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Abstract
In this thesis, diverse aspects of hydrogenated microcrystalline silicon (µc-Si:H), when used

as an absorber layer in thin-film silicon solar cells, are studied. Mainly single-junction µc-Si:H

solar cells in the p–i –n configuration are investigated, but the presented concepts can be

applied to a µc-Si:H solar cell bottom cell in multi-junction devices.

The microstructure of µc-Si:H is characterized by small crystalline grains, with a typical size

on the order of ten to hundreds nanometers, usually clustered in columnar structures, and

embedded in an amorphous matrix. Defective zones in µc-Si:H can hinder efficient collection

of generated carriers. Hence, the best cell performance is usually achieved for solar cells

containing an amorphous silicon matrix (typically between 30 and 50%), which is believed

to passivate recombinative zones well. Due to the low absorption of µc-Si:H, the µc-Si:H

absorber layer typically has to be made with a thickness of a few micrometers.

When µc-Si:H is used as an absorber layer in thin-film silicon solar cells, there is a trade-

off between electrical and optical performance. High optical performance is achieved by

thickening the absorber layer, or by using efficient light-trapping schemes. Light trapping is

generally obtained via textured superstrates, here made of zinc oxide (ZnO). However, when

growing µc-Si:H on sharp textures, porous zones can appear within the absorber layer, which

are detrimental for the electrical properties of the solar cell, as well as for stability to ambient

atmosphere exposure. Here, some concepts to overcome this trade-off are presented.

First, the development of stable high-efficiency solar cells is reported. It is shown that dense

material is required, for both high and stable efficiency. This requirement can be achieved

by adapting the morphology of the front texture, or by adapting the deposition process. Via

advanced electron microscopy, it is demonstrated that porous zones, as induced by a textured

superstrate, form an interconnected network of micropores that act as possible diffusion paths

for moisture penetration. An independently verified record efficiency of 10.7% is reported for

single-junction µc-Si:H solar cells, besting the previous world-record value by 0.6% absolute.

Then, the effect of post-deposition treatments on such solar cells is investigated. Starting

with a post-deposition hydrogen plasma optimized for ZnO, effects induced by the hydrogen

plasma or annealing are carefully decoupled in complete solar cells. A stable increase in

electrical performance is demonstrated, due to curing of nanoporous zones. From Fourier-

transform photocurrent spectroscopy (FTPS) analysis, it is proposed that defects in these

porous zones do not consist of a pure bi-dimensional surface within the absorber layer, but

have a probable spatial extension. These porous zones of defective material can be damaged

by the deposition of a ZnO electrode, and restored by an adapted post-deposition process
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Abstract

such as annealing in vacuum.

Next, a detailed study on the interplay between the quality of the µc-Si:H absorber layer and

dedicated interfaces for the doped layers is presented. By using mixed-phase silicon oxide

doped layers, improved resilience to rough surface morphology is demonstrated, especially

on rough and textured superstrates, by mitigating their detrimental effect as shown by using a

variable-illumination technique. The concept of passivated interfaces in µc-Si:H solar cells

is then introduced, based on the use of amorphous silicon as the passivation layer on the

µc-Si:H absorber layer surface. As a result, record open-circuit voltages (Voc) are reached, with

values of 0.608 V and 1.53 V in thin single-junction and tandem solar cells, respectively. Finally,

a concept to probe the ultimate Voc of thin µc-Si:H solar cells is presented.

In the last chapter, the development of highly crystallized absorber layers is reported, based

on the use of silicon tetrafluoride (SiF4) as a precursor, to obtain a high short-circuit current

density (Jsc) without compromising material quality. Several growth regimes are investigated

in terms of deposition rate (Dr ) and Raman crystalline fraction (Rc ). Dr values of up to 4 Å/s

are demonstrated, combined with highly crystallized layers. These layers are compared to

layers obtained with our standard deposition regime. Layers with both high and standard

Rc are analyzed with secondary ion mass spectrometry (SIMS), Fourier transform infrared

spectroscopy (FTIR), and X-ray diffraction (XRD). SIMS measurements show that the use of

SiF4 does not induce additional contamination in baseline processes. FTIR analysis of the

hydride stretching modes reveals that similar hydrogen incorporation can be obtained in

highly crystallized films deposited using SiF4 or standard silane (SiH4) precursors, whereas

XRD analysis demonstrates that layers obtained with SiF4 do not exhibit a (220) preferential

orientation. This orientation, typically obtained with SiH4-based chemistry is generally

attributed to device-grade material. Such highly crystallized films are implemented as the

absorber layer in single-junction solar cells, reaching Voc values as high as 470 mV, and a

conversion efficiency (η) of 8.3% (with Rc >80%). Although superstrate roughness also limits

cell efficiency, and especially fill factor, no porous zones, as can be observed by transmission

electron microscopy for standard cells obtained with SiH4-based chemistry, are detected.

Structural defects are, however, found in large grains, and proposed as responsible for the

low obtained Voc. A record total Jsc value of 31.9 mA/cm2 is demonstrated for a micromorph

tandem cell with a total silicon thickness of 3.4µm thanks to improved absorption in the

near-infrared.

Key words: renewable energy, solar energy, photovoltaics, silicon, thin films, coatings, thin-film

silicon solar cells, amorphous silicon, microcrystalline silicon, nanocrystalline silicon, stable

efficiency, p–i –n, LPCVD, roughness, tandem solar cells, FTPS, FTIR, PECVD, micromorph,

passivation, interfaces, electron microscopy, tomography, TEM, annealing, post-deposition

treatment, hydrogen plasma, high efficiency, record, single-junction, multi-junction solar

cells, simulation, PC1D, SiF4, SiH4, hydrogen, fully crystallized, defects, porous zones
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Résumé
Divers aspects du silicium microcristallin hydrogéné (µc-Si:H) sont étudiés, lorsque celui-ci

est utilisé comme couche absorbante de lumière dans des cellules solaires à couche mince de

silicium, principalement dans des dispositifs à simple jonction, mais aussi dans des dispositifs

à jonctions multiples, tels que des cellules solaires tandem de type "micromorphe".

La microstructure du matériau µc-Si:H est caractérisée par des grains cristallins, d’une

taille charactéristique de l’ordre de dix à quelques centaines de nanomètres, généralement

regroupées dans des structures colonnaires et entourés par une matrice de sillicium amorphe.

La meilleure performance électrique est généralement obtenue pour des cellules solaires

contenant une matrice de silicium amorphe (typiquement entre 30 et 50 %), considérée

comme essentielle pour passiver les zones recombinatives présentes à l’intérieur du matériau.

En raison de la faible absorption de la lumière par le µc-Si:H, une épaisseur de l’ordre de

environ un à quelques micromètres est requise pour la couche absorbante.

Lorsque le µc-Si:H est utilisé comme couche absorbante de lumière en cellule solaire, il

existe un compromis entre la performance électrique et optique. Une haute absorption de

lumière est obtenue soit en épaississant la couche absorbante , ou alors en utilisant une

technique efficace de piégeage de lumière dans la couche absorbante. Ce piégeage de lumière

est généralement réalisé par l’intermédiaire de superstrats texturés, ici fabriqués en oxyde de

zinc (ZnO). Cependant, lors de la croissance de µc-Si:H sur des textures rugueuses, des zones

poreuses peuvent apparaître à l’intérieur de la couche absorbante. Ces zones poreuses sont

préjudiciables à la fois pour les propriétés électriques de la cellule solaire, ainsi que pour sa

stabilité à l’humidité ambiante.

Tout d’abord, le développement de cellules solaires à haute efficacité est rapporté . A cet effet,

il est démontré qu’un matériau dense est nécessaire , tant pour obtenir une efficacité élevée

que stable . Cette condition peut être réalisée par une morphologie adaptée de la texture avant,

ou par un procédé de dépôt adapté . Via une reconstruction tridimensionelle de la couche

absorbante par des images en coupe obtenues par microscopie électronique à balayage, il

est démontré que les zones poreuses, induites par un superstrat texturé, forment un réseau

interconnecté de micropores, agissant comme possible voie de diffusion por l’humidité. Grâce

à un procdé de fabrication optimisé, une efficacité record de 10.7 % est montrée pour une

cellule solaire µc-Si:H à simple jonction, certifiée par un institut de mesure indépendant, et

constituant une amélioration de 0.6 % (absolu) par rapport au record du monde précédent.

Ensuite, à partir d’un traitement par plasma d’hydrogène développé pour améliorer les

propriétés électriques du ZnO, les effets induits par un tel plasma et le recuit qui lui est

vii



Résumé

associé sont étudiés et découplés dans des cellules solaires complètes. Par l’intermédiaire

d’un recuit sous vide, une augmentation stable de la performance électrique est démontrée.

Par analyse FTPS, il est proposé que les défauts dans ces zones poreuses ne constituent pas

une surface bidimensionnelle, mais possèdent une extension spatiale. Ces zones poreuses du

matériau µc-Si:H peuvent être rendues défectueuses par le dépôt d’une électrode en ZnO, et

récupérées par un traitment thermique sous vide.

Une étude détaillée sur l’interaction entre la qualité de la couche absorbante et les couches

dopées est egalement présentée . En utilisant des couches dopées faites d’oxyde de silicium,

une meilleure résilience à une morphologie de superstrat rugueuse est mise en évidence. Le

concept d’interfaces passivées est introduit, basé sur l’utilisation de silicium amorphe comme

matériau passivant. En conséquence, des tensions en circuit ouvert (Voc) élevées sont atteintes,

avec des valeurs record de 0.608 V et 1.53 V pour des cellules solaires à simple jonction et en

configuration tandem. Enfin, un concept pour évaluer le potentiel en Voc pour une cellule

solaire fine est présenté.

Dans le dernier chapitre, le développement de couches absorbantes hautement cristallisées

est rapporté, basée sur l’utilisation du précurseur SiF4. Plusieurs régimes de croissances

sont examinés en termes de taux de dépôt (Dr ) et de fraction cristalline (Rc ), définie par

spectromètrie Raman. Des taux de dépôts jusqu’à 4 Å/s sont obtenus, combinés avec des

couches très cristallisées (Rc >80 %). Ces couches sont ensuite comparées à d’autres couches

obtenues au moyen d’un régime de dépôt standard (SiH4), au moyen d’analyses SIMS, FTIR

et XRD. Les mesures SIMS montrent que l’utilisation de SiF4 n’induit pas de contamination

dans les procédés de référence, puis l’analyse FTIR montre qu’une incorporation d’hydrogène

similaire aux couches obtenues par le precurseur standard (SiH4) peut être obtenue dans des

films hautement cristallisés, alors que l’analyse XRD révèle que si une orientation préferentielle

de type (220) (en géneral requise pour de hautes efficacités) est présente pour les couches

standard, celles obtenues par SiF4 ne présentent pas ou peu d’orientation préférentielle.

Toutefois, lorsqu’incorporés en cellule solaire, les films hautement cristallisés obtenus avec

le précurseur SiF4 permettent d’atteindre des Voc de l’ordre de 470 mV et un rendement de

8.3 % (avec Rc >80 %) en cellule simple-junction. Bien que la rugosité du superstrat limite

l’efficacité des cellules, des zones poreuses attendues sur des superstrats très texturés ne sont

pas détectées. Toutefois, d’autres défauts structurels sont mis en évidence par microscopie

électronique en transmission et cause de basses performances électriques. Ces couches

absorbent néanmoins très efficacement l’infrarouge, conduisant à une densité de courant de

court-circuit record de 31.9 mA/cm2 en cellule micromoprhe, pour une épaisseur totale de

silicium de 3.4µm seulement.

Mots clefs : énergies renouvelables, solaire, photovoltaïque, silicium, couches minces

de silicium, silicium amorphe, silicium microcristallin, efficacité stable, p–i –n, LPCVD,

rugosité, tandem, PECVD, micromorphe, passivation, interfaces, microscopie électronique,

tomographie, recuit, traitement, plasma d’hydrogène, haute efficacité, record, simple jonction,

cellules solaires à multi-jonctions, simulation, FTPS, FTIR, PC1D, SiF4, SiH4, hydrogène,

défauts, zones poreuses
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1 Introduction

1.1 Solar energy

1.1.1 General context

Mankind is facing one of its greatest challenges for the coming century. Indeed, our current

energy supply is widely ensured by non-renewable and polluting resources such as oil, gas, and

coal, which account for more than 80% of the world’s production [IEA 13b]. These resources

are restricted to defined areas and are therefore not equally shared between the world’s

population. Furthermore, the inherent risks of nuclear energy, as illustrated by the recent

events in Fukushima in March, 2011, and the problem of nuclear waste disposal make nuclear

power a potentially risky solution for the long term.

Renewable energies such as solar energy, hydropower, wind energy, and biomass offer

solutions based on unlimited amounts of freely available energy. Among these technologies,

photovoltaics (PV)—the direct conversion of light into electricity—is a proven solution

to create renewable electricity [Jacobson 09]. Thanks to the continuous energy current

from the sun that radiates towards the earth (1.5× 1018 kWh/year) [Würfel 09], PV can be

implemented virtually everywhere, in the form of localized, grid-connected installations

generating hundreds of W up to large plants such as the Solar Star Projects under construction

in California, United States, with a projected cumulative power of 579 MW.1

According to reports from the International Energy Agency [IEA 13a, IEA 13c], approximately

100 GW of PV capacity were installed worldwide by the end of 2012, with a record annual PV

production of about 38 GW [Jäger-Waldau 13] in 2012 alone. In Switzerland, around 226 MW

of grid-connected PV capacity were installed, which is more than all the PV capacity that was

connected to the grid there during the whole period of 1987–2011 [Hüsser 13, Kaufmann 13].

As a comparison, these 226 MW represent about 20% of the nominal power of the Leibstadt

nuclear power plant, which is the biggest in Switzerland. This rapid increase in PV installation

is largely due to a continuous reduction of production and installation prices of PV modules,

1http://us.sunpower.com/solar-star/ accessed May, 2014

1
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and to favorable government policies towards renewable energies.

Fig. 1.1 shows the difference between the levelized cost of electricity—which is the price at

which electricity must be generated from a specific source to break even over the lifetime of

the project—and the household retail price for PV in Europe.

Figure 1.1: Price difference between PV levelized electricity cost and household retail prices
(reproduced from [Ossenbrink 13]).

Even in the less sunny northern countries, PV can now be cheaper than other conventional

sources (due to higher household retail prices), whereas in sunny southern countries, grid

parity—i.e. PV generates electricity at a levelized cost that is less than or equal to the price

of purchasing power from the grid—has already been reached. However, for a successful

generalized implementation of PV, two issues will need to be solved. First, this low price has a

meaning only if electricity can be sold, e.g. to an electricity supplier. Second, and maybe the

most crucial step, grid management will have to be re-optimized. Indeed, a shift from the usual

centralized production (the case in many western countries) towards localized production

must be accompanied by efficient storage solutions, allowing for cloudy days and for the

shaving of production peaks.

1.1.2 Some historical milestones

The photovoltaic principle was discovered by E. Becquerel in 1839. H.R. Hertz then established

the photovoltaic effect, as it is known nowadays, but this effect was only fully explained by A.

2
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Einstein in 1905 [Einstein 05], with the introduction of light as a finite number of fixed energy

quanta, which led to the Nobel prize in Physics in 1923. C. Fritts is credited with fabricating

the first working solar cell in 1883, which used the newly dicovered photoconductivity of

selenium, and reached a conversion of about 1% by coating selenium with a very thin layer of

gold [Fritts 83].

The first modern silicon solar cell, with a conversion efficiency of about 6%, was invented at

Bell Labs by D. M. Chapin, C. S. Fuller and G. L. Pearson in 1954 [Chapin 54] and was obtained

in the context of the emerging space applications. Indeed, on March 17, 1958, Vanguard I, the

first solar-powered satellite was launched, equipped with silicon-based solar cell clusters from

Hoffman Electronics, with a conversion efficiency of about 9%. Since these early years, the

efficiency of silicon-based solar cells has continuously risen, up to a record value of 25.6%

for a full-wafer back-contacted silicon heterojunction solar cell, as recently announced by

Panasonic.

This rise in efficiency was accompanied by a strong reduction in fabrication costs. As a

consequence of the wide use of crystalline silicon (c-Si) in the semiconductor industry, its

production price has lowered drastically, going from prices as high as 1000 $/W to lower than

0.5 $/W, and dominating the PV market with about 85% of the market share.

1.1.3 Thin-film technologies

As just discussed, the PV market is dominated by the mature c-Si technology. However, to

achieve more cost-effective production and higher throughput, a second generation of solar

cells has been emerging. The most representative of them are technologies based on cadmium

telluride (CdTe), on copper diselenide materials (CIGS), and on thin-film silicon.

Thin-film technologies offer the advantage of very low material costs, can be used on many

kinds of substrates such as polyimide foils [Chirilă 13] and have a lower energy payback time

and CO2-eq/kWh as compared to c-Si technologies [de Wild-Scholten 13].

Other thin-film technologies are dye-sensitized solar cells (DSC), organic solar cells and

perovskite-based solar cells [Burschka 13], which have emerged extremely fast with efficiencies

of up to 17.9%. These technologies have the highest cost-reduction potential, but at the

moment, the encapsulation requirements for these less stable cells with respect to ambient air

exposition hinder their deployment for large-scale electricity production.

In Fig. 1.2, the most recent lab-scale record efficiencies for all PV technologies are shown, as

reported and updated on a regular basis by the National Renewable Energy Laboratory (NREL).

3
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Figure 1.2: Record efficiencies for the different photovoltaic technologies. Source: K. Emery et al.,
NREL 05/14 (http://www.nrel.gov/ncpv/), reproduced with authorization.

1.2 Thin-film silicon photovoltaics

Since the manufacture of the first hydrogenated amorphous silicon (a-Si:H) layers [Sterling 65,

Chittick 69] and the demonstration of their possible doping [Spear 75, Spear 76] leading to a

first working device [Carlson 76], thin-film silicon has gained a tremendous interest for PV

applications.

Nowadays these layers are generally deposited on coated glass, by plasma-enhanced chemical

vapor deposition (PECVD), benefiting from the large experience of the flat-panel industry, and

from the possibility to directly incorporate hydrogen in the layers, necessary for device-grade

material.

Among the thin-film technologies, thin-film silicon has shown advantages from many points

of view [Vallat-Sauvain 06b, Shah 10]:

• The materials are abundant and non-toxic, which is not the case for CIGS (limited

indium resources and toxicity of cadmium) or CdTe (limited availability of tellurium

and toxicity of cadmium).

• The energy payback time of thin-film silicon solar cells is lower than that of the present

c-Si technology: less than a year for a-Si:H compared to 1.5 to 2 years for c-Si in southern

Europe [Alsema 98, Fthenakis 11, de Wild-Scholten 13].
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1.2. Thin-film silicon photovoltaics

• Low-temperature processes can be employed, allowing for a large choice of substrates,

including glass and plastic foils.

• Upscaling to larger areas has already been demonstrated, with a monolithically

integrated series connection of cells to form modules with an area of up to 5.7 m2.

• Low temperature coefficients have been reported [Meier 98], favorable for

implementation in hot regions of the globe.

Thin-film silicon meets prerequisites to reduce the price per watt-peak (Wp), and, indeed,

production prices as low as 0.5€/Wp have already been reported, for a production capacity of

120 MWp/year [Kratzla 10, Meier 12]. It has a unique potential for large-scale deployment of

renewable electricity production [Feltrin 08]. However, an efficiency increase will be required

to stay competitive in the market and to alleviate the impact of the balance-of-system costs

[Shah 13].

The technology is based on the use of two main building blocks as the absorber material,

namely hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon

(µc-Si:H). As these materials have bandgaps of ∼1.75 eV (a-Si:H) and ∼1.1 eV (µc-Si:H),

they can be efficiently used in tandem configuration, where two cells are monolithically

stacked and therefore connected in series. This "micromorph" concept—using an optimal

bandgap combination for tandem cells [Meillaud 06b, Shah 10]—was pioneered in Neuchâtel

[Meier 96]. In a micromorph solar cell, photons with wavelengths from ∼350 to 1100 nm can

be absorbed, as illustrated in Fig. 1.3.

µc-Si:H

a-Si:H

Figure 1.3: Standard solar spectra, and absorption range of a-Si:H and µc-Si:H in a micromorph
tandem cell. AM0 is the solar spectrum in space, AM1.5 is the solar spectrum for an incident
angle of 48◦ (equivalent to an optical path length of 1.5 times the terrestrial atmosphere
thickness) and AM1.5g is the AM1.5 spectrum with the additional diffuse component of the
terrestrial atmosphere. For comparison, the spectrum of a black body at 5800 K is shown.
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Chapter 1. Introduction

Due to the high defect density in their layers, thin-film silicon solar cells are usually used in

a configuration where an intrinsic absorber layer is sandwiched between a p-doped and an

n-doped layer. Charge-carrier transport is assisted by the electric field created within the

intrinsic layer (drift device), in opposition to a pure diffusion device. The doped layers are

highly defective and charge carriers generated in them do not contribute to current. Hence,

they have to be made thin to limit parasitic absorption.

The highest efficiency of 11.6% (after light-soaking) for a large-area micromorph module has

very recently been reported by the Trübbach team of TEL Solar [Green 14b], with the lowest

production costs of 0.35 €/W, corresponding to only 35 €/m2. This type of module hence offers

the lowest cost per m2 and can benefit from additional advantages such as aesthetics. Such a

module can be harmoniously implemented in beautiful architectural designs, such as the one

presented in Fig. 1.4.

Figure 1.4: Example of a photovoltaic wall, by the German company MASDAR PV.

A scanning electron microscopy (SEM) cross section of a typical micromorph research cell,

such as made in our laboratory, is presented in Fig. 1.5.

The cell in Fig. 1.5 is thicker than industrial solar cells, where the deposition rate and thickness

of the bottom cell can be a limiting factor for high throughput and low production costs.

In such a configuration, the current reported stable and certified record efficiency is 12.3%,

obtained by Kaneka Corporation [Green 13b].

To further increase the conversion efficiency, triple-junction solar cells are used, reaching

a reported initial efficiency of 16.3% [Yan 11] and a certified stable conversion efficiency of

13.4% [Kim 13]. Certified conversion efficiencies for single-junction a-Si:H and µc-Si:H solar

cells are 10.1% (stable) and 10.8%,2 respectively [Green 13b]. By using a quadruple-junction

device and realistic assumptions for the contribution of each sub-cell, a simulated initial

efficiency of 19.8% has recently been proposed [Isabella 14].

2improved to 11.0% by H. Sai et al., 40th IEEE Photovoltaic Specialists Conference, Denver, Colorado, United
States, June 8–13, 2014 (see also [Green 14b])
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1.2. Thin-film silicon photovoltaics

MICROMORPH TANDEM CELL

<10 µm µc-Si:H p–i–n bottom cell

a-Si:H p–i–n top cell
intermediate reflector

LPCVD-ZnO back electrode

LPCVD-ZnO front electrode

Glass

Figure 1.5: Cross-sectional SEM image of a typical research micromorph tandem cell. It consists
of two solar cells made of two different materials (a-Si:H and µc-Si:H) for efficient spectral
utilization. Illumination is performed through the glass substrate. The front and back electrodes
are made of a transparent conductive oxide, here zinc oxide. To optimize current repartition
between the sub-cells, a intermediate reflector, generally made with a material with a lower
refractive index than silicon, is inserted between the a-Si:H top cell and the µc-Si:H bottom cell.
The total thickness is less than 10µm.

1.2.1 Amorphous silicon

a-Si:H is a disordered material, with some short-range order, but without translational

symmetry. It is characterized by a bandgap of around 1.75 eV. Strictly speaking, this bandgap

is not a well-defined bandgap such as in crystalline semiconductors (i.e. with no electronic

states in the bandgap), but is defined as a "mobility gap," which is a range of energies in which

there are electronic states that are localized and have zero mobility associated with them.

These states are usually differentiated between "deep states" at around midgap, attributed to

defects (dangling bonds), and "tail states," associated with strained bonds [Shah 10].

Soon after the demonstration of the first solar cell, D. L. Staebler and C. R. Wronski

discovered the reversible light-induced degradation of photoconductivity in a-Si:H layers

[Staebler 77]. This effect is still a limiting factor for further increasing the efficiency of

thin-film silicon solar cells, as it has a direct impact on the stability of devices under

light exposure. a-Si:H is sometimes divided into subcategories such as polymorphous

silicon (dense a-Si:H containing very small crystallites [Hamers 00, Fontcuberta i Morral 01,

Cabarrocas 02, Fontcuberta i Morral 04]) and protocrystalline silicon (a-Si:H grown close to

the transition to µc-Si:H, which evolves into µc-Si:H if grown above a certain thickness

[Collins 03, Yan 03, Stuckelberger 13]).

1.2.2 Microcrystalline silicon

µc-Si:H, often referred to as microcrystalline or nanocrystalline silicon, was discovered by

S. Vepřek and V. Maraček in 1968 [Vepřek 68], by etching a piece of silicon with a hydrogen

plasma and redepositing a layer on a substrate via a chemical transport technique at a process

temperature of 600 ◦C. Doping of µc-Si:H layers was reported by S. Usui and M. Kikuchi in
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1979 [Usui 79] and such layers were later implemented in solar cells [Uchida 82]. In 1992, a

solar cell with a µc-Si:O:H absorber layer was reported [Faraji 92].

The first fully µc-Si:H working device was obtained by J. Meier et al. in 1994 at IMT Neuchâtel,

with a conversion efficiency of 4.6%. They also showed that efficient absorber layers could be

made by reducing impurities via the use of gas purifiers during deposition to reduce oxygen

contamination [Torres 96].

Growth of microcrystalline silicon

µc-Si:H, as fabricated by PECVD, is generally grown in a transition regime and the

deposition parameters can be used to control the crystalline fraction of the absorber layer.

Microcrystalline growth is essentially determined by the species present in the plasma, and

more specifically by the ratio of atomic hydrogen to radical flux towards the growing surface.

This ratio was related to plasma properties by B. Strahm et al., and a simple, but elegant,

model was proposed, linking the transition to the concentration of silane in the plamsa cp ,

and showing that µc-Si:H can be produced for any value of cp , provided the silane depletion is

high enough [Strahm 07].

In a review paper [Matsuda 99], the possible roles of hydrogen in the growth of µc-Si:H were

summarized in three growth models, reproduced in Fig. 1.6:

(a) (b) (c)

Figure 1.6: (a) Surface diffusion, (b) etching and (c) chemical annealing models for the growth
of µc-Si:H, reproduced with authorization from [Matsuda 99].

• The surface diffusion model was originally proposed to explain a substrate temperature

dependence for the crystalline volume fraction at a fixed silane-to-hydrogen ratio.

Sufficient hydrogen flux density ensures full passivation of the surface and also produces

local heating through hydrogen recombination on the growth surface of the film. This

leads to an enhancement of the precursor diffusion length which can then find an

energetically favorable site, favoring crystalline growth.

• The etching model was proposed to explain a growth rate decrease and an increase of

the crystalline volume fraction when increasing the hydrogen dilution in the plasma.

In this case, atomic hydrogen coming onto the surface breaks a (weak) Si—Si bond
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1.2. Thin-film silicon photovoltaics

(involved in the amorphous structure). This free place can then be replaced by a new

precursor which would form a rigid crystalline structure.

• The chemical annealing model consists of a permeation of hydrogen in the sub-surface

region leading to the crystallization of the amorphous network without removal of the

Si atom (in opposition to the etching model).

Although the exact roles of atomic hydrogen in µc-Si:H growth are still debated, its importance

is generally accepted [Fontcuberta i Morral 00, Sriraman 02, Kondo 03].

Microstructure of microcrystalline silicon absorber layers

The quality of µc-Si:H, as deposited by PECVD for photovoltaic applications, is directly linked

to both intrinsic and extrinsic properties. Intrinsic properties are governed mainly by the

deposition conditions—given by the reactor design (type, geometry)— such as deposition

pressure, excitation frequency, inter-electrode gap, injected power, temperature of the

substrate, deposition rate, gas type and flux, which determine the opto-electronic properties

of the grown layer. Indeed, an extremely broad set of parameters can lead to any deposition

from device-grade material to porous and useless material and from layers with many degrees

of crystallinity to completely amorphous films.

Material with the highest quality is generally grown in the transition regime at a low

deposition rate, below 1 nm/s, although lot of research effort is aimed at obtaining a

higher deposition rate with maintained material quality. The aim here is to reduce the

impact of ion bombardment on the growing film at high power. The use of very high

frequencies [Curtins 87b, Curtins 87a, Kroll 97] or the high-pressure/high-depletion (HPD)

regime [Guo 98, Kondo 00, Roschek 02, Rech 03], together with innovative reactor designs

such as deposition with a multihole cathode [Niikura 04, Smets 06, Smets 08b], are proven

solutions to obtain higher material quality at higher deposition rates. To completely remove

ion bombardment, alternative non-plasma techniques, such as hot-wire chemical vapor

deposition, can also be employed [Klein 01, Schropp 01, Klein 02].

Extrinsic properties, defined here as material properties that arise from external parameters,

do not depend directly on the plasma conditions. For example, porous zones can be induced

by the substrate and lead to post-deposition oxidation. As another example, the substrate’s

chemical nature can also impact the growth of µc-Si:H [Vallat-Sauvain 05]. However, as we will

see throughout this thesis, these intrinsic and extrinsic properties can be strongly interlinked.

An important parameter to define device-grade material is the Raman crystallinity factor (Rc ),

which quantifies the crystalline fraction of µc-Si:H, as determined by Raman spectroscopy

[Droz 04]. Device-grade material usually has Rc values around 60% [Vetterl 00, Mai 05]. It is

generally assumed that an amorphous phase is required to passivate grain boundaries and to

prevent their post-deposition oxidation [Bronneberg 11].
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The microstructure of device-grade µc-Si:H is rather complex, as it is made of small crystalline

grains embedded in an amorphous matrix [Vallat-Sauvain 00], in a columnar structure

[Luysberg 97, Houben 98]. As an illustration, the structure of a typical p–i –n µc-Si:H cell,

grown on textured zinc oxide (ZnO) is sketched in Fig. 1.7.

Figure 1.7: Sketch of a typical p–i –n single-junction µc-Si:H solar cell, grown on textured
ZnO, showing the microstructure of the µc-Si:H absorber layer, with clustered nanograins (red)
embedded in an amorphous matrix. Reproduced with modification from [Bailat 03].

Depending on the deposition conditions, the crystallinity generally evolves as a function of

thickness. A large amorphous incubation layer at the p–i interface is not wanted, as it can

hinder the collection of holes and thereby reduce the cell efficiency. "Cracks" will be discussed

in Sec. 1.2.3, as they are the subject of many investigations presented in this thesis.

This figure also points out the importance of grain boundaries passivation, cluster boundaries

passivation, and control of the interfaces, as generated charge carriers have to be extracted

and collected at each side of the device. For the (lateral) transport of charge carriers in µc-Si:H

layers, percolation via the crystalline parts is generally assumed, provided a minimum amount

of crystalline fraction (about 20%, the percolation threshold) [Scher 70, Kirkpatrick 73, Tsu 82,

Schellenberg 88, Hapke 93, Carius 97, Overhof 98, Shimakawa 00, Kočka 03, Azulay 05]. In

solar cells, the relevant conductivity is, however, the perpendicular conductivity (along the

growth direction) [Stiebig 00, Matsui 02a].

One of the main limiting factors in single-junction µc-Si:H solar cells is the Voc decrease

when increasing the crystalline volume fraction [Yamamoto 00, Droz 04, Nath 08, Johnson 08]

and absorber layer thickness [Vetterl 01]. The thickness dependence is mainly attributed

to bulk recombination [Yamamoto 00], as the material quality is still low compared to c-Si

(a bulk lifetime on the order of 100 ns has been reported [Brammer 03]). The highest Voc

obtained so far is 603 mV [van den Donker 07], reached by using a buffer layer deposited by

hot-wire CVD at the p–i interface, and attributed to the absence of ion bombardment at this

interface. However, the low Rc of that cell implies that the high Voc value was obtained by a
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usual trade-off between high current (by enhanced absorption in the near-infrared for high

Rc ) and Voc. This result also suggests that interface engineering is of crucial importance for

high-efficiency µc-Si:H solar cells, as also discussed in [Mai 05, Mai 06, Söderström 08, Yue 08,

Agbo 10, Despeisse 10, Bugnon 14].

1.2.3 Porous zones in microcrystalline silicon

As indicated previously, parameters not directly linked to the growth can modify the properties

of a high-quality µc-Si:H layer. In thin-film silicon solar cells in general, a-Si:H layers have

to be thin to reduce light-induced degradation, and due to the indirect nature of the µc-Si:H

bandgap—associated with low optical absorption—and to ensure maximum current, the light

path within the absorber layer has to be artificially elongated.

This is usually achieved by using efficient light in-coupling and trapping in the solar cells

via randomly textured surfaces [Wenas 91, Faÿ 06, Berginski 07, Dominé 10, Rockstuhl 10],

periodical grating to scatter light at well-defined angles [Soderstrom 10, Battaglia 12, Sai 13],

modulated textures [Isabella 10], plasmonics [Atwater 10, Eminian 11, Paetzold 11, Tan 12],

nano-structures with high aspect ratio [Kayes 05, Colombo 09, Vanecek 11, Krogstrup 13]

and improved back reflectors [Sai 10, Sai 12, Söderström 12]. These light-scattering textures

are of high theoretical and practical interest [Yablonovitch 82, Deckman 83b, Deckman 83a,

Bittkau 08, Boccard 12e, Naqavi 13].

Methods using textured surfaces can lead to modified material quality in the a-Si:H and

µc-Si:H absorber layers. For µc-Si:H, this often translates into the creation of porous zones

within the absorber layer, especially when sharp textures are used as the substrate. Throughout

this thesis, textured electrodes made of ZnO deposited by low-pressure chemical vapor

deposition (LPCVD-ZnO) are employed. Their surface is characterized by pyramidal surface

features, which can induce porous zones in the subsequently deposited µc-Si:H layer. These

zones are often called "cracks" or "stripes" in the literature [Sakai 90, Bailat 02, Python 08,

Python 09a, Li 09a, Li 09b, Python 10], as they usually appear as bright lines in micrographs,

as obtained by transmission electron microscopy. Throughout this thesis, we will use the

terms "porous zones"’ or "zones of porous material," which reflect the physical nature of these

defective areas. These zones were linked to the electrical properties of solar cells and to a

two-diode model for solar cells [Merten 98], by acting as a second bad diode in parallel, with

high dark saturation current.

These zones are generally attributed to strong "V-shaped" surface features, but it has recently

been demonstrated that for a given substrate morphology, the creation of these porous zones is

also influenced by the deposition process. Hence, a new model has been established, with two

material phases, called "bulk" and "nanoporous zones," each phase being impacted differently

by the deposition conditions and by post-deposition oxidation [Bugnon 12, Bugnon 13]. The

porous zones still consist of µc-Si:H, but are highly defective.
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1.3 Objectives of this thesis

The goals of this thesis are to

1. Identify fundamental limitations of single-junction µc-Si:H devices and find ways to

surmount those limitations.

2. Separate contributions of the bulk µc-Si:H phase and of the p–i and i –n interfaces.

3. Identify the best µc-Si:H material and implement it in record devices.

4. Assess layers with high crystallinity for improved absorption in the near-infrared.

5. Identify how the growth of such material needs to be controlled and identify the impact

of rough substrates on such devices.

A global objective is the identification of the limitations of single-junction µc-Si:H solar cells,

without constraints on deposition rate, and to implement the processes required to reach this

limit.

1.3.1 Structure of this thesis

This thesis is organized as follows.

Chap. 2 describes the structures of solar cells used in this thesis. The fabrication process of

each layer is detailed and the general properties of standard ZnO layers, used as front and

back electrodes, are given. Then, the main characterization tools used throughout this thesis

are summarized. Nevertheless, this thesis has been written so that each chapter can be read

separately, by repeating some experimental parts in each chapter, and by giving detailed

information on processes which are used only in one chapter in that chapter.

Chap. 3 is first dedicated to the optimization of high-efficiency single-junction µc-Si:H solar

cells in a small-area research system. Then, the impact of substrate roughness is analyzed,

together with various combinations of doped layers and crystalline fraction of the µc-Si:H

absorber layer. To evaluate the impact of surface features of increasing size, a novel front

electrode is presented, based on the use of highly transparent hydrogenated indium oxide,

allowing us to fabricate electrodes with similar sheet resistance, but varied surface feature

sizes. The resilience of such high-efficiency devices to degradation in ambient atmosphere

is evaluated. To further investigate the microstructure of µc-Si:H solar cells, a novel imaging

technique is presented, based on 3-D tomographic reconstruction of the absorber layer.

In Chap. 4 the effect of post-deposition treatments, based on treatments developed for

ZnO electrodes, on µc-Si:H solar cells is investigated. Careful evaluation of the effect of the

treatments on the bulk material, the porous zones and the electrodes is performed. Special

attention is given to further identify key properties of porous zones in the absorber layer.
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These post-deposition treatments are then evaluated in the tandem configuration in terms of

stability.

In Chap. 5, we investigate the effect of dedicated interfaces in p–i –n single-junction solar cells.

We first investigate the role of the p–i interface and show that solar cells can be improved by

using a SiOx p-doped layer. Higher performance under lower illumination is demonstrated,

linked to improved diode properties and improved shunt-quenching properties. Then, we

introduce passivated interfaces for thin µc-Si:H solar cells, and demonstrate that an interface

(here i –n) can be a limiting factor provided the bulk quality is high, which we confirm by a

simple simulation model.

Finally, in Chap. 6, we detail a process based on the use of silicon tetrafluoride (SiF4) as a

precursor, for growing highly crystalline material to improve absorption in the infrared. We

present a detailed comparison of the obtained absorber layers with our state-of-the-art layers,

such as those presented in Chap. 3 and discuss the material requirements for obtaining high-

efficiency devices. By implementing these layers in micromorph tandem cells, we obtain a

record summed short-circuit current density of 31.9 mA/cm2, with a total silicon thickness of

only 3.4µm.

1.3.2 Contribution of this thesis to the research field

In this thesis, several important findings for the field of thin-film silicon photovoltaics were

obtained:

1. Thanks to advanced electron microscopy, it was demonstrated that porous zones form

an interconnected network of micropores that can act as diffusion path for impurities.

Degradation of solar cell performance under ambient atmosphere was successfully

linked to the presence of porous zones in the absorber layer.

2. Thanks to careful investigation of post-deposition processes, it was demonstrated that

these porous zones are also extremely sensitive to the deposition conditions of the back

electrode, and that they can be cured by simple annealing in vacuum.

3. It was demonstrated that µc-Si:H solar cells are inherently limited by dead doped layers.

By applying a passivating concept, a record Voc of 0.608 V and 1.53 V was reached for

thin single-junction µc-Si:H and micromorph tandem solar cells, respectively.

4. Using SiF4, record infrared absorption was demonstrated in tandem solar cells, thanks

to the use of highly crystallized layers. Although this result requires optimization, it

paves the way to high-efficiency multi-junction solar cells.

Finally, this work led to two peer-reviewed publications [Hänni 13a, Hänni 13b], one

conference proceeding [Hänni 11] as first author and various contributions as co-author
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(list available at the end of this thesis). Two publications are to be submitted [Hänni 14a,

Hänni 14b] and two patents are currently being filled.

Based of the developed processes, a new certified world-record conversion efficiency was

obtained for single-junction µc-Si:H solar cells on an area >1 cm2, with a value of 10.7%,

as compared to the previous value of 10.1%. This value has now just been overtaken by

AIST, Japan, with a certified value of 10.8%.3 The topics presented in this thesis were also

implemented in important results in the p–i –n configuration obtained by other members of

the team, such as a certified world-record micromorph solar cell [Boccard 14] (12.6% stable)

and an internal record for triple-junction solar cells [Schüttauf 14] (12.8% stable).

3improved to 11.0% by H. Sai et al., 40th IEEE Photovoltaic Specialists Conference, Denver, Colorado, United
States, June 8–13, 2014 (see also [Green 14b])
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2 Preparation and characterization
techniques

This chapter focuses on the standard experimental tools used in this thesis for the fabrication

and characterization of microcrystalline Si (µc-Si:H) layers and solar cells. Most of them

have already been described elsewhere [Python 09b, Cuony 11, Boccard 12c, Söderström 13,

Biron 13b, Ding 13a, Bugnon 13] and will therefore only be summarized here. Details about

special or more advanced techniques are given in the corresponding chapters.

2.1 Process flow for solar cell fabrication

The solar cells used in this thesis are deposited on glass using the p–i –n configuration. p–i –n

and n–i –p refer to the sequence of deposition of the various doped (p,n) and intrinsic (i )

silicon layers. Due to the lower mobility of holes as compared to that of electrons in amorphous

silicon (a-Si:H), a thin-film Si solar cell is preferentially illuminated through the p-doped

side. The p–i –n configuration hence needs a transparent superstrate, which is usually glass.

Conversely, the n–i –p configuration allows for more freedom in the choice of the substrate,

ZnO (5 µm)

ZnO (2–5 µm)

Si (0.5–3.5 µm)

glass

white paste

Figure 2.1: Sketch and scanning electron microscopy (SEM) image of a typical µc-Si:H solar cell
(no white paste on the SEM image).
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and opaque or flexible substrates such as plastic or metallic foils can be used. The standard

glass used in this thesis is AF32 and AF45 glass from Schott, with a thickness of 0.5 mm and an

area of 41x82 mm, usually cut into two pieces of 41x41 mm. After cleaning with soap and in

acidic and alkaline ultrasonic baths, it serves as substrate for the deposition of all subsequent

layers, and is the first window where the light enters the solar cell. Fig. 2.1 shows the standard

structure of a solar cell in the p–i –n configuration used in this thesis, with transparent zinc

oxide (ZnO) front and back electrodes.

2.1.1 Zinc oxide deposited by low-pressure chemical vapor deposition

A typical superstrate for p–i –n thin-film Si solar cells is glass coated with ZnO deposited by low-

pressure chemical vapor deposition (LPCVD-ZnO). Diethylzinc (DEZ), which is a metalorganic

compound (Zn(C2H5)2), and water vapor are used as precursors. Doping is achieved by

adding a small amount of diborane (B2H6) to the gas mixture. By choosing appropriate

deposition conditions, a textured surface can be obtained, which is of high interest for better

light trapping within the solar cell [Wenas 91, Faÿ 03, Faÿ 06, Faÿ 07, Steinhauser 07, Faÿ 10].

Indeed, when the growth temperature of LPCVD-ZnO is increased from 110 to 220 ◦C, the

preferred orientation evolves from c-axis to a-axis, and then returns to c-axis at 380 ◦C. This

transition is accompanied by a change in the surface morphology when the film thickness is

increased: small rounded grains evolve to large V-shaped grains at a growth temperature of

150 ◦C [Nicolay 09], leading to a textured surface with random pyramids. The size of the surface

pyramids is dependent on the film thickness, the doping and also the precursor flow ratio

[Nicolay 12, Fanni 14], whereas the electrical properties of LPCVD-ZnO can also be adapted

e.g. by tuning the doping level, by a multilayer approach or by post-deposition treatments

[Ding 12b, Ding 12a, Ding 13b, Ding 13a].

In this thesis, the standard LPCVD-ZnO front and back electrodes are referred to as "Zx",

where "x" stands for the nominal thickness of the ZnO film, in µm. The electrical properties of

standard ZnO used as front and back electrodes are summarized in Tab. 2.1. 2-µm-thick Z2 is

not an optimal electrode forµc-Si:H solar cells because of its higher doping and hence too high

free-carrier absorbtion (FCA) in the near-infrared range of the solar spectrum. It is however

used for amorphous silicon solar cells, which do not absorb light with wavelengths impacted

by FCA. For a-Si:H/µc-Si:H micromorph tandem solar cells, electrodes with a maximal sheet

resistance (Rsq ) of up to 30Ω/sq can be used, as a consequence of the lower current of two solar

cells connected in series, allowing for highly transparent front electrodes and still acceptable

resistive losses [Boccard 12b]. For single-junction µc-Si:H solar cells, 10Ω/sq is a commonly

accepted value for the Rsq of the front electrode in order to avoid too much resistive losses in

the electrodes. Our standard superstrate for µc-Si:H solar cells is hence glass coated with a

lightly doped 5-µm-thick Z5, which provides very efficient light trapping in the near infrared.

This research superstrate is however not suited for industrialization, due to its large thickness.

Other common materials chosen for transparent conductive oxides (TCOs) in thin-film Si
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Table 2.1: Electrical and morphological properties of standard LPCVD-ZnO (taken and adapted
from [Bugnon 13, Ding 13a]). Z2 and Z2.3 are usually used as superstrates for a-Si:H solar cells.
Furthermore, Z2.3 is the standard superstrate for micromorph tandem solar cells. Z5 is used in
this thesis as the standard superstrate for single-junction µc-Si:H solar cells, with an optimum
treatment time of 45’. ZSE is employed in all types of thin-film Si solar cell, from single- to
multi-junction devices. It provides a smooth surface morphology, favorable to the growth of
high-quality µc-Si:H.

Abbreviation Z2 Z2.3 Z5 Z5 20’ Z5 45’ ZSE
Thickness [µm] 2.0 2.3–2.4 4.6–5.0 <5.0 <5.0 ∼0.6
(B2H6/DEZ) (0.65) (0.12) (0.12) (0.12) (0.12) –
σRMS [nm] 79 100 184 168 106 ∼130
Pyramid size [nm] 250 270 600 <600 <600 –
Average facet inclination [◦] 40 - 45 - 18 –
Ironed surface factor [-] 1.55 1.38 1.67 1.37 1.15 –
Haze at 600 nm [%] 37 55 96 87 68 –
Sheet resistance [Ω/sq ] 9 25 9 9 9 5–8
Mobility [cm2/V s] 37 41 48 - - ∼40
Electron density [1019 cm−3] 9.2 3.5 3.5 - - ∼37

solar cells in the p–i –n configuration include sputtered-etched ZnO (ZSE) and tin dioxide

(SnO2) such as e.g. TCOs from the Asahi Glass Company. ZSE is usually made by sputtering

from an aluminium-doped ZnO target at a temperature usually between 200 and 400 ◦C. Its

surface texture is usually achieved by etching with an acidic solution, typically by dipping

in hydrochloric acid diluted in water at low concentrations (around 0.5%) for 30–40”. ZSE

has a low Rsq (typically 5–8Ω/sq ) and provides a very smooth morphology with large craters

more favorable to the growth of high-quality µc-Si:H [Rech 99, Agashe 03, Kluth 03, Müller 04,

Hüpkes 06, Berginski 07, Beyer 07, Ruske 10, Hüpkes 12]. A few commercially available SnO2-

based TCOs are widely used, such as Asahi U (used for a-Si:H solar cells), Asahi VU and Asahi

HU, which is multi-textured1.

Multi-textured TCOs are employed as effective front electrodes in multi-junction devices, as

they allow for optimized light in-coupling and light trapping in each sub-cell [Boccard 12a,

Boccard 12d, Tan 13], similar to lacquer-based replicated textures coated with a sputtered

conductive material [Battaglia 11c, Söderström 13, Paetzold 13]. Furthermore, in this thesis,

a less common TCO that consists of high-mobility hydrogenated indium oxide (In2O3:H,

or IOH) is also used. It was developed by C. Battaglia and L. Erni [Battaglia 11a], based on

recent work done by Koida et al. at AIST [Koida 07, Koida 08, Koida 09, Koida 10b, Koida 10a].

Advantages of IOH include an unusually high carrier mobility above 100 cm2/Vs, together with

a relatively low carrier density, leading to very low FCA. The IOH TCO is obtained by sputtering

an amorphous indium oxide film from a pure In2O3 target at room temperature, with argon

(Ar) and a little water vapor for doping with hydrogen. Crystallization of the film is achieved

1http://www.agc.com/english/csr/env/products/3.html accessed April, 2014
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by annealing, leading to a strong mobility increase together with a reduction by half of the

carrier density. In our case, this annealing is obtained when depositing subsequent layers of

the solar cell at higher temperatures. Details of the process can be found in [Boccard 12c].

Surface treatment of the front electrode

As previously mentioned, while the as-grown surface texture of LPCVD-ZnO is excellent

for efficient light trapping, it is extremely challenging for the growth of high-quality

µc-Si:H, resulting in decreased solar cell electrical performance [Python 08, Python 09a,

Li 09b, Python 10] and long-term stability issues when porous zones are present within the

bulk material [Matsui 06, Bronneberg 11, Cuony 11, Bugnon 12]. This interplay between

superstrate morphology and µc-Si:H quality will be discussed in Chap. 3. In order to

overcome these detrimental effects of a superstrate that is too rough, an Ar-plasma surface

treatment can be used to improve the open-circuit voltage and the fill factor of the solar cell by

smoothening the front electrode morphology, however at the cost of a reduced short-circuit

current density [Bailat 06, Cuony 11, Boccard 12b]. The optimum treatment time on Z5 for a

single-junction µc-Si:H solar cell was determined to be about 45 minutes. A transfer of these

surface treatments of LPCVD-ZnO from one system to another occurred during this thesis. The

treatment time was slightly shortened during the transfer for the same optical and electrical

properties. Thus, a Z5 60’ is the (old) equivalent of the Z5 45’ if not specified otherwise.

2.1.2 Deposition of the silicon layers

Plasma-enhanced chemical vapor deposition (PECVD) was used throughout this thesis

work to deposit the Si layers. PECVD takes place in a vacuum chamber where a substrate

is heated at typical temperatures around 200 ◦C between two electrodes. Silane (SiH4)

and hydrogen (H2) are injected into the chamber. These gases would normally not

decompose at such low temperatures, but by applying a radio-frequency (RF) signal (usually

at a frequency of 13.56 MHz and multiples thereof) on one of the electrodes, a plasma

is created between the electrodes, decomposing the gas precursors into radicals which

can be used for layer growth. The multiple phenomena and reactions taking place in

the plasma are rather complex and subject to an impressive number of publications

and textbooks [Amanatides 01, Amanatides 02, Amanatides 05, Sansonnens 06, Strahm 07,

Howling 07, Bartlome 09]. Reactions depend on the deposition conditions such as pressure,

temperature, excitation frequency and power, gas mixture and fluxes, as well as on the reactor

geometry.

In the following, the PECVD systems used during this thesis are briefly described, and are

summarized in Tab. 2.2. Most of the work was performed in a small-area dual-chamber

research system (SysB), in which each chamber contains an open parallel-plate reactor. For

deposition of the absorber layers, a dedicated chamber was used, with a gas purifier for SiH4

and H2. All layers were deposited at 200 ◦C, unless stated otherwise. The pressure and power
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could in practice not be used as tunable process parameters, as acceptable homogeneity

and reproducibility could be achieved only in a narrow range. On the other hand, dilution

modification had a clear impact as a low-flow mass flow controller (MFC) was used for SiH4,

allowing good control of small fluxes and their grading. Ar was used in both chambers

for pre-conditioning of the reactor after manual cleaning. Doping was performed with

trimethylborane (B(CH3)3 or TMB) diluted in hydrogen (2% or 500 pppm) for p-type doping,

whereas n-type doping was achieved by phosphine (PH3) diluted in hydrogen (0.1%). In the

chamber dedicated to doped layers, other gases such as carbon dioxide (CO2), methane (CH4),

trimethylgallium (TMGA) were used as well. A detailed description of SysB is available in

[Cuony 11].

Table 2.2: Main parameters of the PECVD tools used during this thesis.

System Gap Area of deposition Pressure Frequency (p/i/n)
[mm] [cm2] [mbar] [MHz]

SysB 15 10x10 0.2–0.7 110/70/110
OCTOPUS I 15 15x16 0.2–12 40/(13 & 81)/40

KAI-M 12 49x60 1–15 40/13/40

µc-Si:H was also routinely deposited in a dual-chamber R&D KAI-M system, described in detail

in [Bugnon 13]. The baseline deposition for single-junction µc-Si:H and multi-junction solar

cells was preferentially performed in this system, due to the large size available (49×60 cm2)

and the reasonable deposition rate (3 Å/s). The same source gases as in SysB were used,

except for the highly diluted TMB. Less diluted PH3 (at 2%) was also available. Cleaning was

performed after each deposition with a nitrogen trifluoride (NF3) and Ar plasma followed by a

H2 plasma.

Details about the deposition and optimization of fluorinated microcrystalline silicon layers

and cells, in KAI-M, with an alternative gas mixture consisting of silicon tetrafluoride (SiF4),

H2 and Ar are described separately in Chap. 6.

2.1.3 Back contact and patterning

While plasma-treated Z5 is the standard superstrate for single-junction µc-Si:H solar cells, a

lightly doped 2.3-µm-thick LPCVD-ZnO (Z2.3) is generally used as the back electrode. On each

sample, 16 cells with an area of 0.25 cm2 are typically patterned by lift-off of the back electrode

between the cells. Access to the front electrode is ensured via dry-etching of the Si between

the cells with a combined sulfur hexafluoride (SF6)/oxygen (O2) plasma. Larger cells can be

obtained through a different patterning scheme, with six cells with a nominal area of 1 or

1.2 cm2 each. In that case, however, Z2.3 is too resistive and a thicker Z5 must be used to avoid

significant losses in the back electrode [Hanak 79]. The multi-junction solar cells presented in

this thesis have an area larger or equal to 1 cm2 and Z2.3 is used as the back electrode, unless

specified differently.
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2.1.4 Back reflectors

In combination with the LPCVD-ZnO back electrode, a white dielectric back reflector is

typically applied to the back of the solar cells to reflect the transmitted light back into the

cell and increase the short-circuit current density and the generation of charge carriers. The

standard back reflector in our laboratory consists of a GORETM layer (available with a thickness

of 0.5 or 3 mm). The dielectric is applied directly onto the back of the solar cell, without gluing.

If solar cells are encapsulated, white paint is applied onto the back electrode, after soldering

of wires (two per contact). The soldered surface must be made as small as possible due to

the poor reflectivity of soldered parts. To dry the two types of white paints provided by the

manufacturer ("white opaque" and "white"), an annealing at 90 ◦C is performed in nitrogen

atmosphere for about five hours. A fourth option is Tipp-Ex, a commercially available eraser2

that can be easily applied.

Fig. 2.2 shows the total reflectance and transmittance (measured with a Perkin Elmer lambda

900 UV-vis-NIR spectrophotometer) of four possible white back reflectors.

Figure 2.2: Total reflectance and transmittance of four possible white back reflectors. "white
opaque" and "white" paint are two types of white paint provided by the manufacturer, and "Tipp-
Ex" is a commercially available ink eraser. The best reflection is obtained with the 3-mm-thick
GORETM reflector.

The measurement of the 3-mm-thick GORE reflector is the one provided by the manufacturer.

Internal measurement confirms that it has the best reflectance of all four white back reflectors,

but it is not shown here due to artifacts in the measurement. Tipp-Ex has a poor reflectance

compared to the white paint, but is easily applied and does not need an additional annealing

such as is needed for drying the white paint.

Alternative possibilities exist for the back contact/reflector design, such as a metallic reflector

2http://www.bicworld.com/en/products/categories/13/correction accessed April, 2014
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applied directly on the Si [Widenborg 07, Kunz 08] or on a thin TCO layer [Morris 90, Müller 04,

Moulin 12, Khazaka 14].

2.1.5 Light soaking and dark degradation

Since the discovery of light-induced degradation in a-Si:H films (Stabler-Wronski effect)

[Staebler 77], solar cells made of a-Si:H degrade when exposed to sun light. This degradation

is linked to an increase of defect density within the absorber layer and is reversible by

annealing. Thus, when illuminating the cells, an equilibrium between defect creation and

recovery is established after a certain amount of time, depending on the illumination spectrum

and intensity, the electrical-bias condition and the temperature. Although the degradation

mechanisms are not fully understood, degradation can be lowered in a-Si:H solar cells by

making them thin. With absorber layers with a thickness of typically 100 to 300 nm, the cell

efficiency stabilizes after relative degradation of approximately 10 up to 30%.

Conversely, µc-Si:H is rather stable with respect to light-induced degradation [Meier 94,

Yamamoto 99b] and is generally not light soaked when employed as an absorber layer

in single-junction solar cells. This improved stability is largely utilized in multi-junction

devices, as when µc-Si:H is used as a middle or bottom cell, its amorphous phase is not

directly exposed to the high-energy photons, which are filtered by the top cell. In these

configurations, µc-Si:H does not degrade, though in single junctions, some degradation

(usually no more than 10%) can be observed if the Raman crystallinity factor (Rc ) is low

[Klein 03, Yan 04a, Yue 05a, Yue 05b, Yue 06, Meillaud 08]. To obtained stabilized values, solar

cells containing at least one a-Si:H layer are therefore maintained under an illumination of

one sun at a temperature of 50 ◦C, usually for 1000 h.

While light exposure is not a major concern for µc-Si:H, even in single junctions, dark

degradation (DD) is critical. This phenomenon can take place when a cell is stored in ambient

conditions and depends on the superstrate roughness or the PECVD, and is attributed to

moisture ingression which leads to degradation of the solar cell efficiency.

Although there is no well-defined procedure for the evaluation of DD, which can also involve

the degradation of LPCVD-ZnO, damp-heat tests [Bugnon 13] have been proposed as a method

to accelerate DD for rapid assessment of the resilience of a solar cell to moisture exposure. In

this thesis, DD is evaluated by leaving the cells in a dark drawer under ambient conditions for

a certain number of days, without any control of the atmosphere.

2.2 Characterization

2.2.1 I-V measurements

Once the solar cells are complete, they must be characterized electrically in order to assess

their conversion efficiency (η), also referred to simply as efficiency. This is defined as the ratio
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of the electrical power output to the incident light power input under standard conditions

(AM1.5g, 1000 W/m2, 25 ◦C) and defined as:

η= Pmpp

Pi l l

∣∣∣∣
(AM1.5g,1000W/m2,25◦ C)

where Pmpp is the power density at the maximum power operational point of the solar cell,

and Pi l l the power density of the incident light. The efficiency can be derived from a current

(density)–voltage (I(J)–V ) curve under illumination, as presented in Fig. 2.3 in which relevant

points are indicated on the curve.

+

- +

-

Pmpp

Isc

Voc

Impp

Vmpp

Figure 2.3: Example of I(J)-V curve, with relevant points on the curve.

The open-circuit voltage (Voc) is the voltage of the device under illumination when no current is

flowing. In thin-film Si solar cells, it is determined mainly by the doped layers (both materials

and thicknesses), by the quality of the bulk material (which has an influence on the bulk

recombination), by band offsets at the doped layer interfaces, and by the contact with the

electrodes. It is also extremely sensitive to shunts, usually induced by pinholes directly

contacting both sides of the cell, or bad-diode areas of the solar cells. These latter are linked

to the presence of a nanoporous phase in the absorber layer, such as the one induced by

rough superstrates [Python 08, Li 09b, Python 10, Cuony 11]. The short-circuit current density

(Jsc) is the current density flowing through the device at zero voltage condition. Finally, the

fill factor (FF) is the ratio of the Vmpp Impp -product over the Voc Isc -product. FF is sensitive

to recombination (linked to the material quality), to shunts, and to the presence of electric-

potential barriers in the solar cell which hinder the collection of the charge carriers. FF is also

directly impacted by the many resistive losses which can occur in the solar cell.

Assuming an illumination of 1000 W/m2 (standard test conditions), the conversion efficiency
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is then simply given by

η [%] = Voc [V] · Isc [mA] ·F F [%]

A[cm2] ·100
,

where A is the area of the solar cell.

The J-V curve is recorded experimentally using a four-terminal current-voltage measurement

with a dual-lamp sun simulator from Wacom (WXS-220S-L2 AM1.5g) operating under standard

test conditions. Apart from Voc and FF , other parameters that are usually recorded are the

open-circuit resistance Roc (slope of the J-V curve at Voc) and the short-circuit resistance Rsc

(slope of the I(J)-V curve at Jsc). To achieve high efficiency, minimum Roc and maximum

Rsc values are necessary. Jsc can in principle be extracted from J–V curves as well. However,

due to our cell design, a correct determination of Jsc requires special care. Indeed, lateral

collection effects and trapping of light in the glass can typically impact the measurements.

For this reason, Jsc of cells with an area larger than or equal to 1 cm2 are measured with a

dark mask (this defines a designated-area measurement, see Appendix A), while for smaller

cells, Jsc is deduced from external quantum efficiency measurement as explained in the next

section.

J-V curves can also be recorded at various degrees of illumination intensity with a variable

illumination measurement (VIM) technique [Merten 98, Meillaud 06a]. Such measurements

are performed by putting grey metallic filters between the sample and the light source to

reduce the intensity of the incoming light. The technique can be used to determine the

collection voltage of p–i –n devices [Meillaud 06c]. The VIM technique is here mainly used

to assess Voc losses as a function of illumination intensity, which is an important parameter

when µc-Si:H is used in multi-junction devices.

2.2.2 External quantum efficiency

External quantum efficiency (EQE) is a unitless value giving the probability of collecting

one electron-hole pair created by one incident photon of wavelength λ. It is evaluated by

illuminating the cell in short-circuit condition with monochromatic light and measuring

and comparing the resulting photocurrent with a photodetector reference of known EQE.

As the generated photocurrent is low (the probe beam issued from a xenon lamp has a

size of about 1x2 mm, smaller than the cell), lock-in amplification is used to improve the

measurement. White light bias is used to approach real operation conditions. Negative-bias

voltage measurement (usually at −1 V), enhancing the internal electrical field, is routinely

performed to evaluate the collection of photo-generated carriers in the solar cell.

In short-circuit condition, EQE is used to calculate Jsc by integrating the amount of photons

from the AM1.5g spectrum3 that contribute to photocurrent over the useful wavelength range

(here from 370 to 1100 nm).

3http://rredc.nrel.gov/solar/spectra/am1.5/ accessed April, 2014

23

http://rredc.nrel.gov/solar/spectra/am1.5/


Chapter 2. Preparation and characterization techniques

2.2.3 Raman spectroscopy

Raman spectroscopy is a widely used characterization setup for the evaluation of the

crystalline volume in µc-Si:H, pioneered by Iqbal et al. in the early 80s [Iqbal 80, Iqbal 82]. A

quantification of the crystallinity was introduced shortly afterwards by Tsu et al. [Tsu 82], based

on the ratio of integrated parts of the spectrum originating from crystalline and amorphous

parts. The crystalline volume fraction ρ is thus usually expressed as

ρ = Ic

Ic + y Ia
,

where Ic and Ia denote the integrated scattered intensity of the crystalline and amorphous

phase, respectively and y := Σc
Σa

is the ratio of the corresponding integrated backscattering

cross section (over the measured frequency range) [Bustarret 88]. A large set of values for y

can be found in the literature [Brodsky 77, Bustarret 88, Vallat-Sauvain 06a]. We thus follow

the approach proposed by Droz et al. [Droz 03, Droz 04] and arbitrarily set y = 1. The resulting

Raman crystallinity factor Rc is then

Rc = I520 + I510

I520 + I510 + I480
,

where Ix is the integrated area of a Gaussian fit centered at x and the sum I520 + I510 + I480 is

the total integrated intensity.

Rc is not equal to the true crystalline volume fraction and should be considered as a lower

bound for ρ [Houben 98]. In this thesis, the terms "Raman crystalline fraction", "Raman

crystalline factor", and "Crystallinity" are always referring to Rc as defined above. The best

devices are typically obtained near the transition regime, usually for Rc values ranging from 50

to 70% [Vetterl 00, Matsui 02b, Klein 02, Roschek 02, Mai 05].

In our laboratory, those measurements are performed with a Renishaw System 2000 Raman

spectrometer, using a back-scattering geometry and green light excitation from the 514.5 nm

emission line of an Ar ion laser, leading to a characteristic collection depth of approximately

150 nm in µc-Si:H. The measurements are usually performed on complete solar cells, both

at the n-side through the back electrode or directly through the n-doped layer (on a small

spot next to the cell which was protected during the patterning step) and through the glass for

measurements at the p-side.

2.2.4 Fourier-transform photocurrent spectroscopy

The sub-gap absorption coefficient at 0.8 eV (α0.8) which is linked to defects in the bulk phase

of the µc-Si:H material was evaluated by Fourier-transform photocurrent spectroscopy (FTPS).

This method was originally developed by Vanecek et al. [Vanecek 02]. A Fourier-transform

infrared spectrometer (Nicolet 8700 from Thermo Scientific) was used as a modulated infrared

source and complete µc-Si:H solar cells as photodetectors. As the technique is very sensitive to
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both roughness and doping of the superstrate [Python 09b], solar cells with similar absorber-

layer thicknesses and Rc , as well as with similar front and back electrodes, were used in each

study. The FTPS technique being a relative measurement, the curves were scaled at 1.35 eV

with the known value of the absorption coefficient of crystalline silicon. α0.8 was taken as

a figure of merit for material quality assignment, as it scales with the defect density in the

absorber layer. A more detailed description of FTPS can be found in [Bailat 04].

2.2.5 Transmission electron microscopy

Direct evidence of the microstructure of µc-Si:H can be derived from transmission electron

microscopy (TEM) images of cross sections of µc-Si:H layers and solar cells. The first TEM

experiments on µc-Si:H were performed in the early 90s, when the first evidence of columnar

growth parallel to the growth direction for undoped, phosphorus–doped and slightly boron–

doped layers was shown [Chen 92, Kaneko 93]. Saha et al. studied the effects of the deposition

parameters on grain size [Saha 93]. Two publications [Luysberg 97, Houben 98] from the Jülich

group showed a detailed structural analysis of µc-Si:H samples by TEM. In [Luysberg 97],

columnar growth was confirmed and dependence on growth parameters like pressure and

excitation frequency was shown. The role of porous zones was extensively investigated

with TEM, and was later linked to solar cell performance [Sakai 90, Bailat 03, Python 08,

Duchamp 11, Naruse 12, Duchamp 13].

TEM images presented in this thesis, as well as sample preparation, were taken by the author,

if not stated otherwise. For sample preparation, a wedge-polishing method by tripod, followed

by smooth milling with Ar ions, was used [Benedict 91, Bailat 04, Python 09b]. The images

were recorded with a Philips CM-200 microscope at CSEM SA, Neuchâtel, Switzerland.
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3 High-efficiency microcrystalline
silicon thin-film solar cells

In this chapter, we first summarize the development and optimization of high-efficiency

microcrystalline silicon (µc-Si:H) solar cells (Sec. 3.1). In Sec. 3.2, we then show how the bulk

properties of µc-Si:H, as well as the cell design impacts the performance of single-junction

µc-Si:H solar cells. In particular, we show that a dense material, without porous zones is

required to obtain both highly efficient and stable solar cells. The impact of increasing

superstrate roughness is investigated in Sec. 3.3, by using an innovative superstrate based on

the use of stacked transparent conductive oxide layers. It is showed that the resilience to sharp

surface textures is highly dependent on the used deposition process of the absorber layer.

A combination of scanning electron microscopy (SEM) and tomography is presented in Sec. 3.4

to visualize the 3-D interconnected network of porous and defective zones which can appear

when µc-Si:H is grown on highly textured superstrates. We finally present a record device

in Sec. 3.5, with an independently confirmed conversion efficiency of 10.7%. Parts of these

results are published in [Hänni 11, Hänni 13a, Hänni 13b].

3.1 Optimization of solar cells in a small-area PECVD reactor

Single-junction solar cells were deposited and optimized by the author in a small-area

research reactor (SysB, see Chap. 2) by PECVD at a superstrate temperature of 200 ◦C. For

the intrinsic layers, the excitation frequency was set at 70 MHz and a pressure of 0.7 mbar

was chosen. To ensure a good homogeneity and given the reactor design of SysB, the

pressure could not be increased above this value. Thus, promising deposition regimes such

as a high-pressure/high-depletion regime [Guo 98, Kondo 00] were not accessible (see also

Chap. 1). To evaluate the deposition rate and transition zone for the Raman crystallinity

factor (Rc ) of the intrinsic absorber layer, the silane (SiH4) dilution in hydrogen (H2), as

well as the (low) input power, were varied. We investigated dilutions, defined here as the

flux ratio of SiH4 to H2 ([SiH4]/[H2]), ranging from 3 to 6%, and power densities ranging

from 0.02 to 0.06 W/cm2. The obtained deposition rate was on the order of 1.4 to 1.8 Å/s,

as assessed from thickness measurements of complete devices with doped layers of known
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(a) (b)

Figure 3.1: Typical dilution (a) and Rc (b) profiles used in the optimized process. The Rc profiles
were measured by Dr. Do Yun Kim from TU Delft [Kim 14], and the data are used here with his
kind authorization. The p–i interface is shown in the magnified inset.

thicknesses. A grading of [SiH4] was employed at the p–i interface during the first 50 to

100 nm, without a plasma break, to ensure an early microcrystalline growth on the p-doped

layer [Stiebig 00, Bailat 03, Vetterl 03, Yan 04b, van den Donker 05, Gordijn 05, Smets 08a].

With such optimized SiH4 grading at the beginning of the growth, an optimum Rc was achieved

both at the p–i interface (Rc∼50–60%) and within the absorber layer (Rc∼55–60%). Typical

dilution and Rc profiles as a function of layer thickness are presented in Fig. 3.1. Note that Rc

optimization was performed mainly for smooth superstrates, such as a 5-µm-thick zinc oxide

layer deposited on glass by low-pressure chemical vapor deposition (LPCVD-ZnO) and treated

for 45’ with an argon plasma (Z5 45’) (see Chap. 2). Slightly lower Rc values were measured on

the untreated rough Z5 superstrate. We attribute this discrepancy to an overall thinner and

hence less crystalline p-layer (which also acts as nucleation layer for the intrinsic layer), as Z5

has a higher ironed surface than Z5 45’ or Z5 20’ due to its bigger pyramidal surface features

(see Tab. 2.1). The doped layers were deposited at an excitation frequency of 110 MHz with

carbon dioxide (CO2) in the gas mixture, based on the work of Cuony et al. [Cuony 10] and as

described in the following section.

3.1.1 Silicon oxide doped layers

Silicon sub-oxide layers containing a microcrystalline phase (SiOx) were introduced for doped

layers by Sichanugrist et al. for thin-film silicon solar cells [Sichanugrist 93, Sichanugrist 94].

Intrinsic or doped SiOx is a multiphase material, whose properties can be tuned by adapted

PECVD process [Cuony 12], allowing a wide range of crystalline fraction, refraction index

and bandgap, making it a versatile layer to be used in efficient thin-film silicon solar

cells [Lambertz 13]. SiOx can hence be used as an intermediate reflector in tandem solar

cells [Buehlmann 07, Lambertz 11], benefiting from a low refraction-index and low lateral

conductivity which prevents the interconnection of shunt paths, thanks to its multiphase
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nature. This multiphase nature, composed of microcrystalline filaments embedded in

an amorphous SiOx matrix, is key to obtaining efficient shunt-quenching layers, thanks

to anisotropic lateral and transverse conductivity [Despeisse 10, Cuony 11, Despeisse 11,

Cuony 12]. SiOx can also be efficiently implemented as a p-doped layer in n–i –p amorphous

silicon (a-Si:H) solar cells to enhance their open-circuit voltage (Voc), due to the reduction

of recombination at the i –p interface as a consequence of the conduction band offset in

this region [Biron 11, Biron 12]. In p–i –n solar cells, an increased EQE can be obtained in

the blue part of the spectrum, and a higher resilience to rougher superstrate morphologies

has been demonstrated, when SiOx layers are implemented as p-doped and n-doped layers

[Veneri 10, Cuony 10].

Fig. 3.2 shows a bright-field transmission electron microscopy (TEM) cross-sectional picture of

the p–i interface of a single-junction µc-Si:H solar cell, such as obtained with the optimization

step previously described. Although the Rc of such optimized p-doped SiOx is relatively low

(∼30%), a good nucleation of the intrinsic µc-Si:H absorber layer can be obtained, leading to

a thin incubation layer, as indicated by the white circle in Fig. 3.2, in good agreement with

previous studies [Bailat 04].

LPCVD-ZnO

i-layer

p-SiOx layer

Figure 3.2: Bright-field TEM picture of the nucleation phase of the intrinsic layer on a p-doped
SiOx layer.

3.2 Effects of crystalline volume fraction and doped-layers design

After the first optimization step described in Sec. 3.1, single-junction µc-Si:H solar cells with

Rc∼50% (referred to as standard) as well as cells with higher Rc∼65–70% were deposited

on LPCVD-ZnO superstrates with varying roughness (Z5, Z5 20’ and Z5 60’, the latter

being the smoothest surface), at a temperature of 180 ◦C. The thickness of the intrinsic
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Chapter 3. High-efficiency microcrystalline silicon thin-film solar cells

absorber layer was 1.8 ± 0.1µm, with two different designs for the doped layers: either

p-µc-Si:H/i -µc-Si:H/n-µc-Si:H (µc-Si design), or p-SiOx/i -µc-Si:H/n-SiOx/n-µc-Si:H (SiOx

design). The cells were annealed for 1.5 h at 180 ◦C in nitrogen atmosphere before degradation

and were then stored in dark, ambient atmosphere after characterization. A sketch of the

configurations can be found in Fig. 3.3.

Glass

front ZnO

i-layer
p-layer

back ZnO

smoothrough

n-layer

Figure 3.3: Sketch of the configurations used to evaluate the impact of the doped layers and
absorber-layer Rc upon ambient storage. The varied parameters are labeled in red. Devices
deposited on rough (Z5) and smooth superstrates (Z5 60’) are depicted. From [Hänni 11].

Fig. 3.4 (a) shows the influence of long ambient storage (4m = 4 months), in the dark, on the

Voc of non-encapsulated cells.
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Figure 3.4: Voc losses between the annealed state (ann) and four months’ ambient storage in
the dark (4m) for different surface treatments of the front ZnO, two doped-layers designs and
for high and low Rc (average values of the eight best cells) (a) and example of an I–V curve (not
normalized with EQE Jsc) of a cell after dark degradation (best cell of degradation series marked
by the arrow) (b). From [Hänni 11].
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The Ar plasma treatment of the superstrates improves Voc in all configurations, linked to a

reduction of porous zones, which are detrimental for cell performance [Python 08]. For both

standard and high Rc , the use of SiOx doped layers drastically improves the Voc, particularly

on the rougher superstrates, as previously demonstrated in [Cuony 10]. A similar trend can be

observed for FF (not shown) and similar high efficiencies up to 9.4% (standard Rc ) and 9.5%

(high Rc ) are obtained for both Rc values on Z5 60’ with the SiOx design.

Very stable Voc values are achieved for solar cells deposited on Z5 60’, and only limited

degradation is observed for solar cells deposited on Z5 20’. However, for cells deposited

on a superstrate with no surface treatment (Z5), a strong decrease in Voc is observed in all

cases after four months’ storage. As an example, an I–V curve of the best cell with the high

Rc and SiOx doped-layers design is shown in Fig. 3.4 (b). For that cell, EQE after four months’

storage was not measured, and the curves are thus shown as raw data, without normalization

with Jsc calculated with the EQE.

We attribute this overall performance decrease—which we call dark degradation (DD)—to

post-deposition oxidation of the porous zones present in solar cells grown on Z5. The decrease

in Voc is most clearly seen in the worst case, corresponding here to the standard Rc and µc-Si:H

doped-layers design, where the Voc decreases from an average value of 429 mV to only 290 mV

after four months of DD. The smallest decrease is observed in the case of the high Rc and

µc-Si:H doped-layers design, but the average Voc value after four months of DD is very low

(354 mV) as well. With the SiOx design, the average Voc value after four months of DD is higher

(around 410 mV for both Rc values).

In [Bugnon 13], it is shown that SiOx doped layers can improve the resilience of µc-Si:H

solar cells to DD, attributed to a possible role of being a barrier to moisture [Taira 03] and

to quenching the negative effects of such porous zones, due to higher lateral resistivity

[Despeisse 10]. In our case, we see that DD is indeed slightly mitigated on Z5 20’ and Z5 60’.

Conversely, on Z5, DD seems to be independent of the doped-layers design, as the lowest

DD is observed for cells with the µc-Si:H doped-layers design and high Rc . Importantly,

the values after four months’ DD presented here should not be considered as stabilized.

Indeed, as shown in [Bronneberg 11], post-deposition oxidation of µc-Si:H layers is two-fold,

with different kinetics, as assessed by Fourier-transform infrared spectroscopy (FTIR): one

part consists of the oxidation of the crystalline grain boundaries’ surface [Smets 08a] over a

relatively brief timescale (< 60 days), and the other part concerns the amorphous material,

especially when material with a high density of nanovoids is used, on a longer timescale (>100

days).

We believe however that the detrimental effects of DD on solar cells can be mitigated by

SiOx doped layers, following the quenching hypothesis of Despeisse et al. [Despeisse 10,

Despeisse 11]. We also believe that the density of porous zones is not affect by the Rc values in

our case, as shown by Python [Python 09b] for Rc values up to 70%. As our high Rc corresponds

here to a value of 70%, we think that there is still enough a-Si:H for the passivation of the
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crystalline grain boundaries (validated by Voc values above 500 mV and the absence of narrow

high stretching modes in the FTIR spectra of our absorber layers), and that this a-Si:H does

not degrade on the short timeframe of four months presented here (validated by the stability

of the solar cells on a smooth superstrate). This is not necessary true anymore for higher Rc

above 80%, even for our best µc-Si:H layers, as we will show in Chap. 6.

The kinetics of the degradation of porous zones also needs further investigation. The

damp-heat test (exposure of the solar cells to heat and high humidity [Cuony 11]) is a

fast method to obtain information on the stability of solar cells, but is too harsh to

provide insights into the kinetics of the degradation of such porous zones. Water vapor

in-diffusion in porous zones induced by the texture is here proposed as the cause of post-

deposition oxidation in our µc-Si:H solar cells, in accordance with several other studies

[Sendova-Vassileva 05, Sendova-Vassileva 06, Boccard 11, Cuony 11]. This effect was also

observed by Bugnon et al. [Bugnon 13] via damp-heat tests, where the porous zones induced

by superstrate roughness or the PECVD process played a crucial role in the DD of µc-Si:H solar

cells.

3.3 Effect of increased superstrate roughness

As shown in the previous section, the superstrate roughness can induce negative effects

on solar cell efficiency during storage. To identify the effect of increasing pyramid size

on this performance deterioration, more particularly the degradation kinetics during the

first days of degradation, an innovative set of superstrates was studied. It was composed of

non-intentionally-doped LPCVD-ZnO (Znid) of various thicknesses, on top of high-mobility

sputtered indium oxide [Koida 07, Koida 10b] (In2O3:H, referred to as IOH) layers on glass.

3.3.1 Preparation of an innovative superstrate to study the effect of increasing
superstrate roughness

The Rsq of LPCVD-ZnO has a strong dependence on its thickness [Faÿ 07]. Hence, to analyze

the influence of variable pyramid sizes (including very small pyramids), the front electrode

has to be adapted to have sufficiently low Rsq . A possibility to reduce Rsq while keeping high

transparency is a multilayer approach [Ding 12b, Ding 12c]. We used an approach consisting

of stacked layers with different Rsq to obtain total Rsq values around 10Ω/sq . This method is

justified by a very simple approximation of an in-plane resistive network put in parallel, in

which high resistance of one plane can be canceled out by the lower resistance of another

plane. This combination allows for the realization of front electrodes with various surface

features sizes but of almost identical sheet resistance. Based on the work of Battaglia et al.

[Battaglia 11a, Battaglia 11c], a flat highly transparent IOH film was deposited as a first layer

with a thickness of 210 nm leading to a Rsq value of 15Ω/sq . Znid—to keep the transparency

high—with varying thickness was then deposited on top of the IOH layer. When using these

bilayers as the superstrate for µc-Si:H solar cells, peeling of the solar cells was observed during
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3.3. Effect of increased superstrate roughness

the lift-off of the back electrode. Furthermore, for the lowest Znid thicknesses, Rsq was still

slightly too high.

Before the deposition of the Znid films with varying thickness and surface pyramid sizes, a

500-nm-thick doped LPCVD-ZnO layer (with (B2H6/DEZ)=0.65, Z2 recipe) was deposited

on top of the IOH layer and subsequently treated for 20’ with an Ar plasma treatment for

flattening, reducing its thickness to about 300 nm. A SEM picture of this very smooth IOH/ZnO

combination, as well as of the complete device structure, can be seen in Fig. 3.5.

Glass
IOH / ZnO

i-layer
n-layer

p-layer

back ZnO

Znid

1 µm

IOH
ZnO

glass

Figure 3.5: Sketch of a cell using a IOH/ZnO/Znid stack as the front electrode and a SEM picture
of the building block of this stack (IOH/ZnO). Znid of increasing thickness (and thus with
associated increasing pyramid size) is then deposited on top of this IOH/ZnO combination.
From [Hänni 11].

Fig. 3.6 shows the sheet resistance of Znid deposited with increasing thickness (and hence

surface pyramid sizes) on glass and on the IOH/ZnO bilayer. The thickness of the Znid refers

to the thickness measurement on glass.

Whereas Znid on glass is too resistive for µc-Si:H solar cells, especially for low thicknesses,

Rsq of the stacked layers becomes remarkably low (about 10–13Ω/sq before cell deposition,

comparable to that of the Z5 60’ (8Ω/sq ), and corresponding to typical initial open-circuit

resistance (Roc ) in the cell of 2–2.8Ω cm2).

3.3.2 Effect of increasing superstrate roughness on µc-Si:H solar cells

Single-junction µc-Si:H solar cells were then deposited on these stacks, shown in SEM images

in Fig. 3.7, with variable pyramid sizes going from almost flat for the lowest thickness to very

rough for the Znid with a thickness of 2220 nm.

The deposition conditions were similar to those of the cells shown in Sec. 3.2, except

the absorber layer thickness was decreased to 1.6µm and the deposition temperature was

increased to 200 ◦C. The SiOx doped-layers design was used. Due to space limitations in the
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Ω
/

Figure 3.6: Rsq as a function of the Znid thickness, in the case of Znid only (squares) and
(IOH/ZnO)+Znid stack (circles). This figure demonstrates the reduction of Rsq with the stack
versus the Znid layer only, particularly for low thicknesses. From [Hänni 11].

Znid 95 nm Znid 190 nm Znid 320 nm

Znid 950 nm Znid 2220 nm Z5 60’ reference

Figure 3.7: SEM pictures of Znid layers of varying thickness deposited on very smooth IOH/ZnO.
The indicated thickness refers to the measurement of the Znid thickness deposited directly on
glass. From [Hänni 11].

sample holder, the depostions were performed in two runs and each run contained a Z5 60’

reference. The overall Rc yielded 55±7% for all cells (n-side) and 40±2% (p-side), except for

the reference cells on Z5 60’, which were slightly more crystalline (55% on both sides).

Single-junction µc-Si:H solar cells were also deposited on the same series of superstrates in

the KAI-M system, using a regime developed by G. Bugnon et al., at an excitation frequency of

13 MHz, a pressure of 9 mbar, and a deposition rate of 3 Å/s for the absorber layer [Bugnon 13].

Even though these cells were slightly thinner (1.45±0.05µm), we assume that the comparison

with the 1.6-µm-thick solar cells deposited in SysB is still fair. Finally, a 5-µm-thick back
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electrode (Z5) was used for all cells. After characterization in the initial as-deposited state, the

cells were annealed at 180 ◦C in an inert atmosphere, and stored in dark ambient atmosphere

for several days, without encapsulation, to study their DD.

Fig. 3.8 presents the electrical-performance evolution upon ambient storage time, based

on the average of the eight best cells of each substrate at each stage (ini=as deposited, ann=

annealed, n days=after n days’ storage in dark ambient conditions).

Ω
Ω

SysB
70 MHz
1.6 Å/s

KAI
13 MHz
3 Å/s

(b)

(a)

Figure 3.8: Evolution of electrical parameters during DD for single-junction µc-Si:H solar cells
with front electrodes composed of various thicknesses of Znid on top of an IOH/ZnO stack. The
upper graphs (a) are for the cells deposited in SysB at low pressure and high frequency and the
lower graphs (b) show the results for the high-pressure/high-depletion regime of KAI-M. From
[Hänni 11].

First, for the cells deposited in SysB at 70 MHz (part (a)), we observe decreasing as-deposited

values (ini) of Voc, FF and Roc when going from very small to large pyramids, related to the

presence of an increased density of porous zones on the V-shaped pyramids, as also discussed

in the previous section. Note that for the SysB cells two reference cells deposited on Z5 60’
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are shown, corresponding to the two PECVD deposition runs of silicon layers. We observe

that small surface features as achieved for Znid thicknesses up to 320 nm lead to Voc values

only slightly below the Z5 60’ reference values. FF drops very rapidly with increasing pyramid

size and begins to decrease for the smallest Znid thickness, with an average value of 69.2%, as

compared to the average value of 70.9% for cells deposited on the Z5 60’ references. This FF

drop is well correlated with an increase of Roc . After annealing (ann), an increase in Voc and

FF is observed for all cells, which is the subject of Chap. 4.

When no Ar surface treatment is applied (which is the case for all cells except the reference), a

general decrease in Voc and FF is observed upon ambient storage, attributed to DD, which

increases with Znid thickness (i.e. pyramid size). Even the smallest Znid thickness, leading

to small but sharp surface features, is enough to allow this Voc and FF loss to take place,

attributed to the creation of porous zones. The results of Fig. 3.8 (a) demonstrate that stable

cells can be obtained with a smooth superstrate, indicating that an appropriate superstrate

with low associated crack density enhances the stability of our µc-Si:H solar cells upon non-

encapsulated storage. It must also be noted that the process was optimized for smooth

superstrates, especially the thickness of the p-doped layer, which was reduced as much as

possible to reduce parasitic absorption.

The second series, deposited on the same superstrates but under a high-pressure/high-

depletion regime (13 MHz, 9 mbar, 3 Å/s) and illustrated in Fig. 3.8 (b), shows a different

behavior. Although the initial Voc values are slightly lower than the 70-MHz series, the impact

of increasing superstrate roughness is much smaller. Up to a Znid thickness of 950 nm, the

initial values for Voc remain very close to one another, at around 520 mV in the initial state

and at around 530 mV after annealing. Moreover, these cells show a much higher stability to

DD on all superstrates. The FF drop with increased roughness takes place at higher thickness

of Znid (i.e. roughness), here up to 190 nm.

These results corroborate the model presented by G. Bugnon [Bugnon 13] in which denser

material can be obtained on highly textured superstrates with the high-pressure/high-

depletion regime at 13.56 MHz for low deposition rates such as the one used throughout

this thesis. The higher resilience to superstrate roughness is therefore also linked to the

deposition regime, which to some extent hinders the creation of porous defective zones at

low deposition rates on textured superstrates. We will show in the following section that these

porous zones form an interconnected network, acting as probable diffusion paths for impurity

ingression.

3.4 3-D reconstruction of the microstructure of µc-Si:H solar cells

A solar cell was deposited on an as-grown rough superstrate (Z5) and was investigated

with focused ion beam (FIB) “slice and view” tomography [Cantoni 10] in order to further

investigate theµc-Si:H microstructure on such a challenging superstrate and more particularly

the creation of porous zones. By first milling to obtain a smooth cross section of the sample
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3.4. 3-D reconstruction of the microstructure of µc-Si:H solar cells

with a FIB column, then imaging the milled face with a SEM column, and after successively

FIB milling in steps of some nm followed each time by SEM imaging, a 3-D data set of stacked

SEM pictures was created. A voxel size (i.e. 3-D pixel size) of 7×7×7 nm was used, recording

the SEM images using an in-lens backscattered electron detector that gives mass contrast for

the different layers (voids as dark regions), and grain contrast in the ZnO, as seen in Fig. 3.9.

The same procedure was applied to a cell deposited on a smooth Z5 45’ front electrode as a

reference for dense µc-Si:H. Note that both solar cells, with 1.2-µm-thick absorber layers, were

co-deposited using the optimized recipe of SysB, with SiOx p-doped layers. When considering

Figure 3.9: FIB tomography of a µc-Si:H solar cell. A top view of the growth front in the
reconstructed image at the ZnO–Si interface (planar cut at the level of the arrow, along the
growth direction) reveals the 2-D porous network (black) in dense silicon (grey). The white areas
are the top of the front ZnO pyramids. From [Hänni 13a].

a planar cut in the 3-D data set at the Z5–Si interface (arrow in Fig. 3.9), perpendicular to the

i -layer growth direction, the 2-D network formed by the porous material can be directly seen.

Porous material develops in the bottom of the valleys and appears as dark zones within the

silicon absorber layer.

Pseudo-color tomograms in Fig. 3.10 reveal the microstructure of cells co-deposited on the

rough superstrate (Z5) and on smooth Z5 45’ (current optimum superstrate). As expected

from the standard 1-D image, a continuous network of porous zones is formed (bright orange)

following the bottom of the valleys formed by the sharp ZnO pyramids. On Z5, this network is
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present throughout the absorber layer, whereas on Z5 45’ the porous zones are much smaller

and do not form a continuous network, but are rather limited to a few zones of the upper part

of the absorber layer.

Figure 3.10: Pseudo-color tomograms of the reconstructed network of porous zones (bright
orange) in cells deposited on rough (Z5) and smooth (Z5 45’) superstrates. From [Hänni 13a].

Tomography thus provides additional insights into details of the µc-Si:H microstructure, and

more particularly validates that when porous zones are present in solar cells deposited on

rough LPCVD-ZnO, they form a continuous interconnected network. A high resilience to

challenging superstrate morphologies is of paramount importance when developing multi-

junction devices, as additional phenomena such as pinching (the creation of an increased

surface sharpness by the top cell grown by PECVD) can significantly change the properties

of the µc-Si:H bottom cell [Cuony 10]. In that view, 3-D tomography reveals the location of

potential pinching points related to the growth of thin-film silicon (see Fig. 3.11). Indeed,

these pinching points induced by the PECVD process are a limiting factor for multi-junction

devices using µc-Si:H bottom (or middle) cells and methods such as valley-filling [Boccard 13]

are a possible solution to reduce their impact on cell performance.

Tomographic reconstruction of complete solar cells thus opens new perspectives for detailed
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back ZnO

front ZnO

Figure 3.11: Tomographic 3-D reconstruction of a single-junction µc-Si solar cell deposited on
a rough Z5 superstrate, where the silicon layer was filtered out. The potential pinching points
(in case an additional cell would be grown on top of the silicon layers, such as in the triple-cell
configuration) can be seen in the white circles, here filled with the ZnO back electrode. From
[Hänni 13a].

analysis of the effect of superstrate features on the growth of µc-Si:H, even if it is too

time intensive for routine diagnostics or high sample throughput analysis for materials

development. This 3-D reconstruction could also be used as input data for 3-D growth models

for thin-film solar cells. Nowadays, such growth models normally use data from atomic

force microscopy pictures as growth template for solar cells to determine the morphological

evolution and the conformality of the growth [Jovanov 13a, Jovanov 13b, Sever 13]. Our 3-D

reconstruction offers the advantage to simultaneously provide information (in the same

device) on the superstrate texture, its impact on the microstructure of the solar cell and the

conformality of the PECVD growth.

3.5 World-record device

Tab. 3.1 presents a summary of the best electrical performances obtained so far for cells

combining our current optimal superstrate texture (Z5 45’), the use of SiOx doped layers and

an adapted i -layer process to guarantee an optimal trade-off between optical and electrical

performance. Through this careful optimization of the i -layer and of the cell design, state-

of-the-art cells with efficiencies above 10% have routinely been obtained in several PECVD

systems, both in small-area research systems (this thesis) and in large-area R&D KAI-M systems

[Bugnon 13] at various excitation frequencies.

Fig. 3.12 shows a series of µc-Si:H cells, with various i -layer thicknesses, on Z5 45’, using the

optimized recipe of Sec. 3.1. The absorber-layer thickness was varied between 1µm and 3.3µm

(typical range of bottom-cell thicknesses used in tandem solar cells), while the other layers

were kept constant. Rc= 57±5% for all cells. Remarkable conversion efficiencies between 9.5%
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Table 3.1: Best results obtained for 2-µm-thick µc-Si:H solar cells deposited at PV-Lab. All
cells have Rc≥ 55%. A conversion efficiency of 10.9% was obtained in two different deposition
systems.

Area Voc Jsc FF η Thickness Front Back Ref.[
cm2

]
[mV] [mA/cm2] [%] [%] [µm]

0.25 535 27.5 74.2 10.9 2.0 Z5 45’ Z2.3 [Bugnon 12]
0.25 545 26.6 74.9 10.9 2.0 Z5 45’ Z5 [Hänni 13a]

1 541 27.0 71.3 10.4 2.0 Z5 45’ Z5 [Hänni 13a]

and 10.5% are obtained, with however no clear performance gain with cell thickness. Indeed,

the loss of Voc and FF observed for increased thickness is compensated by higher Jsc values.

Improved Voc and FF are obtained with a specific post-deposition treatement (hydrogen

plasma), indicated by the "pH2"-values in Fig. 3.12 . The effect of this post-deposition

treatment is detailed in Chap. 4.

η

Figure 3.12: Properties of solar cells deposited on smooth Z5 45’ in the initial state (solid squares)
and after hydrogen plasma post-deposition treatment (empty squares), as a function of the cell
thickness. For Voc and FF, the values of the eight best cells on each superstrate are given (ranked
by Voc×FF). For Jsc and η, only the best cells are shown. From [Hänni 13a].

Following further dedicated design and layer optimization, a world-record conversion

efficiency was achieved for single-junction µc-Si:H solar cells, with a value of 10.69%,

independently confirmed at ISE CalLab PV Cells, and reported in [Green 13b]. These record

cells are 1.8-µm-thick, with Rc =57±5%, and were co-deposited in the small-area SysB. They

also contain a 1.4-nm-thick (evaluated with the deposition rate from a 100-nm-thick layer)

intrinsic SiOx buffer layer between the p-doped SiOx layer and the intrinsic µc-Si:H absorber

layer. Such buffer layer promotes the nucleation of µc-Si:H layers, and probably limits boron
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cross contamination from the p-doped layer into the absorber layer [Bugnon 14].

Performance of this cell, as measured at PV-lab and ISE CalLab PV Cells, together with the

measurements performed at ISE on two other cells, is reported in Tab. 3.2. The excellent

Table 3.2: Electrical parameters of record cells, independently confirmed by ISE CalLab PV Cells.
(da) means designated area. From [Hänni 13b].

Sample Area (da) Voc Jsc FF η[
cm2

]
[mV] [mA/cm2] [%] [%]

D2 1.0437±0.0032 549.0±2.7 26.55±0.67 73.31±0.73 10.69±0.32
D5 1.0419±0.0065 546.1±2.7 26.61±0.69 73.49±0.73 10.68±0.33
D5 (IMT meas) 1.043 551 26.1 73.8 10.61
C2 1.0437±0.0032 548.8±2.7 26.40±0.67 73.24±0.73 10.61±0.32

agreement obtained for sample D5 between the certified and in-house values validates our

measurement procedure. Details about the internal measurement of these cells are given in

Appendix A.

The certified I–V and EQE curves of cell D2 are presented in Fig. 3.13 and 3.14. The latter is

normalized to the measured current density. Note that an anti-reflective texture was applied

on the glass side [Escarré 12b], boosting the current density to a high value of 26.55 mA/cm2.

Mismatch factor : =      1.0157
(for spectral correction)
Area (da) : =     ( 1.0437 ± 0.0032 ) cm²

IV-curve parameter under standard testing conditions (STC):

VOC =     ( 549.0 ± 2.7 ) mV
ISC  (Ed.2 - 2008)/3/ =     ( 27.71 ± 0.69 ) mA
Jsc =     ( 26.55 ± 0.67 ) mA/cm²
IMPP Am 71.52      =
VMPP Vm 1.344      =
PMPP =     ( 11.15 ± 0.33 ) mW

% )37.0 ±13.37(     =FF
η =     ( 10.69 ± 0.32 ) %
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Figure 3.13: Certified I–V curve of cell D2. From [Hänni 13b].
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ZnO (5 µm)

ZnO (5 µm)

Si (1.8 µm)

glass

white paste

Figure 3.14: Certified EQE of cell D2, normalized to a measured Jsc of 26.55 mA/cm2, together
with a sketch of the cell structure. The anti-reflection texture is not drawn. From [Hänni 13b].

As compared to the previous record of Kaneka [Yamamoto 99b, Green 13a], these cells have a

significantly lower FF (between 73.3 and 73.5% in our case, as compared to the previous value

of 76.6%). This difference might partially be explained by the absence of metallic front or back

electrodes (or grids), leading to higher resistive losses. Indeed, we obtained FF values around

75% (for same cell thickness) for smaller cells (0.25 cm2) with a similar manufacturing process,

due to lowered impact of Rsq with reduced cell surface. Higher efficiencies can thus still be

expected if a clever metallization is introduced in the electrodes, with an optimal trade-off

between shadowing and resistive losses in the electrodes. Note that if our result remains the

best efficiency in p–i –n configuration, a higher efficiency value has recently been reported by

Sai et al. in n–i –p configuration, on honeycomb textures, with a certified conversion efficiency

of 10.8% [Green 14a].

The stability of these record cells under light soaking has not been investigated. We however

light-soaked a non-encapsulated cell with similar performance, as reported in Tab. 3.3.

Table 3.3: Performance of a 1.8-µm-thick single-junction µc-Si:H solar cell, in the initial state
and after 1050 h of light soaking under standard conditions (50 ◦C, 1-sun illumination, for more
than 1000 h). The cell is not encapsulated and has a laser-scribed area of 0.996 cm2.

State
Voc Jsc(IV) FF η

[mV] [mA/cm2] [%] [%]
ini 539 25.0 70.0 9.4
light soaked for 1050 h 531 24.6 70.8 9.2
relative change [%] -1.5 -1.7 +1.1 -2.1

A low degradation of 2% is observed, indicating a very stable µc-Si:H material. The highest

degradation occurs in Jsc, and at least part of it is attributed to an increased free-carrier

absorption of the front electrode, due to exposure to ultraviolet light during light-soaking

[Ding 13a]. As reported by Yan et al. [Yan 04a], light-induced degradation in µc-Si:H solar cells
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occurs in the amorphous matrix of the absorber layer. Hence, when used in a multi-junction

device, no light-induced degradation is expected in the µc-Si:H bottom cell, as the light that

would contribute to generation in the amorphous phase is mostly absorbed by the a-Si:H top

cell.

3.6 Conclusion

We have demonstrated the importance of both the cell design and the absorber layer quality

and microstructure to reach high-efficiency µc-Si:H solar cells. The role of porous zones which

can appear for cells deposited on rough superstrates, in the dark degradation of µc-Si:H solar

cells was discussed.

Although being inappropriate for routine diagnostics, 3-D tomography appears as an

innovative and valuable technique to further probe details of the microstructure of µc-Si:H,

directly revealing the interconnected network of the porous zones within the absorber layer.

We showed that even minimal superstrate roughness, below that commonly used in light-

trapping structures, as induced by thin LPCVD-ZnO layers, can cause a Voc drop in single-

junction µc-Si:H solar cells within a few days in ambient conditions. However, by selecting:

• appropriate superstrate, with smooth morphology allowing for the growth of high-

quality µc-Si:H,

• appropriate cell design, with e.g. SiOx doped layers, and

• appropriate deposition conditions, such as a high-pressure/high-depletion regime,

a very high stability in ambient storage can be achieved even without encapsulation.

All these developments permitted us to reach a certified world-record efficiency for single-

junction µc-Si:H solar cells with a conversion efficiency of 10.69%, independently confirmed

at ISE CalLab PV Cells. Recently, this record value was overcome by a 10.8% efficiency, as

achieved in the n–i –p configuration [Green 13b].1 Still, we are confident that efficiencies

above 11% for single-junction µc-Si:H solar cells can be expected in the very near future. Since

smooth front electrodes are usually required to avoid the formation of porous zones within

the silicon absorber layer, structures with (i) tunable aspect-ratios [Sai 12], (ii) replication

or nanomoulding of dedicated morphologies [Battaglia 11b] or (iii) smoother as-grown ZnO

layers [Nicolay 12] should enable higher electrical performances. These recent single-junction

µc-Si:H record efficiencies, together with record tandem [Boccard 12d] and triple-junction

solar cells [Kim 13] clearly support the potential of thin-film silicon multi-junction devices in

reaching conversion efficiencies above 15%, with a minimal usage of abundant and non-toxic

raw materials at low costs.

1improved to 11.0% by H. Sai et al., 40th IEEE Photovoltaic Specialists Conference, Denver, Colorado, United
States, June 8–13, 2014 (see also [Green 14b])
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4 Post-deposition treatments of solar
cells

In this chapter, we show how the performance of state-of-the-art thin-film microcrystalline-

silicon (µc-Si:H) solar cells in the p–i –n configuration can be improved by a simple

post-deposition treatment, especially when the cells are deposited on a rough zinc oxide

(ZnO) superstrate. In particular, we investigate the effect of applying a hydrogen plasma

treatment on finished non-encapsulated cells and decouple it from the annealing taking place

simultaneously.

It is shown that although exposure of complete cells to a hydrogen plasma lowers the sheet

resistance (Rsq ) of the ZnO back electrode, annealing in vacuum is sufficient to induce large

improvement in cell performance, with gain in open-circuit voltage (Voc) and fill factor (FF)

up to 30 mV and 4% (absolute), respectively.

We demonstrate that these gains are linked to the curing of intrinsic defects in the silicon

absorber layer, which may appear during the deposition of the ZnO back electrode, as well as

to an improvement in the conductivity of the ZnO back electrode, occurring during such a

treatment. When the treatment is applied to tandem cells, the observed gains remain stable

upon light soaking.

This curing of the porous zones is related to a reduction of the absorption coefficient at 0.8 eV,

as observed by Fourier-transform photocurrent spectroscopy (FTPS), implying that defects

in the porous zones are not limited to pure 2-D surfaces in the absorber layer, but can be

considered as having a spatial extension in the absorber layer.

Except for the introductory part which is partly published in [Hänni 13a], the results presented

in this chapter are not published. The second part is currently under a patent application and

should be published later.
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Chapter 4. Post-deposition treatments of solar cells

4.1 Introduction and motivation

µc-Si:H is usually considered as rather stable with respect to light-induced degradation as

compared to amorphous silicon (a-Si:H), especially when used as bottom cell in a multi-

junction device [Meier 94, Yamamoto 99b, Yan 04a, Meillaud 08, Guha 13]. On the other

hand, it is known to be sensitive to contamination by impurities and moisture-related

post-deposition oxidation [Finger 05, Matsui 06, Smets 08a, Kilper 09, Frammelsberger 10,

Bronneberg 11, Boccard 11, Merdzhanova 12, Yue 12]. Indeed, even short times of storage

in ambient atmosphere may induce losses in electrical performance. Nevertheless, these

losses can often be minimized with an adequate deposition process for the absorber layer

and recovered (at least partially) when the cells are annealed or properly encapsulated.

The nanoporous phase induced by the superstrate roughness or the plasma-enhanced

chemical vapor deposition (PECVD) process is a potential diffusion path for impurities

[Python 10, Cuony 11]. There are very few methods available to directly probe the nature

of this nanoporous phase. Advanced scanning electron microscopy, such as presented

in Chap. 3, reveals the 2-D interconnected network of such defective material. The

presence of porous zones has a direct impact on solar cell degradation linked to moisture

ingression [Hänni 11, Bugnon 12]. Nano secondary ion mass spectrometry (Nano-SIMS)

measurements show that oxygen is preferentially found in these zones, even in device-grade

material [Python 10]. Advanced transmission electron microscopy demonstrates that oxygen

can accumulate in such zones and is strongly correlated to the presence of ZnO, which

can creep into a defective region during deposition of a ZnO electrode deposited by low-

pressure chemical vapor deposition (LPCVD-ZnO) onto µc-Si:H [Duchamp 13]. This chapter

demonstrates that an efficient, but indirect, way to probe the impact of these defective zones

is to make full devices and submit them to various post-deposition treatments.

We first introduce a post-deposition treatment using a hydrogen plasma, which improves the

electrical performance ofµc-Si:H solar cells deposited on rough superstrates [Hänni 13a]. This

post-deposition treatment was originally developed for LPCVD-ZnO layers deposited on glass

[Ding 13b, Ding 13a]. Post-deposition treatment of ZnO, by e.g. ion implantation or simple

annealing, is a widely investigated field as it typically leads to improved properties of ZnO

[Major 84, Major 86, Minami 89, Kohiki 94, Baik 97, Lee 01, Theys 02, Ruske 10, Wimmer 12,

Charpentier 13].

4.1.1 Effect of post-deposition treatments on LPCVD-ZnO

Fig. 4.1 shows the effect on Rsq , mobility (µ) and carrier density (N ) of post-deposition

treatments such as exposure to a hydrogen plasma at 200 ◦C and annealing in vacuum at

230 ◦C applied to our standard LPCVD-ZnO films. Before the treatment, the samples were

preheated in vacuum for 20’. The number in parentheses is the ratio of the dopant gas diborane

(B2H6) to the diethylzinc (DEZ) precursor during the deposition of LPCVD-ZnO. Z5 is a lightly

doped 5-µm-thick LPVCD-ZnO typically used as the front electrode in our single-junction
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4.1. Introduction and motivation

µc-Si:H solar cells, Z2.3 is our standard 2.3-µm-thick front electrode for multi-junction solar

cells (with the same doping as Z5) [Boccard 12b, Schüttauf 14], and Z2 is a highly doped 2-µm-

thick LPCVD-ZnO which is typically used in our a-Si:H solar cells. Znid is a non-intentionally

doped LPCVD-ZnO, with a thickness of 2µm, which is usually used as a reference for LPCVD-

ZnO development.
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Figure 4.1: Electrical properties of LPCVD-ZnO as deposited, after exposure to a hydrogen
plasma, and after annealing in vacuum. The number in parentheses is the (B2H6/DEZ) ratio
during deposition (courtesy of L. Ding).

A strong increase in charge-carrier mobility and a moderate increase in carrier density are

observed when applying a hydrogen plasma or annealing in vacuum, leading to a significant

decrease in Rsq . The effect is more pronounced for Znid and lightly doped ZnO (Z5, Z2.3) and

is attributed to modification in the charged trap density at the grain boundaries [Ding 13b]. A

minimal treatment time of 20’ is required to reach a plateau in the improved values. Although

understanding of the effect of such treatments on LPCVD-ZnO is not the subject of this thesis,

it will be useful to observe a few points for the following parts of the chapter: (i) Post-deposition

hydrogen plasma treatment and annealing in vacuum improve the electrical properties of

LPCVD-ZnO, (ii) hydrogen plasma treatment has a larger impact than annealing, and (iii) the

effect of post-deposition treatments on the electrical properties of LPCVD-ZnO diminishes

with increasing doping.
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Chapter 4. Post-deposition treatments of solar cells

4.1.2 Typical effect of post-deposition treatments on µc-Si:H single-junction
solar cells

When applying a hydrogen plasma to complete solar cells, we generally observe a reproducible

improvement of up to 10 mV in Voc and 1 to 2% (absolute) in FF for cells deposited on smooth

superstrates, and up to 30 mV in Voc and 4% (absolute) in FF for cells deposited on rough

superstrates. The effect on short-circuit current density (Jsc) is usually small (±0.2 mA/cm2).

Tab. 4.1 demonstrates the typical effect on Voc, the voltage at maximum-power point (Vmpp ),

FF, Jsc, the current density at maximum-power point (Jmpp ), and the conversion efficiency

(η) of a hydrogen plasma applied to complete 1.1-µm-thick µc-Si:H solar cells deposited on

smooth (Z5 45’) and rough (Z5 20’) LPCVD-ZnO front electrodes.

Table 4.1: Solar cell performance before and after a post-deposition hydrogen plasma treatment
(best cell). From [Hänni 13a].

Front
Treatment Voc Vmpp FF Jsc Jmpp η

[mV] [mV] [%] [mA/cm2] [mA/cm2] [%]

Z5 45’
- 552 446 73.6 23.5 21.4 9.5

hydrogen plasma 561 459 75.4 23.7 21.8 10.0

Z5 20’
- 536 429 71.7 24.1 21.8 9.3

hydrogen plasma 554 454 75.3 24.3 22.2 10.1

We observe a gain of 9 mV in Voc and 1.8% (absolute) in FF for cells deposited on smooth Z5 45’.

A similar trend is observed for the rougher front electrode, however with more pronounced

gains of 18 mV in Voc and 3.6% absolute in FF, as also shown in J–V curves in Fig. 4.2.

Figure 4.2: Effect of post-deposition hydrogen plasma treatment on the J–V curve of a 1.1-µm-
thick µc-Si:H solar cell (deposited on Z5 20’). From [Hänni 13a].

Using following formula for the relative resistive losses in the back electrode for the output

power (P ) of a solar module at maximum-power point [Hanak 79, Battaglia 11c], where w is
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4.1. Introduction and motivation

the collection width of the module,

∆P

P
= w2Rsq Jmpp

3Vmpp
,

we can approximate the power losses before and after hydrogen plasma treatment for the solar

cell deposited on Z5 20’. As one contact point is in the middle of the back contact, and the

other one on the side of our cell (0.5×0.5 cm), our cell geometry corresponds approximately

to a segment width of w=0.3 cm in a module configuration.

Based on the modification of Z2.3 (our standard back electrode) after hydrogen plasma

treatment in Fig. 4.1, and more precisely a reduction of its Rsq from 28 to 12Ω/sq , the resistive

power loss due to the back electrode can be approximated to 4.3% (initial) and 1.8% (after

hydrogen plasma treatment) respectively, so there is an absolute gain of 2.5% in relative power

losses after hydrogen plasma treatment. Assuming that gain is the only source of the FF gain,

an improvement in FF of 1.8% absolute is expected based on the calculation, below the true

gain of 3.6% shown in Tab. 4.1. This calculation indicates that the observed increase in FF

is related not only to a reduced Rsq of the back electrode, but also to an improvement in the

µc-Si:H absorber layer. The same calculation can be made for the cell deposited on Z5 45’,

and the outcome is an expected gain in FF of 1.7% absolute, based on the reduced Rsq of the

back electrode, in very good agreement with the observed gain of 1.8% absolute. Although the

effect of reduced Rsq of the back electrode on FF is rather small with our cell geometry, and

almost within the experimental error for the determination of FF, this gain has been observed

consistently in many samples.

Finally, it is unlikely that the high Voc gain observed with high reproducibility on rough

superstrates is linked to a sole change of the electrical properties of the back electrode. Hence,

the dependence on superstrate roughness suggests that post-deposition processes directly

impact the µc-Si:H absorber layer.

In the following sections, we will present a detailed study of the effect of hydrogen plasma

treatment versus annealing in vacuum on finished, non-encapsulated cells deposited on rough

and smooth superstrates. The aim here is to discriminate between (i) the contribution of the

temperature from the contribution of the hydrogen plasma and (ii) the contribution of the

back electrode from the contribution of the µc-Si:H absorber layer. We will demonstrate that

both the µc-Si:H absorber layer and the ZnO back electrode are affected by post-deposition

treatments, and that annealing has a preponderant role on the improved performance of the

solar cells. Our observations suggest that gains in performance would result from the curing of

defects, as induced by the deposition of the LPCVD-ZnO back electrode on the absorber layer.
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4.2 Experimental details

4.2.1 Solar cell preparation and characterization

Glass (0.5-mm-thick) coated with highly doped 2-µm-thick LPCVD-ZnO (Z2) was used as

our textured superstrate. Z2 was chosen to minimize the change in its electrical properties

induced by the post-deposition treatments (hydrogen plasma/annealing), as this change

is highly dependent on doping. It must be noted that these highly doped electrodes are

not optimal for high-efficiency µc-Si:H cells, as they are characterized by high free-carrier

absorption in the near-infrared. They also provide limited light trapping in the 800–1100 nm

wavelength range due to their smaller surface feature size. They do, however, provide a similar

Rsq of about 9Ω/sq with respect to standard Z5 front electrodes, allowing a direct comparison

with standard cells for the resistive losses in the front electrode.

When µc-Si:H solar cells are deposited on as-grown rough Z2 superstrates, porous defective

zones (commonly referred to as "cracks") may appear in the µc-Si:H film, which can lead to

local post-deposition oxidation and poorer cell performance [Sakai 90, Nasuno 01, Matsui 02c,

Python 08, Kilper 09, Li 09b, Bugnon 12]. Prior to µc-Si:H deposition, an argon plasma was

applied to the front electrode for 4 or 20’ to obtain a rough (Z2 4’) and a smooth (Z2 20’) ZnO

surface, more favorable to the growth of high-quality µc-Si:H material.

Single-junction solar cells in the p–i –n configuration were then deposited by PECVD at

a superstrate temperature of 200 ◦C, using the process given in Chap. 3. The i -layer was

deposited with an excitation frequency of 70 MHz, a pressure of 0.7 mbar and a deposition rate

of 1.6 Å/s. An i -layer thickness of 1.1±0.1µm was chosen for all experiments, unless stated

otherwise. For the back electrode, LPCVD-ZnO with thicknesses of 2–2.3µm and various

doping was used, depending on the experiment. The cell area was defined to 0.25 cm2, unless

stated otherwise. The sub-gap absorption coefficient at 0.8 eV (α0.8) linked to defects in the

bulk phase of the µc-Si:H material was evaluated by FTPS [Vanecek 02, Bugnon 12]. Dark

degradation was evaluated by storing the samples in the dark and in ambient conditions,

without specific control of the temperature or atmosphere. Dark degradation can indeed

be expected on rough superstrates via moisture in-diffusion through the 2-D network of

interconnected porous areas present within theµc-Si:H when deposited on rough superstrates,

coming from the edges of the cell that are directly exposed to the atmosphere with our cell

design (see Chap. 3). Post-deposition oxidation of this defective material can be related to an

increase of dark saturation current through it [Boccard 11], which can happen in a very short

timeframe as well as on a longer timescale for the post-deposition oxidation of the amorphous

material surrounding the crystalline grains [Bronneberg 11].

4.2.2 Post-deposition treatments of complete solar cells

Post-deposition treatment with a hydrogen plasma was performed both in a medium-size

PECVD KAI reactor and in a small-size R&D reactor from Indeotec (OCTOPUS I). The hydrogen
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plasma treatment consisted first of 20’ of preheating and outgassing at 200 ◦C under vacuum

at a pressure of 2×10−6 mbar, directly followed by a hydrogen plasma, which was performed

at a pressure of 0.5 mbar, a power density of 0.15 W/cm2 and a temperature of 200 ◦C for

20 min. Annealing under vacuum was also performed in a small-area PECVD system, at

temperatures between 200 ◦C and 245 ◦C for 20’, with preheating conditions similar to those

of the hydrogen plasma. For comparison with the hydrogen plasma treatment at 200 ◦C,

an annealing temperature of 230 ◦C was chosen to approximate the additional temperature

increase induced by the hydrogen plasma. The effect of varying the annealing temperature is

analyzed in Sec. 4.3.3 to discriminate between effects from temperature plus hydrogen plasma

and from temperature only.

Fig. 4.3 presents a sketch of the solar cells used for this experiment to decouple the impact of

annealing in vacuum from hydrogen plasma treatment. In the first experiment, Z2 was chosen

to minimize the effects on the doping level of back electrode. Two superstrate roughnesses

were used to evaluate the role of cracks when applying post-deposition treatments. In the

second experiment, solar cells were grown on a smooth highly doped superstrate (Z2 20’)

and the influence of the doping level of the ZnO back electrode (which is the part of the cell

directly exposed to the hydrogen plasma) was characterized. Two different back electrodes

were tested, with the same thickness (2µm): a highly doped Z2 and a non-intentionally doped

2-µm-thick Znid.

Impact of
front ZnO roughness

Impact of
back ZnO doping level

vs.

(a) (b)

back ZnO (Z2)

Si (1 µm)

Front ZnO
(smooth Z2 20’)

glass (0.5 mm)

Front ZnO
(rough Z2 4’) 

back ZnO (Z2)

Si (1 µm)

glass (0.5 mm)

Si (1 µm)

Front ZnO
(smooth Z2 20’)

glass (0.5 mm)

ZnidZ2

Figure 4.3: Schematic view of p–i –n µc-Si:H solar cells used to demonstrate the impact of
superstrate roughness (a) and back electrode doping level (b) upon post-deposition treatment
(hydrogen plasma or annealing in vacuum). Porous zones, typically appearing when µc-Si:H
material is grown on a rough superstrate, are represented as dashed lines in theµc-Si:H material.
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Chapter 4. Post-deposition treatments of solar cells

4.3 Results and discussion

4.3.1 Effect of cell morphology

Fig. 4.4 presents the changes in Voc and FF when applying different post-deposition treatments

on complete µc-Si:H solar cells deposited on rough and smooth superstrates (see Fig. 4.3 (a)).
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Figure 4.4: Effect of a hydrogen plasma treatment and vacuum annealing (ann) on the Voc (a)
and FF (b) of µc-Si:H solar cells deposited on rough and smooth superstrates (averaged over
eight 0.25-cm2-cells), and their evolution after 40 days ambient storage in the dark (DD 40d).

In all cases, an improvement in Voc and FF is observed after the post-deposition treatment,

with a strong dependence on the superstrate roughness. In the case of the rough superstrate,

the electrical gains are much more pronounced, with absolute gains in Voc and FF of up to

25–30 mV and 3–4%, respectively. Very high Voc values above 540 mV are obtained on the

rough superstrate after treatment. For the smooth superstrate, the absolute gain is lower
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4.3. Results and discussion

(10–15 mV in Voc and 1–2% in FF). We suggest that this massive increase observed on the

rough superstrate is related to a curing of the porous, defective, zones that appear in the

silicon when grown on rougher superstrates. Note that both annealing and hydrogen plasma

treatment lead to comparable results in terms of Voc and FF improvements. It has also been

checked (not shown here) that the gains observed upon post-deposition treatment are not

linked to ultraviolet illumination of the plasma or the presence of hydrogen. This was tested

by covering the cells with a piece of glass during the plasma treatment. We also observe that,

while solar cells deposited on the rough superstrate suffer from dark degradation after storage

in the dark under ambient atmosphere for 40 days, those deposited on smooth superstrates

remain stable, also after treatment.

To further understand the origin of the observed electrical gains, and to see whether they are

linked to curing of the µc-Si:H absorber layer, additional experiments were carried out. An

additional annealing at 230 ◦C for 40’ was performed on the solar cells just after the µc-Si:H

deposition, according to the procedure describer hereafter. All these treatments took place

before deposition of the back-electrode:

• ref: no annealing directly after the µc-Si:H PECVD (reference),

• air break+ann: the samples were cooled to room temperature after the µc-Si:H PECVD,

and annealed after a short air break,

• direct ann: the samples were annealed directly after the µc-Si:H PECVD, without an air

break,

• double ann: the samples were annealed directly after the µc-Si:H PECVD, and annealed

again after a short air break.

Tab 4.2 shows the changes in Voc and FF for 1-µm-thick µc-Si:H solar cells with different

treatments performed before deposition of the back electrode (leading to the results labelled

"ini"). The results of an annealing subsequent to the deposition of the back electrode (leading

to the results labelled "ann") are also presented.

While Voc and FF gains, similar to those reported before, are observed for annealing after

the deposition of the back electrode, no improvement is observed for the various treatments

performed before the deposition of the back electrode ("ini" values). This suggests either that

the deposition of the back electrode might cancel a possible gain obtained when annealing

the cell before the deposition, or that the gain is achieved only when the back electrode is

present (improvement of the µc-Si:H–LPCVD ZnO interface). Further investigations should

be performed to clarify this point, e.g. by using an alternative back electrode. However, the

strong superstrate dependence tends to indicate that interface effects can be excluded, as well

as improved doped layers upon annealing such as demonstrated in [Kondo 03], where it is

suggested that p-doped layers can be improved by thermal annealing (removal of H from the

B–H complex).
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Chapter 4. Post-deposition treatments of solar cells

Table 4.2: Effect of various treatments performed before the deposition of the LPCVD-ZnO back
electrode on the electrical properties (best cell) of 1-µm-thick µc-Si:H solar cells (ini), and after
annealing subsequent to deposition of the back electrode (ann).

Superstrate
Treatment Voc,ini Voc,ann FF ini FFann

before LPCVD-ZnO [mV] [mV] [%] [%]

smooth Z2 20’

ref 544 552 74.1 75.7
air break+ann 544 553 73.6 75.1

direct ann 548 553 74.5 75.7
double ann 544 552 73.6 75.4

rough Z2 4’

ref 527 548 69.0 72.7
air break+ann 523 545 69.3 73.0

direct ann 523 543 69.2 72.7
double ann 517 537 69.0 72.2

Indeed, an improvement similar to the one shown in Fig. 4.4 is again observed when the

solar cells are annealed after the deposition of the LPCVD-ZnO back electrode. An increase of

20–22 mV in Voc and up to 3.7% in FF for the rough Z2 4’ front electrode is achieved, while the

gain remains moderate on the smooth Z2 20’ (+5–9 mV in Voc and +1.2–1.8% in FF), regardless

of the treatment performed before the deposition of the LPCVD-ZnO back electrode.

The gains observed only when the annealing is performed after back electrode deposition

further support our assumption that they are, at least partly, linked to the curing of defects

induced by the LPCVD-ZnO in porous zones of the µc-Si:H absorber layer. Furthermore, the

LPCVD method for ZnO film preparation can result in the introduction of foreign elements in

those porous zones [Duchamp 13]. Indeed, exposure to water vapor during the deposition of

LPCVD-ZnO at temperatures above 150 ◦C may lead to oxidation of those zones, which would

be cured during annealing after the deposition of the back electrode.

4.3.2 Effect of post-deposition annealing analyzed by FTPS

To investigate our hypothesis of µc-Si:H absorber layer improvement by curing, we performed

FTPS on these same µc-Si:H solar cells of Tab. 4.2. This technique allows us to assess the defect

density in the absorber layer. Fig. 4.5 shows the sub-gap absorption at around 0.8 eV (linked

to defects in the bulk) as evaluated by FTPS for solar cells deposited on rough and smooth

superstrates. The curves were normalized with the absorption coefficient of crystalline silicon

at 1.35 eV.

Results on rough superstrates demonstrate that a strong reduction in α0.8 is achieved only

if annealing is performed after the deposition of the LPCVD-ZnO back electrode, while no

significant difference is observed when the cells are annealed before the deposition of the back

electrode. A similar behavior, although much less pronounced, is observed on the smooth

superstrate (the solid curves are always below the corresponding dashed curves at 0.8 eV). This
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(a)

α α

(b)

Figure 4.5: FTPS measurement of the sub-gap absorption of solar cells deposited on rough Z2
4’ (a) and smooth Z2 20’ (b) LPCVD-ZnO, for various types of annealing before the deposition
of the back electrode (dashed curves) and annealing after the deposition of the back electrode
(solid curves).

reduction in α0.8 is usually associated with a reduction of defects in the bulk µc-Si:H absorber

layer. It is generally believed that this method is sensitive only to the bulk µc-Si:H absorber

layer and not to 2-D surfaces such as porous zones present in the absorber layer [Python 09b].

However, by looking at the strong reduction of α0.8 in the case of the rough superstrate, we

cannot exclude the possibility that part of this reduction in α0.8 may be related to a reduction

of defects within the 2-D network of porous and defective material in the µc-Si:H absorber

layer.

Thus, defects in these porous zones can not be considered as located on pure 2-D surfaces

only, but also have a 3-D extension, allowing a detection of their curing by FTPS.

Note that the absolute value of α0.8 must be taken with caution as it can depend on the

free-carrier density of the front and back electrodes and on their morphology [Python 09b].

In our case, such dependence is small as the texture is kept constant for each case (rough

and smooth), and the highly doped front and back electrodes provide limited sensitivity to

post-deposition treatments.

4.3.3 Effect of annealing temperature

Tab. 4.3 summarizes the performance of 1.35-µm-thick µc-Si:H solar cells deposited on a

rough Z2 4’ superstrate, characterized prior to and after annealing in vacuum at different

temperatures. At an annealing temperature of 230 ◦C, a maximal enhancement in Voc×FF is

observed without collection losses in Jsc as could arise from potential boron diffusion from

the p-doped layer into the absorber layer. According to Tab. 4.3, Voc and FF gradually increase

with increasing temperatures but tend to saturate at around 230 ◦C. At 245 ◦C, Voc and FF
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Table 4.3: Evolution of the electrical parameters of solar cells (best cell, with area of 0.25 cm2)
exposed to different temperatures of annealing. The cells were deposited on rough Z2 4’ and
the i -layer had a thickness of 1.35±0.1µm. "Ref" stands for the parameter measured for the
same cell before annealing. *This cell was unfortunately irreversibly damaged after the FTPS
measurement. Hence its EQE and Jsc after annealing are not available.

T [◦C] Voc [mV] FF [%] Jsc [mA/cm2] α0.8 [10−3 cm−1]
ref/ann ref/ann ref/ann ref/ann

200 515/525 67.9/69.3 23.1/23.1 4.8/3.9
215 513/527 68.3/70.8 23.1/-∗ 4.3/3.0
230 514/531 68.9/71.5 22.9/22.9 4.2/2.7
245 510/531 69.4/71.5 22.9/22.7 4.2/2.2

remain similar but the blue response in the external quantum efficiency (EQE) (not shown)

of the cell starts to be lower, due to possible boron diffusion from the p-doped layer into

the absorber layer or a reduced transparency of the p-doped layer [Stuckelberger 14a]. An

increased reduction of the absorption coefficient at 0.8 eV as measured by FTPS can be seen

for increasing temperatures of annealing (see also Sec. 4.3.1). This study therefore validates

our choice for the annealing temperature and supports our conclusion that the high electrical

gains on rough superstrates are linked to thermally activated curing.

4.3.4 Effect of doping of the back electrode

As discussed in Sec. 4.1, while annealing in vacuum of LPCVD-ZnO films already results

in a decrease in their Rsq , this decrease can be further lowered with a hydrogen plasma

treatment, even drastically for Znid, due to modification in the charged trap density at the

grain boundaries. Furthermore, according to [Ding 13a], the improved electrical properties

of the ZnO films remain stable upon exposure to ambient atmosphere, except for Znid for

which an increase of its Rsq can be observed when stored in dark ambient atmosphere. In

the following experiment, we investigate the impact on cell performance of post-deposition

annealing and hydrogen plasma treatment for µc-Si:H solar cells with a back electrode of two

different doping levels (Z2, Znid). 1.1-µm-thick µc-Si:H solar cells were deposited on a smooth

Z2 20’ superstrate (the same as used in Sec. 4.3.1) to minimize the effect of porous zones

in the µc-Si:H absorber layer on the cell performance and to highlight the effect of varying

the doping level of the ZnO back electrode (see Fig. 4.3 (b)). The results are summarized

in Tab. 4.4. Larger cells (1.2 cm2) were chosen to enhance the impact of the Rsq of the back

electrode on the FF due to resistive losses.

A similar increase in Voc as presented in Sec. 4.3.1 after annealing and hydrogen plasma

treatment is achieved. A very high increase in FF is observed for the cells with the Znid back

electrode, but the low FF values before treatment should be considered with caution due

to potential measurement artifacts. Nevertheless, this result corroborates the larger gains

expected for the solar cells with Znid back electrodes. With the highly doped Z2 back electrode,
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Table 4.4: Electrical properties of p–i –n µc-Si:H solar cells (best cells, designated aperture area
of 1.05 cm2) with non-intentionally doped (Znid) and highly doped (Z2) back electrodes in
initial state and after treatment.

Back electrode Treatment
Voc FF Rsq,back

[mV] [%] [Ω/�]

Znid
ref/H2 plasma 526/530 (48.0)/70.9 85/24-33

ref/ann 530/534 (52.2)/69.1 85/40-50

Z2
ref/H2 plasma 542/549 71.0/72.1 10/8

ref/ann 545/551 72.0/72.6 10/8

a much smaller enhancement is observed.

Depending on the cell geometry and more specifically the collection width of the solar cell

(usually defined via laser scribing for monolithically series-interconnected cells in modules),

a hydrogen plasma treatment can be worthwhile compared to annealing in vacuum. For

large modules, a detailed analysis will be required to evaluate the need for a hydrogen plasma

treatment, depending on the used laser scribe patterning and the Rsq of the back electrode.

4.3.5 Application to tandem cells

This section presents the application of post-deposition treatments described in the previous

sections to solar cells in the micromorph (a-Si:H/µc-Si:H tandem) configuration. When a

micromorph cell is deposited on a rough superstrate, the change of morphology induced

by the a-Si:H top cell, or by an intermediate reflector, can negatively influence the growth

template of the bottom cell, with so-called "pinching points" that can induce cracks in the

µc-Si:H bottom cell [Cuony 10, Cuony 11, Boccard 12c, Biron 13a, Biron 13c]. As we suggested

that improvements in single-junction µc-Si:H solar cells are linked to curing of porous zones

in the absorber layer, improvement of the bottom cell can similarly be expected when the

post-deposition treatments are applied to tandem solar cells deposited on a rough superstrate.

An a-Si:H top cell with a thickness of 250 nm was deposited on a Z2.3 4’ superstrate and

the baseline process from KAI-M was used to deposit a 1.2-µm-thick bottom cell at 3 Å/s

[Bugnon 13]. A 40-nm-thick silicon oxide intermediate reflector (SOIR) was inserted between

the top and the bottom cell. Details about the optimization of this tandem configuration can

be found in [Despeisse 11]. Nine samples were co-deposited and compared, with three sets

of back electrodes. The cells were patterned into an area of 1 cm2. In addition to the Z2 and

Znid tested in the previous section, Z2.3, which is lightly doped, was also used as a standard

back electrode for the tandem cells. For each set of back electrodes, one sample was kept as a

reference without any post-deposition treatment (referred to as (r)), one sample was annealed

post-deposition (a), and one sample was given a post-deposition hydrogen plasma treatment

(p). Light soaking was performed on each sample and the J–V characteristics were recorded

just after the post-deposition treatment, after around 50 h of light soaking, and after around
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200 h of light soaking.

Fig. 4.6 presents the Voc and the FF of the best cells of the nine combinations of back electrodes

and post-deposition treatments.

Figure 4.6: Evolution of the Voc and FF of micromorph tandem solar cells (a-Si:H (250 nm)/SOIR
(40 nm) /µc-Si:H (1.2µm)) upon light soaking for three back electrodes. (r)-cells are reference
solar cells without any post-deposition treatment, (p)-cells are solar cells with a post-deposition
hydrogen plasma treatment and (a)-cells are solar cells after a post-deposition annealing in
vacuum. The FF values are not corrected with CMM (see text).

An improvement of 10–20 mV in Voc is observed for the (a) and (p) samples for all three back

electrodes and the improvement is stable upon light soaking. The FF is also improved with the

post-deposition treatments, but there is a clear dependence on the back electrode as expected

from the doping and hence Rsq variations. The initial FF values also depend on the back

electrodes since (i) the Rsq of the back electrode impacts FF [Boccard 12b] and (ii) different

current repartition occurs in the top and bottom cell (mismatch) due to the doping level of the

back electrode [Ulbrich 11, Bonnet-Eymard 13, Ulbrich 13].

Indeed, parasitic absorption by free carriers (FCA) in the back electrode changes the amount of

light that is reflected back into the cell by the white back reflector, leading to different matching

conditions and FF. We should mention that the FF curves in Fig. 4.6 were not corrected with a

current-matching machine (CMM) [Bonnet-Eymard 13] for the different matching conditions

to obtain a proper assessment of the stability of the gain obtained from the post-deposition

treatments. CMM was originally developed to accelerate the development of high-efficiency

micromorph solar cells, where the choice of superstrate is critical to optimize the current-
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density in each subcell. CMM enables us to modify the AM1.5g spectrum by adding red or blue

light in the spectrum while keeping the illumination intensity constant, and therefore allows

us to evaluate the FF and the efficiency of micromorph solar cells for different superstrates

or matching conditions without needing to adapt the layer thicknesses for each superstrate

separately [Boccard 12c, Bonnet-Eymard 13].

In our case, the matching conditions should artificially be made identical in all cells together

with a measurement of the Rsq of the back electrode to correctly evaluate the change in FF

during light soaking due to (i) the change in Rsq especially for the untreated Znid which is

directly exposed to air and is prone to degradation by moisture and (ii) the mismatch evolution

due to the degradation of the top-cell EQE and the optical properties of the front and back

electrodes [Ding 14].

However, this experiment demonstrates that the more resistive the back electrode, the higher

the initial gain, as was observed in single-junction µc-Si:H solar cells. This gain is then stable

upon light soaking, but from the experiment, it cannot be deduced unambiguously that the

stability of the observed gain for the FF in micromorph tandems is provided solely by the

post-deposition treatment.

Fig. 4.7 shows the EQE of all nine samples before light soaking. The corresponding Jsc of the

top and bottom cells can be found in the legend.

Figure 4.7: EQE of tandem solar cells as a function of the doping of the back electrode. Solid
curves are reference cells without any post-deposition treatment (r), dashed curves are cells with
a post-deposition annealing treatment (a) and dotted curves are cells with a post-deposition
hydrogen plasma treatment (p). The legend indicates the corresponding Jsc for the (top cell/
bottom cell/ total) EQE.

The remarkable absence of change in the EQE of the top cell for the nine combinations

demonstrates that the doping of the back-contact has little to no impact on the top-cell EQE
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(for this tandem configuration). It also supports the conclusion that most of the improvement

after post-deposition treatment happens in the µc-Si:H bottom cell, even though, as for single-

junction µc-Si:H solar cells, the post-deposition treatments have only a small impact on the

bottom-cell EQE. Note however that in the Znid case (which is also the most sensitive to

post-deposition treatment), a slight reduction in the bottom cell EQE is observed. This small

change in EQE is attributed to the increased free-carrier density and associated FCA induced

by post-deposition treatments [Ding 13a].

4.4 Conclusion

In this chapter, we demonstrated the beneficial effect of two different post-deposition

treatments (hydrogen plasma treatment and annealing in vacuum) on complete, non-

encapsulated solar cells. Furthermore, effects arising from temperature or hydrogen plasma

were decoupled. More particularly, it was shown that annealing the cells under vacuum is

sufficient as compared to hydrogen-plasma exposure, with two main conclusions:

• A curing of the porous phase in the µc-Si:H absorber layer was obtained by annealing,

as was especially observed on rough superstrates. An improvement of the porous zones

in µc-Si:H was detected by FTPS measurements, implying that defects in these porous

zones are not located on pure 2-D surfaces, but have a spatial extension. The deposition

of LPCVD-ZnO induced additional defects in porous zones of the absorber layer, which

were cured by annealing. This effect should thus be absent or very limited for sputtered

back electrodes.

• A decreased Rsq of the LPCVD-ZnO was obtained with annealing, without requiring

an exposure to a hydrogen plasma. This exposure to a hydrogen plasma is hence not

needed to improve the cell performance, provided that LPCVD-ZnO electrodes with low

enough Rsq are used.

Even though the post-deposition treatments can be beneficial, smooth front electrodes and

a robust PECVD process are nevertheless required to avoid the formation of porous zones

within the µc-Si:H absorber layer and ensure good stability upon ambient storage.

The post-deposition treatments are likely too time consuming for direct industrial application,

especially the hydrogen plasma treatment which needs a dedicated PECVD chamber, thus

giving it a non-negligible impact on the takt time and making it less cost-effective. However,

a simple annealing in vacuum is probably more compatible with an industrial process, as

it could in principle be performed in a simple heated vacuum chamber. A post-deposition

annealing could offer e.g. the possibility to use larger stripes for laser scribing or less doped

ZnO back electrodes for equivalent resistive losses in modules.

Finally, such an annealing was implemented in the record cell of Chap. 3, with a conversion

efficiency of 10.7%, independently confirmed at ISE CalLab PV Cells [Hänni 13b], as well as
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in our new world-record 12.6%-efficient tandem solar cell (after 1000 h of light soaking)

[Boccard 14], independently confirmed at Newport Technology & Applications Center’s

Photovoltaic (TAC-PV Lab) and in our internal-record 12.8%-efficient triple-junction cell

in the p–i –n configuration (after 1000 h of light soaking) [Schüttauf 14], all on an area larger

than or equal to 1 cm2.
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5 Interface effects on solar cell
performance

In this chapter, we show how dedicated interface engineering can improve the performance

of microcrystalline silicon (µc-Si:H) solar cells. We first analyze the shunt-quenching effect

of silicon oxide (SiOx) p-doped layers with variable illumination measurements (VIM). It is

demonstrated that such SiOx p-doped layers can very efficiently limit open-circuit voltage

(Voc) losses at lower illumination levels, also on rough superstrates, and improve the diode

ideality factor of single-junction µc-Si:H solar cells deposited on rough superstrates.

Then, we introduce passivating hetero-interfaces in single-junction µc-Si:H solar cells and

investigate the effect of different i –n layer stacks in thin (<1µm) µc-Si:H devices, sensitive to

recombination both at the interfaces and in the bulk material. By applying intrinsic amorphous

silicon passivating layers at the µc-Si:H i –n interface, we show a device with a Voc of 608 mV,

reaching a value close to those of standard multicrystalline silicon solar cells, for a standard

Raman crystalline fraction (Rc ) of the i -layer (∼55%). This Voc value is, to our knowledge, the

highest reported value for a state-of-the-art µc-Si:H device made solely by plasma-enhanced

chemical vapor deposition (PECVD).

By using this novel passivating interface, we thus demonstrate a state-of-the-art conversion

efficiency of 9.5% for a solar cell with an absorber layer as thin as 650 nm. We also apply

passivating interfaces in micromorph tandem solar cells and reach a record Voc of 1.53 V by

depositing such a thin µc-Si:H solar cell on an amorphous silicon (a-Si:H) solar cell with a

wide-bandgap absorber layer.

By increasing the thickness of the absorber layer, the bulk quality of our µc-Si:H material is

found to be a limiting factor for the cell efficiency, thereby canceling the beneficial effects

from improved interfaces. This is also illustrated by simulation.

Finally, we introduce a concept to probe the ultimate Voc limit of µc-Si:H solar cells.

Part of the results presented in this chapter are published in [Hänni 13a], and some are

currently under a patenting process and should be submitted for publication later.

63



Chapter 5. Interface effects on solar cell performance

5.1 Contribution of SiOx p-doped layers

As discussed in Chap. 3, silicon suboxide (SiOx) doped layers have been proposed as

excellent candidates to mitigate the effect of localized porous and defective zones within

the absorber layer (commonly called cracks), induced by inadequate surface morphology

of the superstrate or the PECVD process [Sichanugrist 94, Cuony 10, Veneri 10, Despeisse 11,

Cuony 12, Bugnon 12, Lambertz 13, Kim 13]. Here, we further investigate the quenching of

these defective areas when adequate p–i interfaces are used, by studying the role of SiOx

versus µc-Si:H p-doped layers by means of the VIM technique [Merten 98, Meillaud 06a]. The

VIM technique consists of the measurement of J–V curves at various illumination levels, by

using intensity filters (see also Chap. 2). For this analysis, 1.6-µm-thick solar cells with µc-Si:H

or SiOx p-doped layers were deposited on superstrates made of LPCVD-ZnO of decreasing

roughness, from very rough Z5 5’ to smooth Z5 45’, which is currently our optimum superstrate

for high-efficiency single-junction µc-Si:H solar cells (see Chap. 2 and 3). µc-Si:H n-doped

layers were used in all cases.

Tab. 5.1 shows a comparison of the short-circuit current density (Jsc), fill factor (FF), Voc,

conversion efficiency (η) and diode ideality factor (n) for these cells.

Table 5.1: Performance of solar cells (best cells) as a function of the superstrate surface treatment
time and the used p-doped layer. From [Hänni 13a].

p Superstrate
Jsc FF Voc η n

[mA/cm2] [%] [mV] [%] [-]

µc-Si:H
Z5 5’ 23.9 67.2 493 7.9 1.8

Z5 20’ 23.8 71.8 518 8.9 1.2
Z5 45’ 23.1 74.4 529 9.1 1.1

SiOx

Z5 5’ 25.5 69.0 512 9.0 1.4
Z5 20’ 25.3 72.7 528 9.7 1.2
Z5 45’ 24.6 74.5 543 10.0 1.1

Using SiOx p-doped layers, a Jsc gain of 1.5 mA/cm2 is achieved on all superstrates, together

with increased Voc and FF . More remarkably, on the roughest superstrate (Z5 5’), absolute

gains of 19 mV and 1.8% are obtained for Voc and FF , respectively. On the smooth Z5 45’

superstrate, an absolute gain in Voc is maintained (14 mV), but that in FF is much lower (0.1%).

These results are consistent with previous observations by Cuony et al. [Cuony 10], where

improved Voc and FF values, observed with SiOx p-doped layers in µc-Si:H cells, are ascribed

to quenching of undesired current drains in porous zones, whereas the Jsc gain is related to

increased external quantum efficiency (EQE) in the short wavelength range. The latter is due

both to a reduction of parasitic absorption, and to a reduction of reflection at the ZnO–Si

interface thanks to the low refraction index of the SiOx layer.
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5.1.1 SiOx versus µc-Si:H p-doped layers studied with the VIM technique

Fig. 5.1 shows Voc values as a function of the illumination level for the solar cells reported in

Tab. 5.1. For very low illumination, the curve is dominated mainly by the shunt resistance. By

fitting the linear part (in a semi-logarithmic plot) of such curves to a one-diode model, the

value of the diode ideality factor (n) can be obtained [Merten 98], also reported in Tab. 5.1.

µ
µ
µ

Figure 5.1: Voc values as a function of illumination level for 1.6-µm-thick single-junction
µc-Si:H solar cells, with SiOx and µc-Si:H p-doped layers. The SiOx p-doped layer mitigates the
detrimental effect arising from porous zones. Similar behavior was observed for FF (not shown
here). From [Hänni 13a].

In Fig. 5.1, the Voc gain reported in Tab. 5.1 is visible at 1 sun illumination value. For the Z5 45’

and Z5 20’ superstrates, the Voc reduction with lowered illumination level is independent of

the p-doped layer, as also expressed in similar n values of 1.1 and 1.2, respectively.

For the rougher superstrate (Z5 5’), a higher Voc value is maintained with the SiOx p-doped

layer, as compared to the µc-Si:H p-doped layer, when reducing the illumination level,

and correlated to a reduction of n from 1.8 to 1.4. At low illumination conditions, the

benefit of the SiOx design is consistent with the conclusions of [Despeisse 10, Despeisse 11],

where quenching of local current drains was proposed as an explanation for the improved

performance on rough superstrates.

VIM on our samples thus further corroborates previous statements that a suitable choice of

p–i interface has an impact on cell performance and that the detrimental effects of porous

zones can successfully be mitigated. The higher maintained Voc attributable to the SiOx p-
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doped layers is important for multi-junction devices with high Voc, as a µc-Si:H cell used as

the middle or bottom cell typically receives only half or less of the illumination intensity.

5.2 Passivating interfaces for high open-circuit voltage

5.2.1 Introduction

State-of-the-art µc-Si:H solar cells deposited by PECVD [Meier 94] generally exhibit Voc values

in the 500–560 mV range. These values are far below the theoretical upper limit of above

800 mV that can be expected from the µc-Si:H bandgap (1.1 eV) [Tiedje 84, Meillaud 06b].

To improve Voc, attention has lately been focused on developing both high-quality µc-Si:H

material and a suitable cell design [Yamamoto 01, Roschek 04, Matsui 06, Smets 08a, Shah 13,

Guha 13, Hänni 13a, Sai 13, Tan 13].

One way to increase the Voc of µc-Si:H solar cells is to increase the amorphous fraction of

the absorber layer (e.g. by modifying the deposition conditions), but the subsequent gain is

generally accompanied by a loss in FF due to less efficient carrier collection and increased light-

induced degradation [Flückiger 93, Droz 04, Yan 04a, Söderström 08, Johnson 08]. Recently,

however, promising results have been obtained with alternative precursors and deposition

conditions, yielding high Voc values even with a large crystalline fraction in the absorber

layer [Zhang 08, Dornstetter 13]. Voc is sensitive to absorber layer material and quality, but

also to interfaces. For example, the use of SiOx not only for doped layers but also as a buffer

layer at the p–i interface has recently been shown to boost the efficiency of thin-film silicon

solar cells [Bugnon 14]. Furthermore, a high Voc value of 603 mV was reported for a single-

junction µc-Si:H solar cell that incorporated a buffer layer grown by hot-wire chemical vapor

deposition at the p–i interface [van den Donker 07]. The absence of ion bombardment on the

p–i interface was suggested as the cause of this high value [Mai 05, Mai 06, Finger 08].

5.2.2 Impact of passivated i–n interface on open-circuit voltage

Here, we investigate the interplay between the thickness of the µc-Si:H absorber layer and the

thickness of an a-Si:H buffer layer applied at the µc-Si:H i –n interface [Yue 08, Hoetzel 11]. We

use this buffer layer as a tool to probe the influence of interfaces and the bulk on the Voc of very

thin single-junction µc-Si:H solar cells, incorporating high-quality bulk material (Chap. 3) and

an optimized SiOx layer at the p–i interface [Bugnon 14]. The followed approach is similar to

the amorphous/crystalline silicon heterojunction concept, where passivation of the crystalline

surface drastically enhances Voc, compared to traditional diffused-junction cells [De Wolf 12].

The Rc of the absorber layer was kept constant, above 50%, in all cases. For absorber layer

thicknesses ranging from 0.4 to 2.5µm, several designs for the i –n interfaces were compared.
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Passivated design in thin µc-Si:H solar cells

First, two designs for the i –n interface were compared, as sketched in Fig. 5.2, for solar

cells with a 650-nm-thick absorber layer. One design utilizes a single SiOx n-doped layer

Front ZnO (5 µm):
rough or smooth

Glass (0.5 mm)

Back ZnO (5 µm)

µc-Si:H (650 nm), Rc>50%

n-µc-Si:H

n-a-Si:H

i-a-Si:H

i-µc-Si:H

n-SiOx:H

i-µc-Si:H

“standard”

“passivated”

Figure 5.2: Cross-sectional schematic of the device used to study the impact of specific i –n
interfaces on cell performance. Two front-electrode roughnesses and two cell designs with
various i –n interfaces are investigated: a standard SiOx n-doped layer ("standard") and a
design with a-Si:H layers ("passivated").

("standard"); in the other a passivated interface was introduced, which consisted of a

stack comprising a 20-nm-thick intrinsic a-Si:H buffer layer and an a-Si:H n-doped layer

("passivated"). In this latter design, a thin µc-Si:H n-doped layer was used to ensure good

contact with the back electrode [Gerlach 13].1

Tab. 5.2 shows the performance of solar cells with a 650-nm-thick absorber layer for the two

cell designs as a function of superstrate roughness. For such thin devices, the impact of the

bulk defect density in the intrinsic absorber layer is reduced so that recombination at the

interfaces plays a major role in Voc.

We observe that state-of-the-art efficiencies are obtained on all superstrates with both standard

and passivated designs. In both cases, Voc and FF on very smooth (Z5 150’) and smooth (Z5 45’)

superstrates are similar, indicating that the absorber layer contains almost no zones of porous

and defective material. Still, although both cell designs yield similar efficiencies, a notably

larger Voc value is obtained for the passivated design. A Voc gain of 26 mV with minor FF loss

is reached on the smooth superstrates. However, on the rough superstrate, even though Voc

remains rather stable, FF is reduced compared to the standard design, due to less efficient

1We also investigated the configuration using an n-doped SiOx layer instead of an n-doped µc-Si:H layer in the
passivated design, but poor FF was obtained, probably due to the non-optimized n-a-Si:H/n-SiOx interface. The
proposed "passivated" design is a standard i –n interface optimized for baseline a-Si:H cells. We therefore stuck to
the comparison of our standard i –n interface design for single-junction µc-Si:H solar cells (namely using SiOx),
and the novel passivated design.
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Table 5.2: Performance of thin p–i –n µc-Si:H solar cells with a 650-nm-thick absorber layer
and two i –n-interface designs, as a function of argon plasma treatment of the front electrode
(from very smooth for the Z5 150’ to rough for the Z5 20’).

Design Z5 treatment time
Voc FF Jsc η n

[mV] [%] [mA/cm2] [%] [-]

"standard"
150’ (very smooth) 589 78.0 16.3 7.5 1.1
45’ (smooth) 582 77.4 20.0 9.0 1.1
20’ (rough) 576 75.4 20.4 8.9 1.2

"passivated"
150’ (very smooth) 606 76.6 16.1 7.5 1.1
45’ (smooth) 608 77.1 19.7 9.2 1.2
20’ (rough) 571 72.5 20.2 8.4 1.5

shunt quenching in the passivated design. This is demonstrated by using the VIM technique,

as presented in Fig. 5.3.

Figure 5.3: Voc values as a function of illumination level for single-junction µc-Si:H solar cells
with a 650-nm-thick absorber layer, deposited on smooth and rough superstrates. The dotted
lines represent fits with a one-diode model. The diode ideality factor was calculated from the
slope of the fit.

In this figure, the Voc values of four of the cells in Tab. 5.2 are presented as a function of

variable illumination level. Similarly as for the previous study, n can be extracted by fitting

the Voc vs. illumination data with a one-diode model [Merten 98]. Fig. 5.3 shows that for the

smooth superstrate, the slope of Voc as a function of illumination, and hence the diode ideality

factor, is independent of the i –n interface design. On the contrary, for the rough superstrate,
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shunt quenching is more efficient with the standard design (with a SiOx n-doped layer), for a

similar initial Voc. This result shows that a high-quality absorber layer with no or few zones of

defective and porous material is mandatory to obtain—and maintain at lower illumination—a

gain with the passivated design. This is relevant for multi-junction solar cells in the p–i –n

configuration, since in that case the µc-Si:H sub-cell is usually grown on a highly textured

superstrate and it gets only half or less (for more than two junctions) of the illumination as

compared to the single-junction configuration.

Fig. 5.4 shows the J–V and EQE curves of the best device of Tab. 5.2, obtained with the

passivated design on Z5 45’. A Voc value of 608 mV is reached, which yields a state-of-the-art

efficiency of 9.2% (9.5% with an anti-reflective textured coating [Escarré 12b]) with an absorber

layer thickness of only 650 nm.

Figure 5.4: J–V and EQE curves of the best cell reported in Tab. 5.2, yielding a Voc value of
608 mV.

Influence of absorber layer thickness in the passivated design

As previously mentioned, the second step of the study consists of evaluating the influence

of the µc-Si:H absorber layer thickness in the passivated design. Although not shown here,

an increase in Voc is observed with increasing buffer layer thickness for all absorber layer

thicknesses (from 0.4 to 2.5µm). This increase in Voc is accompanied by a reduction in FF if

the buffer layer is too thick (i.e. >40 nm in our case) [Fujiwara 07, Holman 12].

Fig. 5.5 thus presents Voc×FF as a function of the thickness of both the absorber layer and the

intrinsic a-Si:H buffer layer. For these cells, a 2.5-µm-thick LPCVD-ZnO back electrode is used.
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(a)

Increasing absorber layer thickness

(b)

Increasing absorber layer thickness

Figure 5.5: Evolution of Voc×FF on rough Z5 15’ (a) and smooth Z5 45’ (b) superstrates. For the
cells without an a-Si:H buffer layer, the n-doped layer is unchanged (n-a-Si:H/n-µc-Si:H).

For a very thin absorber layer, a large increase in Voc×FF is observed on the smooth superstrate

(Z5 45’) as the buffer layer is thickened. Conversely, for thicker absorber layers or on rough

superstrates such as a Z5 15’ (slightly rougher than the Z5 20’ of Tab. 5.2), only a slight gain is

observed for increased buffer layer thickness, as the Voc gain is canceled by a FF loss, linked to

a too high defect density in the bulk, limiting the cell performance.

Limitations of p–i–n µc-Si:H devices by dead doped layers

Since very high Voc values above 600 mV could be achieved experimentally for thin

absorber layers, we wondered if the observed effects of the previous sections could be

reproduced qualitatively, by simulating low-quality crystalline silicon, sandwiched between

two "electronically dead" doped layers, and adding a passivation. Simulations were thus

performed with the solar cell modeling program PC1D [Clugston 97, Yamamoto 03], assuming

an absorber layer thickness of 500 nm.

We modeled a low-quality crystalline silicon layer with electron (µe) and hole (µh) mobility

(µe = 10 cm2/Vs, µh = 1 cm2/Vs), sandwiched between two "electronically dead" doped

layers with low bulk lifetimes (τbulk) and carrier mobilities (µ) (τbulk,p = τbulk,n = 0.01µs,

µe = 0.1 cm2/Vs, µh = 0.02 cm2/Vs). Furthermore, the bandgap of the n-doped layer was

set at 1.75 eV, and the conduction-band offset at the heterojunction was set at 0.15 eV by

using electron affinities of 4.05 eV for the crystalline layers and 3.9 eV for the n-doped layer

[Matsuura 84]. The surface recombination velocity at the p-doped side was fixed at 104 cm/s.

Passivation at the i –n interface was subsequently introduced by varying the surface

recombination velocity at this interface, for various τbulk of the absorber layer, linked to
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the quality of the absorber layer. To assess what would happen for very high µc-Si:H bulk

quality, the chosen parameters cover a wide range of surface recombination velocities,

from that of a non-passivated silicon surface to that of a very well passivated surface

[Yablonovitch 86], and τbulk values from below those reported for µc-Si:H (on the order of

100 ns [Brammer 03, Taretto 12]) up to those for low-quality crystalline silicon.

Simulation results are shown Fig. 5.6.

High Voc with high τbulk
and passivation at i–n interface

Limited by dead doped layers

Figure 5.6: PC1D simulation of a µc-Si:H solar cell with a 500-nm-thick absorber layer for
different τbulk in the absorber layer and low-lifetime doped layers. Passivation at the i –n
interface is simulated by reducing the surface recombination velocity at this interface.

We observe that for poor passivation (high surface recombination velocities at the i –n

interface) Voc is not improved by reducing τbulk. For higher bulk quality (i.e. higher τbulk),

passivation of the interface becomes increasingly relevant: the device is dominated by the

interfaces and a gain in Voc is observed in thin devices, as marked by an arrow in Fig. 5.3.

Although further investigation of the exact passivation mechanism is required, the conduction-

band offset is by nature not sufficient to fully passivate µc-Si:H. We believe that surface defect

passivation must be present as well, in the same way that an amorphous phase is likely

required to passivate grain- and column boundaries in the µc-Si:H bulk.

5.2.3 Implementation in thin tandem solar cells

Following the high performance achieved in the single-junction configuration, a solar cell with

a 650-nm-thick absorber layer and 20-nm-thick buffer layer was implemented as the bottom

cell in a micromorph tandem cell. Furthermore, to reach a global high Voc, an a-Si:H top

cell with a wide-bandgap absorber layer was used [Stuckelberger 14b]. Typical initial values

of the top cell as a single junction (on a smooth superstrate) are 0.98–1 V for Voc, 72% for FF
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and 10–11 mA/cm2 for Jsc. For the tandem cells, we used 2.3-µm-thick LPCVD-ZnO treated

with an argon plasma for 7’ (Z2.3 7’) and 45’ (Z2.3 45’). The second superstrate was chosen

to provide a very smooth reference. For comparison, a sputtered-etched ZnO (ZSE) was also

used, since it is known to provide a very favorable texture for the growth of high-quality silicon

layers due to the large smooth craters on its surface (see Chap. 2). No optimization for the

matching of the top- and bottom-cell current densities was performed and no intermediate

reflector was used. For the back electrode, a lightly doped LPCVD-ZnO was chosen, with a

reduced thickness of 1.5µm, as compared to the standard 2.3µm. The electrical performances

are summarized in Tab. 5.3, and the J–V and EQE curves of these solar cells, as measured with

a white dielectric back reflector, are shown in Fig. 5.7.

Table 5.3: Performance (as-deposited) of thin micromorph tandem solar cells, implementing a
wide-bandgap a-Si:H top cell and a high-Voc µc-Si:H bottom cell. The designated area of the
solar cells is 1 cm2. The ZSE was kindly provided by Jürgen Hüpkes and Matthias Meier from
Forschungszentrum Jülich in the frame of the FP7 project “Fast Track”. The results are shown
with their kind authorization.

Superstrate
Jsc (EQEtop / EQEbottom ) FF Voc η (IV)

[mA/cm2] [%] [V] [%]
Z2.3 45’ 8.46 / 9.04 71.7 1.53 9.3
ZSE 9.29 / 8.89 78.7 1.49 9.9
Z2.3 7’ 9.48 / 11.58 70.9 1.38 9.2

(b)(a)

Figure 5.7: J–V (a) and EQE (b) curves of thin micromorph tandem solar cells, implementing an
a-Si:H top cell with wide bandgap and a high-Voc µc-Si:H bottom cell.

A record Voc value of 1.53 V is obtained on the very smooth superstrate: In comparison, state-

of-the-art Voc values for micromorph tandem solar cells are in the range of 1.45 to 1.47 V, for

bottom-cell thicknesses from 1.7 to 2.5µm [Biron 13c, Tan 13, Feltrin 13].
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A unexpected lower value of 1.49 V is obtained on the ZSE superstrate, which represents a

drop of 40 mV that can not be fully attributed to the recombination junction between the top

and bottom cells, or to reduced performance of the bottom cell. Indeed, a very high FF value

above 78% is obtained for the bottom-limited tandem solar cell deposited on ZSE, indicating

the high quality of the bottom cell. We thus attribute the drop in Voc to the ZSE–p-doped

layer interface in the a-Si:H top cell, which was not optimized for a ZSE superstrate, but for

LPCVD-ZnO.

Except for the solar cell deposited on ZSE, the other two tandem cells are top limited, and

present lower FF values of 71.7 and 70.9%. Furthermore, the tandem cell on Z2.3 7’ has a much

lower Voc of 1.38 V, due to the inappropriate superstrate roughness. Note that in this case not

only the bottom cell is affected by the lowered performance, but also the top cell with wide-

bandgap absorber layer, which is very sensitive to superstrate roughness [Stuckelberger 13].

To clearly differentiate the losses of the top and bottom cells, further investigations must

be performed, e.g. by means of a "current-matching machine" [Bonnet-Eymard 13], which

permits one to properly evaluate the FF evolution as a function of the matching conditions.

The outstanding Voc achieved for such thin micromorph solar cells are of significant

importance for next-generation multi-junction devices, including triple- and quadruple-

junction solar cells [Kim 13, Schüttauf 14, Isabella 14], but the deposition rate of both sub-cells

is still too low. Still, this result paves the road towards single-junction µc-Si:H solar cells with

efficiencies above 11% and multiple-junctions requiring the use of less silicon for similarly

high efficiencies.

5.3 A fully passivated µc-Si:H device?

We have just shown that a very high Voc can be reached with thin µc-Si:H devices, provided

a high-quality bulk material is used. The remarkable Voc of 608 mV which was obtained,

together with a high FF, demonstrates the potential of µc-Si:H, when compared to the best

values currently obtained with crystalline silicon on glass [Dore 14].

A natural extension of the concept used to further increase Voc is to passivate the p–i interface

as well. Indeed, assuming that the bulk material quality is optimum and the n-doped side

is perfectly passivated, the p-doped side would then become the limiting interface of our

device. However, using the same concept of an a-Si:H layer as a buffer layer in the p–i –n

configuration implies growing a µc-Si:H absorber layer on top of an a-Si:H passivation layer,

possibly hindering a good nucleation of µc-Si:H and leading to a too large (amorphous)

incubation phase at the p–i interface. This limitation can be overcome by going to an n–i –p

configuration [Yue 08], where a similar issue would then occur at the n-doped side. Another

possibility would be to make a combination of both a-Si:H layers and seed layers for the

µc-Si:H absorber layer using a very crystalline thin incubation layer on top of the a-Si:H

layers. The control of this process would be difficult as this seed layer would be deposited

73



Chapter 5. Interface effects on solar cell performance

in a hydrogen-rich plasma, leading to potential etching of the layers below and to a not

well-defined interface [Fontcuberta i Morral 00].

5.3.1 Method to reach the open-circuit voltage limit of µc-Si:H solar cells

A method to probe the ultimate Voc for µc-Si:H solar cells is proposed as follows, drawn in

Fig. 5.8.

Substrate
(flat or textured)
+ anti-sticking layer

Protective coating
(e.g. ZnO) before
PECVD

i-µc-Si:H + passivating i–p 

Front 
contact 
deposition

Unsticking

Removal of protective 
coating (etching) and 
passivating i–n
deposition

Back contact
deposition

Gluing of 
permanent 
substrate

Flipping

Figure 5.8: Fabrication scheme of a fully passivated µc-Si:H device, involving a layer transfer
technique.

First, an anti-sticking layer is deposited on a temporary substrate. A protective layer (e.g. a thin

ZnO layer) is then deposited on the anti-sticking layer to avoid a direct exposure to the plasma

and remove any uncontrolled contamination. An absorber layer is then grown on top of the

substrate, terminated by a passivated doped layer. After deposition of a front electrode, the

layers are glued onto a permanent substrate and detached from the temporary substrate, thus

flipping the layer sequence. The device is then finished by removing the protective coating

(e.g. via chemical etching), by depositing the other passivated doped layer, and by depositing

a back electrode.
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This way, a high-quality µc-Si:H absorber layer can be deposited and both doped layers

can be controlled independently. If present, an undesired incubation layer can be removed

during the etching step. However, the process can be tedious and would need optimization

of all steps. Moreover, the proposed design is optically not optimal, as a potentially highly

reflective interface would be present (flat and non-scattering ZnO–Si interface). Such a process

is however practicable: based on a nanomoulding process [Battaglia 11b], unsticking and

flipping of a complete a-Si:H solar cell has already been demonstrated [Escarré 12a].

5.4 Conclusion

In Sec. 5.1, the shunt-quenching properties of SiOx p-doped layers were compared to µc-Si:H

p-doped layers. Such properties were evaluated by the VIM technique, and it was found that

SiOx p-doped layers can very efficiently limit Voc losses at a lower illumination level.

In Sec. 5.2, we introduced passivating interfaces for single-junction µc-Si:H solar cells and

implemented them at the µc-Si:H i –n interface of thin single-junction and tandem µc-Si:H

solar cells, achieving record Voc values of 0.608 V and 1.53 V, respectively. By increasing the

thickness of the absorber layer, the bulk quality of our µc-Si:H material was found to be a

limiting factor for the cell efficiency, thereby canceling any beneficial effects from improved

interfaces, which was also illustrated by a simple simulation.

Finally, a concept to improve the Voc values of single-junction µc-Si:H solar cells, based on

passivation of both sides of a thin devices, was discussed in Sec. 5.3.
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6 Highly crystalline absorber layers
with fluorinated precursors

To obtain a high short-circuit current density (Jsc) without compromising on material quality,

we investigate the potential of highly crystallized microcrystalline silicon (µc-Si:H) layers, as

obtained by plasma-enhanced chemical vapor deposition (PECVD) with silicon tetrafluoride

(SiF4) as an additional precursor.

In Sec. 6.2, several growth regimes are investigated in terms of deposition rate (Dr ) and Raman

crystalline fraction (Rc ). Dr values of up to 4 Å/s are demonstrated, combined with highly

crystallized layers.

In Sec. 6.3, these layers are compared to layers obtained with standard deposition regimes,

as described in Chap. 3. Layers with both high and standard Rc are analyzed with secondary

ion mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), and X-ray

diffraction (XRD). First, SIMS measurements show that the use of SiF4 does not induce

additional contamination in baseline processes. FTIR analysis of the hydride stretching

modes reveals that similar hydrogen incorporation can be obtained in highly crystallized films

deposited using SiF4 or silane (SiH4) precursors, whereas XRD analysis demonstrates that

layers obtained with SiF4 do not exhibit a (220) preferential orientation. This orientation,

typically obtained with SiH4-based chemistry, is generally attributed to device-grade material.

In Sec. 6.4, we implement selected films as absorber layers in single-junction solar cells,

reaching open-circuit voltages (Voc) as high as 470 mV, and a conversion efficiency (η)

of 8.3%, for highly crystalline solar cells (Rc >80%). Although superstrate roughness also

limits cell efficiency, and especially fill factor (FF), no porous zones as can be observed

by transmission electron microscopy (TEM) for standard cells obtained with SiH4-based

chemistry are observed. Structural defects are however found in large grains. A record total

Jsc of 31.9 mA/cm2 is demonstrated for a micromorph tandem cell, thanks to improved

absorption in the near-infrared (NIR), for a total silicon thickness of 3.4µm, which makes it

the highest reported value for this configuration.
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6.1 Historical development

Fluorinated precursors were first proposed as an alternative method for the fabrication

of amorphous silicon (a-Si:H) in 1978, to reduce the instability problems associated with

hydrogen in that material [Ovshinsky 78, Goodman 79, Madan 80]. Their use showed, among

others, a potential for improved photo-conductivity, charge-carrier mobility and diffusion

length, together with an increased light-soaking stability [Bruno 91, Kim 96, Cicala 98,

Nishimoto 01, Zhang 04, Giangregorio 06, Bruno 09].

Fluorinated precursors were also used for the fabrication of intrinsic and doped fluorinated

microcrystalline silicon (µc-Si:F:H) layers, at first obtained by chemical vapor deposition

(microwave discharge system) at high temperatures above 250 ◦C [Hanna 86, Shibata 87a,

Shibata 87b, Hanna 88, Hourd 91, Ishihara 93]. Several studies then showed that for such

depositions, both crystallinity and crystallographic preferential orientation can be controlled

by the precursor gas ratio [Tsu 80, Syed 97, Kamiya 99, Cicala 01, Kuo 03, Haddad-Adel 07].

The work reported here is based on the developments carried out at a lower temperature

(∼200 ◦C) by Ecole Polytechnique in Palaiseau (France). Kasouit et al. proposed to use small

amounts of SiF4 and hydrogen (H2), highly diluted in argon (Ar), to grow fully crystallized layers

for thin-film transistor applications [Kasouit 02, Vanderhaghen 02, Kasouit 03, Kasouit 04b].

It was suggested that crystals formed in the plasma contribute to the growth of µc-Si:F:H

films, with no amorphous phase due to preferential etching of this phase by fluorine ions

[Kasouit 04a]. It was also shown that for such highly crystallized layers, the use of SiF4 led to

films with improved electronic properties, thanks to the presence of larger grains, as compared

to layers obtained with SiH4 [Djeridane 07, Djeridane 08, Roca i Cabarrocas 08].

6.1.1 Use of fluorinated precursors in solar cells

Comprehensive studies on the effect of adding SiF4 into radio frequency (RF) and very high

frequency (VHF) plasmas for making a-Si:H, a-SiGe:H and µc-Si:H solar cells with improved

material quality were conducted at Unisolar Ovonic and ECD. A small amount of SiF4 did not

show any observable effect on solar cell performance, and when the ratio of SiF4 to SiH4 was

increased above a certain level, the material quality became poor.1

However, in a publication by Zhang et al. [Zhang 08], a solar cell with a Voc of 523 mV and a

conversion efficiency of 8.3% was demonstrated, together with a high Rc of 80%, using SiF4 and

H2 diluted in Ar. This promising result suggested that a high defect density is not an intrinsic

characteristic of highly crystallized material, even though in this particular case, the µc-Si:F:H

absorber layer was additionally exposed to H2 plasma to improve surface passivation of the

crystalline grains.

In [Moreno 12], the influence of the grain size on the NIR absorption of such single-junction

1Dr. Baojie Yan (Unisolar Ovonic), private communication.
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µc-Si:F:H solar cells was studied. In particular, it was shown that solar cells with absorber

layers containing the largest grains presented the highest absorption in the NIR. It was also

demonstrated that the ratio of SiF4 to H2 in the plasma was a key parameter to tune the fraction

of large grains (as measured by spectroscopic ellipsometry) within the µc-Si:F:H layer. Even

with increased NIR absorption, the highest Jsc reached only 20 mA/cm2, which, combined

with a Voc of 480 mV and a FF of 60%, led to a relatively low conversion efficiency of 6%.

More promising results were achieved by Dornstetter et al. [Dornstetter 13, Dornstetter 14],

demonstrating single-junction solar cells with a Voc well above 500 mV leading to efficiencies

above 9% for fully crystallized solar cells. The role of H2 was particularly investigated and it

was established that a certain amount of atomic hydrogen (H) was needed to evacuate fluorine

atoms generated by the dissociation of SiF4, in the form of HF molecules. Interestingly, the

weak dependence of Voc on absorber layer thickness (>500 mV for ∼4µm) indicated that high-

quality material can be obtained with SiF4, which was confirmed with measurements of low

defect-induced sub-gap absorption.

Such highly crystallized layers with maintained electronic properties and increased absorption

in the NIR are of high interest for use as an absorber layer in the bottom cell of multi-junction

devices, as demonstrated in Sec. 6.4.5, with micromorph tandem cells matched at 15 mA/cm2.

6.2 Deposition of fluorinated microcrystalline silicon layers

6.2.1 Description of experimental parameters

Throughout this work, the deposition of µc-Si:F:H layers and solar cells was performed in a

large-area KAI-MTM research system equipped with a closed plasma chamber [Bubenzer 90],

with a fixed inter-electrode gap of 12 mm, an excitation frequency of 13 MHz and a typical base

pressure of 2–3·10−7 mbar. The maximal allowed process temperature for long depositions (i.e.

>1 h) was 230 ◦C. Following previous studies performed at Palaiseau [Djeridane 08], pressure

and power series were performed at various dilutions "k:l :m" of the precursors, where k, l and

m are integers denoting the flux setpoints, expressed in sccm, of SiF4, H2 and Ar respectively

(i.e. [SiF4], [H2] and [Ar]), normalized by their greatest common divisor. Tab. 6.1 shows the

current limitations of precursor fluxes due to the installed mass-flow controllers.

Table 6.1: Limitations of the precursor fluxes by the mass-flow controllers.

Gas
maximal flux minimal flux

[sccm] [sccm]
SiF4 108 ∼2–5
H2 3051 ∼80–90
Ar 2840 ∼60–80
SiH4 181 ∼4–7
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As previously mentioned, the [H2]:[SiF4] ratio was expected to be a key parameter determining

both the microstructure and the electronic quality of the layers. Unfortunately, as high H2

fluxes were daily used for baseline depositions of standard µc-Si:H deposition, the high-

flux mass-flow controller in place was not very accurate nor reproducible at the minimum

setpoint value, as needed for µc-Si:F:H. Moreover, for such low setpoint values, a significant

discrepancy between the setpoint and the measured flux was observed (>10 sccm). Values

below 1.5 for the [H2]:[SiF4] ratio were therefore not investigated. Furthermore, as the KAI-M

was predominately operated for high-efficiency processes, the use of "extreme" or more

"exotic" deposition regimes was prohibited and has been carefully avoided (such as e.g.

leading to too high powder production).

Note that before each deposition, both the chamber and plate were coated with a thin intrinsic

µc-Si:H layer. This layer, acting as a nucleation layer, was necessary to avoid peeling and

obtain a successful µc-Si:F:H deposition (see details below). We used four substrates: two

pieces of AF32 glass, a small piece of crystalline silicon (c-Si) wafer and AF32 glass coated

with a 2-µm-thick zinc oxide layer deposited by low-pressure chemical vapor deposition

(LPCVD-ZnO) and treated with an Ar plasma for 20’ (Z2 20’). Standard cleaning with a nitrogen

trifluoride (NF3)/Ar-based plasma, followed by a H2 plasma, was systematically performed

after each layer deposition.

6.2.2 First depositions of fluorinated microcrystalline silicon layers at PV-lab

Fig. 6.1 shows the first depositions of µc-Si:F:H layers done at PV-lab on glass and ZnO.

(a) (b) (c)

Figure 6.1: (a) The first deposition of a µc-Si:F:H layer, which turned out to be etching and
redeposition of the coating of the chamber. (b) Systematic peeling, which was observed when
no pre-coating of the substrate or the chamber was used. This issue was solved by using a thin
coating of the glass (p-doped µc-Si:H). (c) The first deposition on LPCVD-ZnO, which resulted
in a strong reduction of the ZnO by the fluorinated plasma.

In the first, unsuccessful, deposition trial of µc-Si:F:H, the µc-Si:H coating of the reactor

and the plate was etched and redeposited on the substrates, while no µc-Si:F:H deposition

occurred (see Fig. 6.1 (a)). No deposition was obtained with no pre-coating of the reactor,

indicating that preconditioning of the reactor is crucial for µc-Si:F:H layer development. The
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first successful deposition of a µc-Si:F:H layer directly on glass resulted in strong peeling of the

layer (Fig. 6.1 (b)). In Fig. 6.1 (c), the experiment shown in Fig. 6.1 (b) was repeated with Z2 20’

as additional substrate, resulting in a strong reduction of ZnO by the fluorinated plasma.

The strong chemical reaction observed between LPCVD-ZnO and the SiF4 plasma can also be

observed in Fig. 6.2, in which photographs of µc-Si:F:H solar cells before and after deposition

are shown. In this case, the various superstrates were already covered with a p-doped silicon

oxide (SiOx) layer that, however, did not completely cover the superstrate, leaving an uncoated

LPCVD-ZnO border of about 1 mm at the edges of the sample.

Z5 
45’

Z5 
20’

Z5 
5’

Z5 
10’

No p-SiOx on the edge of the superstrate,
i.e. LPCVD-ZnO directly exposed to plasma

Loading

(a) (b)

Figure 6.2: Photographs of µc-Si:F:H solar cells before (a) and after (b) deposition, in which
LPCVD-ZnO was directly exposed to a SiF4-based plasma. A strong reaction occurred, extending
to the other superstrates (a-Si:H top cells), while the plate was unaffected.

Similarly as in the previous test with Z2 20’, a strong reaction occurred between the SiF4-

plasma and LPCVD-ZnO, further extending to the whole superstrate, while deposition on the

coated plate was unaffected. We established that solar cells deposited in such conditions were

heavily p-type contaminated, following the doping of LPCVD-ZnO. Such experiments thus

demonstrate that LPCVD-ZnO superstrates should completely be coated before µc-Si:F:H

layer deposition.

Hence, to solve the issues of peeling on glass and the strong reaction of SiF4 chemistry on

LPCVD-ZnO, we always deposited a 20-nm-thick p-doped µc-Si:H layer on the substrates (in

a dedicated, separate, deposition) in addition to the thin standard intrinsic µc-Si:H coating of

the chamber walls and plate. Once optimum pre-conditoning conditions were established,

we focused on assessing the useful deposition parameter space, concentrating on deposition

rate and Rc .

6.2.3 Deposition rate as a function of deposition conditions

Fig. 6.3 (a) shows the evolution of the deposition rate of µc-Si:F:H layers deposited at 200 ◦C as

a function of gas dilution and injected power, at an excitation frequency of 13 MHz and with

[SiF4]=78 sccm.
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(a)

(II)(I)

(b)

Figure 6.3: Deposition rate as function of deposition conditions (a) and temperature (b) for
several deposition regimes. Here, Rc is indicated as well, as measured both on glass and on a
ZnO substrate (Z2 20’).

Based on the calculation of Strahm et al. [Strahm 07], assuming that all silicon atoms

contribute to film growth and that µc-Si:F:H and µc-Si:H films have the same density, the

maximal deposition rate (Dr,max) with [SiF4]=78 sccm is

Dr,max = 0.0962
[SiF4]

A
[Å/s] = 12.2Å/s,

where A is the total surface of the plasma box. Note that no powder was observed on the plate

after the deposition, for all data shown in Fig. 6.3. At low power values in zone (I) delimited

by the dashed line, the plasmas were highly unstable: although ignition was feasible, the

plasma was flashing and the process was highly irreproducible. Depositions performed in

these conditions were thus excluded from the study. When the power was increased too much,

zone (II) was reached, as delimited by the second dashed line, and sparks then appeared in

the plasma. Depositions were thus not performed in this range either.

Between these two zones, the general trend observed is an increase of Dr with increased

power and pressure. According to [Guo 98, Kondo 00, Roschek 02], for SiH4-H2 discharges, Dr

is proportional to the generation rate of precursors ( d X
d t ), that is:

d X

d t
=σvth[SiH4]Ne ,

where σ is the dissociation cross section of silane with electrons in the plasma having a higher

energy than the dissociation energy threshold value, vth is the thermal velocity of electrons,

[SiH4] is the density of SiH4 molecules, and Ne is the density of energetic electrons responsible

for the reaction. This equation implies that Dr is proportional to the SiH4 partial pressure for
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6.2. Deposition of fluorinated microcrystalline silicon layers

constant electron temperature [Guo 98, Rath 04].

A similar effect is probably observed here for the SiF4 precursor, as we observe a systematic

increase of Dr for increasing pressure (for the same dilution). Since we rejected "dusty"

plasmas at high power, we did not explore regimes where Dr usually drops, either due to a

reduction of the generation rate of precursors (due to the reduction of electron temperature at

a higher pressure), or due to powder formation [Stuckelberger 13]. However, this drop in Dr

was observed by Djeridane et al. [Djeridane 08] using similar SiF4 chemistry for plasmas with

powder.

When changing the [SiF4]:[H2]:[Ar] dilution from 2:3:72 to 1:3:36 (i.e. doubling [H2]), a

strong reduction of Dr is observed for the used pressures, as can be observed in Fig. 6.3

by comparing the solid and empty symbols. Based on the recent growth model of Dornstetter

et al. [Dornstetter 14], in which it is shown that a certain amount of H is needed in the

plasma to evacuate fluorine ions in the form of HF molecules before obtaining film growth,

we believe that adding more H can contribute to etching of the film [Tsai 89, Matsuda 99,

Fontcuberta i Morral 02] and thus reduce Dr . Film growth is thus probably determined by the

competitive effects of deposition of radicals and etching (by H and F), this latter effect being

controlled by the amount of free H atoms in the plasma.

For a reduction of [Ar] by a factor of 2
3 (changing the dilution from 1:3:36 to 1:3:24), no

significant change in Dr is observed. Even though the exact role of Ar is yet still unclear,

Djeridane et al. [Djeridane 08] suggested that a high dilution of Ar can enhance the

dissociation of precursors and change the ratio of large to small grains while keeping Rc

constant.

Using the deposition regimes shown in Fig. 6.3, deposition rates of up to 4 Å/s were

obtained. We believe that higher Dr values should be possible by either further increasing

the pressure—even though the maximum used pressure of 15 mbar is already quite high—,

by further reducing [H2], by optimizing [Ar], by using higher excitation frequencies, or by

narrowing the inter-electrode gap.

In a second step, the effect of the deposition temperature (T) was evaluated for a specific

deposition regime (12 mbar, 400 W and dilution of 1:3:36). Fig. 6.3 (b) shows the evolution of

Dr and Rc as a function of T. No significant dependence on T was observed for either Dr or Rc ,

confirming the results of Djeridane et al. [Djeridane 08] in the chosen narrow temperature

range, which corresponds to the usual temperatures for solar cell fabrication.

6.2.4 Crystallinity as function of deposition conditions

Fig. 6.4 shows the measured Rc for the layers in Fig. 6.3, both on glass and on LPCVD-ZnO

(Z2 20’).

No significant difference is observed between glass and ZnO substrates for pressures above
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(a) (b)

Figure 6.4: Evolution of Rc as a function of pressure, precursor ratio and power, on glass (a) and
on LPCVD-ZnO (Z2 20’) (b).

4 mbar. Note that the thicknesses of the films are not constant, ranging from 100 nm (for the

points at the lowest possible power at pressures of 2 and 4 mbar) to 400 nm. However, since

the obtained Rc values are very high (mostly between 75% and 85%), especially for layers with

higher [H2] and also for the thinnest films, we do not expect a large variation as could be

induced by a thick a-Si:H incubation layer. Layers with Rc lower than about 75% are obtained

only for the lowest possible power, below which the plasma is flashing and highly unstable.

Note that the point at 2 mbar and 100 W from Fig. 6.3 is not evaluated here as its thickness is

below the specified range.

When going to higher [H2] (i.e. empty symbols), extremely high values of Rc are obtained

(up to almost 90%), which, according to our fitting procedure [Droz 04], can be considered

as fully crystallized. Indeed, for µc-Si:F:H layers, part of the left shoulder of Raman

spectra, usually attributed to the amorphous phase of µc-Si:H, might be related to the

crystalline part as well, with a peak linked to crystalline grain boundaries at around

500 cm−1 [Dornstetter 13], which was not implemented in our fitting procedure. This

suggests that the Rc values we assessed are rather a lower bound for the "real" crystalline

fraction. Our results hence suggest that the [H2]:[SiF4] ratio plays an important role in

the growth and crystallization process in such plasma chemistry, as is also known for

SiH4-based discharges [Matsuda 99, Sriraman 02, Fujiwara 04], but as lower [H2] was not

investigated, further research is necessary. Our results suggest that lower [H2] would lead

to higher Dr and µc-Si:H with lower Rc . Thus, this research should include the study of

the conjugate roles of gas dilutions (especially [Ar] and lower [H2]), of other deposition

parameters such as excitation frequency, inter-electrode gap, and temperature, and of the

possibility of alloying or doping. Doping would be interesting, especially the development

of p-doped µc-Si:F:H layers, as it is usually difficult to obtain such layers with high Rc

[Jenq-Shiuh 92, Ghosh 92, Flückiger 94, Demichelis 94, Saleh 03, Cuony 10].
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6.3 Comparison with standard microcrystalline silicon

We next investigated to what extent these highly crystalline layers are different from or similar

to our usual µc-Si:H layers with standard and high Rc , and how they are compatible with our

usual PECVD processes in terms of contamination of the reactor. SIMS analyses were therefore

first performed on three layers, as discussed in the following.

6.3.1 Evaluation of impurities by SIMS analysis

Various layers were deposited on double-polished 250-µm-thick undoped c-Si wafers, coated

with a fake p-µc-Si:H (using a recipe similar to the one for a standard p-doped layer, but

without a dopant precursor) as the seed layer.

These layers correspond to (i) a reference high-quality 500-nm-thick µc-Si:H layer, deposited

after the standard reactor cleaning and coating procedure and (ii) a layer stack made of

µc-Si:F:H/p-doped SiOx/SiOx buffer/µc-Si:H.

Note that for the second layer stack, the sample was taken out of the reactor after the deposition

of the µc-Si:F:H layer, and the standard reactor cleaning and coating procedure was performed

before the deposition of the p-doped SiOx layer, hence reproducing a subsequent deposition

of a standard cell [Bugnon 14] on top of the µc-Si:F:H layer. The µc-Si:F:H layer was deposited

at 12 mbar, a dilution of 1:3:36 and a power of 200 W (Dr =0.7 Å/s, Rc =85%). In this stack,

both the µc-Si:F:H and µc-Si:H layers have the same thickness (340 nm). The SiOx layers

were deposited in a separate chamber and there was no vacuum break before the subsequent

µc-Si:H layer deposition.

The measured elemental concentration profiles are shown in Appendix B. Concentrations

of boron, zinc, phosphorus, carbon and nitrogen did not show any abnormal or unexpected

results. The results of bulk concentrations as measured for O, F and H are summarized in

Tab. 6.2.

Table 6.2: Bulk O, F and H concentrations, as measured by SIMS, for several microcrystalline
materials.

Layer
O F H

[cm−3] [cm−3] [cm−3]
µc-Si:F:H (1.7±0.1) ·1018 (7.3±0.2) ·1018 (2.9±0.1) ·1021

µc-Si:H reference (8.0±0.3) ·1017 (1.7±0.3) ·1017 (6.7±0.2) ·1021

µc-Si:H after use of SiF4 (8.5±0.6) ·1017 (2.4±0.3) ·1017 (7.3±0.2) ·1021

Using SiF4-based plasma chemistry has no detrimental contamination effects in our reactor.

Indeed, low O and F bulk concentrations are observed for both µc-Si:H reference layer

and a µc-Si:H layer deposited after the use of SiF4. The measured O concentrations,

namely ∼8 ·1017 cm−3, are below a commonly admitted maximal accepted range of up to
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∼1 ·1019 cm−3 [Abramov 10, Shah 10]. The slight difference in F concentration (1.7 ·1017 cm−3

and 2.4 ·1017 cm−3) in both µc-Si:H layers is too low to have a significant effect on cell

performance.

By comparing µc-Si:H and µc-Si:F:H layers together, it appears that a higher amount of F

is incorporated in the µc-Si:F:H layer, with an average value of 7.3 ·1018 cm−3 for µc-Si:F:H

as compared to a value of around 2 · 1017 cm−3 for standard µc-Si:H deposited without a

fluorinated precursor.

For the µc-Si:F:H layer, the average O bulk concentration is slightly higher than for µc-Si:H

layers (1.7 ·1018 cm−3 for the µc-Si:F:H layer and ∼8 ·1017 cm−3 for standard µc-Si:H layers),

but also below critical concentration.

However, a difference is observed for the H concentrations, with average values of

2.9 ·1021 cm−3 for µc-Si:F:H and ∼7 · 1021 cm−3 for standard µc-Si:H layers. The lower H

concentration for the sample deposited with SiF4 is linked to probable full crystallization of

the layer and the low amount of a-Si:H tissue, as shown in the following section.

6.3.2 Structural evaluation by FTIR and Raman spectroscopy

To further investigate the differences between our best µc-Si:H layers and µc-Si:F:H layers,

FTIR and Raman spectroscopy were performed. These Raman spectra were recorded for layers

deposited on glass, with a Bruker Senterra spectrometer and an excitation wavelength of

532 nm [Choong 13].

FTIR spectra were recorded with a Nicolet 8700 spectrometer from Thermo Scientific. As

with the SIMS analyses in Sec. 6.3.1, the layers were deposited on intrinsic c-Si wafers.

For each sample, infrared transmittance (T ) was evaluated by dividing the raw spectrum

of the sample by the raw spectrum of the background (c-Si substrate). The spectrometer was

constantly purged with nitrogen and a waiting time of 20’ was used before each measurement.

To minimize parasitic absorption of water and carbon dioxide due to the non-controlled

atmosphere in the room, and artifacts from the infrared-source fluctuations, a new background

was recorded and used for each sample. Absorbance (A) was calculated as A =− log10(T ), and

normalized to unity at its maximum, then simply referred to as absorption. A linear baseline

correction between 1800 and 2220 cm−1 was applied.

Tab. 6.3 shows the deposition conditions (plasma excitation frequency (ν), pressure (p),

power (P ) and resulting Dr ) for various µc-Si:H and µc-Si:F:H layers. Rc was calculated from

the curves shown in Fig. 6.5. The thickness (t) of the layers was evaluated on glass with a

profilometer. The "SiF" layers were deposited at 400 W, a dilution of 1:3:36, and T=200 ◦C, for

three different pressures (8, 12 and 15 mbar).

A grading, i.e. a varying flux of the silicon precursor in the early stages of the growth, which

is typically performed to achieve higher performance in the standard µc-Si:H solar cells
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[Vetterl 03], was applied to the standard µc-Si:H layers here as well. All layers were grown on

thin (<20 nm) µc-Si:H seed layers. Due to peeling, we were not able to get the same thickness

for all layers, especially the ones deposited with SiF4. Even though Smets et al. [Smets 08a]

demonstrated that FTIR spectra of µc-Si:H layers can have a strong thickness dependence,

highly correlated to an evolution of Rc as a function of thickness, we do not expect such

variation here as deposition conditions of our standard layers (with lower Rc around 50–60%)

ensure fast µc-Si:H nucleation and a minimal incubation layer (see Chap. 3). Moreover, the

other layers have a high Rc (>75%), also the thinnest ones, suggesting a high-crystallinity

growth from the start of the layer.

Table 6.3: Selected intrinsic µc-Si:H and µc-Si:F:H layers investigated with FTIR, Raman
spectroscopy and XRD. A grading, i.e. a varying flux of the silicon precursor in the early stages of
the growth, is typically performed to achieve higher performance in the standard µc-Si:H solar
cells.

SysB SysB KAI KAI SiF SiF SiF
std high Rc std high Rc 8 mbar 12 mbar 15 mbar

ν [MHz] 70 70 13 13 13 13 13
p [mbar] 0.7 0.7 9 9 8 12 15
P [W] 3 3 350 500 400 400 400
Dr [Å/s] 1.1 1.0 2.8 2.2 1.1 1.2 1.3
Rc [%] 49 76 61 84 81 85 79
t [nm] 400 400 500 400 260 140 340
Grading? [SiH4]: 3 steps no [SiH4]: 2 steps no no no no

Raman spectroscopy

As previously mentioned, these seven different layers were first evaluated by Raman

spectroscopy. Fig. 6.5 shows the Raman shift spectra of the µc-Si:H and µc-Si:F:H layers

presented in Tab. 6.3. For each layer, the corresponding calculated Rc is given [Droz 04].

For µc-Si:H layers, higher Rc values, on the order of 80%, were obtained by increasing the SiH4

dilution in H2 and increasing the power ("KAI high Rc " sample).

Interestingly, such high Rc values are obtained with SiF4 chemistry for layers as thin as 140 nm,

whereas larger thicknesses, as used in solar cells, lead to values well above 90%, which are not

reachable with our standard µc-Si:H processes. We attribute this discrepancy to a different

growth, with larger grains and increased nuclei density. This will be confirmed in this thesis by

TEM images (see Sec. 6.4.3), but variations already appear here in the Raman spectra.

Indeed, we observe that for SiF4-based layers, the main peak at 520 cm−1 is shifted towards

higher wavenumbers, attributed in the case of standard µc-Si:H material to high compressive

stress in the layers [Paillard 01, Vetushka 08]. Furthermore, the main peak of SiF4-based

material is not symmetrical around 520 cm−1. In this material, such asymmetry has been

attributed to the presence of column boundaries [Dornstetter 13]. When thicker such layers
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Figure 6.5: Raman shift spectra of µc-Si:H layers with various Rc and µc-Si:F:H layers.

were incorporated in solar cells (see Sec. 6.4), Rc values of up to 90–95% were measured,

indicating probable complete crystallization with our fitting procedure.

As already mentioned, peeling issues were often encountered when depositing such µc-Si:F:H

layers on glass, another indication that high compressive stress is present in these SiF4-based

layers.

Analysis of the hydride stretching mode with FTIR

For the analysis of the infrared (IR) spectra of Fig. 6.6, we use the nomenclature proposed by

Smets et al. [Smets 03, Smets 08a, Smets 08b], briefly summarized hereafter. This model is

based on the analysis of the hydride stretching modes (SM) present in the ∼1800–2250 cm−1

wavenumber range in FTIR spectra of µc-Si:H layers, where these spectra are deconvoluted

into a consistent set of 11 Gaussian curves, attributed to various hydrogen configurations and

phases present in µc-Si:H, as summarized in Tab. 6.4.

When looking at the IR spectra of layers with average Rc , e.g. "SysB std" and "KAI std," we

detect the presence of many features attributed to device-grade material. Indeed, we can

recognize low SM (LSM), attributed to the amorphous part of the bulk, consistent with the

measured Rc of 48 to 61%. Characteristic kinks of the extreme LSM (ELSM) can be observed at

around 1900 cm−1. High SM (HSM), attributed to both the amorphous tissue (2070–2100 cm−1)

and the microcrystalline phase (∼2120 cm−1 and ∼2150 cm−1), are visible. It is important to
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SiF 15 mbar

SiF 12 mbar

SiF 8 mbar

Figure 6.6: FTIR spectra of the stretching modes of µc-Si:H and µc-Si:F:H (8, 12 and 15 mbar)
layers.

Table 6.4: Hydride stretching modes in the infrared spectrum of a µc-Si:H layer and their
attribution. Taken from [Smets 08a, Smets 08b, Bronneberg 11].

Full name Label
Position

Attribution
[cm−1]

low SM LSM 1980–2010 amorphous tissue in bulk, SM in vacancies
medium SM MSM 2030–2040 amorphous tissue in bulk, SM in vacancies

high SM HSM
2070–2100 amorphous tissue in bulk, SM on nanovoid surfaces
∼2120

microcrystalline phase∼2150

narrow HSM NHSM
2083 mono-, di-, and trihydrides at crystalline grain boundaries
2103 have large contribution in porous material, disappear when oxidized
2137 absent in the best cells

extreme LSM ELSM
∼1895 unique to µc-Si:H
∼1929 when going from a highly crystalline matrix to an amorphous matrix,
∼1950 they are maximum when NHSM are absent.

note that neither layer exhibits narrow HSM (NHSM), which can appear at 2083, 2103 and

2137 cm−1 and are related to crystalline grain boundaries not passivated with a-Si:H, and thus

prone to post-deposition oxidation. This is confirmed by dark-degradation measurements
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of solar cells containing these specific layers as absorber layers, and which show no effects

related to post-deposition oxidation (see Chap. 3).

The "SysB high Rc " sample shows features similar to the "SysB std" sample. However, we

observe that the LSM peaks (∼1980 to 2010 cm−1), attributed to the amorphous tissue, decrease

with an increase in HSM (shift of the maximum peak to the right at around 2100 cm−1

[Kroll 96]).

For the remaining samples at very high Rc ("KAI high Rc " and "SiF"), different features are

observed in the IR. These samples are characterized by a low amount of amorphous tissue,

and exhibit rather similar spectra, with some differences in the HSM repartition. Although the

"SiF 12 mbar" is the thinnest of all samples, it shows a spectrum similar to the thickest samples

deposited with SiF4, with a slight difference in the HSM balance, but with still quasi-absent

LSM (i.e. at 1980 to 2010 cm−1 ). This absence of LSM probably also accounts for the lower H

content, as measured by SIMS in Sec. 6.3.1.

Conclusion

In conclusion, for these materials, it was shown with Raman and FTIR spectroscopy that:

• Highly crystallized samples can be obtained with SiF4 at a range of deposition pressures.

• Compared to highly crystalline µc-Si:H layers deposited with SiH4, high compressive

stress is observed in µc-Si:F:H layers, based on the observation of a shift of the main

peak towards higher wavenumbers in the Raman spectrum.

• The IR absorption spectra of hydride stretching modes of both SysB and KAI-M layers

with standard Rc (i.e. 50–60%) exhibit device-grade material characteristics [Smets 08a].

• Layers with high Rc as obtained with SiF4 exhibit IR spectra similar to standard µc-Si:H

layers with very high Rc , although different device characteristics will be observed when

these layers are used as absorber layers in solar cells (see Sec. 6.4.4).

6.3.3 Structural evaluation by X-ray diffraction

Device-grade µc-Si:H is generally reported to have (220) preferential orientation

[Yamamoto 99a, Matsui 02b, Saito 11]. Due to this preferential orientation, many grain

boundaries should be of the [220]–tilt type, and thus grow without broken bonds [Werner 01].

The consequences of this preferential orientation are however still under debate [Schicho 12].

Note that (220) preferential orientation seems not to be required for high-efficiency µc-Si:F:H

solar cells [Dornstetter 13]. We thus carried out XRD measurements on the samples described

in Tab. 6.3.

The samples were measured on a PANalytical X’Pert PRO MRD high-resolution diffractometer,
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under 2θ (with a grazing incident angle of 1◦) and 2θ/ω configurations in a range from 20 to

100◦ in 2θ axis (see Fig. 6.7 (a)).

ϕ

ψ
ω=θ

2θ

Substrate
Film

0°

45°

90°

ϕ

90°

ψ

60°

30°

(a) (b)

Figure 6.7: Definition of angles for XRD measurements (a) and corresponding axes on pole
figures (b).

For the X-ray source, we used the kα,1 and kα,2 emission lines from a copper anode, at

wavelengths of 1.5405980 and 1.5444260 Å, respectively, and with kα,2/kα,1 = 0.5. According to

Bragg’s law, reflections occur only at specific angles θ between an incident X-ray beam and a

sample, such as given by:

nλ= 2d sin(θ), (6.1)

where d is the inter-planar distance, λ is the wavelength of the incident X-ray beam, and n

is an integer determined by the order of a given reflection. This relationship describes the

condition for constructive interference (and thus the appearance of a peak in the XRD pattern)

from successive crystallographic planes given by their Miller indices (hkl ).

Preferential orientation in µc-Si:H can in principle be deduced from deviations of

peak intensity ratios, from the known values of a pure Si reference powder spectrum

[Vallat-Sauvain 00]. To gain further information about the orientation distribution, we

recorded pole figures. By tilting and rotating the sample (around ψ and φ), mounted onto a

diffractometer, the intensity distribution of a (220) reflection over the orientation sphere—a

pole figure—was recorded (see Fig. 6.7 (b)). Pole figures were analyzed and plotted with the

MTEX MATLAB toolbox (version 3.5.0) [Bachmann 10]. For all pole figures, ψ values above

around 60◦ should be discarded, as the incident beam is strongly defocused for such angles.

Fig. 6.8 shows the X-ray reflections of the samples of Tab. 6.3 using a 2θ/ω configuration,

presented as raw data. The broad shoulder at low angles is caused by the amorphous glass

substrate and is present for each sample.

Dashed lines correspond to the calculated position of reflections for planes in c-Si, using

Eq. 6.1, together with the following relationship:

1

d 2 = h2 +k2 + l 2

a2 ,
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θ

Si(111) Si(422)Si(331)Si(400)Si(311)Si(220)

SysB std

SysB high Rc

KAI high Rc

KAI std

SiF 15 mbar

SiF 12 mbar

SiF 8 mbar

Figure 6.8: 2θ/ω XRD pattern for the samples of Tab. 6.3. The broad shoulder at low 2θ angles is
attributed to the glass substrate. The curves are shifted by 500 counts for better visualization.

valid in cubic lattices, with a=5.4307 Å, the lattice parameter of c-Si.

Both "SysB" and "KAI" samples show peaks at d corresponding to the (111), (220), (311) and

(400) planes. The "SiF" samples show peaks at d corresponding to the (111), (220), (311) and

(400) planes, too. However, the peak intensity corresponding to the (220) orientation is much

lower. For these samples, the overall signal-to-noise ratio is lower, due to the thinness of the

films.

For the "SiF" samples, we therefore recorded XRD patterns at a low grazing incident angle of

1◦, i.e. a fixedω, for a higher signal-to-noise ratio. The results are shown in Fig. 6.9, confirming

the presence of peaks at d corresponding to the (111), (220), (311), (400), (311), and (422)

planes, thus confirming the microcrystalline nature of µc-Si:F:H films.

From Fig. 6.8 we also estimated the mean size of the crystallites (τ) of the "SysB" and "KAI"

samples from the (220) reflection, using the Scherrer equation:

τ(2θ) = Kλ

βcosθ
, (6.2)

where K is the shape factor (set to 0.9, assuming spherical particles [Patterson 39,

Langford 78]), and β is the broadening at half maximum intensity (FWHM) in rad. Results for

mean crystallite sizes are summarized in Tab. 6.5. Due to the poor signal-to-noise ratio, mean

crystallite sizes were not evaluated for the "SiF" samples. From the literature, larger grains

would however be expected [Djeridane 07].

The absolute values for τ should be considered with extreme care, as they give only a lower

bound for the crystallite sizes, assuming they are spherical, which is usually not the case. For

similar crystallinity, the τ values can however be interpreted as trends: "SysB" layers have
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θ

Si(111) Si(422)Si(331)Si(400)Si(220) Si(311)

SiF 15 mbar

SiF 8 mbar

SiF 12 mbar

Figure 6.9: 2θ scan at a low grazing incident angle of 1◦ for the samples of Tab. 6.3 deposited
with SiF4. The curves are shifted by 1500 counts for better visualization.

Table 6.5: Mean size of the crystallites, as obtained with Eq. 6.2 for the (220) peak (2θ = 47.312◦).
The resulting τ is a lower bound estimation, with about 5% uncertainty.

Sample
FWHM τ

[◦] [nm]
Reference 0.307 -
SysB std 0.471 53
KAI std 0.543 36
SysB high Rc 0.494 47
KAI high Rc 0.727 21

slightly larger crystallites than "KAI" layers, and in both cases increasing Rc by increased

dilution leads to a reduction of the mean crystallite size. This can be attributed to the different

deposition frequencies, as shown by Finger et al. [Finger 94], where selective etching of

disordered material to create more space to develop crystalline grains was proposed when

using higher frequencies, as is the case here for "SysB" layers.

To confirm the (220) preferential orientation of microcrystalline Si films, evaluation of pole

figures on the (220) and (111) reflections was conducted. Fig. 6.10 shows the pole figures of

the four samples deposited with SiH4. For each sample, we measured pole figures at fixed

2θ = 28.441◦, corresponding to the inter-planar distance of the {111} planes, and at fixed

2θ = 47.3005◦, corresponding to the inter-planar distance of the {220} planes.

When looking at the "SysB std" sample, the pole density distribution for the (220) reflections is

concentrated in the middle of the figure. The pole density distribution of the (111) reflections

is concentrated in the region that matches the corresponding angle of the (220) with respect

to the (111) plane (α(220),(111) = 35.3◦). This implies that the (220) planes are mostly aligned

approximately parallel to the substrate, or the [220] direction is aligned to the sample normal
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Figure 6.10: Pole figures for layers deposited with SiH4 at various pressures for the (220) and
(111) orientations. The color scale represents counts at the detector.

direction, also called the sample fiber direction. We hence deduce a weak but clearly

recognizable (220) fiber texture. Similar observation can be made for the "SysB high Rc "

sample, where the preferential orientation is even slightly more marked, as densification is

observed for the peak in (220) and the ring becomes thinner. The "KAI std" sample also shows a

(rather weak) (220) orientation, which diminishes when increasing the crystallinity [Meier 01],

as observed for "KAI high Rc ," where the preferential orientation almost completely vanishes.

Fig. 6.11 shows similar analysis for the "SiF" layers. No preferential orientation is observed for

d corresponding to (220) or (111) planes. For the layer deposited at 15 mbar, we observe ring

patterns, corresponding to the (400) preferential orientation, justified by the presence of the

rings at angles corresponding to the calculated anglesα(400),(111) = 54.7◦ andα(400),(220) = 45.0◦,

and implying a (rather weak) (400) preferential orientation. This preferential orientation is

absent in the "SiF" samples deposited at 12 and 8 mbar.
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Figure 6.11: Pole figures for layers deposited with SiF4 at various pressures for the (220), (111)
and (400) orientations. The color scale represents counts at the detector.

Thus, our layers deposited with SiF4 exhibit no—or very weak (400)—preferential orientation,

though being highly crystalline, as suggested by Dornstetter et al. [Dornstetter 13].

6.3.4 Summary

The first part of this chapter was focussed on µc-Si:F:H layers and their characteristics. We

presented a detailed structural analysis of selected µc-Si:F:H layers and compared them with

standard µc-Si:H layers. In particular, it was shown that

• Rc values close to 90% can be achieved with SiF4 at a deposition rate of up to 4 Å/s.
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• At high pressure, the obtained layers are subject to compressive stress as indicated by

Raman analysis.

• No NHSM are detected by FTIR in the hydride stretching modes and obtained µc-Si:H

layers show similar infrared absorption spectra as standard layers with high Rc . However,

as will be shown in Sec. 6.4, despite this similarity, high Rc µc-Si:H and µc-Si:F:H layers

lead to different performance in devices, related to the higher Rc obtained with SiF4,

leading to higher infrared absorption in the device.

• A weak (400) preferential orientation can be present in µc-Si:F:H layers, whereas our

standard µc-Si:H layers exhibit mostly (220) preferential orientation.

Note that the use of SiF4 has no detrimental contamination effect on our reactor, as shown by

SIMS analysis.

To further understand the growth mechanisms and the link between plasma conditions

and microstructure, investigations of alternative deposition regimes for µc-Si:F:H with other

dilutions, excitation frequencies and inter-electrode gaps could be very interesting.

In the following section, we will show the first results that were obtained when using µc-Si:F:H

layers as the absorber layer in single-junction and tandem solar cells.

6.4 Solar cell results

6.4.1 Effect of adding a fluorinated precursor to standard chemistry

Before implementing the layers developed in Sec. 6.2 in solar cells, the effect on cell

performance of adding a small amount of SiF4 to the standard plasma chemistry of our

high-efficiency µc-Si:H baseline process [Bugnon 13] was investigated. A small amount of SiF4

(15% of the SiH4 flux) was added to the plasma (SiH4 highly diluted in H2 at high pressure). To

remove any effect that may arise from differences at the p–i interface, and also to keep the

same nucleation of the absorber layer, SiF4 was introduced, with no plasma break, only after

the growth of 90 nm of the absorber layer.

Tab. 6.6 shows the electrical performance of solar cells deposited with this procedure on

5-µm-thick LPCVD-ZnO with increasing roughness (Z5 75’, Z5 45’, Z5 20’ and Z5 5’).

We observe that the electrical performance on Z5 45’ is slightly lower than the standard

baseline values for similar Rc and thickness. When using rougher superstrates, the overall

efficiency decreases with the same trends as the baseline process (not shown here). This

performance loss with roughness is attributed to the appearance of porous zones in the

absorber layer, similarly as for standard SiH4-based processes (see Chap. 3 and [Python 08,

Cuony 11, Bugnon 12]). This experiment suggests that a simple, slight, addition of SiF4 is not

sufficient to modify the morphology of the material.
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Table 6.6: Electrical performance of a standard single-junction µc-Si:H solar cell (typical value
from KAI-M baseline [Bugnon 13]) and single-junction solar cells deposited on superstrates of
increasing roughness, with a small amount of SiF4 (15% of the SiH4 flux) added to the standard
process. For these cells, Voc and FF are presented based on the average of 12 cells on each
superstrate, whereas Jsc and η are values given for the best cell only.

Cell Superstrate Voc [mV] FF [%] Jsc [mA/cm2] η [%]
standard [1.1µm] Z5 45’ 540–550 74–75 23.6–24.3 9.5–10.0

standard + [SiF4]
[SiH4] = 15%

Z5 75’ 547±2 74.9±0.4 21.7 9.0
Z5 45’ 536±2 72.5±0.5 23.5 9.3
Z5 20’ 504±2 71.0±0.2 24.6 8.9
Z5 5’ 498±4 69.5±0.4 24.6 8.6

6.4.2 Solar cells with fluorinated absorber layers

We then implemented µc-Si:F:H films, developed in Sec. 6.2, as absorber layers in single-

junction solar cells. If not stated otherwise, we used the SiOx doped layers and buffer layers

from the baseline process [Bugnon 14], and varied only the deposition conditions of the

absorber layer, at a fixed temperature of 200 ◦C. We did not use any precursor grading during

the deposition of the absorber layer. For the superstrate, we again used 5-µm-thick LPCVD-

ZnO of increasing roughness (Z5 45’, Z5 20’, Z5 10’ and Z5 5’). For the back electrode, we used

a lightly doped 2.3-µm-thick LPCVD-ZnO, and patterned 16 cells with an area of 0.25 cm2.

The presented results contain average values of at least six cells per sample for Voc and FF .

The values of Jsc, η and the sub-gap absorption coefficient at 0.8 eV (α0.8) as measured by

Fourier-transform photocurrent spectroscopy (FTPS) [Vanecek 02] are given for the best cell

only.

The solar cells presented in Fig. 6.12 have an absorber layer thickness of ∼1.2µm and Rc values

ranging from 80 to 93%, as measured through the n-doped side of the solar cell. The absorber

layer was deposited at low Dr , between 0.6 and 2.3 Å/s, at pressures ranging from 4 to 15 mbar

and for two dilutions.

Voc values around 450 mV and average FF values from 68 to 70% are obtained for samples

deposited at high pressure, i.e. 8 mbar and above. For those cells, high Jsc are obtained, with

values up to 25.8 mA/cm2 for the solar cell deposited at 12 mbar, together with Voc and FF

values of 443 mV and 67.7%, respectively. This Jsc value is about 1.5 mA/cm2 higher that our

standard baseline cell for the same thickness, electrodes and doped layers. This enhanced

Jsc is essentially attributed to higher absorption in the NIR due to the high Rc value of the

µc-Si:F:H absorber layer, as it will be shown in Sec. 6.4.4. For the data presented in Fig. 6.12,

the effect of hydrogen dilution is consistent with observations made with intrinsic layers, i.e.,

a slightly higher Rc is reached. The best efficiency is achieved with a higher dilution thanks to

a higher Jsc, for a constant Voc and FF .

For the lower pressure (4 mbar), a strong degradation of all electrical parameters is observed.
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η 

Figure 6.12: Performance of single-junction µc-Si:F:H solar cells with a 1.2-µm-thick absorber
layer with high Rc , deposited on Z5 45’, as a function of the deposition conditions.

Although only one sample is presented here, with Voc=355 mV, FF=47.4% and Jsc=6.4 mA/cm2,

we observed reproducible lower performance for cells deposited at low pressure (in our

case typically below 4 mbar) due to too high power. Cells with efficiencies above 7% could

be obtained at pressures as low as to 4 mbar, but only with the lowest power and the low

associated Dr of 0.4 Å/s, obtained for a slightly thinner cell deposited at 180 ◦C. We attribute

the lower performance at low pressure and high power to bombardment by ions, arriving at

the growing surface with high energy and generating defects in the absorber layer [Gordijn 06].

To get further insights into µc-Si:F:H material, we then studied defect-related absorption, α0.8,

which is related to defect density in the bulk material. The obtained α0.8 values are plotted in

Fig. 6.13 for the same solar cells.

From this figure, we observe an increase of α0.8 correlated with a higher defect density, when

going to low pressure or higher power [Gordijn 06, Bugnon 13]. However, best obtained values

are still 2–3 times higher than state-of-the art values. Even though both materials have similar

bandgaps, the FTPS technique is not fully validated for µc-Si:F:H solar cells. Still, our layers are

probably more defective than state-of-the-art µc-Si:H layers. Indeed, although a reasonable

efficiency is obtained, Voc is low.

We also measured the Urbach energy (slope of the absorption coefficient), which increased
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α

η 

2.1 Å/s

0.6 Å/s

Figure 6.13: Defect-related absorption as a function of conversion efficiency for µc-Si:F:H solar
cells and for different deposition conditions. These cells have an absorber-layer thickness of
1.2µm and were deposited on Z5 45’. The dashed line represents the best α0.8 value of a baseline
µc-Si:H cell with same thickness and superstrate. Except for the two explicitly given values,
the absorber layer was deposited at 1 Å/s. This figure suggests that µc-Si:F:H material is more
defective than standard, high-quality µc-Si:H.

from about 39 meV for cells deposited at 15 mbar to 54 meV for the cell deposited at 4 mbar

and higher power, which is an indication of the presence of more strained bonds. We however

observe that high-pressure regimes above 8 mbar are more favorable to the growth of high-

quality µc-Si:F:H solar cells, similarly as for µc-Si:H obtained with SiH4.

Best solar cells obtained with fluorinated precursors

Further tests were then performed by slightly adjusting the power to optimize the single-

junction solar cell. Fig. 6.14 presents the J-V and EQE curves of our best cell with a 1.1-µm-

thick absorber layer deposited at 1 Å/s, at a pressure of 12 mbar, a temperature of 200 ◦C, a

dilution of 1:3:36 and on a Z5 20’ superstrate. The measured Rc value is 90%. The other cells

were co-deposited on superstrates of various roughnesses. Their electrical parameters are

summarized in Tab. 6.7.

Table 6.7: Electrical parameters of single-junction µc-Si:F:H solar cells, with an absorber layer
thickness of 1.1µm, as function of superstrate roughness. The best cell (area: 0.25 cm2) is
obtained on a Z5 20’ superstrate, with a measured Rc value of 90%.

Superstrate Voc [mV] FF [%] Jsc [mA/cm2] J−1V [mA/cm2] η [%]
Z5 45’ 467 71.6 23.6 23.7 7.9
Z5 20’ 462 69.1 26.0 26.3 8.3
Z5 10’ 467 59.9 25.7 25.9 7.2
Z5 5’ 470 56.6 25.7 26.1 6.8
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(b)(a)

0 V -1 V

Figure 6.14: J-V (left) and EQE (right) curves of single-junction µc-Si:F:H solar cells, with an
absorber layer thickness of 1.1µm, as a function of superstrate roughness. The best cell (area:
0.25 cm2) is obtained on Z5 20’ superstrate, with a measured Rc value of 90%. EQE are measured
at 0 V and at reverse bias of -1 V. Note that for Z5 45’, the curves are superimposed, indicating no
collection problems on the smooth superstrate.

According to Tab. 6.7 and Fig 6.14, Voc values between 462 and 470 mV are achieved,

with a highest η of 8.3%, which is close to the best reported value of 9.2% [Dornstetter 13,

Dornstetter 14]. Interestingly, there is no Voc dependence on superstrate roughness. This

suggests that with such a low Dr , the superstrate roughness does not induce the creation of

porous zones, as will indeed be shown in Sec. 6.4.3.

Furthermore, Tab. 6.7 and additional depositions suggest that in the case of µc-Si:F:H, the

optimal superstrate is no longer the smooth Z5 45’, but the rougher Z5 20’. This discrepancy is

principally due to a large gain in Jsc in the NIR (+ 2.4 mA/cm2 from Z5 45’ to Z5 20’) for similar

Voc. FF is slightly reduced because of collection losses, from 71.6 to 69.1% when going from

Z5 45’ to Z5 20’, but there is a total positive gain.

Even though Voc stays stable with respect to superstrate roughness, a drastic decrease in FF

takes place with only 56% for the rough Z5 5’ superstrate. This loss is mainly due to collection

issues, as also seen in the low wavelengths of the EQE curves in Fig. 6.14 measured at 0 V and

under reverse bias (-1 V).

Thick solar cells deposited with a fluorinated precursor

To evaluate the effect of the absorber layer thickness on solar cell performance, a solar cell with

a 3.1-µm-thick absorber layer was deposited on Z5 20’ with the same deposition process (i.e.

pressure=12 mbar, dilution=1:3:36, Dr =1 Å/s). J–V and EQE curves (at reverse bias up to -4 V)
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of this cell are shown in Fig. 6.15. Voc, FF and Jsc values of 412 mV, 53.3% and 27.1 mA/cm2,

respectively, are reached. Bad collection is confirmed by EQE measurements at -4 V and the

low FF, similarly as for the rough superstrate.

Voc = 412 mV
FF = 53.3%

Figure 6.15: EQE (left) and J–V curves of a solar cell with a 3.1-µm-thick µc-Si:F:H absorber
layer, deposited on Z5 20’. EQE curves were measured under various electrical biases and
corresponding calculated current densities are shown.

The high EQE in the NIR is however extremely promising for multi-junction devices. To obtain

more information on the quality of the µc-Si:F:H material and the possible causes for the low

carrier collection, we carried out TEM analysis of a solar cell deposited on a rough superstrate,

as discussed in the following section.

6.4.3 TEM imaging of a solar cell deposited on rough superstrate

To investigate the effect of superstrate roughness on material microstructure and defect

formation, a TEM lamella was prepared by tripod polishing, followed by smooth Ar ion milling

for a solar cell with a 1.1-µm-thick absorber layer, deposited at 15 mbar, with a dilution of

1:3:36, at Dr =1 Å/s, on a rough Z5 5’ superstrate (Voc=447 mV, FF=51.0%, Jsc=25.7 mA/cm2).

Such a sharp superstrate surface usually induces porous zones in the absorber layer of µc-Si:H

solar cells. The electrical properties of a co-deposited cell (on Z5 45’) are shown in Fig. 6.12.

A bright-field (BF) image of a cross section of this cell is shown in Fig. 6.16.

Zones I-III will be analyzed in detail in the following. Zone I potentially contains porous

material (sharp V-shaped front LPCVD-ZnO), zone II is the location of the i –n interface and

zone III is representative of the bulk material.

Fig. 6.16 shows the presence of columnar structures of highly crystallized µc-Si:F:H material,

with large elongated grains of sizes up to ∼ 100×800 nm. The columnar growth of single grains

was also confirmed by dark field (DF) images (not shown here). This figure suggests that the

grains are indeed larger than for standard µc-Si:H obtained from SiH4, as expected from the

literature [Houben 98, Bailat 03, Djeridane 08, Moreno 12].
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Figure 6.16: BF TEM cross section of a solar cell deposited on rough ZnO (Z5 5’). The locations
marked by arrows are analyzed in greater details in Fig. 6.17 to 6.19. Lamella preparation: M.
Lebœuf, image: M. Dadras.

Based on Fig. 6.16, another discrepancy between µc-Si:F:H and µc-Si:H is the absence

of typical porous zones observed in µc-Si:H when solar cells are grown on such a rough

superstrate. These defective zones usually appear as bright stripes going from the bottom of

valleys of the V-shaped features—typically the front LPCVD-ZnO electrode—and throughout

the absorber layer [Bailat 02, Python 08, Li 09b].

Fig. 6.17 shows a magnified micrograph of the Z5 5’/p-doped SiOx/i -µc-Si:F:H interface

corresponding to zone I in Fig. 6.16. Note that this figure is intentionally acquired slightly

out-of-focus to gain information on porous defects.

The first observation which can be made is that no large amorphous incubation zone appears

at the bottom of the µc-Si:F:H absorber layer, with crystalline growth starting directly on the

20-nm-thick p-doped SiOx layer. On the other hand, nanoporous zones are clearly visible and

are indicated by the arrows (a) and (b). Arrow (a) indicates nano-sized porous "filaments" that

originate at the bottom of the V-shaped valleys, whereas arrow (b) shows these same filaments

to be present on a locally flat area as well. We must mention that the filament-type defective

zones observed here can be seen only in the out-of-focus mode, in opposition to larger porous

zones, which can be more easily detected by TEM but also by scanning electron microscopy

(SEM) images of polished cross sections [Python 09a]. Even though these porous zones are

much smaller, they probably participate to the FF drop observed in Tab. 6.7 for a similar cell.

We then concentrate on zone II, a magnified view of the i –n interface in Fig. 6.18. Here,

filaments are also observed, similar to the ones observed in Fig. 6.17. However, they are not

necessary linked to V-shaped ZnO grains, but are found within the absorber layer, usually
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Figure 6.17: BF TEM micrograph of the Z5 5’/p-doped SiOx/i -µc-Si:F:H interface (zone I in
Fig. 6.16). The two black arrows indicate defective nano-porous zones, originating from the
bottom of V-shaped ZnO grains (a), as well as from a locally flat interface (b). Lamella
preparation: M. Lebœuf, image: M. Dadras.

Figure 6.18: BF TEM micrograph of the i –n interface (zone II in Fig. 6.16). In (a), a void crossing
the cell is shown. In (b), a continuous porous zone between the n-doped SiOx layer and the
LPCVD-ZnO back electrode can be seen, suggesting poor adhesion of the LPCVD-ZnO back
electrode. Lamella preparation: M. Lebœuf, image: M. Dadras.

where two columnar grains merge.

These filaments might be responsible for poor transport properties. However, they probably

affect the electrical properties of solar cells differently than the usual porous zones which can
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be observed with standard SiH4-based plasma chemistry and also lead to a Voc drop (and not

only a FF drop as in our case) [Python 09b].

At the location pointed by the arrow (b), a continuous porous zone between the 30-nm-thick

n-doped SiOx layer and the LPCVD-ZnO back electrode is visible, indicating poor adhesion of

the back electrode. This poor adhesion was observed when preparing the µc-Si:F:H solar cells,

especially during the patterning steps, where delamination issues were often encountered.

As a consequence, the n-doped layer should probably be optimized specifically for these

µc-Si:F:H solar cells.

Fig. 6.19 shows the structure of large grains at higher magnification.

Figure 6.19: BF TEM micrograph of large crystalline grains at the i –n interface (zone III in
Fig. 6.16), at higher magnification. Structural defects are observed in (a) and (b). In (c), the
overlapping of two grains creates a Moiré interference pattern. In (d), poor adhesion is observed
between the n-doped layer and the LPCVD-ZnO back electrode. Lamella preparation: M.
Lebœuf, image: M. Dadras.

In locations marked by arrows (a) and (b), we detect parallel lines within the grains, which

can be attributed to stacking faults within the grains, leading to nano-twins (not verified with

a diffraction pattern) [Houben 03]. Thus, although we obtained decent Voc values for such

solar cells, the quality of the grains may be improved to further enhance the efficiency of such

solar cells, especially to reach high Voc above 500 mV at such high Rc . Arrow (c) points to dark

and thick lines, which are Moiré interference fringes, coming from the spatial superposition

of two grains. Finally, with arrow (d), we again observe poor adhesion of the LPCVD-ZnO

back-electrode. This poor adhesion is however not the underlying reason for poor electrical

performance on rough superstrate, as peeling of the LPCVD-back electrode was encountered

mostly on smooth superstrates.
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Summary of TEM observations

In summary, the TEM cross section made of a single-junction µc-Si:F:H solar cell deposited

on a rough superstrate shows that

• Large columnar grains can be obtained with SiF4-based plasma chemistry.

• Structural defects are present, appearing as nano-pores that can be observed at the

column boundaries and to some extent, in the V-shaped valleys of the LPCVD-ZnO

superstrate.

• Large grains, containing structural defects, are present. These defective grains are a

probable cause of Voc values below 500 mV.

• The adhesion between the n-doped layer and the LPCVD-ZnO back electrode is poor,

also observed during preparation of the solar cells. This adhesion issue is however not

the cause of poor performance observed on a rough superstrate.

These observations were made for a solar cell deposited at low Dr . It would be necessary to

study a similar cell grown at higher Dr to assess whether SiF4-based chemistry hinders the

creation of porous zones, e.g. by selective etching induced by fluorine [Kasouit 02].

6.4.4 Comparison with standard solar cells with high cristallinity

In this section we compare the performance of our best µc-Si:F:H material with µc-Si:H

obtained with standard SiH4-based plasma, but with the highest feasible Rc .

In a single-junction µc-Si:H solar cell with a 2-µm-thick absorber layer, deposited at 2.2 Å/s

on smooth Z5 45’, with an Rc value of 80%, Voc, FF and Jsc values of 397 mV, 62.2%, and

26.6 mA/cm2, respectively, were reached. The obtained Voc value is thus 22 mV below the

value of a µc-Si:F:H cell (Rc =93%) of close thickness deposited with same doped layers on a

similar superstrate, for which a Voc value of 419 mV was measured. On the other hand, Jsc and

FF values are quite similar, with 26.3 mA/cm2 and 62.2%, respectively.

There is however a major difference in the EQE of such solar cells, as shown in Fig. 6.20.

It is clear from Fig. 6.20 that the µc-Si:F:H solar cell is subject to collection problems, already

discussed previously for other µc-Si:F:H solar cells, as demonstrated by the difference in EQE

at 0 V and -1 V bias and corresponding to a Jsc loss of 1.2 mA/cm2.

Conversely, the SiH4-based solar cell does not suffer from collection problems, but shows

a lower EQE in the NIR, even for very high Rc . We could not compare cells of similar Rc

as Rc > 80% could not be achieved. The absence of an amorphous phase is a characteristic

of material obtained from SiF4 [Dornstetter 13], associated to preferential etching by F ions

[Kasouit 02].
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Figure 6.20: EQE curves of solar cells with a ∼ 2-µm-thick absorber layer at very high Rc , made
with SiF4- and SiH4-based plasma chemistry. The cell deposited with SiF4 shows clear collection
issues, but a much higher response in the NIR.

We hence believe that with further optimization of the process such as careful control of the

hydrogen and fluorine in the plasma and control of ion bombardment, µc-Si:F:H solar cells

have a significant potential as the absorber layer in multi-junction devices, thanks to very

high absorption in the NIR. We thus believe that the fabrication of solar cells with similar

absorption in the NIR, and with Voc values above 500 mV, is feasible.

6.4.5 Application in micromorph tandem solar cells

The most promising material obtained so far in a single-junction solar cell (i.e. deposited

with the same parameters as the best cell of Tab. 6.7) was then implemented in micromorph

tandem cells, to evaluate the highest possible Jsc in a realistic device (i.e. with reasonable

thickness, deposited on as-grown LPCVD-ZnO, and with standard doped layers and back

electrode).

A 250-nm-thick a-Si:H top cell, optimized for higher current, was thus deposited on an as-

grown lightly doped 2.3-µm-thick superstrate (Z2.3) [Boccard 12b]. This top cell was followed

by a SiOx-based intermediate reflector (SOIR) [Buehlmann 07] with various thicknesses (0,

70, 90 and 120 nm) and a 3.1-µm-thick bottom cell deposited with SiF4, at 12 mbar, with an

absorber layer Dr of 1 Å/s. The EQE curves, as a function of SOIR thickness, are presented in

Fig. 6.21.

Fig. 6.21 demonstrates that a very high total current density of 31.9 mA/cm2 can be achieved

on 1 cm2 for the cell without a SOIR. Note that an anti-reflective foil is used on the glass side,

leading to a total-current gain of ∼1 mA/cm2. For increasing SOIR thickness, we observe an

expected increase in current density of the top cell, however with a reduced total current

density. These losses are attributed to both increased reflectance of the cell, and increased

parasitic absorption of the SOIR [Buehlmann 07]. We still obtain a solar cell matched above

15 mA/cm2 for the 70-nm-thick SOIR. Compared to a similar tandem cell deposited with SiH4

(70-nm-thick SOIR, similar thickness, high Rc ), this represents an absolute gain in bottom-cell
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µ

Figure 6.21: EQE and corresponding top (T), bottom (B), and total (Tot) current densities of
micromorph solar cells with a 250-nm-thick top cell and a 3.1-µm-thick highly crystallized
bottom cell, as a function of the SOIR thickness. EQE were measured at 0 V bias with an
anti-reflective foil applied on the glass.

current density of 1.2 mA/cm2, demonstrating the superior potential of absorption in the NIR

for cells deposited from SiF4.

The other electrical parameters of these cells (Voc, FF) are low (∼1 V and 63%) for the cell

without a SOIR. For cells with a SOIR, S-shaped J–V curves were obtained, leading to a very

low FF down to ∼35% for the cell with the thickest SOIR (120 nm). We attribute this loss to a

too high oxygen content in the SOIR, rendering it too resistive [Buehlmann 07]. The low Voc

can not be attributed to the bottom cell only, as the co-deposited reference bottom cell has

a Voc of 414 mV on Z5 20’. Hence, the effect of SiF4-based plasma on the top cell during the

growth of the bottom cell requires further investigation.

6.5 Conclusion and outlook

This chapter focused on microcrystalline silicon developments based on SiF4. We first detailed

the development of µc-Si:F:H layers and showed that a highly crystallized layer can be

obtained. We then characterized selected layers by SIMS, Raman spectroscopy, FTIR and XRD.

We also implemented µc-Si:F:H layers as absorber layers in single- and multi-junction solar

cells. In particular, we showed that
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• The use of SiF4-based plasma chemistry is compatible with other standard PECVD

processes and does not induce additional contamination.

• From a structural point of view, these layers exhibit similar properties to standard

SiH4-based layers with high Rc , but with no or limited preferential orientation.

• Large grains, of sizes up to ∼ 100×800 nm, can be obtained, but containing stacking

faults and nano-twins. At low Dr , porous zones, which are usually visible in standard

SiH4-based solar cells, are absent.

• In single-junction solar cells, Voc values above 460 mV were obtained, together with very

high Rc , and Jsc of 26 mA/cm2, leading to an efficiency of 8.3% for 1.2-µm-thick solar

cells, and showed the potential for Jsc values above 30 mA/cm2 for thicker solar cells.

• The optimum superstrate roughness was shifted towards higher roughness, thanks to

enhanced absorption in the NIR, with the consequence of a reduction in FF, but not in

Voc.

• µc-Si:F:H layers have the potential to reach record Jsc when used as the absorber layers

in multi-junction devices, thanks to unequaled absorption in the NIR, as demonstrated

here with micromorph tandem solar cells with total Jsc of 31.9 mA/cm2 and micromorph

tandem solar cells matched above 15 mA/cm2.

Many points however still require further investigation: first, as observed, both the deposition

rate and Raman crystallinity factor are sensitive to the ratio of SiF4 and H2 in the plasma,

with the existence of a probable optimum specific to each Dr –Rc , which needs to be assessed.

Second, since significant compressive stress was observed for layers on glass, it should be

clarified whether this stress has an impact on solar cell performance and, if so, how it can

be controlled. In [Bugnon 13], it was shown that, indeed, stress leads to worse solar cell

performance in the case of standard µc-Si:H, strongly correlated to an increasing bulk defect

density as measured from FTPS and increased ion bombardment energy. The role of precursor

grading in µc-Si:F:H absorber layer growth, as well as the possibility to dope or alloy µc-Si:F:H,

should be carefully studied as well.

Finally, to match industrial requirements, higher Dr are required. For that purpose, the

use of very high frequencies—combined with an optimized inter-electrode gap—might

be an attractive solution to reduce detrimental ion bombardment [Curtins 87b, Meier 04,

Bugnon 13]. On the other hand, a low deposition rate might be advantageous for processes

where nanometric precision is required, such as thin highly crystalline doped layers, or the

fabrication of quantum dots.
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7 Conclusion and Perspectives

This chapter summarizes the main findings and achievements of this thesis. At the end, some

perspectives for the future of the technology are given.

7.1 Conclusion

7.1.1 Requirements for high-efficiency devices

In Chap. 3, the development of high-efficiency single-junction hydrogenated microcrystalline

silicon (µc-Si:H) solar cells in a small-area research reactor was presented. It was shown

that both an adequate cell design and high-quality µc-Si:H material are required for high-

efficiency solar cells. Then, the impact of defective porous zones in the µc-Si:H absorber

layer, which appear when a µc-Si:H layer is deposited on highly textured superstrates, was

investigated. The relation between the presence of such porous zones and dark degradation

of solar cells was confirmed. This dark degradation occurred when finished solar cells were

stored in ambient conditions, and was attributed to moisture ingression through the porous

zones in the absorber layer. It was also demonstrated that dark degradation can be limited

with a smooth superstrate morphology or an adapted deposition process. To demonstrate

the interconnection of this porous phase within the absorber layer, advanced scanning

electron microscopy was employed for a tomographic 3-D reconstruction of the absorber layer,

showing for the first time the interconnection of such defective zones within the absorber

layer. Finally, we reported a certified record efficiency for single-junction µc-Si:H solar cells,

with an efficiency of 10.7%, on an area >1 cm2, as well as an efficiency of 10.9% on smaller area

(0.25 cm2).

7.1.2 Post-deposition processes

In Chap. 4, it was shown that the detrimental effect of porous zones in the absorber layer

can partly be mitigated by dedicated post-deposition treatments. By using a post-deposition

hydrogen plasma treatment that was first developed to improve the electrical properties of
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zinc oxide deposited by low-pressure chemical vapor deposition (LPCVD-ZnO), it was shown

that exposure to such a hydrogen plasma could be beneficial for solar cells that have very

resistive LPCVD-ZnO electrodes. However, curing of porous zones was demonstrated by

annealing in vacuum. This improvement of the porous zones in µc-Si:H was detected both in

complete solar cells (leading to improvements in open-circuit voltage (Voc) and fill factor (FF)

of up to 30 mV and 4%, respectively), and by Fourier-transform photocurrent spectroscopy

with lowered defect-related absorption. It was finally demonstrated that the deposition of

LPCVD-ZnO could induce additional defects in these porous zones, and that annealing in

vacuum can lead to the subsequent curing of these defects.

7.1.3 Towards fully passivated µc-Si:H

We then investigated the effect of dedicated interfaces on solar cell performance, also under

lower illumination levels. It was demonstrated that silicon oxide SiOx p-doped layers are

extremely efficient as shunt-quenching layers. These SiOx p-doped layers were moreover

shown to be especially effective on rough superstrates. Passivated interfaces in µc-Si:H solar

cells were then introduced, based on the addition of amorphous silicon layers, similar to a

concept used in crystalline silicon heterojunction solar cells. A large increase in Voc for thin

µc-Si:H solar cells was demonstrated. This concept led to record values of 608 mV in a single-

junction solar cell, and 1.53 V in a micromorph tandem cell. By investigating the interplay

between passivation and cell thickness, we concluded that even though µc-Si:H absorber

layers were of high quality, solar cells were mostly limited by the quality of the bulk material

when made thicker. A simulation of a thin µc-Si:H device confirmed that an understanding of

each interface is crucial in thin µc-Si:H solar cells, and that the passivation of electronically

dead doped layers is essential to avoid an interface-limited device.

7.1.4 Potential of highly crystallized material

In the last chapter, the potential to obtain a high short-circuit current density (Jsc) without

compromising on material quality was evaluated. In particular, highly crystalline absorber

layers, made with the additional silicon tetrafluoride (SiF4) precursor, were investigated.

Highly crystalline layers were indeed obtained, with crystallinity values as defined by Raman

spectroscopy (Rc ) well above 80% and above the values that could be obtained with standard

silane-based plasma chemistry. We compared these layers with highly crystalline layers

obtained with our state-of-the art processes. It was concluded that although layers obtained

with SiF4 were similar in many points to highly crystalline layers obtained with silane, layers

obtained with SiF4 showed no or very little crystallographic preferential orientation in films,

and contained a high compressive stress.

When such highly crystallized films were implemented as absorber layers in single-junction

solar cells, Voc values as high as 470 mV, and a conversion efficiency (η) of 8.3% were obtained

in single-junction solar cells (with Rc∼90%). Although it was found that superstrate roughness
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was a limiting factor, no porous zones were detected in the absorber layer by transmission

electron microscopy (TEM). TEM also revealed the presence of very large crystalline grains,

but containing structural defects (nano-twins and porous filaments), likely responsible for the

lower electrical performance when cells were made thicker. A record total Jsc of 31.9 mA/cm2

was however demonstrated for a micromorph tandem cell, thanks to improved absorption in

the near-infrared, for a total silicon thickness of 3.4µm, which makes it the highest reported

value for such a configuration. For this material obtained with SiF4, many questions remain

open, especially concerning the feasibility of producing high-quality material at a high

deposition rate, which is a key requirement for implementation as the bottom cell in multi-

junction devices.

7.2 Perspectives

Thin-film silicon technology has a unique potential for large-scale deployment of renewable

electricity production. Apart from very high efficiency, it meets every requirement for a

photovoltaic technology. First, it is based on the use of abundant and non-toxic materials. This

criterion will be of high importance in a society where photovoltaics will reach terawatt levels

of electricity production. Second, the low temperature coefficients and lowest production

cost per square meter makes it one of the best candidates for large power plants in hot areas,

but also for building integration due to its proven aesthetics potential. Then, thin-film silicon

technology is one of the technologies with small gap between the lab-scale best values and the

record module efficiency. Indeed, improvements, such as the one obtained in this thesis, can

in principle be implemented in industrial production lines in a reasonable amount of time, as

both research and industry are based on the same technological concepts.

However, due to the very low price of the well-established crystalline silicon technology and

to become competitive in the current market, a significant leap in conversion efficiency will

be required. The current state-of-the-art efficiency is a triple-junction solar cell with a stable

efficiency of 13.4% [Kim 13] (Voc= 1.96 V, Jsc= 9.5 mA/cm2 and FF= 72%).

We believe that solar cells based on thin-film silicon have a stabilized efficiency potential of

15% without needing a major breakthrough. Indeed, by assuming a triple-junction solar cell

matched at 10 mA/cm2 with a stable FF of 73%, combining a top cell with a wide bandgap

delivering 1 V, a high-Voc middle cell delivering 560 mV, and an optimized bottom cell based

on SiF4 chemistry, such as the one presented in Chap. 6, delivering 490 mV, an efficiency above

15% is within reach. To go beyond this limit, major improvements will be required, such as

both drastically minimizing light-induced degradation in amorphous silicon and optimizing

the bandgap utilization of each subcell in the multi-junction configuration, as very recently

demonstrated by simulation [Isabella 14]. According to this study, 19.8% is a realistic limit

for quadruple-junction solar cells. However, mastering quadruple-junction cells will be a

technical challenge. These cells would also have to be optimized for a given spectrum, as a

slight spectrum mismatch can quickly lead to a decrease in efficiency.
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A Measurements of cells on highly
textured superstrates

In this appendix, we will present some considerations that should be taken into account

when performing current-voltage (J–V ) measurements of solar cells deposited on textured

superstrates. It has been known for a long time that artifacts can be induced into efficiency

measurements by scattering interfaces [Meier 94, Golay 00]. Indeed, if silicon is removed

around the cells to access the front electrode, light hitting bare zinc oxide (ZnO) at the side

of the cell can be trapped in the glass and scattered back into the neighbor cell, artificially

increasing its short-circuit current density (Jsc) and thus its calculated conversion efficiency

(η). This artifact can be eliminated by applying a mask the exact size of the cell, defining its

area [Green 12]. However, in that case, light entering just at the edge of the mask is lost (being

scattered out of the cell), which would not happen in standard laser-scribed modules with

monolithic interconnection. To illustrate this effect, Fig. A.1 shows a light-beam-induced

current (LBIC) measurement (developed in-house by Jonas Geissbühler) of a laser-scribed

and non-shunted single-junction microcrystalline silicon (µc-Si:H) solar cell. The silicon and

scan

7.98 mm

Figure A.1: LBIC measurement performed by scanning across a laser-scribed cell with a 650-nm
laser beam under short-circuit conditions. The scribing was developed and performed by Linus
Löfgren and Moritz Schmidlin.
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ZnO back electrode were removed around the cell with a laser-scribing process (P3) to isolate

the cell and a second similar but slightly thicker scribing was performed approximately 1 mm

away from the first scribe to access the front contact. On the LBIC signal, lateral collection

from the edge of the cell can be seen. The two spikes on the sides of the cell are the parts of

the thicker second scribe with more bare ZnO exposed to the laser beam, where even more

light is injected into the cell.

To reproduce closely and fairly a true module measurement, the mask should therefore be just

slightly bigger than the cell area, to compensate for the lost light (absent or limited to a very

small dead area in a module) and the true area of the cell should be taken into account for

efficiency computation (aperture area measurement). However, this is difficult to achieve with

our cell design due to the anti-reflective texture applied to the glass, which makes the cell look

"blurry" through the glass and hinders a precise determination of its area by an independent

measurement.

The contact at the rear of the device is created by soldering two wires onto the back ZnO

electrode, inducing a non-negligible Jsc loss, as the soldered part has very poor reflection

compared to the white paint that covers the remaining part of the rear electrode.

By applying a mask smaller than the cell area, the (slightly) overestimated Jsc (some light

enters the device and is scattered to the side) is in our opinion largely compensated for by the

losses at the soldered part and the shading-induced open-circuit voltage (Voc) loss (e.g. by a

mask), analyzed with a simple one-diode model in the following.

With n the diode ideality factor, kB the Boltzmann constant, T the temperature, q the

electronic charge, J0 the reverse saturation current, and J the current density (assumed

proportional to the illumination), defining the shading factor κ as the ratio of the illuminated

area of the solar cell over the total solar cell area, and starting from the one-diode equation for

the Voc:

Voc = nkB T

q
ln

(
J

J0
+1

)
,

one gets the following expression for the Voc loss (∆Voc) due to shading:

∆Voc = nkB T

q
ln

(
1

κ

)
= 25.8mV ·n · ln

(
1

κ

)
(A.1)

at room temperature.

Fig A.2 shows the J–V measurement performed in-house with masks of different sizes of the

record cell of Chap. 3 which has a nominal area of 1.20 cm2. This cell is patterned with the

standard process (lift-off/dry-etching, without laser scribing). The masks were kindly prepared

via laser-cutting by Jonas Geissbühler and their areas were precisely determined before being

used in the computation of Jsc and η.
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Figure A.2: Electrical parameters of the record cell presented in this work, as function of the
aperture size. The plain symbols are the values without a mask, where the cell nominal area
(1.2 cm2) was taken for the efficiency measurement.

Plain symbols show the measurement of this cell without a mask and the nominal area of the

cell being taken into account for the calculation of the efficiency. The resulting efficiency is

clearly overestimated due to effects explained in the beginning of this appendix. By applying

masks of different sizes on the cell and using their areas to define the efficiency, an increasing

Jsc is expected and seen for masks smaller than the cell, due to light being trapped under the

mask and still contributing to the generation of charge carriers. The fill factor (FF) is slightly

increased. The trend for FF is more complicated due to the many parameters which influence

it (e.g. carrier collection, resistive losses, and the presence of localized microshunts and cracks).

The Voc losses are computed with Eq. A.1, assuming a nominal Voc of 557 mV and n = 1.1, as

found experimentally with the variable illumination measurements (VIM) technique in Chap.

5. A good agreement with the measured Voc is observed. A slight discrepancy is observed for 1
κ

values above 1.15, probably due to microshunts and microcracks within the absorber layer

which are not taken into account with a one-diode model (especially the J02 contribution).
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For a designated area of 1.05 cm2, a conversion efficiency of 10.8% is measured, in very good

agreement with the certified value of 10.7%. For reasons mentioned above, we believe this

measured efficiency is still a lower bound compared to what could be obtained in a scribed

module.
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B SIMS profiles for reference intrinsic
microcrystalline silicon layers

This appendix presents concentrations of foreign atoms as a function of depth in

reference intrinsic µc-Si:H layers, as obtained by secondary ion mass spectrometry (SIMS).

Fig. B.1 shows comparisons of two samples, a single µc-Si:H layer and a layer stack

(µc-Si:F:H+µc-Si:H). For details on the preparation of these samples and their purpose, the

reader is referred to Sec.6.3, where bulk concentrations of oxygen, fluorine and hydrogen are

evaluated, based on these measurements.

O F H

N B P

Ga ZnC

µc-Si:H
µc-Si:F:H/µc-Si:H

Figure B.1: Concentrations of foreign atoms as a function of depth in reference intrinsic
microcrystalline silicon layers, as measured by SIMS, for oxygen, fluorine, hydrogen, nitrogen,
boron, phosphorus, carbon, gallium and zinc.
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Mapping of mechanical stress in silicon thin films on silicon

cantilevers by Raman microspectroscopy. Journal of Non-Crystalline

Solids, vol. 354, no. 19–25, pages 2235–2237, 2008. Amorphous

157



Bibliography

and Nanocrystalline Semiconductors Proceedings of the 22nd

International Conference on Amorphous and Nanocrystalline

Semiconductors.

[Wenas 91] Wilson W. Wenas, Akira Yamada, Makoto Konagai & Kiyoshi

Takahashi. Textured ZnO Thin Films for Solar Cells Grown by

Metalorganic Chemical Vapor Deposition. Japanese Journal of

Applied Physics, vol. 30, no. Part 2, No. 3B, pages L441–L443, 1991.

[Werner 01] J.H. Werner, R. Dassow, T.J. Rinke, J.R. Köhler & R.B. Bergmann.

From polycrystalline to single crystalline silicon on glass. Thin

Solid Films, vol. 383, no. 1–2, pages 95–100, 2001. Proceedings

of Symposium O on.

[Widenborg 07] Per I. Widenborg & Armin G. Aberle. Polycrystalline Silicon Thin-

Film Solar Cells on AIT-Textured Glass Superstrates. Advances in

OptoElectronics, vol. 2007, no. 24584, pages 1–7, 2007.

[Wimmer 12] Mark Wimmer, Florian Ruske, Simone Scherf & Bernd Rech.

Improving the electrical and optical properties of DC-sputtered

ZnO:Al by thermal post deposition treatments. Thin Solid Films,

vol. 520, no. 12, pages 4203–4207, 2012. 8th International

Conference on Coatings on Glass and Plastics –ICCG8.

[Würfel 09] Peter Würfel. Physics of solar cells: From basic principles to

advanced concepts. Wiley-VCH Verlag GmbH, 2009.

[Yablonovitch 82] Eli Yablonovitch. Statistical Ray Optics. Journal of the Optical

Society of America, vol. 72, no. 7, page 899, Jul 1982.

[Yablonovitch 86] E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter & T. B. Bright.

Unusually Low Surface-Recombination Velocity on Silicon and

Germanium Surfaces. Physical Review Letters, vol. 57, pages 249–

252, Jul 1986.

[Yamamoto 99a] K. Yamamoto. Very thin film crystalline silicon solar cells on glass

substrate fabricated at low temperature. IEEE Transactions on

Electron Devices, vol. 46, no. 10, pages 2041–2047, Oct 1999.

[Yamamoto 99b] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima &

S. Igari. Thin-film poly-Si solar cells on glass substrate fabricated at

low temperature. Applied Physics A: Materials Science & Processing,

vol. 69, pages 179–185, 1999.

[Yamamoto 00] Kenji Yamamoto, Masashi Yoshimi, Yuko Tawada, Yoshifumi

Okamoto & Akihiko Nakajima. Thin film Si solar cell fabricated

158



Bibliography

at low temperature. Journal of Non-Crystalline Solids, vol. 266-269,

no. Part 2, pages 1082–1087, 2000.

[Yamamoto 01] Kenji Yamamoto, Masashi Yoshimi, Yuko Tawada, Yoshifumi

Okamoto & Akihiko Nakajima. Cost effective and high-performance

thin film Si solar cell towards the 21st century. Solar Energy

Materials & Solar Cells, vol. 66, no. 1-4, pages 117–125, 2001. PVSEC

11 - Part II.

[Yamamoto 03] Kenji Yamamoto. Thin-film crystalline silicon solar cells. JSAP

International, vol. 7, pages 12–19, 2003.

[Yan 03] Baojie Yan, Jeffrey Yang & Subhendu Guha. Effect of hydrogen

dilution on the open-circuit voltage of hydrogenated amorphous

silicon solar cells. Applied Physics Letters, vol. 83, no. 4, pages

782–784, 2003.

[Yan 04a] Baojie Yan, Guozhen Yue, Jessica M. Owens, Jeffrey Yang &

Subhendu Guha. Light-induced metastability in hydrogenated

nanocrystalline silicon solar cells. Applied Physics Letters, vol. 85,

no. 11, pages 1925–1927, 2004.

[Yan 04b] Baojie Yan, Guozhen Yue, Jeffrey Yang, Subhendu Guha, D. L.

Williamson, Daxing Han & Chun-Sheng Jiang. Hydrogen dilution

profiling for hydrogenated microcrystalline silicon solar cells.

Applied Physics Letters, vol. 85, no. 11, pages 1955–1957, 2004.

[Yan 11] Baojie Yan, Guozhen Yue, Laura Sivec, Jeffrey Yang, Subhendu Guha

& Chun-Sheng Jiang. Innovative dual function nc-SiO[sub x]:H layer

leading to a > 16% efficient multi-junction thin-film silicon solar

cell. Applied Physics Letters, vol. 99, no. 11, page 113512, 2011.

[Yue 05a] Guozhen Yue, Baojie Yan, Jeffrey Yang & Subhendu Guha. Effect

of electrical bias on metastability in hydrogenated nanocrystalline

silicon solar cells. Applied Physics Letters, vol. 86, no. 9, page 092103,

2005.

[Yue 05b] Guozhen Yue, Baojie Yan, Jeffrey Yang & Subhendu Guha.

Enhancement of light-induced degradation under reverse bias in

hydrogenated nanocrystalline silicon solar cells. Journal of Applied

Physics, vol. 98, no. 7, page 074902, 2005.

[Yue 06] Guozhen Yue, Baojie Yan, Gautam Ganguly, Jeffrey Yang, Subhendu

Guha & Charles W. Teplin. Material structure and metastability of

hydrogenated nanocrystalline silicon solar cells. Applied Physics

Letters, vol. 88, no. 26, page 263507, 2006.

159



Bibliography

[Yue 08] Guozhen Yue, Baojie Yan, Charles Teplin, Jeffrey Yang & Subhendu

Guha. Optimization and characterization of i/p buffer layer

in hydrogenated nanocrystalline silicon solar cells. Journal

of Non-Crystalline Solids, vol. 354, no. 19–25, pages 2440–

2444, 2008. Amorphous and Nanocrystalline Semiconductors

Proceedings of the 22nd International Conference on Amorphous

and Nanocrystalline Semiconductors - Science and Technology.

[Yue 12] Guozhen Yue, Baojie Yan, Laura Sivec, Yanhua Zhou, Jeffrey

Yang & Subhendu Guha. Effect of impurities on performance

of hydrogenated nanocrystalline silicon solar cells. Solar Energy

Materials & Solar Cells, vol. 104, no. 0, pages 109–112, 2012.

[Zhang 04] Jianming Zhang & Ellen R. Fisher. Creation of SiOF films with

SiF4/O2 plasmas: From gas-surface interactions to film formation.

Journal of Applied Physics, vol. 96, no. 2, pages 1094–1103, 2004.

[Zhang 08] Q. Zhang, E. V. Johnson, Y. Djeridane, A. Abramov & P. Roca

i Cabarrocas. Decoupling crystalline volume fraction and Voc in

microcrystalline silicon pin solar cells by using a µc-Si:F:H intrinsic

layer. physica status solidi (RRL) – Rapid Research Letters, vol. 4,

pages 154–156, 2008.

160



Publications as first author: 
 
S. Hänni et al., “Highly crystalline Microcrystalline Silicon Solar Cells for Very High Infrared 
Absorption”, (provisional title), in preparation. 
 
S. Hänni et al., “Post-Deposition Treatment of Microcrystalline Silicon Solar Cells For Improved 
Performance on Rough Superstrates”, in preparation. 
 
S. Hänni et al., “Microcrystalline silicon solar cells with passivated interfaces for high open-
circuit voltage”, in preparation. 
 
S. Hänni et al., “High-efficiency microcrystalline silicon single-junction solar cells”, Progress in 
Photovolatics: Research and Applications, Vol. 21, pp. 821-826, 2013. 
 
S. Hänni et al., “On the Interplay Between Microstructure and Interfaces in High-Efficiency 
Microcrystalline Silicon Solar Cells”, IEEE Journal of Photovoltaics, Vol. 3 (1), pp. 11-16, 2013. 
 
S. Hänni et al., “TOWARDS BETTER UNDERSTANDING OF LONG-TERM STABILITY IN THIN 
FILM MICROCRYSTALLINE SILICON SOLAR CELLS”, Proc. of the 27th EU-PVSEC, pp. 2699-
2703, 2011. 
 
Publications as co-author: 
 
M. Boccard et al., “High-stable-efficiency multi-junction thin-film silicon solar cells 
incorporating conductive low-refractive index silicon-oxide interlayers”, submitted, 2014. 
 
R. Khazaka et al., “Silver versus white paste as a back reflector for microcrystalline silicon solar 
cells deposited on LPCVD-ZnO electrodes of various textures”, submitted, 2014. 
 
M. Boccard et al., “The role of front and back electrodes in parasitic absorption in thin-film solar 
cells”, accepted in EPJ Photovoltaics, 2014. 
 
J.-W. Schüttauf et al., “Thin film silicon triple junction solar cells on highly transparent front 
electrodes with stabilized efficiencies up to 12.8%”, IEEE Journal of Photovoltaics, Vol. 4 (3), pp. 
757-762, 2014. 
 
G. Bugnon et al., “Silicon oxide buffer layer at the p–i interface in amorphous and 
microcrystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 120 (A), pp. 143-
150, 2014. 
 
R. Biron et al., “New progress in the fabrication of n–i–p micromorph solar cells for opaque 
substrates”, Solar Energy Materials & Solar Cells, Vol. 114, pp. 147-155, 2013. 
 
R. Biron et al., “Optimization of the Asymmetric Intermediate Reflector Morphology for High 
Stabilized Efficiency Thin n-i-p Micromorph Solar Cells”, IEEE Journal of Photovoltaics, Vol. 3 
(1), pp. 41-45, 2013. 
 
G. Bugnon et al., “A New View of Microcrystalline Silicon: The Role of Plasma Processing in 
Achieving a Dense and Stable Absorber Material for Photovoltaic Applications”, Adv. Func. 
Mater. 22,  pp. 3665-3671, 2012. 
 
F. Meillaud et al., “Latest developments of high-efficiency micromorph tandem silicon solar 
cells implementing innovative substrate materials and improved cell design”, IEEE Journal of 
Photovoltaics, Vol. 2 (3), pp. 236-240, 2012. 
 
M. Boccard et al., “Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-
Film Si Solar Cells”, IEEE Journal of Photovoltaics, Vol. 2 (3), pp. 229-235, 2012. 
 161



M. Despeisse et al., “Light harvesting schemes for high efficiency thin film silicon solar cells”, in 
Conference Record of the 38th IEEE Photovoltaic Specialists Conference, Austin, USA, art. no. 
6318218, pp. 3015-3019, 2012. 
 
M. Boccard et al., “Nanometer- and Micrometer-Scale Texturing for High-Efficiency 
Micromorph Thin-Film Silicon Solar Cells”, IEEE Journal of Photovoltaics, Vol. 2 (2), pp. 83-87, 
2012. 
 
M. Boccard et al., “Multiscale Transparent Electrode Architecture for Efficient Light 
Management and Carrier Collection in Solar Cells”, Nano Lett. 12 (3), pp. 1344-1348, 2012. 
 
C. Battaglia et al., “Advanced nanostructured materials for pushing light trapping towards the 
Yablonovitch limit”, Optical Nanostructures and Advanced Materials for Photovoltaics, Austin, 
USA, November, 2011. 
 
M. Despeisse et al., “Optimization of thin film silicon solar cells on highly textured substrates”, 
Phys. Status Solidi A 208, No. 8, 1863–1868, 2011. 
 
G. Bugnon et al., “High rate deposition of microcrystalline silicon with silicon oxide doped 
layers: Highlighting the competing roles of both intrinsic and extrinsic defects on the cells 
performances”, Proc. of the 37th IEEE PVSC, Seattle, USA, 2011. 
 
M. Boccard et al., “Single to multi-scale texturing for high efficiency micromorph thin film 
silicon solar cell”, Proc. of the 37th IEEE PVSC, Seattle, USA, 2011. 
 
C. Ballif et al., “NOVEL MATERIALS AND SUPERSTRATES FOR HIGH-EFFICIENCY 
MICROMORPH SOLAR CELLS”, Proc. of the 26th EU-PVSEC, 2010. 
 
M. Despeisse et al., “LOW-CONDUCTIVITY DOPED LAYERS FOR IMPROVED PERFORMANCE 
OF THIN FILM SILICON SOLAR CELLS ON HIGHLY TEXTURED SUBSTRATES”, Proc. of the 
26th EU-PVSEC, 2010. 
 
Publications prior to PhD thesis: 
 
A. Chirila et al., “CIGS solar cells grown by a three-stage process with different evaporation 
rates”, in Conference Record of the IEEE Photovoltaic Specialists Conference, art. no. 5411161, 
pp. 000812-000816, 2009. 

162



Patents: 
 
“Thin microcrystalline silicon solar cells”, in preparation. 
 
“METHOD FOR ANNEALING A THIN FILM PHOTOVOLTAIC CELL DEVICE”, filled. 
 
Presentations: 
 
Oral presentation at the 25th International Conference on Amorphous and Nanocrystalline 
Semiconductors (ICANS25), in Toronto, Canada, August 2013 with the title: “Fundamental 
Limits of High-Efficiency Microcrystalline Silicon Thin-Film Solar Cells: The Role of Interfaces”. 
 
Oral presentation at the 38th IEEE PVSC, in Austin, USA, June 2012, with the title: “On the 
Interplay between Material Quality and Interfaces in High Efficiency Microcrystalline Silicon 
Solar Cells”. 
 
Poster presented at the 29th EUPVSEC in Paris, France, September 2013, with the title: “The Role 
of Interfaces in High-Efficiency Microcrystalline Silicon Thin-Film Solar Cells”. 
 
Poster presented at the 11. Nationale Photovoltaik-Tagung, Basel, Switzerland, March 2013, 
with the title “Recent Progress towards High-Efficiency Thin-Film Silicon Solar Cells”. 
 
Poster presented at the 27th EUPVSEC in Hamburg, Germany, September 2011, with the title: 
“TOWARDS BETTER UNDERSTANDING OF LONG-TERM STABILITY IN THIN FILM 
MICROCRYSTALLINE SILICON SOLAR CELLS”. 
 
Awards: 
 
Best poster award (1st prize) at the 11. Nationale Photovoltaik-Tagung, Basel, Switzerland, 
March 2013, with the title “Recent Progress towards High-Efficiency Thin-Film Silicon Solar 
Cells”. 
 
Student award finalist at the 38th IEEE PVSC, in Austin, USA, with the title: “On the Interplay 
between Material Quality and Interfaces in High Efficiency Microcrystalline Silicon Solar Cells”. 

163





 Simon HÄNNI 
Master degree in Physics from ETH Zürich 
 
16, Faubourg de l’Hôpital 
2000 Neuchâtel 
Switzerland 

sh.pvlab@gmail.com 
Nationality: Swiss 
Age: 30

 
EXPERIENCE 

 
01/2010 – 06/2014 IMT – PV-lab,  

École Polytechnique Fédé-
rale de Lausanne (EPFL) 

PhD candidate in Material Science: 
“Microcrystalline Silicon for High-Efficiency 
Thin-Film Photovoltaic Devices” 

04/2009– 09/2010 IMT – PV-lab,  
École Polytechnique Fédé-
rale de Lausanne (EPFL) 

Civilian service 

09/2008 – 01/2009 Thin Film Physics Group 
Eidgenossische Technische 
Hochschule Zürich (ETHZ) 

Master thesis in Physics: “Cu(In,Ga)Se2 Thin 
Film Solar Cells grown by Three-Stage-
Process at Different Evaporation Rates” 

06/2008 Thin Film Physics Group 
Eidgenossische Technische 
Hochschule Zürich (ETHZ) 

Semester work in Physics: “Manufacture and 
Characterization of Alternative Buffer Layers 
for CIGS Thin Film Solar Cells by Ultrasonic 
Spray Pyrolysis” 

2006–2007 Ecole Primaire Sonceboz 
 

Intermittent teaching in elementary school 

EDUCATION 
 
08/2007 – 03/2009 Eidgenössische Technische Hochschule Zürich (ETHZ): 

Master of Science ETH in Physics 
10/2003 – 08/2007 Eidgenössische Technische Hochschule Zürich (ETHZ): 

Bachelor of Science ETH in Physics 
08/2000 – 06/2003 Maturité, Gymnase Français de Bienne, Switzerland 
  
Language skills: French/Swiss German (mother tongue), German (fluent), English (fluent). 
Computer skills: good knowledge of Office suite and LaTeX, basic knowledge of various simulation, 
mathematics and graphics tools such as PC1D, MATLAB, IGOR pro and Adobe Illustrator CS6. 
 

SCIENTIFIC CONTRIBUTIONS 
 
I coauthored 23 scientific contributions, including two peer-reviewed papers as a first author, and 
I am co-inventor on two patents. I took part to four international conferences, for which I gave 
two oral presentations. I was awarded the best poster award (1st prize) at the Swiss PV congress 
2013 and was student award finalist at the 28th IEEE Photovoltaic Specialists Conference in 2012. 
A publication list is available on http://scholar.google.ch/citations?user=ase5VC8AAAAJ&hl=fr. 
 

MISCELLANEOUS 
 
During my PhD thesis at IMT–PV-lab, I was teaching assistant for the lecture “Opto- and 
macroelectronic materials” for two semesters, and supervised one master student internship and 
one civilian service. I like travelling, scuba diving, playing floorball and trekking. I’m an 
enthusiastic piano player and have been singing for 3 years in the choir of Neuchâtel University. 

165


	Cover page

	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	List of abbreviations and symbols
	Introduction
	Solar energy
	General context
	Some historical milestones
	Thin-film technologies

	Thin-film silicon photovoltaics
	Amorphous silicon
	Microcrystalline silicon
	Porous zones in microcrystalline silicon

	Objectives of this thesis
	Structure of this thesis
	Contribution of this thesis to the research field


	Preparation and characterization techniques
	Process flow for solar cell fabrication
	Zinc oxide deposited by low-pressure chemical vapor deposition
	Deposition of the silicon layers
	Back contact and patterning
	Back reflectors
	Light soaking and dark degradation

	Characterization
	I-V measurements
	External quantum efficiency
	Raman spectroscopy
	Fourier-transform photocurrent spectroscopy
	Transmission electron microscopy


	High-efficiency microcrystalline silicon thin-film solar cells
	Optimization of solar cells in a small-area PECVD reactor
	Silicon oxide doped layers

	Effects of crystalline volume fraction and doped-layers design
	Effect of increased superstrate roughness
	Preparation of an innovative superstrate to study the effect of increasing superstrate roughness
	Effect of increasing superstrate roughness on c-Si:H solar cells

	3-D reconstruction of the microstructure of c-Si:H solar cells
	World-record device
	Conclusion

	Post-deposition treatments of solar cells
	Introduction and motivation
	Effect of post-deposition treatments on LPCVD-ZnO
	Typical effect of post-deposition treatments on c-Si:H single-junction solar cells

	Experimental details
	Solar cell preparation and characterization
	Post-deposition treatments of complete solar cells

	Results and discussion
	Effect of cell morphology
	Effect of post-deposition annealing analyzed by FTPS
	Effect of annealing temperature
	Effect of doping of the back electrode
	Application to tandem cells

	Conclusion

	Interface effects on solar cell performance
	Contribution of SiOx p-doped layers
	SiOx versus c-Si:H p-doped layers studied with the VIM technique

	Passivating interfaces for high open-circuit voltage
	Introduction
	Impact of passivated i–n interface on open-circuit voltage
	Implementation in thin tandem solar cells

	A fully passivated c-Si:H device?
	Method to reach the open-circuit voltage limit of c-Si:H solar cells

	Conclusion

	Highly crystalline absorber layers with fluorinated precursors
	Historical development
	Use of fluorinated precursors in solar cells

	Deposition of fluorinated microcrystalline silicon layers
	Description of experimental parameters
	First depositions of fluorinated microcrystalline silicon layers at PV-lab
	Deposition rate as a function of deposition conditions
	Crystallinity as function of deposition conditions

	Comparison with standard microcrystalline silicon
	Evaluation of impurities by SIMS analysis
	Structural evaluation by FTIR and Raman spectroscopy
	Structural evaluation by X-ray diffraction
	Summary

	Solar cell results
	Effect of adding a fluorinated precursor to standard chemistry
	Solar cells with fluorinated absorber layers
	TEM imaging of a solar cell deposited on rough superstrate
	Comparison with standard solar cells with high cristallinity
	Application in micromorph tandem solar cells

	Conclusion and outlook

	Conclusion and Perspectives
	Conclusion
	Requirements for high-efficiency devices
	Post-deposition processes
	Towards fully passivated c-Si:H
	Potential of highly crystallized material

	Perspectives

	Measurements of cells on highly textured superstrates
	SIMS profiles for reference intrinsic microcrystalline silicon layers
	Bibliography

	Publications List

	Curriculum Vitae


