [7], [8], [9].

In this paper, we attempt to overcome both of these lim-
itations simultaneously by formulating the reconstruction
problem as one of solving an Integer Program (IP) on a
graph of potential tubular paths. We further propose a novel
approach to weighting these paths using discriminatively-
trained path classifiers. More specifically, we first select
evenly spaced voxels that are very likely to belong to the
curvilinear structures of interest. We treat them as vertices
of a graph and connect those that are within a certain
distance of each other by geodesic paths [10], to which we
assign informative scores based on an original classification
approach. We then look for a subgraph that maximizes a
global objective function that combines both image-based
and geometry-based terms. Unlike earlier approaches that
aim at building trees, we look for a potentially loopy sub-
graph while penalizing the formation of spurious junctions
and early branch terminations. This is done by letting graph
vertices be used by several branches, thus allowing cycles

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148007003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Road Networks Blood Vessels Neurons Axons Dendrites and Axons
(a) Aerial (b) Confocal (c) Brightfield (d) Confocal (e) Brainbow

Fig. 1. 2D and 3D datasets used to test our approach. (a) Aerial image of roads. (b) Maximum intensity projection (MIP)
of a confocal image stack of blood vessels, which appear in red. It features cycles created by circulatory anastomoses or by
capillaries connecting arteries to veins. (c) Minimum intensity projection of a brightfield stack of neurons. (d) MIP of a confocal
stack of olfactory projection axons. (e) MIP of a brainbow [1] stack. As most images in this paper, they are best visualized in
color.

(a) (b) (c) (d)

Fig. 2. Enforcing tree topology results in creation of spurious
junctions. (a) Image with two crossing branches. The dots
depict sample points (seeds) on the centerlines found by
maximizing a tubularity measure. In 3D, these branches may
be disjoint but the z-resolution is insufficient to see it and only
a single sample is found at their intersection, which we color
yellow. (b) The samples are connected by geodesic paths to
form a graph. (c,d) The final delineation is obtained by finding
a subgraph that minimizes a global cost function. In (c), we
prevent samples from being used more than once, resulting
in an erroneous delineation. In (d), we allow the yellow point
to be used twice, and penalize creation of early terminations
and spurious junctions, which yields a better result.

as shown in Fig. 2, but introducing a regularization prior
and structural constraints to limit the number of branchings
and terminations.

Our approach was first introduced in [11] and [12], both
of which produce connected reconstructions. We combine
them here and propose new connectivity constraints along
with a new optimization strategy to impose them, which
result in significant speed-ups. Furthermore, we provide
a more thorough validation with new experiments and
comparisons to several other methods.

We demonstrate the effectiveness of our approach on
a wide range of noisy 2D and 3D datasets, including
aerial images of road networks, and micrographs of neural
and vascular arbors depicted by Fig. 1. We show that it
consistently outperforms state-of-the-art techniques.

2 RELATED WORK

Most delineation techniques and curvilinear structure
databases use a sequence of cylindrical compartments as a
representation of curvilinear structures [13], [14], [15], [16],

[17], [18], [11], [19]. Besides being compact, this geometric
representation captures two important properties, namely
connectedness and directedness, which are common among
many structures such as blood vessels and neurons and are
essential in studying their morphology. Current approaches
can be roughly categorized as manual, semi-automated or
automated.

Since we focus on automation, we discuss the first two
categories in Appendix A and briefly review existing auto-
mated techniques below. Most of them require a seed point,
the root, to be specified for each connected network in the
image. Starting from the roots, they then grow branches that
follow local maxima of a tubularity measure that captures
the likelihood of a point being on the centerline of a
curvilinear structure. Depending on the search mechanism
employed, existing algorithms can be subdivided into local
and global ones as discussed below.

2.1 Local Search

Local search algorithms make greedy decisions about which
branches to keep in the solution based on local image
evidence. They include methods that segment and skele-
tonize the tubularity image [20], [13], [21], [22], [23], [24],
and active contour-based methods, which are initialized
from it [25], [26], [5]. Such methods are shown to be
effective and efficient when a very good segmentation can
be reliably obtained. In practice, however, this is hard to
do. In particular, thinning-based methods often produce
disconnected components and artifacts on noisy data, which
then require considerable post-processing and analysis to
merge into a meaningful network.

Another important class of local approaches involves
explicitly delineating the curvilinear networks. It includes
greedy tracking methods that start from a set of seed
points and incrementally grow branches by evaluating a
tubularity measure [27], [28], [29], [30], [6], [31], [9]. High
tubularity paths are then iteratively added to the solution
and their end points are treated as the new seeds from
which the process can be restarted. These techniques are
computationally efficient because the tubularity measure
only needs to be evaluated for a small subset of the image
volume in the vicinity of the seeds. However, they typically

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

require separate procedures to detect branching points. Fur-
thermore, due to their greedy nature, imaging artifacts and
noise can produce local tracing errors that propagate. This
often results in large morphological mistakes, especially
when there are large gaps along the filaments.

2.2 Global Search
Global search methods aim to achieve greater robustness
by computing the tubularity measure everywhere. Although
this is more computationally demanding, it can still be
done efficiently in Fourier space or using GPUs [32], [33],
[34]. They then optimize a global objective function over a
graph of high-tubularity seed points [8] or superpixels [35].
Markov Chain Monte Carlo algorithms, for instance, belong
to this class [36], [37], [38]. These methods explore the
search space efficiently by first sampling seed points and
linking them, and then iteratively adjusting their positions
and connections so as to minimize their objective function.
However, while they produce smooth tree components in
general, the algorithms presented in [36], [37] do not neces-
sarily guarantee spatial connectedness of these components.

By contrast, many other graph-based methods use the
specified roots to guarantee connectivity. They sample seed
points and connect them by paths that follow local maxima
of the tubularity measure. This defines a graph whose
vertices are the seeds and edges are the paths linking them.
The edges of the graph form an overcomplete representation
of the underlying curvilinear structures and the final step is
to build a solution by selecting an optimal subset of these
candidate edges.

Many existing approaches weight the edges of this graph
and pose the problem as a minimum-weight tree problem,
which is then solved optimally. Algorithms that find a
Minimum Spanning Tree (MST) [39], [14], [7], [18] or a
Shortest Path Tree (SPT) [17] belong to this class. Although
efficient polynomial-time algorithms exist for both SPT-
and MST-based formulations, these approaches suffer from
the fact that they must span all the seed points, including
some that might be false positives. As a result, they produce
spurious branches when seed points that are not part of the
tree structure are mistakenly detected, which happens all
too often in noisy data. Of course, some of the spurious
branches can be eliminated after the fact by pruning the
tree. In the results section, we will compare this pruning
approach to our IP one and show that the latter usually
gives better results.

Our earlier k-Minimum Spanning Tree (k-MST) formu-
lation [8] addressed this issue by posing the problem as
one of finding the minimum cost tree that spans only an
a priori unknown subset of k seed points. However, the
method relies on a heuristic search algorithm and two
distinct objective functions, one for searching and the other
for scoring, without guaranteeing the global optimality
of the final reconstruction. Furthermore, it requires an
explicit optimization over the auxiliary variable k, which
is not relevant to the problem. By contrast, the integer
programming formulation we advocate in this paper in-
volves minimization of a single global objective function

that allows us to link legitimate seed points while rejecting
spurious ones by finding the optimum solution to within a
small user-specified tolerance.

Furthermore, all the spanning tree approaches rely on
the local tubularity scores to weight the graph edges. For
example, global methods that rely on geodesic distances
express this cost as an integral of a function of the tubularity
values [40], [7]. Similarly, active contour-based methods
typically define their energy terms as such integrals over
the paths [18], [33]. In our own experience [8], because
they involve averaging, such measures are not particularly
effective at ignoring paths that are mostly on the curvilinear
structures but also partially on the background. Moreover,
because the scores are computed as sums of values along
the path, normalizing them so that paths of different lengths
can be appropriately compared is non-trivial. By contrast,
the path classification approach we introduce in Section 5
returns comparable probabilistic costs for paths of arbitrary
length. Furthermore, our path features capture global ap-
pearance, while being robust to noise and inhomogeneities.

Last but not least, none of the existing approaches
addresses the delineation problem for loopy structures. For
the cases where spurious loops seem to be present, for
example due to insufficient imaging resolution in 3D stacks
or due to projections of the structures on 2D [41], some of
the above-mentioned methods [7], [5] attempt to distinguish
spurious crossings from legitimate junctions by penalizing
sharp turns and high tortuosity paths in the solutions and
introducing heuristics to locally and greedily resolve the
ambiguities. They do not guarantee global optimality and,
as a result, can get trapped into local minima, as reported
in several of these papers. This is what our approach seeks
to address by looking for the global optimum of a well-
defined objective function.

3 APPROACH

We first briefly outline our reconstruction algorithm, which
goes through the following steps depicted by Fig. 3:

1) We first compute a tubularity value at each image
location xi and radius value ri, which quantifies
the likelihood that there exists a tubular structure of
radius ri, at location xi. Given an N -D image, this
creates an (N + 1)-D scale-space tubularity volume
such as the one shown in Fig. 3(b).

2) We select regularly spaced high-tubularity points as
seed points and connect pairs of them that are within
a given distance from each other. This results in a
directed tubular graph, such as the one of Fig. 3(c),
which serves as an overcomplete representation for
the underlying curvilinear networks.

3) Having trained a path classifier using such graphs and
ground-truth trees, we assign probabilistic weights
to pairs of consecutive edges of a given graph at
detection time as depicted by Fig. 3(d).

4) We use these weights and solve an integer program to
compute the maximum-likelihood directed subgraph

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b) (c) (d) (e)

Fig. 3. Algorithmic steps. (a) Aerial image of a suburban neighborhood. (b) 3-D scale-space tubularity image. (c) Graph
obtained by linking the seed points. They are shown in red with the path centerlines overlaid in green. (d) The same graph
with probabilities assigned to edges using our path classification approach. Blue and transparent denote low probabilities, red
and opaque high ones. Note that only the paths lying on roads appear in red. (e) Reconstruction obtained by our approach.

of this graph to produce a final result such as the one
of Fig. 3(e).

These four steps come in roughly the same sequence
as those used in most algorithms that build trees from
seed points, such as [39], [7], [18], [8], but with three key
differences. First, whereas heuristic optimization algorithms
such as MST followed by pruning or the k-MST algorithm
of [8] offer no guarantee of optimality, our approach guar-
antees that the solution is within a small tolerance of the
global optimum. Second, our approach to scoring individual
paths using a classifier instead of integrating pixel values
as usually done gives us more robustness to image noise
and provides peaky probability distributions, such as the
one shown in Fig. 3(d), which helps ensure that the global
optimum is close to the ground truth. Finally, instead of
constraining the subgraph to be a tree as in Fig. 2(c), we
allow it to contain cycles, as in Fig. 2(d), and penalize
spurious junctions and early branch terminations. In the
results section, we show that this yields improved results
over very diverse datasets.

4 GRAPH CONSTRUCTION
We build the graphs such as the one depicted by Fig. 3(c) in
four steps. We first compute the Multi-Directional Oriented
Flux tubularity measure introduced in [42]. This measure
is used to assess if a voxel lies on a centerline of a
filament at a given scale. Unlike the original Oriented Flux
approach [33] that relies on a circular model of the cross-
sections, this measure allows for arbitrarily-shaped ones
that are prevalent in biological imagery. This is achieved
by maximizing the image gradient flux along multiple
directions and radii, instead of only two with a unique
radius. We then suppress non-maxima responses around
filament centerlines using the NMST algorithm [42], which
helps remove some artifacts from further consideration.
More specifically, the NMST algorithm suppresses voxels
that are not local maxima in the plane that is perpendicular
to a local orientation estimate and within the circular neigh-
borhood defined by their scale. It then computes the MST

of the tubularity measure and links pairs of disconnected
components in the non-maxima suppressed volume with the
MST paths.

Next, we select maximum tubularity points in the result-
ing image and treat them as graph vertices, or seeds, to be
linked. They are selected greedily, at a minimal distance
of d to every point that was selected previously. Finally,
we compute paths linking every pair of seed points within
a certain distance l(d) from each other using the minimal
path method in the scale space domain [40]. We take the
geodesic tubular path connecting vertices i and j to be

pij = argmin
γ

∫ 1

0

P (γ(s)) ds, (1)

where P is the negative exponential mapping of the
tubularity measure, s ∈ [0, 1] is the arc-length parameter
and γ is a parametrized curve mapping s to a location in
RN+1 [10]. As mentioned earlier, the first N dimensions
are spatial ones while the last one denotes the scale. The
minimization relies on the Runge-Kutta gradient descent
algorithm on the geodesic distance, which is computed
using the Fast Marching algorithm [43].

5 PATH CLASSIFICATION

Once the graph has been built, a key component of our
algorithm, and one of the two main contributions of this
paper, is our approach to assigning weights to its edges,
or more specifically pairs of consecutive edges. As can be
seen in Fig. 3(d), it is designed so that only relatively few
edge pairs receive high scores and considerably simplifies
the task of the IP solver used in step 4. In fact, we have
checked that without this property, the solver often fails
to converge. Furthermore, we will show in Section 7 that
using these weights in conjunction with other approaches
to finding desirable subgraphs does also bring about an
improvement, albeit a smaller one than using the IP solver.

A standard approach to computing such weights is to
integrate a function of the tubularity values along the
paths, as in Eq. 1. However, as shown in Fig. 4(a), the
resulting estimates are often unreliable because a few very

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

(a) (b)

Fig. 4. Scoring paths by classification vs Integration. (a)
Tubular graph of Fig. 3(c) with edge weights computed by
integrating tubularity values along the paths instead of using
our path classification approach. We use the same color
scheme as in Fig. 3(d) to demonstrate how much less infor-
mative these weights are. (b) In one of the microscopy stacks
of the DIADEM data, scoring paths by summing tubularity
values in, from left to right, shortcuts, spurious branches, and
missing branches denoted by the red circles at the top. Using
our classification approach to scoring paths yields the right
answer in all three cases, as shown in the bottom row.

high values along the path might offset low values and,
as a result, fail to adequately penalize spurious branches
and short-cuts. Furthermore, it is often difficult to find an
adequate balance between allowing paths to deviate from
a straight line and preventing them from meandering too
much, which results in errors such as those depicted by the
top row of Fig. 4(b) when using them to find the optimal
subgraph in Step 4 of our algorithm. In this section, we
propose a path-classification approach to computing the
probability estimates that we found to be more reliable.
More specifically, given a tubular path computed as dis-
cussed in Section 4, we break it down into several segments
and compute one feature vector for each based on gradient
histograms. We then use an embedding approach [44] to
compute fixed-size descriptors from the potentially arbitrary
number of feature vectors we obtain. Finally, we feed
these descriptors to a classifier and turn its output into a
probability estimate.

As shown in the bottom row of Fig. 4(b), this approach
penalizes paths that mostly follow the tree structure but
cross the background. Thus, it discourages shortcuts and
spurious branches, which the integration approach along
the path fails to do.

In the remainder of this section, we describe our path
features, embedding scheme, and training data collection
mechanism in more detail.

5.1 Histogram of Gradient Deviation Descriptors
Gradient orientation histograms have been successfully
applied to detecting objects in images and recognizing
actions in videos [45], [46], [44]. In a typical setup, the
image is first divided into a grid of fixed-size blocks, called
cells, and then for each cell, a 1-D histogram of oriented
gradients (HOG) is formed from the pixel votes within
it. Histograms from neighboring cells are then combined

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Path classification vs Integration in portion of mi-
croscopy stacks from the DIADEM data [2]. (Top) Scoring
paths by summing tubularity values of Section 4.1 results in,
from left to right, shortcuts, spurious branches, and missing
branches. (Bottom) Our classification approach to scoring
paths yields the right answer in all three cases.

fail to adequately penalize spurious branches and short-
cuts. Furthermore, it is often difficult to find an adequate
balance between allowing paths to deviate from a straight
line and preventing them from meandering too much.

Fig. 6. Tubular graph
of Fig. 3(c) with edge
weights computed by in-
tegrating tubularity values
along the paths instead of
using our path classifica-
tion approach. We use the
same color scheme as in
Fig. 3(d) to demonstrate
how much less informative
these weights are.

In this section, we propose
a path-classification approach
to computing the probabil-
ity estimates that we found
to be more reliable. More
specifically, given a tubular
path computed as discussed
in Section 4.1, we break it
down into several segments
and compute one feature vec-
tor based on gradient his-
tograms for each. We then use
an embedding approach [58]
to compute fixed-size de-
scriptors from the potentially
arbitrary number of feature
vectors we obtain. Finally, we
feed these to a classifier and
turn its output into a proba-
bility estimate.

As shown in Fig. 7, this
approach penalizes paths that
mostly follow the true tree
structure but cross the back-
ground. Thus, it discourages

shortcuts, which is something that integration along the path
fails to do.

Fig. 8 illustrates a flowchart of our approach. In the
remainder of this section, we describe our path features,
embedding scheme, and training data collection mechanism
in more details.

5.1 Histogram of Gradient Deviation Descriptors

Gradient orientation histograms have been successfully ap-
plied to detecting objects in images and recognizing actions
in videos [59], [60], [58]. In a typical setup, the image is
first divided into a grid of fixed-size blocks, called cells, and
then for each cell, a 1-D histogram of orientated gradients
(HOG) is formed from the pixel votes within it. Histograms
from neighboring cells are then combined and normalized
to form features invariant to local contrast changes. Finally,
these features are fed into a classifier to detect objects of
interest. We adapt this strategy by defining Histogram of
Gradient Deviation (HGD) descriptors as follows.

Given a tubular path �(s) such as the one depicted by
Fig. 9, with s being the curvilinear abscissa, let C(s) be
the centerline and r(s) the corresponding radius mappings.
We partition the path into equal-length overlapping seg-
ments and, for each, we compute histograms of gradient
orientation deviations from the normal vectors emanating
from the centerline. The histograms are populated by points
belonging to a certain neighborhood N (�) around the
centerline of the path. This neighborhood is defined as the
envelope of cross-sectional circles as illustrated by Fig 9.
To ensure that all the gradient information surrounding the
tube is captured, we extend this neighborhood by a margin
m(s) = K ⇤ r(s) proportional to the radii values. A fixed
size margin is not preferred to avoid biased interference of
background gradients for thin paths.

For a given image point x 2 N (�), let N(x) be the
normal ray vector emanating from the centerline C passing
by x, and C(sx) the closest point to it3 as illustrated
by Fig. 9. Each such point contributes a weighted vote
krI(x)k to a histogram bin, which we take to be

 (x)=

⇢
angle(rI(x),N(x)) , if kx � C(sx)k > "
angle(rI(x),⇧(x)) , otherwise, (22)

where ⇧(x) is the cross-sectional plane, which we use
to compute the deviation angle when x belongs to the
centerline and the normal ray vector is not defined.

To obtain a description of paths’ appearance profile
on the cross-sectional plane, we further split the neigh-
borhood N (�) into R equally spaced radius intervals as
shown in Fig. 9 and create a histogram for each such
interval. Given B orientation bins, the radius interval and
the angular bin indices for a point x are then given by
min(R � 1, bRkN(x)k/(r(sx) + m(sx))c) and min(B �
1, bB (x)/⇡c) respectively. For each segment, this pro-
duces R histograms, each one corresponding to a radius
interval. We interpolate points within each such interval to
ensure that enough votes are used to form the histograms.
Finally, we normalize each histogram by the number of
points that voted for it.

This yields a set of histograms for each segment, which
we combine into a single HGD descriptor.

3For simplicity, we assume that such a point is unique.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Path classification vs Integration in portion of mi-
croscopy stacks from the DIADEM data [2]. (Top) Scoring
paths by summing tubularity values of Section 4.1 results in,
from left to right, shortcuts, spurious branches, and missing
branches. (Bottom) Our classification approach to scoring
paths yields the right answer in all three cases.

fail to adequately penalize spurious branches and short-
cuts. Furthermore, it is often difficult to find an adequate
balance between allowing paths to deviate from a straight
line and preventing them from meandering too much.

Fig. 6. Tubular graph
of Fig. 3(c) with edge
weights computed by in-
tegrating tubularity values
along the paths instead of
using our path classifica-
tion approach. We use the
same color scheme as in
Fig. 3(d) to demonstrate
how much less informative
these weights are.

In this section, we propose
a path-classification approach
to computing the probabil-
ity estimates that we found
to be more reliable. More
specifically, given a tubular
path computed as discussed
in Section 4.1, we break it
down into several segments
and compute one feature vec-
tor based on gradient his-
tograms for each. We then use
an embedding approach [58]
to compute fixed-size de-
scriptors from the potentially
arbitrary number of feature
vectors we obtain. Finally, we
feed these to a classifier and
turn its output into a proba-
bility estimate.

As shown in Fig. 7, this
approach penalizes paths that
mostly follow the true tree
structure but cross the back-
ground. Thus, it discourages

shortcuts, which is something that integration along the path
fails to do.

Fig. 8 illustrates a flowchart of our approach. In the
remainder of this section, we describe our path features,
embedding scheme, and training data collection mechanism
in more details.

5.1 Histogram of Gradient Deviation Descriptors

Gradient orientation histograms have been successfully ap-
plied to detecting objects in images and recognizing actions
in videos [59], [60], [58]. In a typical setup, the image is
first divided into a grid of fixed-size blocks, called cells, and
then for each cell, a 1-D histogram of orientated gradients
(HOG) is formed from the pixel votes within it. Histograms
from neighboring cells are then combined and normalized
to form features invariant to local contrast changes. Finally,
these features are fed into a classifier to detect objects of
interest. We adapt this strategy by defining Histogram of
Gradient Deviation (HGD) descriptors as follows.

Given a tubular path �(s) such as the one depicted by
Fig. 9, with s being the curvilinear abscissa, let C(s) be
the centerline and r(s) the corresponding radius mappings.
We partition the path into equal-length overlapping seg-
ments and, for each, we compute histograms of gradient
orientation deviations from the normal vectors emanating
from the centerline. The histograms are populated by points
belonging to a certain neighborhood N (�) around the
centerline of the path. This neighborhood is defined as the
envelope of cross-sectional circles as illustrated by Fig 9.
To ensure that all the gradient information surrounding the
tube is captured, we extend this neighborhood by a margin
m(s) = K ⇤ r(s) proportional to the radii values. A fixed
size margin is not preferred to avoid biased interference of
background gradients for thin paths.

For a given image point x 2 N (�), let N(x) be the
normal ray vector emanating from the centerline C passing
by x, and C(sx) the closest point to it3 as illustrated
by Fig. 9. Each such point contributes a weighted vote
krI(x)k to a histogram bin, which we take to be

 (x)=

⇢
angle(rI(x),N(x)) , if kx � C(sx)k > "
angle(rI(x),⇧(x)) , otherwise, (22)

where ⇧(x) is the cross-sectional plane, which we use
to compute the deviation angle when x belongs to the
centerline and the normal ray vector is not defined.

To obtain a description of paths’ appearance profile
on the cross-sectional plane, we further split the neigh-
borhood N (�) into R equally spaced radius intervals as
shown in Fig. 9 and create a histogram for each such
interval. Given B orientation bins, the radius interval and
the angular bin indices for a point x are then given by
min(R � 1, bRkN(x)k/(r(sx) + m(sx))c) and min(B �
1, bB (x)/⇡c) respectively. For each segment, this pro-
duces R histograms, each one corresponding to a radius
interval. We interpolate points within each such interval to
ensure that enough votes are used to form the histograms.
Finally, we normalize each histogram by the number of
points that voted for it.

This yields a set of histograms for each segment, which
we combine into a single HGD descriptor.

3For simplicity, we assume that such a point is unique.

Fig. 8, with s

a margin m(s)/3 =
values. A fixed size margin is not preferred to avoid biased

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Path classification vs Integration in portion of mi-
croscopy stacks from the DIADEM data [2]. (Top) Scoring
paths by summing tubularity values of Section 4.1 results in,
from left to right, shortcuts, spurious branches, and missing
branches. (Bottom) Our classification approach to scoring
paths yields the right answer in all three cases.

Fig. 6. Tubular graph
of Fig. 3(c) with edge
weights computed by
integrating tubularity
values along the paths
instead of using our
path classification
approach. We use the
same color scheme
as in Fig. 3(d) to
demonstrate how
much less informative
these weights are.

In this section, we propose a
path-classification approach to
computing the probability esti-
mates that we found to be more
reliable. More specifically, given
a tubular path computed as dis-
cussed in Section 4.1, we break
it down into several segments
and compute one feature vector
for each based on gradient his-
tograms. We then use an em-
bedding approach [57] to com-
pute fixed-size descriptors from
the potentially arbitrary number
of feature vectors we obtain. Fi-
nally, we feed these descriptors to
a classifier and turn its output into
a probability estimate.

As shown in the bottom row
of Fig. 7, this approach penal-
izes paths that mostly follow
the tree structure but cross the
background. Thus, it discourages
shortcuts and spurious branches,

which the integration approach along the path fails to do.
In the remainder of this section, we describe our path

features, embedding scheme, and training data collection
mechanism in more details.

5.1 Histogram of Gradient Deviation Descriptors
Gradient orientation histograms have been successfully
applied to detecting objects in images and recognizing
actions in videos [58], [59], [57]. In a typical setup, the
image is first divided into a grid of fixed-size blocks, called
cells, and then for each cell, a 1-D histogram of orientated
gradients (HOG) is formed from the pixel votes within
it. Histograms from neighboring cells are then combined
and normalized to form features invariant to local contrast

Fig. 8. Three aspects of our feature extraction process. An
extended neighborhood of points around the path centerline
C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius
intervals highlighted by the yellow, green and red tubes (here
R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin
according to the angle between the normal N(x) and the
image gradient rI(x) at that point.

changes. Finally, these features are fed into a classifier to
detect objects of interest. We adapt this strategy for tubular
paths by defining Histogram of Gradient Deviation (HGD)
descriptors as follows.

Given a tubular path �(s) such as the one depicted by
Fig. 8, with s being the curvilinear abscissa, let C(s) be the
centerline and r(s) the corresponding radius mappings. We
partition the path into equal-length overlapping segments
�i(s) and, for each, we compute histograms of angles
between image gradients rI(x) and normal vectors N(x)
obtained from the points x 2 �i(s) within the tubular
segment. To ensure that all the gradient information sur-
rounding the path is captured, we enlarge the segments by
a margin m(s) = �⇤r(s) kokomo proportional to the radius
values. A fixed size margin is not preferred to avoid biased
interference of background gradients for thin paths.

Furthermore, to obtain a description of paths’ cross-
sectional appearance profile, we split its tubular segments
into R equally spaced radius intervals as shown in Fig. 8
and create two histograms for each such interval. While the
first histogram captures the strength of the gradient field
inside an interval, the second one captures its symmetry
about the segment centerline.

Given a point x 2 �i(s), let C(sx) be the closest
centerline point, and N(x) be the normal ray vector from
C(sx) to x, as illustrated by Fig. 8. Each such point
contributes a vote to a bin of the gradient-strength and
gradient-symmetry histograms. The bin is determined by
the following equation:

 (x)=

⇢
angle(rI(x),N(x)) , if kx � C(sx)k > "
angle(rI(x),⇧(x)) , otherwise, (29)

where ⇧(x) is the cross-sectional plane, which we use
to compute the deviation angle in the special case when
x belongs to the centerline and the normal ray vector
is not defined. The votes are weighted by krI(x)k andp

< �rI(x),rI(C(sx) � N(x)) > for the gradient-strength
and gradient-symmetry histograms respectively.

We compute the radius interval and the
angular bin indices for a point x respectively as
min(R � 1, bRkN(x)k/(r(sx) + m(sx))c) and
min(B � 1, bB (x)/⇡c), where B is the number of

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Path classification vs Integration in portion of mi-
croscopy stacks from the DIADEM data [2]. (Top) Scoring
paths by summing tubularity values of Section 4.1 results in,
from left to right, shortcuts, spurious branches, and missing
branches. (Bottom) Our classification approach to scoring
paths yields the right answer in all three cases.

Fig. 6. Tubular graph
of Fig. 3(c) with edge
weights computed by
integrating tubularity
values along the paths
instead of using our
path classification
approach. We use the
same color scheme
as in Fig. 3(d) to
demonstrate how
much less informative
these weights are.

In this section, we propose a
path-classification approach to
computing the probability esti-
mates that we found to be more
reliable. More specifically, given
a tubular path computed as dis-
cussed in Section 4.1, we break
it down into several segments
and compute one feature vector
for each based on gradient his-
tograms. We then use an em-
bedding approach [57] to com-
pute fixed-size descriptors from
the potentially arbitrary number
of feature vectors we obtain. Fi-
nally, we feed these descriptors to
a classifier and turn its output into
a probability estimate.

As shown in the bottom row
of Fig. 7, this approach penal-
izes paths that mostly follow
the tree structure but cross the
background. Thus, it discourages
shortcuts and spurious branches,

which the integration approach along the path fails to do.
In the remainder of this section, we describe our path

features, embedding scheme, and training data collection
mechanism in more details.

5.1 Histogram of Gradient Deviation Descriptors
Gradient orientation histograms have been successfully
applied to detecting objects in images and recognizing
actions in videos [58], [59], [57]. In a typical setup, the
image is first divided into a grid of fixed-size blocks, called
cells, and then for each cell, a 1-D histogram of orientated
gradients (HOG) is formed from the pixel votes within
it. Histograms from neighboring cells are then combined
and normalized to form features invariant to local contrast

Fig. 8. Three aspects of our feature extraction process. An
extended neighborhood of points around the path centerline
C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius
intervals highlighted by the yellow, green and red tubes (here
R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin
according to the angle between the normal N(x) and the
image gradient rI(x) at that point.

changes. Finally, these features are fed into a classifier to
detect objects of interest. We adapt this strategy for tubular
paths by defining Histogram of Gradient Deviation (HGD)
descriptors as follows.

Given a tubular path �(s) such as the one depicted by
Fig. 8, with s being the curvilinear abscissa, let C(s) be the
centerline and r(s) the corresponding radius mappings. We
partition the path into equal-length overlapping segments
�i(s) and, for each, we compute histograms of angles
between image gradients rI(x) and normal vectors N(x)
obtained from the points x 2 �i(s) within the tubular
segment. To ensure that all the gradient information sur-
rounding the path is captured, we enlarge the segments by
a margin m(s) = �⇤r(s) kokomo proportional to the radius
values. A fixed size margin is not preferred to avoid biased
interference of background gradients for thin paths.

Furthermore, to obtain a description of paths’ cross-
sectional appearance profile, we split its tubular segments
into R equally spaced radius intervals as shown in Fig. 8
and create two histograms for each such interval. While the
first histogram captures the strength of the gradient field
inside an interval, the second one captures its symmetry
about the segment centerline.

Given a point x 2 �i(s), let C(sx) be the closest
centerline point, and N(x) be the normal ray vector from
C(sx) to x, as illustrated by Fig. 8. Each such point
contributes a vote to a bin of the gradient-strength and
gradient-symmetry histograms. The bin is determined by
the following equation:

 (x)=

⇢
angle(rI(x),N(x)) , if kx � C(sx)k > "
angle(rI(x),⇧(x)) , otherwise, (29)

where ⇧(x) is the cross-sectional plane, which we use
to compute the deviation angle in the special case when
x belongs to the centerline and the normal ray vector
is not defined. The votes are weighted by krI(x)k andp

< �rI(x),rI(C(sx) � N(x)) > for the gradient-strength
and gradient-symmetry histograms respectively.

We compute the radius interval and the
angular bin indices for a point x respectively as
min(R � 1, bRkN(x)k/(r(sx) + m(sx))c) and
min(B � 1, bB (x)/⇡c), where B is the number of

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Path classification vs Integration in portion of mi-
croscopy stacks from the DIADEM data [2]. (Top) Scoring
paths by summing tubularity values of Section 4.1 results in,
from left to right, shortcuts, spurious branches, and missing
branches. (Bottom) Our classification approach to scoring
paths yields the right answer in all three cases.

Fig. 6. Tubular graph
of Fig. 3(c) with edge
weights computed by
integrating tubularity
values along the paths
instead of using our
path classification
approach. We use the
same color scheme
as in Fig. 3(d) to
demonstrate how
much less informative
these weights are.

In this section, we propose a
path-classification approach to
computing the probability esti-
mates that we found to be more
reliable. More specifically, given
a tubular path computed as dis-
cussed in Section 4.1, we break
it down into several segments
and compute one feature vector
for each based on gradient his-
tograms. We then use an em-
bedding approach [57] to com-
pute fixed-size descriptors from
the potentially arbitrary number
of feature vectors we obtain. Fi-
nally, we feed these descriptors to
a classifier and turn its output into
a probability estimate.

As shown in the bottom row
of Fig. 7, this approach penal-
izes paths that mostly follow
the tree structure but cross the
background. Thus, it discourages
shortcuts and spurious branches,

which the integration approach along the path fails to do.
In the remainder of this section, we describe our path

features, embedding scheme, and training data collection
mechanism in more details.

5.1 Histogram of Gradient Deviation Descriptors
Gradient orientation histograms have been successfully
applied to detecting objects in images and recognizing
actions in videos [58], [59], [57]. In a typical setup, the
image is first divided into a grid of fixed-size blocks, called
cells, and then for each cell, a 1-D histogram of orientated
gradients (HOG) is formed from the pixel votes within
it. Histograms from neighboring cells are then combined
and normalized to form features invariant to local contrast

Fig. 8. Three aspects of our feature extraction process. An
extended neighborhood of points around the path centerline
C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius
intervals highlighted by the yellow, green and red tubes (here
R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin
according to the angle between the normal N(x) and the
image gradient rI(x) at that point.

changes. Finally, these features are fed into a classifier to
detect objects of interest. We adapt this strategy for tubular
paths by defining Histogram of Gradient Deviation (HGD)
descriptors as follows.

Given a tubular path �(s) such as the one depicted by
Fig. 8, with s being the curvilinear abscissa, let C(s) be the
centerline and r(s) the corresponding radius mappings. We
partition the path into equal-length overlapping segments
�i(s) and, for each, we compute histograms of angles
between image gradients rI(x) and normal vectors N(x)
obtained from the points x 2 �i(s) within the tubular
segment. To ensure that all the gradient information sur-
rounding the path is captured, we enlarge the segments by
a margin m(s) = �⇤r(s) kokomo proportional to the radius
values. A fixed size margin is not preferred to avoid biased
interference of background gradients for thin paths.

Furthermore, to obtain a description of paths’ cross-
sectional appearance profile, we split its tubular segments
into R equally spaced radius intervals as shown in Fig. 8
and create two histograms for each such interval. While the
first histogram captures the strength of the gradient field
inside an interval, the second one captures its symmetry
about the segment centerline.

Given a point x 2 �i(s), let C(sx) be the closest
centerline point, and N(x) be the normal ray vector from
C(sx) to x, as illustrated by Fig. 8. Each such point
contributes a vote to a bin of the gradient-strength and
gradient-symmetry histograms. The bin is determined by
the following equation:

 (x)=

⇢
angle(rI(x),N(x)) , if kx � C(sx)k > "
angle(rI(x),⇧(x)) , otherwise, (29)

where ⇧(x) is the cross-sectional plane, which we use
to compute the deviation angle in the special case when
x belongs to the centerline and the normal ray vector
is not defined. The votes are weighted by krI(x)k andp

< �rI(x),rI(C(sx) � N(x)) > for the gradient-strength
and gradient-symmetry histograms respectively.

We compute the radius interval and the
angular bin indices for a point x respectively as
min(R � 1, bRkN(x)k/(r(sx) + m(sx))c) and
min(B � 1, bB (x)/⇡c), where B is the number of

Fig. 5. Three aspects of our feature extraction process. An
extended neighborhood of points around the path centerline
C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius
intervals highlighted by the yellow, green and red tubes (here
R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin
according to the angle between the normal N(x) and the
image gradient ∇I(x) at that point.

and normalized to form features invariant to local contrast
changes. Finally, these features are fed into a classifier to
detect objects of interest. We adapt this strategy for tubular
paths by defining Histogram of Gradient Deviation (HGD)
descriptors as follows.

Given a tubular path γ(s) such as the one depicted by
Fig. 5, with s being the curvilinear abscissa, let C(s) be the
centerline and r(s) the corresponding radius mappings. We
partition the path into equal-length overlapping segments
γi(s) and, for each, we compute histograms of angles
between image gradients ∇I(x) and normal vectors N(x)
obtained from the points x ∈ γi(s) within the tubular
segment. To ensure that all the gradient information sur-
rounding the path is captured, we enlarge the segments
by a margin m(s) = β ∗ r(s) proportional to the radius
values. A fixed size margin is not preferred to avoid biased
interference of background gradients for thin paths.

Furthermore, to obtain a description of paths’ cross-
sectional appearance profile, we split its tubular segments
into R equally spaced radius intervals as shown in Fig. 5
and create two histograms for each such interval. While the
first histogram captures the strength of the gradient field
inside an interval, the second one captures its symmetry
about the segment centerline.

Given a point x ∈ γi(s), let C(sx) be the closest
centerline point, and N(x) be the normal ray vector from
C(sx) to x, as illustrated by Fig. 5. Each such point
contributes a vote to a bin of the gradient-strength and
gradient-symmetry histograms. The bin is determined by
the following equation:

Ψ(x)=

{
angle(∇I(x),N(x)) , if ‖x− C(sx)‖ > ε
angle(∇I(x),Π(x)) , otherwise, (2)

where Π(x) is the cross-sectional plane, which we use
to compute the deviation angle in the special case when
x belongs to the centerline and the normal ray vector
is not defined. The votes are weighted by ‖∇I(x)‖ and√
< −∇I(x),∇I(C(sx)−N(x)) > for the gradient-strength

and gradient-symmetry histograms respectively.
We compute the radius interval and the

angular bin indices for a point x respectively as
min(R − 1, bR‖N(x)‖/(r(sx) + m(sx))c) and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

H1

H2

HM

V2

Embedding
V1

VN

Hi

Hl

x

x

x.Vk

x

.

x

.

.Vj

xx

x

x

x

x
x

dj

x
dk

d1

d2

dN

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Training
Training
Images

Ground
Truth

Tracings

Tubular
Graphs

Sample
Positives

Sample
Negatives

Extract
Features

Classifier

Detection

Tubular Graph

Learned
Path

Model

Assign Costs

Edge Pairs

Weighed Graph

. . .

. . .

. . .

Extract Features

Fig. 8. Flowchart of our approach to path classification and training data collection. During training, positive examples are
randomly selected from the ground truth tracings, while negative paths are selected from the tubular graphs such that they
sufficiently overlap with the background. At detection time, we run the classifier on pairs of consecutive edges and assign
them probabilistic weights.

Fig. 9. Three aspects of our feature extraction process. An
extended neighborhood of points around the path centerline
C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius
intervals highlighted by the yellow, green and red tubes (here
R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin
according to the angle between the normal N(x) and the
image gradient rI(x) at that point.

5.2 Embedding
The above procedure produces an arbitrary number of HGD
descriptors per path. To derive from them a fixed-size
descriptor, we first use a Bag-of-Words (BoW) approach
to compactly represent their feature space. The words of
the BoW model are generated by randomly sampling a
predefined number of descriptors from the training data.
For a given path of arbitrary length, we then compute
an embedding of the path’s HGD descriptors into the
codewords of the model. Adapting the sequence embedding
approach of [58], we find the minimum Euclidean distance
from the path’s descriptors to each word in the model. This
yields a feature vector of minimal distances that has the
same length as the number of elements in the BoW model.

To account for geometry and characterize paths that share
a common section, such as the one shown in Fig. 4(a),
we incorporate into these descriptors the maximum cur-
vature along the centerline curve C. It is computed as
argmaxkT0(s))k, where T(s) is the unit tangent vector.

5.3 Collecting Training Data
Given a set of training images {Ii}, the associated ground
truth tracings {Hi} annotated manually and tubular graphs
{Gi} obtained using the method of Section 4.1, we sample
an equal number of positive and negative paths from each

pair {Hi, Gi}. We obtain positive examples by randomly
sampling them from the ground truth Hi. To obtain negative
examples, we first randomly select paths from the tubular
graph Gi and attempt to find matching paths in the ground
truth. For a given path ph, this is done by finding the two
centerline points in {Gi} that are closest to the start and end
points of ph. We then extract the shortest (in the Euclidean
sense) directed path pg connecting these points in Hi. Note
that, if Hi is a tree, such a path is unique, if it exist.

Let lh and lg denote the centerline length of ph and pg

respectively. The path ph is considered as a true negative
if it satisfies at least one of the following criteria:

1) The length of ph’s (or pg’s) largest centerline section
that is outside the volume pg (ph’s) is larger than a
threshold, taken to be the minimum image spacing in
our experiments.

2) The ratio min(lh, lg)/max(lh, lg) is smaller than a
threshold. This is to detect if ph is meandering too
much inside pg . We used 0.75 for the ratio threshold.

3) Intersection of ph and pg over their union is smaller
than a threshold, taken to be 0.5 in our experiments.

We label those negatives that partially overlap with the
matching paths as hard-to-classify examples, and those that
don’t overlap as easy-to-classify ones. In our experiments,
hard-to-classify examples constitute 99 percent of the neg-
ative examples.

Finally, path lengths are randomly chosen from a length
distribution learnt from graphs in the training dataset. This
is achieved by first labeling consecutive edge pairs in the
graphs as positive or negative using the above procedure
and then constructing two separate distributions, one for
each class, using the assigned labels.

6 IMPLEMENTATION DETAILS
In this section, we first describe details of the feature
extraction and parameter selection steps. We then briefly
describe several procedures to reduce the size of the QMIP
problem instances prior to optimization.

6.1 Feature Extraction
The HGD descriptors introduced in Section 5.1 are com-
puted for a group of overlapping segments on a path. To

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Training
Training
Images

Ground
Truth

Tracings

Tubular
Graphs

Sample
Positives

Sample
Negatives

Extract
Features

Classifier

Detection

Tubular Graph

Learned
Path

Model

Assign Costs

Edge Pairs

Weighed Graph

. . .

. . .

. . .

Extract Features

Fig. 8. Flowchart of our approach to path classification and training data collection. During training, positive examples are
randomly selected from the ground truth tracings, while negative paths are selected from the tubular graphs such that they
sufficiently overlap with the background. At detection time, we run the classifier on pairs of consecutive edges and assign
them probabilistic weights.

Fig. 9. Three aspects of our feature extraction process. An
extended neighborhood of points around the path centerline
C(s) is defined as the envelope of cross-sectional circles
shown in black. This neighborhood is divided into R radius
intervals highlighted by the yellow, green and red tubes (here
R = 3) and a histogram is created for each such interval.
A point x contributes a weighted vote to an angular bin
according to the angle between the normal N(x) and the
image gradient rI(x) at that point.

5.2 Embedding
The above procedure produces an arbitrary number of HGD
descriptors per path. To derive from them a fixed-size
descriptor, we first use a Bag-of-Words (BoW) approach
to compactly represent their feature space. The words of
the BoW model are generated by randomly sampling a
predefined number of descriptors from the training data.
For a given path of arbitrary length, we then compute
an embedding of the path’s HGD descriptors into the
codewords of the model. Adapting the sequence embedding
approach of [58], we find the minimum Euclidean distance
from the path’s descriptors to each word in the model. This
yields a feature vector of minimal distances that has the
same length as the number of elements in the BoW model.

To account for geometry and characterize paths that share
a common section, such as the one shown in Fig. 4(a),
we incorporate into these descriptors the maximum cur-
vature along the centerline curve C. It is computed as
argmaxkT0(s))k, where T(s) is the unit tangent vector.

5.3 Collecting Training Data
Given a set of training images {Ii}, the associated ground
truth tracings {Hi} annotated manually and tubular graphs
{Gi} obtained using the method of Section 4.1, we sample
an equal number of positive and negative paths from each

pair {Hi, Gi}. We obtain positive examples by randomly
sampling them from the ground truth Hi. To obtain negative
examples, we first randomly select paths from the tubular
graph Gi and attempt to find matching paths in the ground
truth. For a given path ph, this is done by finding the two
centerline points in {Gi} that are closest to the start and end
points of ph. We then extract the shortest (in the Euclidean
sense) directed path pg connecting these points in Hi. Note
that, if Hi is a tree, such a path is unique, if it exist.

Let lh and lg denote the centerline length of ph and pg

respectively. The path ph is considered as a true negative
if it satisfies at least one of the following criteria:

1) The length of ph’s (or pg’s) largest centerline section
that is outside the volume pg (ph’s) is larger than a
threshold, taken to be the minimum image spacing in
our experiments.

2) The ratio min(lh, lg)/max(lh, lg) is smaller than a
threshold. This is to detect if ph is meandering too
much inside pg . We used 0.75 for the ratio threshold.

3) Intersection of ph and pg over their union is smaller
than a threshold, taken to be 0.5 in our experiments.

We label those negatives that partially overlap with the
matching paths as hard-to-classify examples, and those that
don’t overlap as easy-to-classify ones. In our experiments,
hard-to-classify examples constitute 99 percent of the neg-
ative examples.

Finally, path lengths are randomly chosen from a length
distribution learnt from graphs in the training dataset. This
is achieved by first labeling consecutive edge pairs in the
graphs as positive or negative using the above procedure
and then constructing two separate distributions, one for
each class, using the assigned labels.

6 IMPLEMENTATION DETAILS
In this section, we first describe details of the feature
extraction and parameter selection steps. We then briefly
describe several procedures to reduce the size of the QMIP
problem instances prior to optimization.

6.1 Feature Extraction
The HGD descriptors introduced in Section 5.1 are com-
puted for a group of overlapping segments on a path. To

...

Fig. 6. Flowchart of our approach to extracting appearance
features from tubular paths of arbitrary length.

min(B − 1, bBΨ(x)/πc), where B is the number of
histogram bins. For each segment, this produces R pairs
of histograms, each one corresponding to a radius interval.
Finally, we normalize each histogram by the number of
points that voted for it.

This yields a set of histograms for each segment, which
we combine into a single HGD descriptor.

5.2 Embedding

The above procedure produces an arbitrary number of HGD
descriptors per path. To derive a fixed-size descriptor from
them, we first use a Bag-of-Words (BoW) approach to
compactly represent their feature space. The words of the
BoW model are generated during training by randomly
sampling a predefined number of descriptors from the
training data. For a given path of arbitrary length, we
then compute an embedding of the path’s HGD descriptors
into the codewords of the model. As illustrated in Fig. 6,
computing the embedding amounts to finding the minimum
Euclidean distance from the descriptors to each word in
the model. The resulting feature vector of distances has the
same length as the number of elements in the BoW model.

To account for geometry and characterize paths that share
a common section, such as the one shown in Fig. 7(a), we
incorporate into these descriptors four geometry features,
the maximum curvature along the centerline curve C(s), its
tortuosity, and normalized length along the z and the scale
axes defined in Section 4. For a path of length L in world
coordinates and distance d between its start and end points,
these features are defined respectively as argmax‖T′(s)‖,
d/L, ∆z/L and ∆r/L, where ∆z and ∆r are the path
lengths along the image axial dimension z and the scale
dimension, and T(s) is the unit tangent vector depicted in
Fig. 5.

5.3 Training

Given a set of training images {Ii}, the associated ground
truth tracings {Hi} annotated manually and tubular graphs
{Gi} obtained using the method of Section 4, we sample
an equal number of positive and negative paths from each
pair {Hi, Gi}. To train the path classifier, we obtain positive
samples by simply sampling the ground truth delineations
{Hi} associated with our training images. We obtain nega-
tive samples by first randomly selecting candidate paths
from a tubular graph Gi, and then attempting to find

matching paths in the corresponding ground truth Hi. The
candidate paths are considered as negatives if they satisfy
certain incompatibility conditions, such as having a small
overlap with their respective matching ones.

More specifically, given a randomly selected candidate
path pg of a graph Gi, we find its matching ph by first
finding the two centerline points in Hi that are closest to
the start and end points of pg in the world coordinates of
the image Ii and then extracting the shortest directed path
ph connecting these points in Hi.

Let l(p) denote the centerline length of a path p, and
lp1

(p2) denote the length of p2’s longest segment that is
outside the volume enclosed by p1. We consider pg as a
negative example if it satisfies at least one of the following
criteria:

1) max(lpg
(ph), lph

(pg)) is larger than a length thresh-
old tl, which is taken to be the minimum image
spacing in our experiments.

2) The ratio min(l(ph), l(pg))/max(l(ph), l(pg)) is
smaller than a threshold, which we set to 0.75. This
is to detect if pg is meandering too much with respect
to ph.

3) Volumetric intersection of ph and pg over their union
is smaller than a threshold, taken to be 0.5 in our
experiments.

We label those negatives that partially overlap with the
matching paths as hard-to-classify examples, and those that
do not overlap as easy-to-classify ones. In our experiments,
hard-to-classify examples constitute 99 percent of all the
negative examples.

We choose the path lengths randomly from a probability
distribution built from the consecutive edge pair lengths of
the graphs {Gi} in the training dataset. This is achieved by
first labeling the edge pairs as positive or negative using
the above procedure and then constructing two separate
distributions, one for each class, using the assigned labels.

Finally, at detection time, we run the path classifier on
consecutive edge pairs and assign to them the resulting
probabilities of belonging to the underlying curvilinear
networks. In practice, as we show in Appendix B, we found
a Gradient Boosted Decision Tree classifier to be better
suited for this learning task than SVM classifiers with linear
or RBF kernels, or random forest classifiers with oblique
or orthogonal splits. It is therefore the one we use in our
implementation.

6 FORMULATING THE INTEGER PROGRAM

Formally, the graph-building procedure of Section 4, yields
a graph G = (V,E), whose vertices V represent the seed
points and directed edges E = {eij | i ∈ V, j ∈ V }
geodesic tubular paths linking them. It is designed to be
an overcomplete representation of the underlying network
of tubular structures. In this section, we formulate the
finding of an optimal subgraph of curvilinear structures as
an integer program. We first constrain it to be a directed
tree and then relax this constraint.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

(a) (b) (c)

Fig. 7. Considering geometric relationships between edges
helps at junctions. (a) A closeup of the graph built by our algo-
rithm at a branching point. (b) Minimizing a sum of individual
path costs yields these overlapping paths. (c) Accounting for
edge pair geometry yields the correct connectivity.

6.1 Standard Formulation
Many earlier approaches to finding optimal subgraphs [39],
[7], [18], [8] can be understood as maximizing an a pos-
teriori probability given a tubularity image and optionally
a set of meta parameters that encode geometric relations
between vertices and edge pairs. For example, in [8], the
tree reconstruction problem is addressed by solving

min
t∈T (G)

∑

eij∈E
caij tij +

∑

eij , ejk∈E
cgijk tij tjk

 , (3)

where T (G) denotes the set of all trees in G, tij is
a binary variable indicating the presence or absence of
eij in tree t. caij represents the cost of an edge, which
can be either negative or positive and is computed by
integrating pixelwise negative log-likelihood ratio values
along the path connecting the vertices, while cgijk encodes
the geometric compatibility of consecutive edges. As shown
in Fig. 7, these geometric terms are key to eliminating
edge sequences that backtrack or curve unnaturally. This
approach, however, has three severe shortcomings. First,
because the caij and cgijk are computed independently, they
are not necessarily commensurate or consistent with each
other. As a consequence, careful weighting of the two terms
is required for optimal performance. Second, it disallows
cycles by preventing vertices from being shared by separate
branches, as is required for successful reconstruction cases
such as the one of Fig. 2. Finally, optimizing using a heuris-
tic algorithm [47] does not guarantee a global optimum.

Nevertheless, we will show in the results section that the
probabilities returned by the path classifier of Section 5 are
sufficiently discriminative to produce competitive results
using this kind of formulation. Furthermore, even better
ones can be obtained by explicitly addressing the issues
discussed above. We handle the first one by computing
probability estimates, not on single edges, but on edge pairs
so that both appearance and geometry can be accounted
for simultaneously. Given such estimates, we solve the re-
maining two problems by reformulating the reconstruction
problem not as the heuristic minimization of an energy such
as the one of Eq. 3 but as a solution of an IP that allows
loops while penalizing the formation of spurious junctions.
In the following, we first introduce our probabilistic model

and consider the simpler acyclic case. We then extend our
approach to networks that contain loops.

6.2 Probabilistic Model
Let F = {eijk = (eij , ejk)} be the set of pairs of
consecutive edges in G. By analogy to the binary variable
tij of Eq. 3, let tijk denote the presence or absence of eijk
in the curvilinear networks and Tijk be the corresponding
hidden variable. Let also t and T be the set of all tijk
and Tijk variables respectively. Given the graph G and the
image evidence I , we look for the optimal delineation t∗
as the solution of

t∗ = argmax
t∈Pc

P (T = t|I,G) ,

= argmax
t∈Pc

P (I,G|T = t)P (T = t) ,

= argmin
t∈Pc

− log(P (I,G|T = t))− log(P (T = t)), (4)

where we used the Bayes’ rule and assumed a uniform
distribution over the image I and the graph G. The binary
vector t belongs to the set Pc of binary vectors that define
feasible solutions. In the following, we present two different
ways of defining Pc and the two likelihood terms of Eq. 4.

6.3 Tree Reconstruction
In this section, we take Pc to be the set of all directed
trees T (G) of G, and use a uniform prior, which amounts
to assuming that all tree shapes are equally likely. We
therefore drop the prior term log(P (T = t)) from Eq. 4.
Furthermore, we assume conditional independence of im-
age evidence along the edge pairs {eijk}, given that we
know whether or not they belong to the tree structure. We
therefore represent the likelihood term P (I,G|T = t) as
a product of individual edge pair likelihoods. As shown in
Appendix C, this leads to

t∗=argmin
t∈T (G)

∑

eijk∈F
− log

(
P (Tijk = 1|Iijk, eijk)

P (Tijk = 0|Iijk, eijk)

)
tijk (5)

=argmin
t∈T (G)

∑

eijk∈F
cijk tijk, (6)

where Iijk represents image data around the tubular
path corresponding to eijk. The probability P (Tijk =
1|Iijk, eijk) denotes the likelihood of edge pair eijk be-
longing to the tree structure, which we compute based on
global appearance and geometry of the paths as described
in Section 5. The cijk variables represent the probabilistic
likelihood ratios we assign to the edge pairs. As discussed
in Section 2, we found this more effective at distinguishing
legitimate paths from spurious ones than more standard
methods, such as those that integrate a tubularity measure
along the path. In the following, we show that optimiz-
ing the objective function of Eq. 6 with respect to the
constraints t ∈ T (G) amounts to solving a minimum
arborescence problem [48] with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, the
minimization of Eq. 6 can be reformulated as the quadratic
program

argmin
t∈T (G)

∑

eij ,ejk∈E
cijk tij tjk (7)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t ∈ T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [48], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex r ∈ V of the
optimal tree is given, we express these constraints as

∑

j∈V \{r}
ylrj ≤ 1, ∀l ∈ V \ {r}, (8)

∑

j∈V \{l}
yljl ≤ 1, ∀l ∈ V \ {r}, (9)

∑

j∈V \{i,r}
ylij −

∑

j∈V \{i,l}
ylji = 0,

∀l ∈ V \ {r},
∀i ∈ V \ {r, l}, (10)

ylij ≤ tij , ∀eij ∈ E, l ∈ V \ {r, i, j}, (11)

ylil = til, ∀eil ∈ E, (12)

ylij ≥ 0, ∀eij ∈ E, l ∈ V \ {r, i}, (13)
tij ∈ {0, 1}, ∀eij ∈ E, (14)

where the ylij are auxiliary continuous variables that denote
the flow from the root vertex to all others. More specifically,
ylij indicates whether the unique directed path from the root
r to vertex l traverses the edge eij . If the optimal tree t∗

does not contain l and hence such a path does not exist,
then ylij = 0. The first two constraints ensure that there
can be at most one path in t∗ from the root to each vertex
in the graph. The third one enforces conservation of flow
at intermediate vertices i ∈ V . The remaining constraints
guarantee that t∗ includes a path from the root to the vertex
l passing through edge eil if t∗ contains eil.

Some of our images contain several disconnected curvi-
linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branches being “stolen” by the first structure we reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set Vr ⊂ V of root vertices,
one for each underlying curvilinear structure of interest,
we create a virtual vertex v and connect it to each r ∈ Vr
by zero cost edge pairs containing all other vertices to
which r is connected. To reconstruct multiple disconnected
structures at once, we therefore replace r in the constraints
of Eqs. 8-13 with v and add the following constraints to
the problem

tvr = 1, ∀evr ∈ E : r ∈ Vr , (15)

which ensures that all the root vertices will be in the
solution.

6.4 Loopy Reconstruction
As discussed above, allowing branches to cross produces
cyclic graphs. However, in some cases, such as when
delineating the neural structures of the brightfield and
brainbow images of Fig. 1, we know that the underlying
structure truly is a tree whose topology we will eventually
want to recover. This means that we need to be able
to distinguish one branch from the other. One approach
would be to first recover the subgraph defined by the active
edges and then attempt to assess its topology. However,
to consistently enforce geometric constraints on branches

even at junctions, we do both simultaneously by reasoning
in terms of whether consecutive pairs of edges belong to
the final delineation or not.

Fig. 8(a) depicts this approach in a specific case. Sim-
ilarly, consider the vertices labeled i,j,k,l, and m in the
graph of Fig. 2(b). In the delineation of Fig. 2(d), edge
pairs eijk and emjl are both active and vertex j belongs to
both branches.

In practice, we seek to minimize the sum of the two
negative log-likelihood terms of Eq. 4 as before but modify
them to penalize the formation of spurious junctions. In
the following, we first describe these two components and
then introduce the constraints that allow graph vertices to
be shared among separate branches.

6.4.1 Image and Geometry Likelihood Term
Assuming conditional independence of the image evidence
given the true values of the random variables Tijk, the first
term of Eq. 4 can be rewritten as

− log(P (I,G|T = t)) =
∑

eijk∈F
(cijk + wijk) tijk, (16)

where cijk is the likelihood ratio of Eq. 6 and wijk is a
learned compatibility function of edges eij and ejk.

To see this, let us consider two sets Y and Z of auxiliary
random variables denoting respectively the presence of
edges in the optimal solution and compatibility of con-
secutive edge pairs. More specifically, let Y = {Yjk} be
the vector of binary random variables indicating whether
edges {ejk} truly belong to the underlying curvilinear
structures, and y = {yjk} denote their realizations. As will
be discussed in Section 6.4.3, we do not allow edges to have
more than one active incoming edge pair in the solution.
Hence, we have yjk =

∑
eij∈E tijk ≤ 1. As a result, for

each edge ejk in the solution, there can be at most one
parent edge eij such that tijk = 1.

Let also Zjk be the random variable standing for the
parent of ejk and Z be the vector of all such variables. That
is, Zjk can take values from the set {eij | eij ∈ E\{ekj}}.
There is a one-to-one deterministic relation between T and
(Y,Z), which we write as

Tijk = Yjk 1(Zjk = eij), ∀eijk ∈ F (17)

where 1(.) is an indicator function. We express the first
term of Eq. 4 in terms of Y and Z as
P (I,G|T = t) = P (I,G|Y=y,Z=z) (18)

=
∏

ejk∈E
P (Ijk, Ejk|Yjk=yjk, Zjk=zjk) (19)

∝
∏

ejk∈E
P (Zjk=zjk|Yjk=yjk, Ijk, Ejk)P (Yjk=yjk|Ijk, Ejk) (20)

∝
∏

ejk∈E
[P (Zjk=zjk|Yjk=1, Ijk, Ejk)P (Yjk=1|Ijk, Ejk)]

yjk ×

[P (Zjk=zjk|Yjk=0, Ijk, Ejk)P (Yjk=0|Ijk, Ejk)]
1−yjk (21)

∝
∏

ejk∈E

 ∏
eij∈E

(pcijk)
tijk

P (Yjk=1|Ijk, Ejk)

yjk ×

[
1

deg∗(vj , vk)
P (Yjk=0|Ijk, Ejk)

]1−yjk
(22)

∝
∏

ejk∈E

 ∏
eij∈E

(pcijk)
tijk

[pqjkdeg∗(vj , vk)
(1− pqjk)

]∑
eij∈E

tijk
, (23)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

likelihood ratios we assign to the edge pairs. As discussed
in the Section 2, we have found this more effective at
distinguishing legitimate paths from spurious ones than
more standard methods, such as those that integrate a
tubularity measure along the path. In the following, we
show that optimizing the objective function of Eq. 5 with
respect to the constraints t 2 T (G) amounts to solving a
minimum arborescence problem [55] with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, the
minimization of Eq. 5 can be reformulated as the quadratic
program

argmin
t2T (G)

X

eij ,ejk2E

cijk tij tjk (6)

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t 2 T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [55], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex vr of the
optimal tree is given, we express these constraints as

X

vj2V \{vr}
yl

rj 1, 8vl 2 V \ {vr}, (7)

X

vj2V \{vl}
yl

jl 1, 8vl 2 V \ {vr}, (8)

X

vj2V \{vi,vr}
yl

ij �
X

vj2V \{vi,vl}
yl

ji = 0,
8vl 2 V \ {vr},
8vi 2 V \ {vr, vl},

(9)

yl
ij tij , 8eij 2 E, vl 2 V \ {vr, vi, vj}, (10)

yl
il = til, 8eil 2 E, (11)

yl
ij � 0, 8eij 2 E, vl 2 V \ {vr, vi}, (12)

tij 2 {0, 1}, 8eij 2 E, (13)

where the yl
ij are auxiliary continuous variables that denote

the flow from the root vertex to all others. More specifically,
yl

ij indicates whether the unique directed path from the root
vr to vertex vl traverses the edge eij . If the optimal tree
t⇤ does not contain vl and hence such a path does not
exist, then yl

ij = 0. The first two constraints ensure that
there can be at most one path in t⇤ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t⇤ includes a path from the root to the vertex
vl passing through edge eil if t⇤ contains eil.

Some of our images contain several disconnected curvi-
linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branches being “stolen” by the first structure we reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set R of root vertices, one for
each underlying curvilinear network of interest, we create
a virtual vertex vv and connect it to each vr 2 R by zero
cost edge pairs containing all other vertices to which vr is
connected. To reconstruct multiple disconnected structures
at once, we therefore replace vr in the constraints of Eqs. 7-
12 with vv and add the following constraints to the problem

tvr = 1, 8evr 2 E : vr 2 R. (14)

which ensures that all the root vertices will be in the
solution.

Fig. 5. A loopy graph with a root vertex r (in red). Allowing
vertex c (in green) to be used by the two different branches
(denoted by blue and yellow arrows) produces a loopy so-
lution instead of a tree. However, describing the crossing in
terms of edge pairs {i, c, j} and {k, c, l} being active and all
other edge pairs containing c, such as {k, c, j}, being inactive
makes it possible to eventually recover the tree topology.

4.5 Loopy Reconstruction
As discussed previously, allowing branches to cross pro-
duces cyclic graphs such as the one shown in Fig. 5.
However, in some cases, such as when delineating the
neural structures of the brightfield and brainbow images
shown in Fig. 1, we know that the underlying structure
truly is a tree whose topology we will eventually want to
recover. In the case of Fig. 5, this means that we need
to be able to distinguish one branch from the other. One
approach would be to first recover the subgraph defined by
the active edges and then attempt to assess its topology.
However, to consistently enforce geometric constraints on
branches even at junctions, we do both simultaneously by
reasoning in terms of whether consecutive pairs of edges
belong to the final delineation or not.

For example, in the case of Fig. 5, edge pairs (eic, ecj)
and (ekc, ecl) should belong but neither (eic, ecl) nor
(ekc, ecj). Similarly, consider the vertices labeled i,j,k,l,
and m in the graph of Fig. 2(b). In the delineation of
Fig. 2(d), edge pairs (eij , ejk) and (emj , ejl) are both active
and vertex j belongs to both branches.

In the following, we first describe our cost function that
penalizes the formation of spurious junctions, and then
introduce the constraints that allow graph vertices to be
shared among separate branches.

4.5.1 Cost Function
We seek to minimize the sum of the two negative log-
likelihood terms of Eq 3. In this section, we take the
first one as an image data and path geometry likelihood
term, and the second one as a junction prior that penalizes
unwarranted bifurcations or terminations.

As we show in Appendix C, assuming conditional inde-
pendence of the image evidence given the true values of
the random variables Tijk, the first term can be rewritten
as

� log(P (I, G|T = t)) =
X

eijk2F

cijk wijk tijk, (15)

where cijk is the likelihood ratio of Eq. 5 and wijk is
a learned compatibility function of edge pairs eij and ejk.
We model the second likelihood term of Eq 3 as a Bayesian

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

likelihood ratios we assign to the edge pairs. As discussed
in the Section 2, we have found this more effective at
distinguishing legitimate paths from spurious ones than
more standard methods, such as those that integrate a
tubularity measure along the path. In the following, we
show that optimizing the objective function of Eq. 5 with
respect to the constraints t � T (G) amounts to solving a
minimum arborescence problem [55] with a quadratic cost.
By decomposing the indicator variable tijk introduced

above as the product of the two variables tij and tjk, the
minimization of Eq. 5 can be reformulated as the quadratic
program

argmin
t2T (G)

X

eij ,ejk2E

cijk tij tjk (6)

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t � T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [55], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex vr of the
optimal tree is given, we express these constraints as

X

vj2V \{vr}
yl

rj 1, 8vl 2 V \ {vr}, (7)

X

vj2V \{vl}
yl

jl 1, 8vl 2 V \ {vr}, (8)

X

vj2V \{vi,vr}
yl

ij �
X

vj2V \{vi,vl}
yl

ji = 0,
8vl 2 V \ {vr},
8vi 2 V \ {vr, vl},

(9)

yl
ij tij , 8eij 2 E, vl 2 V \ {vr, vi, vj}, (10)

yl
il = til, 8eil 2 E, (11)

yl
ij � 0, 8eij 2 E, vl 2 V \ {vr, vi}, (12)

tij 2 {0, 1}, 8eij 2 E, (13)

where theyl
ij areauxiliary continuousvariables that denote

theflow from theroot vertex to all others. Morespecifically,
yl

ij indicateswhether theuniquedirected path from the root
vr to vertex vl traverses the edge eij . If the optimal tree
t ⇤ does not contain vl and hence such a path does not
exist, then yl

ij = 0. The first two constraints ensure that
there can be at most one path in t ⇤ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t ⇤ includesapath from the root to the vertex
vl passing through edge eil if t ⇤ contains eil.
Some of our images contain several disconnected curvi-

linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branchesbeing “stolen” by thefirst structurewe reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set R of root vertices, one for
each underlying curvilinear network of interest, we create
a virtual vertex vv and connect it to each vr � R by zero
cost edge pairs containing all other vertices to which vr is
connected. To reconstruct multiple disconnected structures
at once, we therefore replacevr in theconstraintsof Eqs. 7-
12with vv and add the following constraints to theproblem

tvr = 1, 8evr 2 E : vr 2 R. (14)

which ensures that all the root vertices will be in the
solution.

Fig. 5. A loopy graph with a root vertex r (in red). Allowing
vertex c (in green) to be used by the two different branches
(denoted by blue and yellow arrows) produces a loopy so-
lution instead of a tree. However, describing the crossing in
terms of edge pairs {i, c, j} and {k, c, l} being active and all
other edge pairs containing c, such as {k, c, j}, being inactive
makes it possible to eventually recover the tree topology.

4.5 Loopy Reconstruction
As discussed previously, allowing branches to cross pro-
duces cyclic graphs such as the one shown in Fig. 5.
However, in some cases, such as when delineating the
neural structures of the brightfield and brainbow images
shown in Fig. 1, we know that the underlying structure
truly is a tree whose topology we will eventually want to
recover. In the case of Fig. 5, this means that we need
to be able to distinguish one branch from the other. One
approach would be to first recover the subgraph defined by
the active edges and then attempt to assess its topology.
However, to consistently enforce geometric constraints on
branches even at junctions, we do both simultaneously by
reasoning in terms of whether consecutive pairs of edges
belong to the final delineation or not.
For example, in the case of Fig. 5, edge pairs (eic, ecj)

and (ekc, ecl) should belong but neither (eic, ecl) nor
(ekc, ecj). Similarly, consider the vertices labeled i,j,k,l,
and m in the graph of Fig. 2(b). In the delineation of
Fig. 2(d), edgepairs (eij , ejk) and (emj , ejl) areboth active
and vertex j belongs to both branches.
In the following, we first describe our cost function that

penalizes the formation of spurious junctions, and then
introduce the constraints that allow graph vertices to be
shared among separate branches.

4.5.1 Cost Function
We seek to minimize the sum of the two negative log-
likelihood terms of Eq 3. In this section, we take the
first one as an image data and path geometry likelihood
term, and the second one as a junction prior that penalizes
unwarranted bifurcations or terminations.
As we show in Appendix C, assuming conditional inde-

pendence of the image evidence given the true values of
the random variables Tijk, the first term can be rewritten
as

� log(P (I, G|T = t)) =
X

eijk2F

cijk wijk tijk, (15)

where cijk is the likelihood ratio of Eq. 5 and wijk is
a learned compatibility function of edge pairs eij and ejk.
Wemodel the second likelihood term of Eq 3 asaBayesian

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

likelihood ratios we assign to the edge pairs. As discussed
in the Section 2, we have found this more effective at
distinguishing legitimate paths from spurious ones than
more standard methods, such as those that integrate a
tubularity measure along the path. In the following, we
show that optimizing the objective function of Eq. 5 with
respect to the constraints t 2 T (G) amounts to solving a
minimum arborescence problem [55] with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, the
minimization of Eq. 5 can be reformulated as the quadratic
program

argmin
t2T (G)

X

eij ,ejk2E

cijk tij tjk (6)

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t 2 T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [55], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex vr of the
optimal tree is given, we express these constraints as

X

vj2V \{vr}
yl

rj 1, 8vl 2 V \ {vr}, (7)

X

vj2V \{vl}
yl

jl 1, 8vl 2 V \ {vr}, (8)

X

vj2V \{vi,vr}
yl

ij �
X

vj2V \{vi,vl}
yl

ji = 0,
8vl 2 V \ {vr},
8vi 2 V \ {vr, vl},

(9)

yl
ij tij , 8eij 2 E, vl 2 V \ {vr, vi, vj}, (10)

yl
il = til, 8eil 2 E, (11)

yl
ij � 0, 8eij 2 E, vl 2 V \ {vr, vi}, (12)

tij 2 {0, 1}, 8eij 2 E, (13)

where the yl
ij are auxiliary continuous variables that denote

the flow from the root vertex to all others. More specifically,
yl

ij indicates whether the unique directed path from the root
vr to vertex vl traverses the edge eij . If the optimal tree
t⇤ does not contain vl and hence such a path does not
exist, then yl

ij = 0. The first two constraints ensure that
there can be at most one path in t⇤ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t⇤ includes a path from the root to the vertex
vl passing through edge eil if t⇤ contains eil.

Some of our images contain several disconnected curvi-
linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branches being “stolen” by the first structure we reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set R of root vertices, one for
each underlying curvilinear network of interest, we create
a virtual vertex vv and connect it to each vr 2 R by zero
cost edge pairs containing all other vertices to which vr is
connected. To reconstruct multiple disconnected structures
at once, we therefore replace vr in the constraints of Eqs. 7-
12 with vv and add the following constraints to the problem

tvr = 1, 8evr 2 E : vr 2 R. (14)

which ensures that all the root vertices will be in the
solution.

Fig. 5. A loopy graph with a root vertex r (in red). Allowing
vertex c (in green) to be used by the two different branches
(denoted by blue and yellow arrows) produces a loopy so-
lution instead of a tree. However, describing the crossing in
terms of edge pairs {i, c, j} and {k, c, l} being active and all
other edge pairs containing c, such as {k, c, j}, being inactive
makes it possible to eventually recover the tree topology.

4.5 Loopy Reconstruction
As discussed previously, allowing branches to cross pro-
duces cyclic graphs such as the one shown in Fig. 5.
However, in some cases, such as when delineating the
neural structures of the brightfield and brainbow images
shown in Fig. 1, we know that the underlying structure
truly is a tree whose topology we will eventually want to
recover. In the case of Fig. 5, this means that we need
to be able to distinguish one branch from the other. One
approach would be to first recover the subgraph defined by
the active edges and then attempt to assess its topology.
However, to consistently enforce geometric constraints on
branches even at junctions, we do both simultaneously by
reasoning in terms of whether consecutive pairs of edges
belong to the final delineation or not.

For example, in the case of Fig. 5, edge pairs (eic, ecj)
and (ekc, ecl) should belong but neither (eic, ecl) nor
(ekc, ecj). Similarly, consider the vertices labeled i,j,k,l,
and m in the graph of Fig. 2(b). In the delineation of
Fig. 2(d), edge pairs (eij , ejk) and (emj , ejl) are both active
and vertex j belongs to both branches.

In the following, we first describe our cost function that
penalizes the formation of spurious junctions, and then
introduce the constraints that allow graph vertices to be
shared among separate branches.

4.5.1 Cost Function
We seek to minimize the sum of the two negative log-
likelihood terms of Eq 3. In this section, we take the
first one as an image data and path geometry likelihood
term, and the second one as a junction prior that penalizes
unwarranted bifurcations or terminations.

As we show in Appendix C, assuming conditional inde-
pendence of the image evidence given the true values of
the random variables Tijk, the first term can be rewritten
as

� log(P (I, G|T = t)) =
X

eijk2F

cijk wijk tijk, (15)

where cijk is the likelihood ratio of Eq. 5 and wijk is
a learned compatibility function of edge pairs eij and ejk.
We model the second likelihood term of Eq 3 as a Bayesian

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

likelihood ratios we assign to the edge pairs. As discussed
in the Section 2, we have found this more effective at
distinguishing legitimate paths from spurious ones than
more standard methods, such as those that integrate a
tubularity measure along the path. In the following, we
show that optimizing the objective function of Eq. 5 with
respect to the constraints t 2 T (G) amounts to solving a
minimum arborescence problem [55] with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, the
minimization of Eq. 5 can be reformulated as the quadratic
program

argmin
t2T (G)

X

eij ,ejk2E

cijk tij tjk (6)

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t 2 T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [55], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex vr of the
optimal tree is given, we express these constraints as

X

vj2V \{vr}
yl

rj 1, 8vl 2 V \ {vr}, (7)

X

vj2V \{vl}
yl

jl 1, 8vl 2 V \ {vr}, (8)

X

vj2V \{vi,vr}
yl

ij �
X

vj2V \{vi,vl}
yl

ji = 0,
8vl 2 V \ {vr},
8vi 2 V \ {vr, vl},

(9)

yl
ij tij , 8eij 2 E, vl 2 V \ {vr, vi, vj}, (10)

yl
il = til, 8eil 2 E, (11)

yl
ij � 0, 8eij 2 E, vl 2 V \ {vr, vi}, (12)

tij 2 {0, 1}, 8eij 2 E, (13)

where the yl
ij are auxiliary continuous variables that denote

the flow from the root vertex to all others. More specifically,
yl

ij indicates whether the unique directed path from the root
vr to vertex vl traverses the edge eij . If the optimal tree
t⇤ does not contain vl and hence such a path does not
exist, then yl

ij = 0. The first two constraints ensure that
there can be at most one path in t⇤ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t⇤ includes a path from the root to the vertex
vl passing through edge eil if t⇤ contains eil.

Some of our images contain several disconnected curvi-
linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branches being “stolen” by the first structure we reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set R of root vertices, one for
each underlying curvilinear network of interest, we create
a virtual vertex vv and connect it to each vr 2 R by zero
cost edge pairs containing all other vertices to which vr is
connected. To reconstruct multiple disconnected structures
at once, we therefore replace vr in the constraints of Eqs. 7-
12 with vv and add the following constraints to the problem

tvr = 1, 8evr 2 E : vr 2 R. (14)

which ensures that all the root vertices will be in the
solution.

Fig. 5. A loopy graph with a root vertex r (in red). Allowing
vertex c (in green) to be used by the two different branches
(denoted by blue and yellow arrows) produces a loopy so-
lution instead of a tree. However, describing the crossing in
terms of edge pairs {i, c, j} and {k, c, l} being active and all
other edge pairs containing c, such as {k, c, j}, being inactive
makes it possible to eventually recover the tree topology.

4.5 Loopy Reconstruction
As discussed previously, allowing branches to cross pro-
duces cyclic graphs such as the one shown in Fig. 5.
However, in some cases, such as when delineating the
neural structures of the brightfield and brainbow images
shown in Fig. 1, we know that the underlying structure
truly is a tree whose topology we will eventually want to
recover. In the case of Fig. 5, this means that we need
to be able to distinguish one branch from the other. One
approach would be to first recover the subgraph defined by
the active edges and then attempt to assess its topology.
However, to consistently enforce geometric constraints on
branches even at junctions, we do both simultaneously by
reasoning in terms of whether consecutive pairs of edges
belong to the final delineation or not.

For example, in the case of Fig. 5, edge pairs (eic, ecj)
and (ekc, ecl) should belong but neither (eic, ecl) nor
(ekc, ecj). Similarly, consider the vertices labeled i,j,k,l,
and m in the graph of Fig. 2(b). In the delineation of
Fig. 2(d), edge pairs (eij , ejk) and (emj , ejl) are both active
and vertex j belongs to both branches.

In the following, we first describe our cost function that
penalizes the formation of spurious junctions, and then
introduce the constraints that allow graph vertices to be
shared among separate branches.

4.5.1 Cost Function
We seek to minimize the sum of the two negative log-
likelihood terms of Eq 3. In this section, we take the
first one as an image data and path geometry likelihood
term, and the second one as a junction prior that penalizes
unwarranted bifurcations or terminations.

As we show in Appendix C, assuming conditional inde-
pendence of the image evidence given the true values of
the random variables Tijk, the first term can be rewritten
as

� log(P (I, G|T = t)) =
X

eijk2F

cijk wijk tijk, (15)

where cijk is the likelihood ratio of Eq. 5 and wijk is
a learned compatibility function of edge pairs eij and ejk.
We model the second likelihood term of Eq 3 as a Bayesian

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

likelihood ratios we assign to the edge pairs. As discussed
in the Section 2, we have found this more effective at
distinguishing legitimate paths from spurious ones than
more standard methods, such as those that integrate a
tubularity measure along the path. In the following, we
show that optimizing the objective function of Eq. 5 with
respect to the constraints t 2 T (G) amounts to solving a
minimum arborescence problem [55] with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, the
minimization of Eq. 5 can be reformulated as the quadratic
program

argmin
t2T (G)

X

eij ,ejk2E

cijk tij tjk (6)

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t 2 T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [55], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex vr of the
optimal tree is given, we express these constraints as

X

vj2V \{vr}
yl

rj 1, 8vl 2 V \ {vr}, (7)

X

vj2V \{vl}
yl

jl 1, 8vl 2 V \ {vr}, (8)

X

vj2V \{vi,vr}
yl

ij �
X

vj2V \{vi,vl}
yl

ji = 0,
8vl 2 V \ {vr},
8vi 2 V \ {vr, vl},

(9)

yl
ij tij , 8eij 2 E, vl 2 V \ {vr, vi, vj}, (10)

yl
il = til, 8eil 2 E, (11)

yl
ij � 0, 8eij 2 E, vl 2 V \ {vr, vi}, (12)

tij 2 {0, 1}, 8eij 2 E, (13)

where the yl
ij are auxiliary continuous variables that denote

the flow from the root vertex to all others. More specifically,
yl

ij indicates whether the unique directed path from the root
vr to vertex vl traverses the edge eij . If the optimal tree
t⇤ does not contain vl and hence such a path does not
exist, then yl

ij = 0. The first two constraints ensure that
there can be at most one path in t⇤ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t⇤ includes a path from the root to the vertex
vl passing through edge eil if t⇤ contains eil.

Some of our images contain several disconnected curvi-
linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branches being “stolen” by the first structure we reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set R of root vertices, one for
each underlying curvilinear network of interest, we create
a virtual vertex vv and connect it to each vr 2 R by zero
cost edge pairs containing all other vertices to which vr is
connected. To reconstruct multiple disconnected structures
at once, we therefore replace vr in the constraints of Eqs. 7-
12 with vv and add the following constraints to the problem

tvr = 1, 8evr 2 E : vr 2 R. (14)

which ensures that all the root vertices will be in the
solution.

Fig. 5. A loopy graph with a root vertex r (in red). Allowing
vertex c (in green) to be used by the two different branches
(denoted by blue and yellow arrows) produces a loopy so-
lution instead of a tree. However, describing the crossing in
terms of edge pairs {i, c, j} and {k, c, l} being active and all
other edge pairs containing c, such as {k, c, j}, being inactive
makes it possible to eventually recover the tree topology.

4.5 Loopy Reconstruction
As discussed previously, allowing branches to cross pro-
duces cyclic graphs such as the one shown in Fig. 5.
However, in some cases, such as when delineating the
neural structures of the brightfield and brainbow images
shown in Fig. 1, we know that the underlying structure
truly is a tree whose topology we will eventually want to
recover. In the case of Fig. 5, this means that we need
to be able to distinguish one branch from the other. One
approach would be to first recover the subgraph defined by
the active edges and then attempt to assess its topology.
However, to consistently enforce geometric constraints on
branches even at junctions, we do both simultaneously by
reasoning in terms of whether consecutive pairs of edges
belong to the final delineation or not.

For example, in the case of Fig. 5, edge pairs (eic, ecj)
and (ekc, ecl) should belong but neither (eic, ecl) nor
(ekc, ecj). Similarly, consider the vertices labeled i,j,k,l,
and m in the graph of Fig. 2(b). In the delineation of
Fig. 2(d), edge pairs (eij , ejk) and (emj , ejl) are both active
and vertex j belongs to both branches.

In the following, we first describe our cost function that
penalizes the formation of spurious junctions, and then
introduce the constraints that allow graph vertices to be
shared among separate branches.

4.5.1 Cost Function
We seek to minimize the sum of the two negative log-
likelihood terms of Eq 3. In this section, we take the
first one as an image data and path geometry likelihood
term, and the second one as a junction prior that penalizes
unwarranted bifurcations or terminations.

As we show in Appendix C, assuming conditional inde-
pendence of the image evidence given the true values of
the random variables Tijk, the first term can be rewritten
as

� log(P (I, G|T = t)) =
X

eijk2F

cijk wijk tijk, (15)

where cijk is the likelihood ratio of Eq. 5 and wijk is
a learned compatibility function of edge pairs eij and ejk.
We model the second likelihood term of Eq 3 as a Bayesian

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

likelihood ratios we assign to the edge pairs. As discussed
in the Section 2, we have found this more effective at
distinguishing legitimate paths from spurious ones than
more standard methods, such as those that integrate a
tubularity measure along the path. In the following, we
show that optimizing the objective function of Eq. 5 with
respect to the constraints t 2 T (G) amounts to solving a
minimum arborescence problem [55] with a quadratic cost.

By decomposing the indicator variable tijk introduced
above as the product of the two variables tij and tjk, the
minimization of Eq. 5 can be reformulated as the quadratic
program

argmin
t2T (G)

X

eij ,ejk2E

cijk tij tjk (6)

However, not all choices of binary values for the indicator
variables give rise to a plausible delineation. The above
minimization must therefore be carried out subject to the
constraints t 2 T (G) to ensure that the solution is a
connected tree. We define these constraints by adapting the
network flow formulation presented in [55], which provides
a compact system with a polynomial number of variables
and constraints. Assuming that the root vertex vr of the
optimal tree is given, we express these constraints as

X

vj2V \{vr}
yl

rj 1, 8vl 2 V \ {vr}, (7)

X

vj2V \{vl}
yl

jl 1, 8vl 2 V \ {vr}, (8)

X

vj2V \{vi,vr}
yl

ij �
X

vj2V \{vi,vl}
yl

ji = 0,
8vl 2 V \ {vr},
8vi 2 V \ {vr, vl},

(9)

yl
ij tij , 8eij 2 E, vl 2 V \ {vr, vi, vj}, (10)

yl
il = til, 8eil 2 E, (11)

yl
ij � 0, 8eij 2 E, vl 2 V \ {vr, vi}, (12)

tij 2 {0, 1}, 8eij 2 E, (13)

where the yl
ij are auxiliary continuous variables that denote

the flow from the root vertex to all others. More specifically,
yl

ij indicates whether the unique directed path from the root
vr to vertex vl traverses the edge eij . If the optimal tree
t⇤ does not contain vl and hence such a path does not
exist, then yl

ij = 0. The first two constraints ensure that
there can be at most one path in t⇤ from the root to each
vertex in the graph. The third one enforces conservation of
flow at intermediate vertices vl. The remaining constraints
guarantee that t⇤ includes a path from the root to the vertex
vl passing through edge eil if t⇤ contains eil.

Some of our images contain several disconnected curvi-
linear structures. To avoid having to process them se-
quentially in a greedy manner, which may result in some
branches being “stolen” by the first structure we reconstruct
and therefore a suboptimal solution, we connect them all.
Assuming we are given a set R of root vertices, one for
each underlying curvilinear network of interest, we create
a virtual vertex vv and connect it to each vr 2 R by zero
cost edge pairs containing all other vertices to which vr is
connected. To reconstruct multiple disconnected structures
at once, we therefore replace vr in the constraints of Eqs. 7-
12 with vv and add the following constraints to the problem

tvr = 1, 8evr 2 E : vr 2 R. (14)

which ensures that all the root vertices will be in the
solution.

Fig. 5. A loopy graph with a root vertex r (in red). Allowing
vertex c (in green) to be used by the two different branches
(denoted by blue and yellow arrows) produces a loopy so-
lution instead of a tree. However, describing the crossing in
terms of edge pairs {i, c, j} and {k, c, l} being active and all
other edge pairs containing c, such as {k, c, j}, being inactive
makes it possible to eventually recover the tree topology.

4.5 Loopy Reconstruction
As discussed previously, allowing branches to cross pro-
duces cyclic graphs such as the one shown in Fig. 5.
However, in some cases, such as when delineating the
neural structures of the brightfield and brainbow images
shown in Fig. 1, we know that the underlying structure
truly is a tree whose topology we will eventually want to
recover. In the case of Fig. 5, this means that we need
to be able to distinguish one branch from the other. One
approach would be to first recover the subgraph defined by
the active edges and then attempt to assess its topology.
However, to consistently enforce geometric constraints on
branches even at junctions, we do both simultaneously by
reasoning in terms of whether consecutive pairs of edges
belong to the final delineation or not.

For example, in the case of Fig. 5, edge pairs (eic, ecj)
and (ekc, ecl) should belong but neither (eic, ecl) nor
(ekc, ecj). Similarly, consider the vertices labeled i,j,k,l,
and m in the graph of Fig. 2(b). In the delineation of
Fig. 2(d), edge pairs (eij , ejk) and (emj , ejl) are both active
and vertex j belongs to both branches.

In the following, we first describe our cost function that
penalizes the formation of spurious junctions, and then
introduce the constraints that allow graph vertices to be
shared among separate branches.

4.5.1 Cost Function
We seek to minimize the sum of the two negative log-
likelihood terms of Eq 3. In this section, we take the
first one as an image data and path geometry likelihood
term, and the second one as a junction prior that penalizes
unwarranted bifurcations or terminations.

As we show in Appendix C, assuming conditional inde-
pendence of the image evidence given the true values of
the random variables Tijk, the first term can be rewritten
as

� log(P (I, G|T = t)) =
X

eijk2F

cijk wijk tijk, (15)

where cijk is the likelihood ratio of Eq. 5 and wijk is
a learned compatibility function of edge pairs eij and ejk.
We model the second likelihood term of Eq 3 as a Bayesian

(a) (b) (c)

Fig. 8. Reasoning about edge-pairs. (a) A loopy graph with a root vertex r, in red. Allowing vertex c, in green, to be used
by the two different branches, denoted by blue and yellow arrows, produces a loopy solution instead of a tree. However,
describing the crossing in terms of edge pairs eicj and ekcl being active, and ekcj and eicl being inactive makes it possible to
eventually recover the correct tree topology. (b) Handling overlapping edges. (c) Enforcing crossover consistency.

where Ejk denotes the set of edges containing ejk and its
incoming edges in the graph, and Ijk denotes the image
evidence around these edges. Eq. 19 is obtained under the
assumption that the image evidence around edge pairs are
conditionally independent given that we know whether they
belong to the curvilinear structures or not. In Eq. 20, we use
Bayes’ rule and remove the constant terms P (Ijk, Ejk) and
P (Yjk =yjk, Zjk =zjk), assuming a uniform prior for both.
We derive Eq. 21 and 22 by using the fact that yjk, tijk ∈
{0, 1}, and substituting P (Zjk =eij |Yjk =1, Ijk, Ejk) and
P (Zjk = zjk|Yjk = 0, Ijk, Ejk) respectively with pcijk and

1
deg∗(vj ,vk)

. The term deg∗(vj , vk) denotes the number of
in-edges of vertex vj excluding the edge ekj , if it exists.
Finally, in Eq. 23, we drop the constant terms, express yjk
in terms of tijk’s, and substitute P (Yjk =1|Ijk, Ejk) with
pqjk. Taking the negative logarithm of Eq. 23 yields

− log(P (I,G|T=t)) =
∑

eijk∈F
− log

(
pqjkp

c
ijkdeg

∗(vj , vk)

(1− pqjk)

)
tijk

=
∑

eijk∈F

(
− log

(
pqjk

1− pqjk

)
− log

(
pcijkdeg

∗(vj , vk)
))

tijk

=
∑

eijk∈F

(
− log

(
pqjk

1− pqjk

)
+ wijk

)
tijk

≈
∑

eijk∈F
(cijk + wijk) tijk , (24)

which is the formulation of Eq. 16. The probability
pqjk denotes the likelihood that edge ejk belongs to the
curvilinear structure given the associated geodesic path
and corresponding image evidence. This is an image-based
term that accounts for the quality of the paths associated
with the edges. In practice, instead of relying only on the
image evidence around the edge ejk, we evaluate the path
classifier on a larger neighbourhood including its in-edges
{eij} and use the corresponding probabilities in the above
summation. Therefore, for each pqjk term in the above sum-
mation, we use the path probability P (Tijk = 1|Iijk, eijk)
corresponding to the edge pair eijk, which we obtain using
the path classification approach of Section 5.

The term pcijk denotes the probability that the edge pair
eijk belongs to the structures given that its target edge
ejk belongs to them. Since there must be exactly one
active parent for any active edge, these probabilities are
normalized over the sum of the probabilities of all incoming

edge-pairs so that
∑

eij∈E
pcijk = 1. (25)

In our experiments, this probability is expressed as a
sigmoid function of a distinctive feature, such as directional
deviation along eijk, which helps recovering the right
connectivity at crossovers such as the one of Fig. 2.

6.4.2 Prior Term
We take − log(P (T = t)) the second likelihood term of
Eq. 4 to be a junction prior that penalizes unwarranted
bifurcations or terminations, which we write as∑
eij∈E

[∑
emi∈E

λt tmij +
∑

ejn∈E
γt tijn +

∑
ejn∈E

∑
ejk∈E
k<n

δt tijntijk

]
,

(26)

where λt,γt, and δt are constants we derive below.
To this end, we treat the graph G as a Bayesian

network with latent variables Mij =
∑
emij∈F Tmij and

Oij =
∑
eijn∈F Tijn, which denote the true number of

incoming and outgoing edge pairs into and out of edge
eij , respectively. Note that the Mij are binary variables
since we limit the number of active incoming edge pairs
into an edge to one. Assuming that the Oij variables take
values from the set {0, 1, 2} and using a Bayesian network
to model the dependencies between the variables Mij and
Oij , we get

P (T=t) =
∏
eij∈E

P (Tij =tij |Oij =oij)P (Oij =oij |Mij =mij) (27)

∝
∏
eij∈E

P (Oij =oij |Mij =mij) (28)

∝
∏
eij∈E

P (Oij =oij |Mij =1)mijP (Oij =oij |Mij =0)(1−mij)

(29)

∝
∏
eij∈E

P (Oij =oij |Mij =1)mij (30)

∝
∏
eij∈E

[
P (Oij =0|Mij =1)1(oij=0) ×

P (Oij =1|Mij =1)1(oij=1) P (Oij =2|Mij =1)1(oij=2)
]mij

, (31)

where Tij denotes the vector of random variables
Tijn, ∀eijn ∈ F . In this work, we assume that all
configurations Tij are equally likely for an edge eij given
that we know the total number of outgoing edge pairs out
of it. Under this assumption, we obtain Eq. 28, which we
then decompose into two terms in Eq. 29 using the fact

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

that mij ∈ {0, 1}. In Eq. 30, we remove the second term
P (Oij = oij |Mij = 0)(1−mij) in the product because we
have oij = 0 when mij = 0 due to the connectedness
constraints we will introduce in the next section, and hence,
the term is always equal to 1. Finally, we derive Eq. 31
by expressing the probability P (Oij = oij |Mij = 1) as a
product of three admissible event probabilities, namely ter-
mination, continuation and bifurcation, only one of which
contributes to the product for each edge eij . The indicator
functions are defined as

1(oij =2) =
∑

ejn∈E

∑
ejk∈E
k<n

tijn tijk , (32)

1(oij =1) =
∑

ejn∈E
tijn − 2

∑
ejn∈E

∑
ejk∈E
k<n

tijn tijk , (33)

1(oij =0) =
∑

emi∈E
tmij −

∑
ejn∈E

tijn +
∑

ejn∈E

∑
ejk∈E
k<n

tijn tijk . (34)

Note that multiplying these functions by mij =∑
emi∈E tmij results in themselves since they are all equal

to zero when mij = 0. Substituting them in Eq. 31 and
taking the negative logarithm yields

−
∑
eij∈E

[∑
emi∈E

log(pt)tmij +
∑

ejn∈E
log

(
pc

pt

)
tijn +

∑
ejn∈E

∑
ejk∈E
k<n

log

(
pbpt

(pc)2

)
tijntijk

]
, (35)

where pt = P (Oij =0|Mij =1), pc = P (Oij =1|Mij =1)
and pb = P (Oij = 2|Mij = 1) denote respectively
the prior probabilities for branch termination, continuation
and bifurcation at edge eij . Note that Eq. 35 always
results in positive values. This penalizes the creation of
bifurcations and terminations but also continuations, that
is, Oij = 1 ∧ Mij = 1, which truly belong to the
underlying curvilinear networks. To prevent this, we set the
continuation probability pc to 1 and drop the corresponding
terms from Eq. 35. This yields the desired expression

− log(P (T=t)) = −
∑
eij∈E

[∑
emi∈E

log(pt)tmij +

∑
ejn∈E

log

(
1

pt

)
tijn +

∑
ejn∈E

∑
ejk∈E
k<n

log
(
pbpt

)
tijntijk

]
, (36)

which is the one of Eq. 26.
Note that when the task is to reconstruct a tree structure,

this regularization term helps penalize spurious bifurcations
and early terminations at branch crossings. However, for
loopy networks, it also penalizes legitimate bifurcations
that are part of the loops. We therefore do not use it for
inherently loopy networks such as blood vessels and roads.

6.4.3 Constraints
In short, minimizing the negative log-likelihood of Eq. 4
amounts to seeking

t∗ = argmin
t∈Pc

∑
eijk∈F

aijktijk +
∑

eijk,eijn∈F
bijkntijktijn . (37)

The criterion being minimized is the sum of the linear and
quadratic terms of Eqs. 16 and 36 and the aijk and bijkn
coefficients are obtained by summing the appropriate terms.

Using the same notation as in Section 6.3, we say that an
edge pair eijk is active in the solution if tijk = 1. Similarly,
an edge eij is active if there exist an active incoming edge
pair containing it, that is, ∃elij ∈ F : tlij = 1.

We take the feasible region Pc introduced in Eq. 4 to be
the set of subgraphs that satisfy certain connectivity condi-
tions. More specifically, we define four sets of constraints to
ensure that the solutions to the minimization of Eq. 37 are
such that root vertices are not isolated, branches are edge-
disjoint, potential crossovers are consistently handled, and
all active edge pairs are connected.

Non-isolated Roots. As described in Section 6.3, we
assume that we are given a set Vr ⊂ V of root vertices, one
for each curvilinear structure of interest in the image. To
handle multiple disconnected structures, we create a virtual
vertex v and connect it to each given root r ∈ Vr by zero
cost edge pairs.

We require the root vertices to be connected to at least
one vertex other than the virtual one v and to have no active
incoming edge other than evr. We write

∑

eri∈E
tvri ≥ 1, ∀r ∈ Vr , (38)

∑

eijr∈F
tijr +

∑

eirj∈F :i6=v
tirj = 0, ∀r ∈ Vr . (39)

Disjoint Edges. For each edge eij ∈ E, such as the
one depicted by Fig. 8(b), we let at most one edge pair be
active among all those that are incoming into eij or eji.
Second we prevent the number of active edge pairs that
overlap more than a certain fraction of their mean radius
to be more than one. Let pijk denote the geodesic path
corresponding to edge pair eijk. We write
∑

eni∈E:
n6=j

tnij +
∑

emj∈E:
m6=i

tmji ≤ 1, ∀eij ∈ E : i 6= v, (40)

tmnl + tijk ≤ 1, (41)

∀emnl, eijk ∈ F :

(emn=eji) ∨ (emn=ekj) ∨ (eln=eij) ∨(
(enl 6=eij) ∧ (enl 6=eji) ∧ (enl 6=ejk) ∧

(enl 6=ekj) ∧ (emn 6=eij) ∧ (emn 6=eji) ∧
(emn 6=ejk) ∧ (emn 6=ekj) ∧(

l(pmnl∩pijk) > αr̄(pmnl ∩pijk)
)
∧

(
l(pmnl) < l(pijk)

))

,

where l(.) and r̄(.) denote the length and mean radius of a
path respectively. α is a constant value that determines the
allowed extent of the overlap between the geodesic paths
of the edges. It is set to 3 in all our experiments. In the
example depicted by the figure above, among all the edge
pairs incoming to the edges eij , ek1l1 and ek2l2 , only one
can be active in the final solution.

For those curvilinear structures that are inherently trees,
these constraints make their recovery from the resulting
subgraph possible by starting from the root vertices and
following the active edge pairs along the paths that lead to
the terminal vertices.

Crossover Consistency. A potential crossover in G is
a vertex that is adjacent to at least four other vertices
and whose in- and out-degrees are greater than one. A
consistent solution containing such a vertex is then defined
as a one whose branches do not terminate at the vertex if

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

its in-degree in the solution is greater than one. Fig. 8(c)
illustrates consistent configurations denoted by a tick mark
and inconsistent ones denoted by a cross. We express this
as

∑

eki∈E:
k 6=j

tkij +
∑

elm∈E:
l6=q,l6=j

tlmq −
∑

eju∈E:
u6=i

tiju ≤ 1 , (42)

∀eij ∈ E ∀emq ∈ C(j) : m 6= i

C(j) = {enk ∈ E | k = j ∨ (j ∈ pnk, n 6= j, k 6= j)}

These constraints are only active when dealing with
structures that inherently are trees, such as dendritic and
axonal arbors. For inherently loopy ones, such as road and
vascular networks, we deactivate them to allow creation of
junctions that are parts of legitimate cycles.

Connectedness via Network Flow. We require all the
active edge pairs to be connected to the virtual vertex v.
An edge pair eijk is said to be connected if there exists a
path in G, starting at v and containing eijk, along which
all the edge pairs are active.

Let ylij (i 6= l) be a non-negative continuous flow variable
which denotes the number of distinct directed paths that
connect v to vertex l, and traverse the edge eij in the
solution. This gives rise to the following constraint set

∑

evj∈E
ylvj =

∑

eil∈E
ylil, ∀l ∈ V \ {v} , (43)

∑

evj∈E
ylvj ≤ deg−(l), ∀l ∈ V \ {v} , (44)

∑

eij∈E
ylij =

∑

ejk∈E
yljk, ∀j, l ∈ V \ {v} : j 6= l , (45)

ylil ≥ tilk, ∀eilk ∈ F , (46)

ylil =
∑

eki∈E
tkil, ∀eil ∈ E : i 6= v , (47)

ylij ≤ deg−(l)
∑

eki∈E
tkij ,

∀eij∈E:i6=v,
∀l∈V \{v,i,j} , (48)

ylij ≥ yljk + deg−(l)(tijk − 1),
∀eijk∈F,

∀l∈V \{v}:j 6=l,i6=l , (49)

where deg−(.) is the in degree of a vertex. The first two
constraints guarantee that the amount of flow outgoing from
the virtual vertex v to a vertex l is equal to the incoming
flow to l, which must be smaller than the in degree of
l. The constraints in Eq. 45 impose conservation of flow
at intermediate vertices of the directed paths from v to l.
The following three constraints bind the flow variables to
the binary ones, ensuring that a connected network formed
by the non-zero flow variables is also connected in the
active edge pair variables. Note that, since we are looking
for possibly cyclic subgraphs, there can be multiple paths
incoming to a vertex. Hence, unlike the flow variables of
Eqs. 8-13, which are bounded by one, the ones defined here
have no upper bounds.

Finally, the constraints introduced in Eq. 49 ensure that
active edge pairs do not form a cycle disconnected from the
virtual vertex. This is achieved by imposing conservation
of flow on active edge pairs. These constraints are required
to ensure that a tree topology can be recovered from a

potentially loopy solution by tracing the active edge pairs
from the roots r ∈ Vr to the branch terminals.

6.5 Optimization

The two IP formulations introduced in Sections 6.3 and 6.4
are generalizations of the Minimum Arborescence Problem,
which is known to be NP-Hard [48]. Nevertheless, we
obtained globally optimal or near-optimal solutions for all
the problem instances discussed in the results section using
the branch-and-cut algorithm [49]. More precisely, the
objective values of the solutions we found are guaranteed
to be within a small distance 2e−16 of the true optimum.

However, the branch-and-cut procedure does not scale
well to large graphs especially when we use the network
flow formulation of Eqs. 43-49. To overcome this, we
reduce the size of the graphs by pruning or merging some
of the edge pairs based on their assigned costs, which we
describe in Appendix D. Furthermore, we introduce a new
set of connectivity constraints expressed only in the edge
pair variables tijk, which we describe in the remainder of
this section. This new approach eliminates the need for
adding the large number, |V |·|E|, of auxiliary flow variables
ylij and their constraints to the optimization.

More specifically, we require every subset of active edge
pairs to be connected to the virtual vertex v. To this end,
we extend the enhanced connectivity constraints for edges
introduced in [48] to edge pairs by imposing

∑

enl∈H,
emn∈E\(H∪eij)

tmnl ≥
∑

eki∈H
tkij ,

∀H⊂E\{evr|r∈Vr}, ∀eij∈E\H :

(∀euw∈H, ewu∈H)
(50)

Note that, since we consider every possible subset H of
graph edges, the number of constraints grows exponentially
with the number of edges and is too large in practice to be
dealt with exhaustively. To make the problem tractable, we
therefore take a lazy constraint approach, which requires
only a small but sufficient fraction of the constraints to
be used. This is done iteratively by identifying those
constraints of Eq. 50 whose elimination gives rise to
disconnections and adding them to the problem.

More specifically, we start by creating a reduced IP
model with the cost function of Eq. 37 and a subset of the
constraints given by Eqs. 38-42. We then run the branch-
and-cut algorithm on this model and check for connectivity
violations in the intermediate solutions it produces. These
violations are found in linear time by identifying those
connected components which are not connected to the
virtual vertex v by a directed path on which all edge pairs
are active.

Let C be the set of components and Ec be the set of
edges for c ∈ C. We add a lazy constraint given by Eq. 50
for each such component by randomly selecting an edge
eij ∈ Ec and forming a new set of edges H = {ekl | (ekl ∈
Ec \ eij)∨ (elk ∈ Ec \ eij)}. We then continue the branch-
and-cut optimization with this new model.

We repeat this procedure for every intermediate solution
until no more constraints are violated and hence the solution
is globally optimal. As will be shown in Section 7.4, it

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

requires only a small fraction of the original constraints
to be added in practice and yields significantly faster run
times compared to the network flow formulation.

7 RESULTS

In this section, we first introduce the datasets, baselines,
and metrics used to validate our approach. We then quantify
the performance of our approach for both tree and loopy
networks. Finally, we briefly discuss run-times on multi-
core machines.

7.1 Datasets and Parameters

We evaluated our approach on the five datasets depicted by
Fig. 1 and described in detail below:

• Aerial: Aerial images of road networks obtained from
Google maps. We used 21 grayscale versions of these
images to train our path classifier and 10 for testing.

• Confocal-Vessels: Two image stacks of blood vessel
networks acquired with a confocal microscope. We
used a portion of one for training and both for testing.
We only considered the red channel of these stacks
since it is the only one used to label the blood vessels.

• Brightfield: Six image stacks were acquired by bright-
field microscopy from biocytin-stained rat brains. We
used three for training and three for testing.

• Confocal-Axons: 3D confocal microscopy image
stacks of Olfactory Projection Fibers (OPF) of the
Drosophila fly taken from the DIADEM competi-
tion [2]. The dataset consists of 8 image stacks of
axonal trees, which we split into a training and a
testing set, leaving 4 stacks in the latter.

• Brainbow: Neurites of this dataset were acquired by
targeting mice primary visual cortex using the brain-
bow technique [1] so that each has a distinct color. We
used one image stack for training and three for testing.

For all five datasets, we used a semi-automated delin-
eation tool [50] we developed to obtain the ground truth
tracings. We built the tubular graphs using a seed selection
distance of d = 5∆I for the Confocal-Axons dataset and
d = 20∆I for the other four, and a seed linking distance of
l(d) = 5d, where ∆I denotes the minimum voxel spacing.
In all our experiments, we used the same parameters
to compute the HGD descriptors: segment length 2∆I ;
segment sampling step 0.5∆I implying a 75% overlap;
B = 9 histogram bins; R = 3 radius intervals; radius
margin β = 0.6, and a BoW model of 300 codewords.

We estimated the branch bifurcation and termination
probabilities pb and pt introduced in Section 6.4.2 from
the training data by first counting the total number of
graph edges that intersect with the ground truth tracings
and then finding the ratio of the number of terminating
and bifurcating edges to this number. For example, in the
Brainbow dataset this yields pb = 0.07 and pt = 0.20, and
in the Brightfield dataset pb = 0.13 and pt = 0.16.

7.2 Baselines and Metrics

We compared our tree and loopy reconstruction approaches,
which we refer to as Arbor-IP and Loopy-IP, to several
state-of-the-art algorithms. They are APP2, the pruning-
based approach of [51], Osnake the active contour algo-
rithm of [18], NS the NeuronStudio software [13], Focus
the focus-based depth estimation method of [52], and our
own earlier kMST technique [8], the last two of which
were finalists in the DIADEM competition. For all these
algorithms, we used the implementations provided by their
respective authors with default parameters.

Our algorithm requires the tree roots to be given. There
are ways to do this automatically but, since this is not the
focus of this paper, we supplied them manually. Since the
interfaces of APP2, NS, and Osnake allow the user to
specify a single root node, we did so both for these methods
and ours for the Confocal-Axons dataset.

For quantitative evaluation when the root nodes are
specified, we used the DIADEM metric [2], which is de-
signed to compare topological accuracy of a reconstructed
tree against a ground truth tree. Misconnections in the
reconstruction are weighted by the size of the subtree to
which the associated ground truth connection leads. As a
result, connections that are close to the given root vertices
are given more weight than those that are close to the
branch terminals.

However, because the available implementations of our
baselines do not allow the user to provide the multiple root
vertices required in the case of the Brightfield and Brainbow
datasets, we also used the NetMets [53] measure. It does
not depend heavily on roots at the cost of being more local
than the DIADEM metric and not explicitly taking into
account the network topology. As the DIADEM metric, it
takes as input the reconstruction, the corresponding ground
truth tracings, and a sensitivity parameter σ, which is set
to 3∆I in all our experiments.

To disentangle the respective contributions of the two
novel components of our approach – the path classifier
of Section 5 and the IP formalism of Section 6 – we
implemented two additional algorithms that minimize the
following simplified versions of Eq. 3.

∑

eij∈E
−log

pij
1− pij

tij , (51)

∑

eijk∈F
−log

pijk
1− pijk

tijtjk , (52)

where the pij and pijk are the probabilities returned by
the path classifier on edges and edge pairs respectively. The
first one relies on first computing a minimum spanning tree
under the cost of Eq. 51 and then pruning it in an optimal
way. A detailed explanation of the pruning procedure can
be found in Appendix E. The second algorithm relies on
our earlier k-Minimum Spanning Tree algorithm [8], which
minimizes a quadratic cost function. In other words, these
two algorithms take advantage of the path classifier without
relying on the IP framework. We will refer to them as
MST+PC and kMST+PC respectively.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Fig. 9. Delineation results, best viewed in color. Top Rows: For each dataset, two minimal or maximal projections and
overlaid delineation results. Each connected curvilinear network is shown in a distinct color. Bottom Row: Four road images
with final delineations shifted and overlaid to allow comparisons. The renderings are created using the Vaa3D software [54].

7.3 Quantitative Evaluation

We now compare our results to those of the baselines
discussed above on our four test datasets.

7.3.1 Neural Structures

The neurites of the Confocal-Axons, Brightfield and Brain-
bow datasets form tree structures without cycles. However,
in the latter two datasets, because of the low z-resolution,
disjoint branches appear to cross, introducing false loops.
As described in Section 6.4, these loops can be successfully

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Loopy-IP Arbor-IP kMST [8] NS [13] Osnake [18] APP2 [51]
OPF4 0.91 0.89 0.87 0.58 0.00 0.67
OPF6 0.91 0.90 0.90 0.65 0.80 0.82
OPF7 0.94 0.93 0.91 0.42 0.68 0.76
OPF8 0.90 0.90 0.74 0.58 0.69 0.63

TABLE 1

Reconstruction accuracy in terms of the DIADEM [2] metric
on four test stacks of the Confocal-Axons dataset. Each row
corresponds to an image stack denoted by OPi. Higher
scores are better.

BRBW1 BRBW2 BRBW3 BRF1 BRF2 BRF3
Loopy-IP 0.65 0.56 0.66 0.76 0.50 0.80
Arbor-IP 0.44 0.32 0.45 0.59 0.32 0.71
kMST [8] 0.26 0.16 0.25 0.51 0.28 0.47
kMST+PC 0.51 0.21 0.30 0.49 0.36 0.59
MST+PC 0.46 0.40 0.49 0.44 0.37 0.55

TABLE 2

DIADEM scores for the Brainbow (BRBWi columns) and
Brightfield (BRFi columns) datasets.

identified and a tree topology can be recovered from a
loopy solution by tracing the active edge pairs from the
root vertices to the branch terminals.

Fig. 9 shows two tree reconstructions we obtained for
each of these datasets using the formulation of Section 6.4.
Additional ones are supplied as supplementary material. In
Tables 1, 2, and 3, we provide scores in terms of either
the DIADEM [2] or the NetMets [53] score both for our
own approach and those of [8], [13], [18], [51], [52], as
discussed in Section 7.2.

Given that the DIADEM scores should be high and the
NetMets rates low, one can see that our Loopy-IP approach
consistently outperforms these baselines. As can be seen in
Table 1, for the Confocal-Axons datasets Arbor-IP and
Loopy-IP scores are quite similar because the z-resolution
is sufficiently high so that the false loops that Loopy-IP is
designed to avoid are rare. By contrast, for the other two
datasets whose axial (z-) resolution is much lower, Loopy-
IP clearly performs much better than Arbor-IP.

Interestingly, as can be seen in Tables 2 and 3, the
MST+PC and kMST+PC algorithms are already com-
petitive, while being less consistent than the Arbor-IP
and Loopy-IP ones. In other words, the effectiveness and
versatility of our algorithm largely comes from using the
path classifier but the IP framework is required to get the
most out of it.

7.3.2 Roads and Blood Vessels
The roads and blood vessels of the Aerial and Confocal-
Vessel datasets form networks, in which there are many
real cycles. Many road networks of the Aerial dataset are
partially occluded by trees or shadows cast by them, making
the delineation task challenging. However, as can be seen
in the last row of Fig. 9, in spite of the occlusions, the
road networks are recovered almost perfectly. The main
errors are driveways that are treated as very short roads, thin

BRF1 BRF2 BRF3
Loopy-IP 0.05 0.29 0.71 0.65 0.11 0.29 0.81 0.78 0.07 0.28 0.77 0.70
kMST [8] 0.10 0.44 0.79 0.88 0.11 0.53 0.84 0.91 0.13 0.35 0.81 0.92
kMST+PC 0.06 0.47 0.83 0.84 0.09 0.47 0.90 0.91 0.07 0.60 0.89 0.89
MST+PC 0.11 0.24 0.62 0.83 0.13 0.31 0.86 0.93 0.11 0.29 0.70 0.87
Focus [52] 0.39 0.54 0.75 1.00 0.49 0.53 0.90 1.00 0.38 0.46 0.74 1.00

Osnake [18] 0.66 0.63 0.98 0.99 0.66 0.59 0.99 1.00 0.69 0.38 0.95 0.99
APP2 [51] 0.68 0.64 1.00 1.00 0.63 0.54 1.00 1.00 0.65 0.49 1.00 1.00

TABLE 3

NetMets [53] scores for the Brightfield dataset. The NetMets
software outputs four values for each trial, which are geomet-
ric False Positive Rate (FPR), geometric False Negative Rate
(FNR), connectivity FPR, and connectivity FNR, from left to
right. Here, lower is better.

BRBW1 BRBW2 BRBW3 BRF1 BRF2 BRF3 CONV1 CONV2
Network Flow 166.7 132.9 291.1 379.3 17.2 4.9 8.4 106.8
Subset + Lazy 32.9 4.9 19.5 36.6 10.9 7.7 0.6 4.2
Lazy Constr. 1008 892 1092 1556 1165 2259 972 5175

TABLE 4

Run-times for the network flow and subset formulations of
Sections 6.4.3 and 6.5 respectively. The run-times are aver-
aged over 3 runs per image and measured in minutes on a
multi-core machine. While the flow constraints are imposed
all at once, the subset ones are added lazily as described in
the Section 6.5. The last row shows the total number of lazy
constraints added in the branch-and-cut search before the
global optimum is reached. CONVi denotes an image stack
from the Confocal-Vessels dataset.

side streets mistaken as high-ways and a few roads dead-
ending because the connecting path to the closest junction
is severely occluded. The first one could be addressed
by introducing a semantic threshold on short overhanging
segments while the latter two would require a much more
sophisticated semantic understanding.

The quality of the blood vessel delineations depicted by
the second row is much harder to assess on the printed page
but becomes clear when looking at the rotating volumes
available as supplementary material.

7.4 Run Time Analysis
Table 4 provides running times in minutes per image
for our network flow and subset approaches described
in Section 6.4.3. We solve both problems to optimality,
which results in exactly the same solution. As described in
Section 6.5, the latter is solved iteratively by identifying
violations of the connectivity constraints of Eq. 50 and
adding them to the problem. As can be seen from the table,
in practice, only a small fraction of these constraints are
needed to ensure connectivity, and the approach results in
significant speed-ups, especially on those problem instances
that are hard-to-solve using the network flow formulation.

8 CONCLUSION
We have proposed a novel graph-based approach to delin-
eating complex curvilinear structures that lets us find the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

desired network as the global optimum of a well- designed
objective function. Unlike most earlier techniques, it explic-
itly handles the fact that the structures may be cyclic and
builds graphs in which vertices may belong to more than
one branch. Another key ingredient is a classification-based
approach to scoring the quality of paths. This combination
overall allows us to outperform state-of-the-art methods
without having to manually tune the algorithm parameters
for each new dataset.

9 ACKNOWLEDGEMENTS

This work was supported in part by a grant from the Swiss
National Science Foundation (SNSF), in part by the Swiss
Center for Electronics and Microtechnology (CSEM), and
in part by the EU ERC MicroNano Project. The authors
also wish to thank Luke Bogart, Maximilian Joesch, Karim
Ali, Horesh Ben Shitrit, Takao Hensch, Felix Schürmann,
Markus Meister and Jeff Lichtman for generously sharing
their image data and insights with us.

REFERENCES

[1] J. Livet, T. Weissman, H. Kang, R. Draft, J. Lu, R. Bennis,
J. Sanes, and J. Lichtman, “Transgenic Strategies for Combinatorial
Expression of Fluorescent Proteins in the Nervous System,” Nature,
vol. 450, no. 7166, pp. 56–62, 2007.

[2] G. A. Ascoli, K. Svoboda, and Y. Liu, “Digital Reconstruction
of Axonal and Dendritic Morphology Diadem Challenge,” 2010,
http://diademchallenge.org/.

[3] H. Peng, F. Long, T. Zhao, and E. Myers, “Proof-Editing is the Bot-
tleneck of 3D Neuron Reconstruction: the Problem and Solutions,”
Neuroinformatics, vol. 9, no. 2, pp. 103–105, 2011.

[4] Y. Wang, A. Narayanaswamy, C. Tsai, and B. Roysam, “A Broadly
Applicable 3D Neuron Tracing Method Based on Open-Curve
Snake,” Neuroinformatics, vol. 9, no. 2-3, pp. 193–217, 2011.

[5] P. Chothani, V. Mehta, and A. Stepanyants, “Automated Tracing of
Neurites from Light Microscopy Stacks of Images,” Neuroinformat-
ics, vol. 9, pp. 263–278, 2011.

[6] E. Bas and D. Erdogmus, “Principal Curves as Skeletons of Tubular
Objects - Locally Characterizing the Structures of Axons,” Neuroin-
formatics, vol. 9, no. 2-3, pp. 181–191, 2011.

[7] T. Zhao, J. Xie, F. Amat, N. Clack, P. Ahammad, H. Peng, F. Long,
and E. Myers, “Automated Reconstruction of Neuronal Morphology
Based on Local Geometrical and Global Structural Models,” Neu-
roinformatics, vol. 9, pp. 247–261, May 2011.

[8] E. Turetken, G. Gonzalez, C. Blum, and P. Fua, “Automated Recon-
struction of Dendritic and Axonal Trees by Global Optimization with
Geometric Priors,” Neuroinformatics, vol. 9, no. 2-3, pp. 279–302,
2011.

[9] A. Choromanska, S. Chang, and R. Yuste, “Automatic Recon-
struction of Neural Morphologies with Multi-Scale Graph-Based
Tracking,” Frontiers in Neural Circuits, vol. 6, no. 25, 2012.

[10] F. Benmansour and L. Cohen, “Tubular Structure Segmentation
Based on Minimal Path Method and Anisotropic Enhancement,”
International Journal of Computer Vision, vol. 92, no. 2, pp. 192–
210, 2011.

[11] E. Turetken, F. Benmansour, and P. Fua, “Automated Reconstruction
of Tree Structures Using Path Classifiers and Mixed Integer Program-
ming,” in Conference on Computer Vision and Pattern Recognition,
June 2012.

[12] E. Turetken, F. Benmansour, B. Andres, H. Pfister, and P. Fua, “Re-
constructing Loopy Curvilinear Structures Using Integer Program-
ming,” in Conference on Computer Vision and Pattern Recognition,
June 2013.

[13] S. Wearne, A. Rodriguez, D. Ehlenberger, A. Rocher, S. Henderson,
and P. Hof, “New Techniques for Imaging, Digitization and Analysis
of Three-Dimensional Neural Morphology on Multiple Scales,”
Neuroscience, vol. 136, no. 3, pp. 661–680, 2005.

[14] H. Cuntz, F. Forstner, A. Borst, and M. Häusser, “One Rule to Grow
Them All: A General Theory of Neuronal Branching and Its Practical
Application,” PLoS Computational Biology, vol. 6, no. 8, p. 1000877,
2010.

[15] D. R. Myatt, T. Hadlington, G. A. Ascoli, and S. J. Nasuto, “Neu-
romantic - from Semi Manual to Semi Automatic Reconstruction of
Neuron Morphology,” Frontiers in Neuroinformatics, vol. 6, no. 4,
2012.

[16] M. Longair, D. A. Baker, and J. D. Armstrong, “Simple Neurite
Tracer: Open Source Software for Reconstruction, Visualization and
Analysis of Neuronal Processes,” Bioinformatics, vol. 27, no. 17, pp.
2453–2454, 2011.

[17] H. Peng, F. Long, and G. Myers, “Automatic 3D Neuron Tracing
Using All-Path Pruning,” Bioinformatics, vol. 27, no. 13, pp. 239–
247, 2011.

[18] Y. Wang, A. Narayanaswamy, and B. Roysam, “Novel 4D Open-
Curve Active Contour and Curve Completion Approach for Auto-
mated Tree Structure Extraction,” in Conference on Computer Vision
and Pattern Recognition, 2011, pp. 1105–1112.

[19] George Mason University, “NeuroMorpho.Org,”
http://neuromorpho.org.

[20] C. Weaver, P. Hof, S. Wearne, and L. Brent, “Automated Algorithms
for Multiscale Morphometry of Neuronal Dendrites,” Neural Com-
putation, vol. 16, no. 7, pp. 1353–1383, 2004.

[21] T. Lee, R. Kashyap, and C. Chu, “Building Skeleton Models via
3D Medial Surface Axis Thinning Algorithms,” Computer Vision,
Graphics, and Image Processing, vol. 56, no. 6, pp. 462–478, 1994.

[22] K. Palagyi and A. Kuba, “A 3D 6-Subiteration Thinning Algorithm
for Extracting Medial Lines,” Pattern Recognition, vol. 19, no. 7,
pp. 613–627, 1998.

[23] M. Pool, J. Thiemann, A. Bar-Or, and A. E. Fournier, “Neuritetracer:
A Novel Imagej Plugin for Automated Quantification of Neurite
Outgrowth,” Journal of Neuroscience Methods, vol. 168, no. 1, pp.
134–139, 2008.

[24] J. Xu, J. Wu, D. Feng, and Z. Cui, “Dsa Image Blood Vessel Skele-
ton Extraction Based on Anti-Concentration Diffusion and Level
Set Method,” Computational Intelligence and Intelligent Systems,
vol. 51, pp. 188–198, 2009.

[25] H. Cai, X. Xu, J. Lu, J. Lichtman, S. Yung, and S. Wong, “Repulsive
Force Based Snake Model to Segment and Track Neuronal Axons
in 3D Microscopy Image Stacks,” NeuroImage, vol. 32, no. 4, pp.
1608–1620, August 2006.

[26] Z. Vasilkoski and A. Stepanyants, “Detection of the Optimal Neuron
Traces in Confocal Microscopy Images,” Journal of Neuroscience
Methods, vol. 178, no. 1, pp. 197–204, 2009.

[27] A. Can, H. Shen, J. Turner, H. Tanenbaum, and B. Roysam, “Rapid
Automated Tracing and Feature Extraction from Retinal Fundus
Images Using Direct Exploratory Algorithms,” Transactions on
Information Technology in Biomedicine, vol. 3, no. 2, pp. 125–138,
June 1999.

[28] K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy, J. Turner,
and B. Roysam, “Rapid Automated Three-Dimensional Tracing of
Neurons from Confocal Image Stacks,” Transactions on Information
Technology in Biomedicine, vol. 6, no. 2, pp. 171–187, 2002.

[29] T. Yedidya and R. Hartley, “Tracking of Blood Vessels in Retinal Im-
ages Using Kalman Filter,” in Digital Image Computing: Techniques
and Applications, 2008, pp. 52–58.

[30] M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka,
C. Owen, and S. Barman, “Blood Vessel Segmentation Method-
ologies in Retinal Images – A Survey,” Computer Methods and
Programs in Biomedicine, vol. 108, no. 1, pp. 407–433, 2012.

[31] A. Mukherjee and A. Stepanyants, “Automated Reconstruction of
Neural Trees Using Front Re-Initialization,” in SPIE, 2012.

[32] M. Law and A. Chung, “Three Dimensional Curvilinear Structure
Detection Using Optimally Oriented Flux,” in European Conference
on Computer Vision, 2008.

[33] ——, “An Oriented Flux Symmetry Based Active Contour Model for
Three Dimensional Vessel Segmentation,” in European Conference
on Computer Vision, 2010.

[34] L. Domanski, C. Sun, R. Hassan, P. Vallotton, and D. Wang,
“Linear Feature Detection on GPUs,” in Digital Image Computing:
Techniques and Applications, 2010.

[35] J. Wegner, J. Montoya-Zegarra, and K. Schindler, “A Higher-Order
CRF Model for Road Network Extraction,” in Conference on Com-
puter Vision and Pattern Recognition, 2013.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[36] D. Fan, “Bayesian Inference of Vascular Structure from Retinal
Images,” Ph.D. dissertation, Dept. of Computer Science, U. of
Warwick, Coventry, UK, 2006.

[37] K. Sun, N. Sang, and T. Zhang, “Marked Point Process for Vascular
Tree Extraction on Angiogram,” in Conference on Computer Vision
and Pattern Recognition, 2007, pp. 467–478.

[38] E. Tempel, R. Stoica, V. Martı́nez, L. Liivamägi, G. Castellan,
and E. Saar, “Detecting filamentary pattern in the cosmic web: a
catalogue of filaments for the SDSS,” Monthly Notices of the Royal
Astronomical Society, vol. 438, no. 4, pp. 407–433, 2014.

[39] M. Fischler, J. Tenenbaum, and H. Wolf, “Detection of Roads
and Linear Structures in Low-Resolution Aerial Imagery Using a
Multisource Knowledge Integration Technique,” Computer Vision,
Graphics, and Image Processing, vol. 15, no. 3, pp. 201–223, March
1981.

[40] H. Li and A. Yezzi, “Vessels as 4-D Curves: Global Minimal
4D Paths to Extract 3-D Tubular Surfaces and Centerlines,” IEEE
Transactions on Medical Imaging, vol. 26, no. 9, pp. 1213–1223,
2007.

[41] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van
Ginneken, “Ridge Based Vessel Segmentation in Color Images of
the Retina,” IEEE Transactions on Medical Imaging, 2004.

[42] E. Turetken, C. Becker, P. Glowacki, F. Benmansour, and P. Fua,
“Detecting Irregular Curvilinear Structures in Gray Scale and Color
Imagery Using Multi-Directional Oriented Flux,” in International
Conference on Computer Vision, December 2013.

[43] J. A. Sethian, Level Set Methods and Fast Marching Methods
Evolving Interfaces in Computational Geometry, Fluid Mechanics,
Computer Vision, and Materials Science. Cambridge University
Press, 1999.

[44] D. Weinland, M. Ozuysal, and P. Fua, “Making Action Recognition
Robust to Occlusions and Viewpoint Changes,” in European Con-
ference on Computer Vision, 2010.

[45] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” in Conference on Computer Vision and Pattern
Recognition, 2005.

[46] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Ob-
ject Detection with Discriminatively Trained Part Based Models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2010.

[47] M. Dorigo and T. Stütale, Ant Colony Optimization. MIT press,
2004.

[48] C. Duhamel, L. Gouveia, P. Moura, and M. Souza, “Models
and Heuristics for a Minimum Arborescence Problem,” Networks,
vol. 51, no. 1, pp. 34–47, 2008.

[49] Gurobi, “Gurobi Optimizer,” 2012, http://www.gurobi.com/.
[50] E. Turetken, F. Benmansour, and P. Fua, “Semi-Automated Recon-

struction of Curvilinear Structures in Noisy 2D Images and 3D Image
Stacks,” EPFL-182839, Tech. Rep., 2013.

[51] H. Xiao and H. Peng, “APP2: Automatic Tracing of 3D Neuron
Morphology Based on Hierarchical Pruning of a Gray-Weighted
Image Distance-Tree,” Bioinformatics, vol. 29, no. 11, pp. 1448–
1454, 2013.

[52] A. Narayanaswamy, Y. Wang, and B. Roysam, “3D Image Pre-
Processing Algorithms for Improved Automated Tracing of Neuronal
Arbors,” Neuroinformatics, vol. 9, no. 2-3, pp. 219–231, 2011.

[53] D. Mayerich, C. Bjornsson, J. Taylor, and B. Roysam, “Netmets:
Software for Quantifying and Visualizing Errors in Biological Net-
work Segmentation,” BMC Bioinformatics, vol. 13, 2012.

[54] H. Peng, Z. Ruan, F. Long, J. Simpson, and E. Myers, “V3D Enables
Real-Time 3D Visualization and Quantitative Analysis of Large-
Scale Biological Image Data Sets,” Nature Biotechnology, vol. 28,
no. 4, pp. 348–353, 2010.

Engin Türetken received his Ph.D. in Com-
puter Science in 2013 from EPFL. He is
currently a postdoctoral researcher at CSEM
in Neuchâtel. His research interests include
computer vision, biological image analysis,
pattern recognition, graph theory, and com-
binatorial optimization.

Fethallah Benmansour received his Ph.D.
degree in applied mathematics from the Uni-
versity of Paris-Dauphine, France, in 2009.
He is now a Senior Researcher at Roche. His
research interests include computer vision,
variational methods, and machine learning
for biomedical applications.

Bjoern Andres holds a Ph.D. in physics from
the University of Heidelberg. His junior re-
search group Combinatorial Image Analysis
at the Max Planck Institute for Informatics de-
velops combinatorial optimization techniques
for image analysis.

Przemysław Głowacki is a Ph.D. candi-
date at EPFL. His research interests include
biomedical imaging, automatic reconstruct-
ing of neuronal networks, and analysis of
aerial images.

Hanspeter Pfister is An Wang Professor of
Computer Science and Director of the In-
stitute for Applied Computational Science at
the Harvard School of Engineering and Ap-
plied Sciences. His research in visual com-
puting lies at the intersection of Visualization,
Computer Graphics, and Computer Vision.
It spans a wide range of topics, including
bio-medical visualization, image and video
analysis, 3D fabrication, and data science.

Pascal Fua is a Professor of Computer Sci-
ence at EPFL. His research interests include
shape modeling and motion recovery from
images, analysis of microscopy images, and
Augmented Reality. He is an IEEE Fellow
and has been an Associate Editor of the
IEEE journal Transactions for Pattern Anal-
ysis and Machine Intelligence.

