
Network Neutrality Inference

Zhiyong Zhang12∗, Ovidiu Mara2, and Katerina Argyraki2

1UESTC, China
2 EPFL, Switzerland

ABSTRACT

When can we reason about the neutrality of a network based on ex-
ternal observations? We prove conditions under which it is possible
to (a) detect neutrality violations and (b) localize them to specific
links, based on external observations. Our insight is that, when
we make external observations from different vantage points, these
will most likely be inconsistent with each other if the network is
not neutral. Where existing tomographic techniques try to form
solvable systems of equations to infer network properties, we try
to form unsolvable systems that reveal neutrality violations. We
present an algorithm that relies on this idea to identify sets of non-
neutral links based on external observations, and we show, through
network emulation, that it achieves good accuracy for a variety of
network conditions.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network monitor-
ing

Keywords

Network neutrality; network tomography

1. INTRODUCTION
Once a fundamental Internet property, network neutrality can-

not be taken for granted today. There is evidence that Internet ser-
vice providers (ISPs) differentiate against certain applications, typi-
cally BitTorrent [31], by deprioritizing [18], blocking [12], or shap-
ing [11, 16] its traffic. More recently, there is evidence that ISPs
are differentiating against traffic originating from specific content
providers [1]. We are not saying that such differentiation should be
illegal (although it is, in certain countries); our position is that—
whether illegal or not—it should be transparent: if an ISP differ-
entiates against specific end-hosts, protocols, or applications, that
should be visible to the affected parties and regulators.

In this paper, we address two questions:
(a) Which neutrality violations can be detected based on ex-

ternal observations? There exist proposals for detecting specific
kinds of neutrality violation. For instance, several systems can de-
tect whether a network path differentiates based on transport- or

∗This work was done at EPFL, when Zhiyong was a visiting PhD
student in the Network Architecture Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626308.

application-layer information [18, 31, 15, 11]; however, they can-
not detect differentiation based on source or destination IP address,
even though end-users suspect that it does occur [1]. To the best of
our knowledge, there exists no formal definition of which kinds of
neutrality violation are detectable in the first place.

(b) Which neutrality violations can be localized to a specific link
or sequence of links and how? Most existing systems can detect
whether a network path violates neutrality, but they cannot local-
ize it to a specific link or link sequence. An exception is NetPo-
lice, which can determine whether a specific ISP violates neutrality
by explicitly measuring the ISP’s performance for different traf-
fic flows using traceroute probes [31]. To the best of our knowl-
edge, there exists no system that can localize a neutrality violation
to a specific link sequence without explicitly measuring its perfor-
mance.

Our approach is inspired by network performance tomography,
whose goal is to infer performance properties of links (loss rate,
latency, congestion status, or congestion probability) based on ex-
ternal observations, i.e., without monitoring these links directly. A
tomographic technique typically forms a system of equations

~y = A · ~x,

where ~y is a given vector of external observations (end-to-end path
measurements), A is a given matrix that specifies the relationships
between links and paths, and ~x is the vector of link properties that
we are trying to infer. It then estimates ~x, either by solving this sys-
tem of equations (when it has a unique solution [7, 8, 6, 22, 21, 14])
or by picking a solution that has some desirable property, e.g., as-
sumes the smallest number of problematic links [23, 13, 26, 10] or
occurs with the highest probability [22]. This approach fundamen-
tally relies on the assumption that the network is neutral (each link
treats traffic from all paths the same), otherwise it would be impos-
sible to express path measurements as a function of link properties
and form a solvable system of equations.

Our insight is that, if the network is not neutral, when we make
external observations from different vantage points, these will most
likely be “inconsistent” with each other, i.e., any system of equa-
tions that we form based on them will be unsolvable. So, in a sense,
we turn network performance tomography on its head: where ex-
isting tomographic techniques assume network neutrality and try to
form solvable systems of equations to infer network properties, we
try to form unsolvable systems that reveal neutrality violations. By
applying this idea to carefully chosen “slices” of the network, we
can reason not only about the neutrality of the entire network, but
also that of link sequences or individual links.

One challenge in turning this insight into a practical algorithm is
that, in practice, a network link that does not explicitly employ traf-
fic differentiation (hence would be considered “neutral” by exist-
ing neutrality definitions) may behave “non-neutrally,” e.g., it may
appear to be congested to one traffic flow but non-congested to an-
other, over the same time interval. Such network behavior may also
lead to inconsistent external observations, and a naïve application
of our theory would misinterpret these as willful neutrality viola-
tions. We present experimental evidence that we can avoid such

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148006919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

misleading inconsistencies by comparing observations of similarly
sized traffic aggregates.

After describing our terminology and notation (Section 2), we
make the following contribution: we prove conditions under which
a neutrality violation is “observable,” i.e., it manifests as a set of
inconsistent external observations (Section 3), and a non-neutral
link sequence is “identifiable,” i.e., it causes inconsistent external
observations that cannot be attributed to any other link sequence
(Section 4). We also present an algorithm that takes as input a
network graph and external observations, and it identifies all the
non-neutral link sequences that are identifiable (Section 5). Finally,
we present an initial experimental evaluation of our algorithm on
small topologies, based on an open-source network emulator [2],
and we show that it achieves good accuracy in a variety of network
conditions (Section 6). We close with a discussion of open issues
(Section 7), related work (Section 8), and conclusions (Section 9).

2. SETUP
In this section, we present our goal (Section 2.1), assumptions

(Section 2.2), and theoretical model (Section 2.3).

2.1 Goal
Our goal is to design an algorithm that takes as input a network

graph and external observations (end-to-end measurements), and it
identifies non-neutral link sequences. Given that certain neutrality
violations are infeasible to detect (Section 3), our algorithm will
suffer some false-negatives, but, ideally, it should not suffer false-
positives, i.e., a neutral link sequence should never be incorrectly
identified as non-neutral.

Neutrality violation is typically informally defined as differentia-
tion based on flow type, i.e., the contents of the IP header, transport-
layer header, and/or payload. For example, a network link may
throttle traffic coming from a specific content provider (based on
IP addresses) or from a specific peer-to-peer (P2P) network (based
on port numbers or deep-packet inspection). When a network link
throttles a traffic flow, it upper-bounds the rate at which the flow
can send traffic, typically below the rate at which the flow generates
traffic; this results in a higher packet-loss rate and/or latency than
the one experienced by unthrottled traffic. So, traffic differentiation
results in different traffic flows experiencing different performance
when traversing the same link(s).

We define “neutrality violation” as the situation where traffic
from two different network paths experiences different performance
when traversing the same network link (formal definition in Sec-
tion 2.3). Hence, in our model, a flow type is represented by a
set of paths. For example, suppose a network link throttles traffic
coming from a specific content provider; we model this by saying
that the network has two “performance classes,” one class compris-
ing all the paths that start at the content provider, and the other
class comprising all the other paths. Similarly, suppose a network
link throttles a specific kind of P2P traffic; again, we model this
by saying that the network has two performance classes, one class
comprising all the paths that carry this form of P2P traffic, and the
other class comprising all the other paths. We will discuss the rea-
son behind our choice of definition later in the paper, once we have
presented our model and results.

We do not assume any knowledge on the network’s differentia-
tion criteria, the number of performance classes it distinguishes, or
which network paths belong to the same class. If one does have
such knowledge, it is possible to detect and localize neutrality vi-
olations with a simpler approach than ours. For example, suppose
two parties connected to the same ISP suspect that the ISP throttles
their P2P traffic; to test this, they can exchange first P2P traffic,

then some other kind of traffic, and compare the achieved perfor-
mance. On the other hand, this approach does not work when (a)
the ISP throttles all traffic between the two parties and/or (b) the
two parties communicate over more than one ISPs (in general, ad-
ministrative domains), and any one of them could be throttling their
traffic.

2.2 Assumptions
We make three assumptions:

1. We assume the existence of a measurement platform and
knowledge of the network graph that interconnects the mea-
surement points. A link in the network graph may correspond
to an IP-level link, a domain-level link, or, in general, a se-
quence of consecutive physical links.

2. We assume that the status of each network link is indepen-
dent from the status of any other network link.

3. Theorem 1 (Section 3.3) and Lemma 3 (Section 4.2) assume
that: within any given time interval, if a non-neutral network
link introduces non-negligible packet loss in its top-priority
performance class (formal definition in Section 2.3), it in-
troduces non-negligible packet loss in the other performance
classes as well.

Assumptions #2 and #3 simplify our analysis and algorithm, but
they are not fundamental to our approach; we discuss how we plan
to relax them in our technical report [32].

2.3 Model

Links and paths.

We represent the network as a tuple G = (V, L, P). V and L
are, respectively, the nodes and links (edges) of the network graph.
We distinguish two kinds of nodes: end-hosts and relays (the latter
correspond to intermediate elements like switches or routers). A
path is a loop-free sequence of consecutive links starting and end-
ing at end-hosts, and P is the set of all the paths in the network that
are currently used.

We use l to refer to some link in L, and lk to refer to the k-th
link assuming an arbitrary ordering of all the |L| links. We use λ
to refer to a loop-free sequence of consecutive links in L. We use p
to refer to some path in P , and pi to refer to the i-th path assuming
an arbitrary ordering of all the |P | paths.

A pathset is a set of paths, and we denote the set of all pathsets
in the network with P ∗ (the power set of P). We use π to refer to
some pathset. Given a set of pathsets Π, we use πi to refer to the
i-th pathset assuming an arbitrary ordering of all the pathsets in Π.

We define the following helper functions: Paths(l) is the set
of all paths that traverse link l, Paths(λ) is the set of all paths
that traverse all the links in link sequence λ, Links(p) is the set of
all links traversed by path p, and Links(π) is the set of all links
traversed by at least one path in pathset π.

We say that link l is distinguishable from link l′, when Paths(l) 6=
Paths(l′).

Performance classes and numbers.

A performance class is a set of paths (that, as we will see below,
are treated the “same” by the network), and we denote the set of
all performance classes by C. We use cn to refer to the n-th class
assuming an arbitrary ordering of all the |C| classes.

A link is characterized by a set of performance numbers {x(n) |
n = 1..|C|}. When traffic from a path that belongs to the n-th
class traverses this link, it experiences performance x(n). We use

l1 l4

l2

p1

p2

l3

p3

(a) Network graph G.

l1 l2 l3 l4
{p1} 1 1 0 0
{p2} 1 0 1 0
{p3} 0 0 1 1
{p1, p2} 1 1 1 0
{p1, p3} 1 1 1 1
{p2, p3} 1 0 1 1
{p1, p2, p3} 1 1 1 1

(b) A routing matrix A.

Figure 1: Example network with links L = {l1, l2, l3, l4},
paths P = {p1, p2, p3}, and performance classes C =
{{p1, p3}, {p2}}. Link l1 is non-neutral: it treats traffic from

path p2 worse than traffic from path p1.

{xk(n) | n = 1..|C|} to particularly denote the performance num-
bers of link lk.

We say that a link is neutral when its performance number is
the same for all performance classes: x(n) = x, ∀n = 1..|C|;
otherwise, we say that the link is non-neutral. When there is only
one performance class in the network, by definition, all links are
neutral. We use xk to particularly denote the performance number
of neutral link lk. We denote all the neutral links in the network by
Ln, and all the non-neutral links in the network by Ln̄. The top-

priority class of a non-neutral link is the class for which the link
has the highest performance.

For example, in Figure 1(a), there are two performance classes,
{p1, p3} and {p2}. Non-neutral link l1 has performance numbers
{x1(1), x1(2)}, while neutral link l3 has performance number x3.
Traffic traversing l1 experiences different performance, depending
on which path it belongs to: traffic from path p1 experiences per-
formance x1(1), whereas traffic from path p2 experiences perfor-
mance x1(2). In contrast, all traffic traversing link l3 experiences
the same performance x3.

Similarly, a link sequence is characterized by a set of perfor-
mance numbers {x̂(n) | n = 1..|C|}.

Finally, a pathset π is characterized by a performance number
y. Given a set of pathsets Π, we use yi to denote the performance
number of pathset πi.

Performance metrics.

In our experimental evaluation, we use the performance metric
introduced in [22], which is defined as follows:
⊲ Time is divided into intervals.
⊲ We say that a link, link sequence, or path is congestion-free

during a given time interval, when it introduces (or experiences, in
the case of a path) negligible packet loss during that interval.
⊲ The performance numbers of a link or link sequence λ are
{x̂(n) ≡ log(P(λ, cn)) | n = 1..|C|}, where P(λ, cn) is the prob-
ability that λ is congestion-free with respect to performance class
cn during any given time interval.
⊲ The performance number of pathset π is y ≡ log(P(π)), where

P(π) is the probability that all the paths in π are congestion-free
during any given time interval.

In general, we can use any metric that is “additive” in the follow-
ing sense:

1. The performance of a link sequence λ for class cn is equal
to the sum of the performance of its member links for that
class:

x̂(n) =
∑

k | lk∈λ

xk(n). (1)

For example, in Figure 1(a), link sequence 〈l1, l3〉 has perfor-
mance numbers {x̂(1) = x1(1) + x3, x̂(2) = x1(2) + x3}.

2. In a neutral network, the performance of a pathset π is equal
to the sum of the performance of its member links:

y =
∑

k | lk∈Links(π)

xk. (2)

For example, if the network in Figure 1(a) was neutral, path-
set {p1, p2}would have performance number y = x1+x2+
x3.

We restrict ourselves to performance metrics that satisfy both
Equations 1 and 2, because we have found that these reveal the
largest number of neutrality violations. Not all intuitive metrics
fall into this category; we discuss how to address this limitation in
Section 7.

Definition of network neutrality.

A neutral link sequence is a sequence of neutral links and a neu-

tral network is one that has only neutral links. Conversely, a non-

neutral sequence or network is one that includes at least one non-
neutral link.

Neutrality inference.

The input to our problem consists of: the network G and the
performance number of any pathset π ∈ P ∗. The desired output is
the set of non-neutral links Ln̄.

Generalized routing matrix.

A generalized routing matrix represents the relationships between
the links L and a set of pathsets Π (Figure 1(b)). More formally:
Given a set of pathsets Π, a generalized routing matrix A(Π) is a
|Π| × |L| matrix with

Aik =

1, if at least one path in pathset πi

traverses link lk
0, otherwise.

Systems of equations for a neutral network.

Here are some of the equations we could write for the network
in Figure 1, if it was neutral:

{p1} : y1 = x1 + x2

{p2} : y2 = x1 + x3

{p1, p2} : y3 = x1 + x2 + x3.

Any such system of equations can be summarized as

~y = A(Π) · ~x, (3)

where ~x = {xk | k = 1..|L|} and ~y = {yi | i = 1..|Π|}.
When the network is not neutral, the equations in System 3 are

incorrect and—as we will see—the system is often unsolvable. This
observation is the cornerstone of our work.

3. NETWORK NON-NEUTRALITY
In this section, we present a condition on the network G and

the location of the non-neutral links Ln̄, which is necessary and
sufficient for observing non-neutrality using our approach. When a
non-neutral network meets this condition, we can observe that it is
non-neutral; when it does not meet this condition, it appears neutral
to our approach. We first define “observability” (Section 3.1) and
the “equivalent neutral network,” the basic construct that we use
to formulate our result (Section 3.2), then state the condition and
illustrate with examples (Section 3.3). The proof of the theorem is
in our technical report [32].

3.1 Definition of Observability

LEMMA 1. Consider a network with paths P . If there exists a

set of pathsets Π ⊆ P ∗ such that System 3 does not have a solution,

then the network is non-neutral.

The proof is trivial: When all the links are neutral, the routing ma-
trix correctly captures the relationships between the link perfor-
mance numbers ~x = {xk | k = 1..|L|} and the external observa-
tions ~y, so System 3 has at least one solution.

Lemma 1 says that, if System 3 has no solution, the only pos-
sible explanation is that the network is non-neutral. For example,
consider the network shown in Figure 1 and the system of equations

{p1} : y1 = x1 + x2

{p2} : y2 = x1 + x3

{p3} : y3 = x3 + x4.

Suppose we observe that (a) y1 = y3 = 0 (paths p1 and p3 are al-
ways congestion-free), whereas (b) y2 6= 0 (path p2 is occasionally
congested). These two observations are inconsistent: (a) indicates
that xk = 0 for all k (all the links are always congestion-free),
whereas (b) indicates that either x1 6= 0 or x3 6= 0 (either l1 or l3
is occasionally congested). The only possible explanation for this
inconsistency is that l1 and/or l3 are non-neutral and treat traffic
from path p2 worse than the other traffic.

DEFINITION 1. Consider a non-neutral network with paths P .

We say that the network’s neutrality violation is observable, when

there exists a set of pathsets Π ⊆ P ∗ such that System 3 does not

have a solution.

There exist neutrality violations that are not observable with our
approach. For example, consider the network shown in Figure 2(a),
where link l1 is non-neutral, treating traffic from path p2 worse
than traffic from path p1. In this particular network, there exists no
unsolvable System 3. The intuition is that the worse treatment that
l1 inflicts on path p2 can always be attributed to link l3. As a result,
any set of external observations can be explained through a neutral
behavior of the links, which means that we cannot detect neutrality
violation based on external observations.

3.2 Equivalent Neutral Network
From the point of view of the end-hosts, any non-neutral net-

work with |Ln| neutral links, |Ln̄| non-neutral links, and |C| per-
formance classes is equivalent to a neutral network with |Ln| +
|Ln̄| · |C| (neutral) links; by “equivalent” we mean that the two
networks produce the same external observations. To generate an
equivalent neutral network, we map each original non-neutral link
l into |C| virtual neutral links, one of them modeling l’s common
queue and the rest of them modeling l’s regulation of the lower-
priority classes.

Figure 2 shows an example: in the original network, non-neutral
link l1 has performance numbers x1(1) and x1(2); in the neutral
equivalent, l1 is mapped to two virtual links:

a) Virtual link l+1 (1) models l1’s common queue. It has per-
formance number x1(1), and it is traversed by both paths.
It captures any bad performance that link l1 may inflict on
p1, which will necessarily also be inflicted on p2 (since it is
lower-priority).

b) Virtual link l+1 (2) models l1’s regulation of performance class
c2. It has performance number x1(2) − x1(1), and it is tra-
versed only by path p2. It captures any extra bad perfor-
mance that link l1 may inflict on p2 due its regulation of per-
formance class c2.

l1

l3l2

p1 p2

(a) Original network G.

l3
+

l2
+

l1
+
(1)

11
+
(2)

p1 p2

(b) Neutral equivalent G+.

l1 l2 l3
{p1} 1 1 0
{p2} 1 0 1

(c) A routing matrix A.

l+1 (1) l+1 (2) l+2 l+3
{p1} 1 0 1 0
{p2} 1 1 0 1

(d) A routing matrix A
+.

Figure 2: A non-neutral network (and its neutral equivalent)

where neutrality violation is non-observable. There are two

performance classes C = {{p1}, {p2}}. Link l1 is non-neutral:

it treats traffic from p2 worse than traffic from p1.

An original non-neutral network G = (V, L, P) and a neutral
equivalent G+ = (V +, L+, P) are related as follows:

a) For each neutral link l ∈ Ln with performance number x,
there exists a link l+ ∈ L+ with the same performance num-
ber x and Paths(l+) = Paths(l).

b) For each non-neutral link l ∈ Ln̄ with performance numbers
{x(n) | n = 1..|C|} and top-priority class cn∗ , there exist
|C| links

{

l+(n) | n = 1..|C|
}

∈ L+, where:

i) l+(n∗) has performance number x(n∗)
and Paths(l+(n∗)) = Paths(l).

ii) l+(n), ∀n 6= n∗ has performance number
x(n)− x(n∗) and Paths(l+(n)) = Paths(l) ∩ cn.

As a second example, Figure 3(a) shows the neutral equivalent
for the network in Figure 1(a): neutral link l2 is mapped to virtual
link l+2 , while non-neutral link l1 is mapped to l+1 (1) and l+1 (2).

For any non-neutral network, there exists at least one neutral
equivalent and potentially more. A neutral equivalent may include
“loop links,” which start and end at the same node; we show ex-
amples in our technical report. We use A

+ to denote a generalized
routing matrix of an equivalent neutral network.

3.3 Condition for Observability

THEOREM 1. Consider a non-neutral network with links L, and

its equivalent neutral network with links L+. The network’s neu-

trality violation is observable, if and only if there exists at least one

virtual link l+(n) ∈ L+ that is distinguishable from any link in L.

We illustrate with three examples:

Non-observable violation.

Consider again the non-neutral network in Figure 2(a) and its
neutral equivalent in Figure 2(b). In this case, none of the two
virtual links in the neutral equivalent satisfies the condition in The-
orem 1: l+1 (1) is indistinguishable from l1, and l+1 (2) is indistin-
guishable from l3. Therefore, according to the theorem, this neu-
trality violation is not observable. Indeed, we said earlier that l1’s
worse effect on p2 can always be attributed to l3 (Section 3.1). This
is an informal way of saying that l+1 (2) is indistinguishable from

l1
+(2)

l4
+

l2
+

p1

p2 l3
+

p3

l1
+(1)

(a) Neutral equivalent G+.

l
+
1 (1) l

+
1 (2) l

+
2 l

+
3 l

+
4

{p1} 1 0 1 0 0
{p2} 1 1 0 1 0
{p3} 0 0 0 1 1

{p1, p2} 1 1 1 1 0
{p1, p3} 1 0 1 1 1
{p2, p3} 1 1 0 1 1

{p1, p2, p3} 1 1 1 1 1

(b) A routing matrix A
+.

Figure 3: Neutral equivalent for the network shown in Figure 1.

l3. Theorem 1 expresses this insight: if a virtual link l+(n) in the
neutral equivalent is indistinguishable from some other link l′ in the
original network, then the non-neutral behavior captured by l+(n)
can be masked, because its effect can always be attributed to l′.

Observable violation #1.

Consider again the non-neutral network in Figure 1(a) and its
neutral equivalent in Figure 3(a). In this case, virtual link l+1 (2)
is distinguishable from any link in L. Therefore, according to the
theorem, this neutrality violation is observable. Indeed, we said
earlier that l1’s effect on p2 cannot be attributed to any set of neutral
links (Section 3.1). Theorem 1 expresses this insight: if a virtual
link l+(n) in the neutral equivalent is distinguishable from any link
in the original network, then the non-neutral behavior captured by
l+(n) cannot be masked, because it cannot be attributed to any
other link(s).

Observable violation #2.

Consider the non-neutral network in Figure 4(a) and its neu-
tral equivalent in Figure 4(b). Link l1 introduces congestion into
class-2 traffic with probability 0.5, while the rest of the network
is congestion-free. In this case, virtual link l+1 (2) is distinguish-
able from any link in L. Therefore, according to the theorem, this
neutrality violation is observable.

At first, it may seem counter-intuitive that this neutrality viola-
tion is observable, as it looks similar to the one in Figure 2 (which
is not). However, a closer look reveals that, in this case, there does
exist an unsolvable system of equations:

{p1} : y1 = x1 + x2

{p2} : y2 = x1 + x3

{p3} : y3 = x1 + x4

{p2, p3} : y4 = x1 + x3 + x4.

If we monitor this network, we observe that:

y1 = 0 p1 is always congestion-free.
y2 = log(0.5) p2 is congestion-free w.p. 0.5.
y3 = log(0.5) p3 is congestion-free w.p. 0.5.
y4 = log(0.5) {p2, p3} is congestion-free w.p. 0.5.

l1

l4l2

p1 p2

l3

p3

(a) Original network G.

l1
+
(1)

l2
+

p1

p2

p3

l4
+

l3
+

l1
+(2)

(b) Neutral equivalent G+.

Figure 4: A non-neutral network where neutrality viola-

tion is observable. There are two performance classes C =
{{p1}, {p2, p3}}. Link l1 has performance numbers {x1(1) =
0, x1(2) = log(0.5)}. The other links have performance num-

bers x2 = x3 = x4 = 0.

These observations are inconsistent: (a) y1 indicates that x1 =
x2 = 0, which means that link l1 is always congestion-free. (b)
{y2, y3, y4} form a system with unique solution:

x1 = log(0.5) l1 is congestion-free w.p. 0.5.
x3 = 0 l3 is always congestion-free.
x4 = 0 l4 is always congestion-free.

So, if we observe only path p1, we conclude that link l1 is always
congestion-free, whereas if we observe only paths {p2, p3}, their
congestion can only be attributed to link l1. The only explanation
is that link l1 is non-neutral and treats traffic from paths {p2, p3}
worse than the rest.

As a side-note, this example illustrates the benefit of using per-
formance metrics that can be defined and measured for pathsets, not
only individual paths: The clue that gives away l1’s non-neutrality
is the fact that p2 and p3 always experience congestion at the same

time; assuming that link statuses are independent (Section 2.2),
this correlation can only be attributed to non-neutral behavior by
l1. This clue emerges only if we observe p2 and p3 as a pair and
measure the probability that they are both congestion-free. Theo-
rem 1 guarantees that, as long as there exists a distinguishable link
l+(n) in the neutral equivalent, we can form an unsolvable system
of equations; this system, however, may include equations on path-
sets with more than one path, and we must be able to define and
measure their performance.

4. LINK NON-NEUTRALITY
In this section, we present a condition on the paths Paths(λ)

that traverse a link sequence λ, which is sufficient for correctly
inferring λ’s neutrality. We first define the “network slice,” the
basic construct that we use to formulate our result (Section 4.1),
then state the condition and illustrate with examples (Section 4.2).
The proofs of the lemmas are in our technical report [32].

4.1 Network Slice
Lemma 1 can help us reason not only about the neutrality of

the entire network, but also about the neutrality of link sequences,
even individual links. For example, consider the network shown
in Figure 4(a), where the only link traversed by multiple paths is
l1. If we determine that this network is non-neutral, then the only
possible explanation is that link l1 is non-neutral, as it is the only
link that handles traffic from multiple paths and can differentiate
between them.

To reason about the neutrality of a link sequence λ, we apply
Lemma 1 to a network slice Gλ, chosen such that any observable

neutrality violation of this slice can only be attributed to λ. More
specifically, we form a specialized version of System 3:

~y = Aλ(Πλ) · ~x. (4)

We specify how we form this system in our technical report; here,
we only illustrate by example.

To reason about the neutrality of link l1 in Figure 5(a), we form
System 4 for λ = 〈l1〉 as follows:

a) We create a special set of pathsets Π〈l1〉 as follows:

i) We identify all path pairs whose only shared link is l1:
{p1, p4}, {p2, p4}, and {p3, p4}.

ii) Π〈l1〉 consists of these path pairs plus their individual
paths: Π〈l1〉 = {{p1}, {p2}, {p3}, {p4},
{p1, p4}, {p2, p4}, {p3, p4}}.

b) We create network slice G〈l1〉 by abstracting away all indi-
vidual links in the network other than l1, as shown in Fig-
ure 5(b).

c) We form the system of equations that corresponds to gener-
alized routing matrix A〈l1〉(Π〈l1〉), shown in Figure 5(c).

There are two key points about System 4: First, it typically con-
sists of a small number of equations, because Πλ tends to be small
(for any link sequence λ, there are typically few path pairs whose
only common link sequence is λ). Second, once we have created
Πλ, the topology of the overall network becomes irrelevant; the
only factors that play a role in System 4 are the performance num-
bers of the paths and path pairs in Πλ. This is different from ex-
isting tomography techniques, which typically combine large num-
bers of path measurements into a single large system of equations
that is determined by the topology of the entire network.

4.2 Identifiability of Non-neutral Links

LEMMA 2. Consider a link sequence λ and its set of pathsets

Πλ. If System 4 does not have a solution, then λ is non-neutral.

System 4 is a special version of System 3 where the equations
are picked for their particular relationship to link sequence λ. If
System 4 does not have a solution, we already know from Lemma 1
that the network slice Gλ is non-neutral; Lemma 2 tells us that
link sequence λ in particular is non-neutral. For example, if the
system in Figure 5(c) does not have a solution, the only possible
explanation is that link l1 is not neutral. The intuition is related to
our discussion on Observable Violation #2 in Section 3.3: pathsets
{p1}, {p4}, {p1, p4} will yield one estimate for l1’s performance;
pathsets {p2}, {p4}, {p2, p4} will yield a second estimate; these
can only be different (and the system in Figure 5(c) unsolvable), if
link l1 treats a subset of the involved paths differently.

DEFINITION 2. Consider a non-neutral link sequence λ and its

set of pathsets Πλ. We say that λ is identifiable, when System 4

does not have a solution.

There exist non-neutral links that are non-identifiable. For ex-
ample, suppose we want to reason about the neutrality of link l2 in
Figure 5(a). To create Π〈l2〉, we first identify every path pair whose
only shared link is l2. There are no such path pairs, Π〈l2〉 = ∅, and
we cannot form System 4 for λ = 〈l2〉.

LEMMA 3. Consider a non-neutral link sequence λ with per-

formance numbers {x̂(n) | n = 1..|C|} and top-priority class cn∗ .

If the following conditions hold:

l1

l4

l2

p1 p2

l3

p3

l5

l6

p4

(a) Original network G.

p1 p2

p3

p4

l1

l6

l23 l24

l25

(b) Network slice G〈l1〉.

{p1} : y1 = x1 + x23

{p2} : y2 = x1 + x24

{p3} : y3 = x1 + x25

{p4} : y4 = x1 + x6

{p1, p4} : y5 = x1 + x23 + x6

{p2, p4} : y6 = x1 + x24 + x6

{p3, p4} : y7 = x1 + x25 + x6.

(c) System 4 for λ = 〈l1〉.

Figure 5: A non-neutral network where neutrality viola-

tion is observable. There are two performance classes C =
{{p1}, {p2, p3, p4}}, where {p1} has top-priority. Link l1
is non-neutral, identifiable. Link l2 is non-neutral, non-

identifiable.

• there exist at least two path pairs πi, πj in Πλ

(∃ πi, πj ∈ Πλ);

• and a lower-priority class cn (∃cn 6=n∗ ∈ C);

• such that πi is entirely in class cn and πj is not

(πi ⊂ cn, πj 6⊂ cn);

then λ is identifiable.

Informally, Lemma 3 says that a non-neutral link sequence is
identifiable as long as it is traversed by a sufficiently diverse set of
paths: We can determine that link sequence λ is non-neutral, when
it causes different path pairs in Πλ to experience inconsistent per-
formance. This is guaranteed to happen for l1 in Figure 5(a): on
the one hand, path pair {p2, p4} is entirely in performance class
c2, hence it will yield an estimate of l1’s performance from the
point of view of this performance class; on the other hand, path
pair {p1, p4} includes at least one path from performance class c1,
hence it will yield a different estimate of l1’s performance. In con-
trast, there exist no path pairs at all that share only link l2 in the
same figure, hence we cannot identify it as a non-neutral link.

5. ALGORITHM
We will now present an algorithm that takes as input the network

G and the performance number of any pathset π, and it outputs a
set of non-neutral link sequences Λn̄. We will use three metrics to
characterize the quality of the algorithm:

False-negative rate: It is the fraction of non-neutral links that
do not participate in any link sequence present in Λn̄. E.g., false-
negative rate 10% means that 10% of the non-neutral links do not
participate in any link sequence present in Λn̄.

Algorithm 1 Identification of non-neutral link sequences

Input: The links L and paths P
Output: The set of identif. non-neutral link seqs Λn̄

1: Λn ← ∅, Λn̄ ← ∅
2: for each path pair {pi, pj} ∈ P ∗ do

3: λ = Links(pi) ∩ Links(pj)
4: if λ /∈ Λn then

5: Λn ← Λn ∪ {λ}, Πλ ← ∅
6: end if

7: Πλ ← Πλ ∪ {{pi}, {pj}, {pi, pj}}
8: end for

9: for each link sequence λ ∈ Λn do

10: if |Πλ| < 5 then

11: Λn ← Λn \ {λ}
12: end if

13: if system ~y = Aλ(Πλ) · ~x has no solution then

14: Λn ← Λn \ {λ}, Λn̄ ← Λn̄ ∪ {λ}
15: end if

16: end for

17: return Λn̄

Granularity is the average size of the link sequences in Λn̄. Smaller
granularity indicates higher-quality results. The ideal is 1, which
means that we can localize each observable neutrality violation to
a single link.

False-positive rate: It is the fraction of neutral links that par-
ticipate in neutral link sequences incorrectly present in Λn̄. E.g.,
false-positive rate 10% means that 10% of the neutral links partic-
ipate in a neutral link sequence that is incorrectly in Λn̄.

The core of our algorithm is Algorithm 1, which identifies all the
non-neutral link sequences that are identifiable:

• Lines 1–12: We add to set Λn every link sequence λ for
which Πλ contains at least 2 path pairs (which is equivalent
to at least 5 pathsets).

• Lines 13–16: We move to set Λn̄ any link sequence λ ∈ Λn

for which System 4 has no solution.

If we assume no measurement errors, Algorithm 1 suffers 0 false-
positives and potentially a few false-negatives corresponding to the
non-identifiable non-neutral link sequences. This is because its
output consists exactly of all the identifiable non-neutral link se-
quences: (a) Every link sequence λ ∈ Λn̄ is non-neutral. We have
picked only link sequences for which System 4 does not have a
solution. According to Lemma 2, any such link sequence is non-
neutral. (b) Every non-neutral link sequence λ /∈ Λn̄ is non-
identifiable. We have discarded only link sequences for which Sys-
tem 4 does have a solution. By Definition 2, any such link sequence
is non-identifiable.

For example, consider the network in Figure 5(a), and suppose
both links l1 and l2 are non-neutral. In this case, there are two
non-neutral link sequences that are identifiable (〈l1〉, 〈l1, l2〉) and
one non-neutral link sequence that is not (〈l2〉). The algorithm cor-
rectly identifies the former: At line 8, Λn = {〈l1〉, 〈l1, l2〉}. Link
sequence 〈l2〉 has not been added to Λn, because there exists no
path pair such that Links(pi) ∩ Links(pj) = {l2}. At line 16,
Λn̄ = {〈l1〉, 〈l1, l2〉}, because both 〈l1〉 and 〈l1, l2〉 allow the for-
mation of an unsolvable System 4. Hence, in this example, the al-
gorithm’s false-negative rate is 0 (both non-neutral links are present
in Λn̄) and the false-positive rate is also 0. The granularity is 1.5
(the average length of the identified non-neutral link sequences),
which reflects our uncertainty about the neutrality of link l2.

After running Algorithm 1, we remove from Λn̄ all redundant
link sequences. For example, suppose we have: Λn̄ = {〈l1, l2〉,
〈l2, l3〉, 〈l1, l2, l3〉}; in this case, 〈l1, l2, l3〉 is redundant, because
its presence in Λn̄ does not add new information about the neutral-
ity of the network. Formally, we consider a link sequence λ ∈ Λn̄

redundant, if and only if:

∃{λi|i = 1..m} : λi ∈ Λn ∪ Λn̄, ∀i ∈ [1,m]

∃i ∈ [1,m] : λi ∈ Λn̄

∪m
i=1 λi = λ.

In words, there exists a set of link sequences {λi} such that: all of
them are either in Λn or Λn̄, at least one of them is in Λn̄ (has been
identified as non-neutral), and their union is equal to λ.

6. EXPERIMENTAL EVALUATION
In this section, we first describe our network emulator (Sec-

tion 6.1) and how we process the measurements that we collect
from it (Section 6.2). Then we present experimental results from
two small topologies (Sections 6.3 and 6.4) and close with take-
away points (Section 6.5).

6.1 Network Emulator
We perform our experiments within an open-source network em-

ulator, where end-hosts generate actual TCP traffic and network
links implement actual traffic-differentiation mechanisms. We do
not simulate packet loss or queuing delay: traffic experiences actual
packet loss and queuing delay depending on the queuing policies
and the level of congestion it encounters in the network. We do
not assume noise-free end-to-end measurements: end-hosts mea-
sure the performance of end-to-end paths based on the actual traffic
they exchange.

Our emulator is similar to ModelNet [29], with the difference
that the network is emulated by a user-level process, not a kernel
module. We opted for a user-level implementation, because we
found it easier to debug, and it avoids the overhead of porting be-
tween different operating systems. As in ModelNet, the role of
end-hosts is played by virtual network interfaces that exchange real
traffic. The role of the network (the relays) is played by a network

process that implements network queues and policies. The size of
each queue is set according to the maximum round-trip time (RTT)
experienced by traffic traversing the queue. The only aspect of the
network that is simulated is the propagation delay of links.

We implemented two traffic-differentiation mechanisms that are
deployed in current network devices: policing and shaping. Both
of them limit the fraction of a link’s capacity that is consumed by a
given performance class. Policing relies on a token bucket; the rate
at which tokens are added to the bucket determines the maximum
rate of the targeted performance class; the size of the bucket de-
termines the maximum allowed burst; any excess traffic (that does
not fit in the bucket) is immediately dropped. Shaping is similar,
with the difference that any excess traffic is buffered in a dedicated
queue.

In the experiments presented in this paper, the network either is
neutral or implements |C| = 2 performance classes. When we say
that a network link “implements policing,” we mean that it passes
all class-2 traffic through one policer, whose rate varies across ex-
periments from 50% to 20% of link capacity. When we say that
a network link “implements shaping,” we mean that it passes all
class-2 traffic through one shaper, whose rate R varies across ex-
periments from 50% to 20% of link capacity, while it passes all
class-1 traffic through another shaper with rate 1−R. Unless other-

wise stated, link capacity and policing/shaping rate take the default
values shown in Table 1.

In each experiment, the end-hosts generate TCP traffic for 10
minutes. Each pair of communicating end-hosts starts a number
of parallel TCP flows with the transfer size following a Pareto dis-
tribution; when a TCP flow ends, a new one starts after an idle
time that is governed by an exponential distribution. We chose this
model, because there is evidence that it captures well the commu-
nication between pairs of Internet end-hosts [9], but it is not crucial
to our results—it is just one way of generating dynamic traffic pat-
terns. Across experiments, we vary the number of parallel flows
per path, as well as the parameters of the Pareto and exponential
distributions (that govern flow size and inter-flow idle time, respec-
tively). Unless otherwise stated, these parameters take the default
values shown in Table 1.

Parameter Value(s)

Bottleneck capacity (Mbps) 100
RTT (ms) 50, 80, 120, 200
Policing/shaping rate (%) 20, 30, 40, 50
Congestion-control algorithm CUBIC, NewReno
Parallel TCP flows per path 1, 12, 15, 20, 70
Mean TCP flow size (Mb) 1, 10, 40, 10000
Mean inter-flow gap (s) 10
Loss threshold (%) 1, 5, 10
Measurement interval (ms) 100, 200, 500

Table 1: Experiment parameters. Default values are in bold.

6.2 Measurement Processing
By our definition of neutrality, a neutral link l inflicts congestion

on any path p ∈ Paths(l) with the same probability. In practice,
we found that this may not hold, because packet loss is not uni-
form: if path p2 carries more and/or larger TCP flows than path
p1, the same neutral link l may drop a different fraction of packets
from p2 than p1 during each time interval. As a result, even a neu-
tral link may have different congestion probabilities for different
performance classes.

To account for the above, we normalize our path measurements,
such that they refer to traffic aggregates of the same rate. In par-
ticular, when we form System 4 for link sequence λ, we create the
vector ~y as follows: (a) We discount certain packets from our mea-
surements, such that: in each time interval, all paths in Paths(λ)
appear to have sent the same number of packets. (b) In each time
interval, for each path p ∈ Paths(λ), we count the fraction of
packets that were lost; if this fraction is below a loss threshold, we
decide that p was congestion-free in this interval. (c) In each time
interval, for each pathset π ∈ Πλ, we decide that π was congestion-
free in this interval, when all its member paths were congestion-
free. (d) We compute P(π) as the fraction of intervals in which π
was congestion-free. The exact process by which we create ~y is
stated as Algorithm 2 in our technical report [32].

A key step of our algorithm is to determine whether various in-
stances of System 4 “have a solution” (line 13 of Algorithm 1). In
practice, none of these systems has a perfect solution, but some are
significantly “more unsolvable” than others. We decide whether
System 4 for link sequence λ “has a solution” as follows: (a) We
estimate λ’s performance number based on each path pair in Πλ.
We compute the system’s unsolvability as the absolute difference
between the minimum and the maximum estimate. (b) Based on
this unsolvability, we assign the system to one of two clusters us-
ing standard clustering; we decide that the system “has a solution,”
when it belongs to the low-unsolvability cluster.

6.3 Results for Single Shared Link
We first consider a Dumbbell topology with a single shared link

that (in some experiments) implements traffic differentiation. This
could correspond to the scenario in Figure 6(a), where an ISP throt-
tles all traffic from servers S3 and S4. In this case, the topology in
Figure 6(b) is the network slice that we need to monitor in order to
reason about the neutrality of the shared link l5.

(a) Network.

l1

l8l7
l6

l5

l4
l3l2

l9

p1

p2

p4

p3

(b) Instantiated slice.

Figure 6: Experiment topology A. In some experiments, link l5
polices traffic from paths p3 and p4.

Set
Link l5 Varying parameter

Value(s)
behavior c1 c2

1 Neutral Mean flow size (Mb) 1 1, 10, 40, 10000
2 Neutral RTT (ms) 50 50, 80, 120, 200
3 Neutral Congestion control CUBIC CUBIC, NewReno

4 Policing Mean flow size (Mb) 1, 10, 40, 10000
5 Policing RTT (ms) 50, 80, 120, 200
6 Policing Policing rate (%) – 20, 30, 40, 50

Table 2: Experiment parameters for topology A.

Experimental setup.

We present six experiment sets, summarized in Table 2. We al-
ways refer to pathset {p1, p2} as “class c1” and to pathset {p3, p4}
as “class c2.” In experiments where the network is neutral, c1
and c2 do not constitute, strictly speaking, different performance
classes, but we refer to them this way for simplicity.

In the first three experiment sets, the shared link does not im-
plement any traffic differentiation. To make things difficult for our
algorithm, we try to create network conditions that could be mis-
interpreted as non-neutrality. For instance, in experiment set #1,
class c1’s average flow size is 1Mb, while class c2’s average flow
size varies from 1Mb to 10Gb (a different value per experiment).
Similarly, in sets #2 and #3, the two classes have different RTTs or
use different congestion-control algorithms. As a result, in several
of these experiments, the two classes exhibit dramatically different
behavior, for instance, one class spends significantly more time in
TCP slow start than the other.

In the last three experiment sets, the shared link polices the traf-
fic in class c2. Here, the difficult scenarios for our algorithm are
the ones where all the paths carry the same kind of traffic. In each
experiment set, we vary the average flow size, RTT, or policing rate
of the shared link across experiments; however, in any single ex-
periment, class-c1 traffic and class-c2 traffic have the same average
flow size, RTT, and congestion-control algorithm.

In our technical report, we present three more experiment sets,
where the shared link implements shaping. The results are similar
to the ones of the policing experiments.

Results.

In all these experiments, our algorithm correctly decides whether
the shared link is neutral or not.

1 10 40 10000
0

10

20

30

40

50
Path p1, class c1

Path p2, class c1

Path p3, class c2

Path p4, class c2

Mean flow size for class 2 [Mb]

P
ro

b
a

b
ili

ty
o

f
c
o

n
g

e
s
ti
o

n
[%

]

(a) Experiment set #1 (neutral)

50 80 120 200
0

1

2

3

4

5

RTT for class 2 [ms]

P
ro

b
a

b
ili

ty
o

f
c
o

n
g

e
s
ti
o

n
[%

]

(b) Experiment set #2 (neutral)

CUBIC/CUBIC CUBIC/NewReno
0

5

10

15

20

TCP congestion control alg. for class 2

P
ro

b
a

b
ili

ty
o

f
c
o

n
g

e
s
ti
o

n
[%

]

(c) Experiment set #3 (neutral)

1 10 40 10000
0

20

40

60

80

100

Mean flow size [Mb]

P
ro

b
a

b
ili

ty
o

f
c
o

n
g

e
s
ti
o

n
[%

]

(d) Experiment set #4 (policing)

50 80 120 200
0

10

20

30

40

50

60

RTT [ms]

P
ro

b
a

b
ili

ty
o

f
c
o

n
g

e
s
ti
o

n
[%

]

(e) Experiment set #5 (policing)

50 40 30 20
0

10
20
30
40
50
60
70
80

Policing rate [%]

P
ro

b
a

b
ili

ty
o

f
c
o

n
g

e
s
ti
o

n
[%

]

(f) Experiment set #6 (policing)

Figure 7: External observations for neutral and non-neutral network, topology A. Parameters in Table 2.

Figure 7 shows the external observations for each experiment
set. In each graph, the y-axis represents the probability that a path
is congested, while the x-axis represents different experiments. For
each x-axis value (each experiment), there are four data points, one
for each of the four paths in our topology. For instance, in experi-
ment set #1, when class c2 has mean flow size 40Mb, each of the
four paths is congested with probability 40% (Figure 7(a), third set
of bars).

Figure 7 provides insight into how the algorithm works: When
the shared link does not implement traffic differentiation, the 4
paths are congested with the same probability (top three graphs in
Figure 7), which leads to consistent observations. When the shared
link implements policing, the two paths in class c2 are congested
significantly more often than the two paths in class c1 (bottom three
graphs in Figure 7), which leads to inconsistent observations.

6.4 Results for Multiple Shared Links
Next, we consider the topology in Figure 8, which has multiple

shared links. Links l5, l14, and l20 implement policing, while the
other links do not implement explicit traffic differentiation. This
could correspond to the scenario where routers R1 to R5 form the
backbone of a tier-1 ISP, while each of routers R6, R7, R10, R11,
and R12 belongs to a different tier-2 ISP or content provider. The
tier-1 ISP uses policing on links l14 and l20 to throttle video or P2P
traffic entering its network from routers R7 and R11, respectively;
it uses policing on link l5 to prevent internal P2P traffic from over-
loading its backbone network. We do not intend this to be a realis-
tic topology, but to create a challenging scenario for our algorithm,
with multiple shared links and bottlenecks.

Experimental setup.

We present an experiment where the network differentiates against
long flows. There are three types of end-hosts: dark gray end-hosts
with lines exchange short flows, light gray end-hosts with lines ex-
change long flows that are policed by links l5, l14, and l20 (this is
the class-c2 traffic), and white end-hosts exchange a mix of short
and long flows, but they do not participate in the measurements
(they provide background traffic). Table 3 shows the exact param-
eters for each type.

Results.

In this experiment, our algorithm suffers no false-positives and
no false-negatives (each of the three policing links appears in at
least one link sequence that is classified as non-neutral). It achieves
granularity 2.7.

R1

R6

R12

R2

R7

R4

R5

R3

R10

R11

R8 R9

l1

l2

l3

l4
l5

l6

l7 l8

l9

l10

l11

l12l23 l24

l19

l20
l21

l22

l13

l14 l17

l18l15l16

Figure 8: Experiment topology B. Dark gray end-hosts with

lines exchange short flows. Light gray end-hosts with lines ex-

change long flows, which are policed by links l5, l14, and l20.

White end-hosts exchange a mix of short and long flows, but do

not participate in the measurements.

End-host group Number and size of parallel TCP flows per path

Dark gray 1× 1Mb +1× 10Mb +1× 40Mb
Light gray 1× 10Gb
White 1× 1Mb +1× 10Mb +1× 40Mb +1× 10Gb

Table 3: Traffic characteristics for topology B.

Figure 9(a) summarizes the actual performance of each link with
respect to each path. These numbers are ground truth, directly mea-
sured by the network; our algorithm does not use them in any way.
For each link, we show two boxplots: the left one summarizes the
link’s actual performance for class c1, and the right one summa-
rizes its actual performance for class c2. To create each boxplot,
we measure the performance of the link with respect to every in-
dividual path traversing the link. For instance, consider link l20:
according to the figure, this link never introduces congestion into
class-c1 paths (left boxplot), while it introduces congestion on av-
erage 4% of the time into class-c2 paths (right boxplot).

We see that, for links l5, l14, and l20, the two boxplots are sig-
nificantly further apart than for the rest of the links. This validates
the basic premise of our model: links implementing traffic differ-
entiation have significantly higher performance-number variability
than the rest of the links.

Figure 9(b) summarizes the performance of different link se-
quences as inferred by our algorithm. In this network, there are 28

1 2 3 4 5* 6 7 8 9 10 11 12 13 14* 15 16 17 18 19 20* 21 22 23 24

0

1

2

3

4

5

Link

A
c
tu

a
l
p

ro
b

a
b

ili
ty

o
f

c
o

n
g

e
s
ti
o

n
[%

]

(a) Actual link performance. For each link, we show two boxplots: the left one summarizes the link’s actual performance for class c1, and the
right one its actual performance for class c2. Links marked with an asterisk implement policing.

1 〈4, 2〉

2 〈13, 17〉

3* 〈
4, 5*〉

4* 〈
1, 5*, 13, 17〉

5* 〈
4, 5*, 7, 19〉

6* 〈
18, 14*, 7, 19〉

7 〈12, 10, 19〉

8* 〈
20*, 9, 11〉

9* 〈
20*, 8, 13, 17〉

10 〈1〉
11 〈2〉

12* 〈
20*, 8〉

13 〈3〉

14 〈7, 19〉
15 〈4〉

16* 〈
5*〉

17 〈1, 3〉
18 〈6〉

19* 〈
18, 14*〉

20* 〈
18, 14*, 6, 3〉

21 〈6, 3〉

22 〈19〉

23* 〈
20*〉

24* 〈
18, 14*, 6, 2〉

25* 〈
18, 14*, 6〉

26* 〈
5*, 13, 17〉

27* 〈
20*, 8, 6, 3〉

28* 〈
4, 5*, 13, 17〉

0

1

2

3

4

Link sequence

In
fe

rr
e

d
p

ro
b

a
b

ili
ty

o
f

c
o

n
g

e
s
ti
o

n
[%

]

(b) Inferred link-sequence performance. For each link sequence, we show two boxplots: the left one summarizes its inferred performance for
class c1, and the right one its inferred performance for class c2. Link sequences marked with an asterisk include at least one policing link.

Figure 9: Ground truth and algorithm results for topology B. Parameters in Table 3.

link sequences with two or more path pairs in Πλ, 16 of them non-
neutral and identifiable. For each such link sequence λ, we show
two boxplots: the left one summarizes λ’s inferred performance for
class c1, and the right one summarizes its inferred performance for
class c2. To create each boxplot, we infer λ’s performance based
on different path pairs (different subsets of equations of System 4).
For instance, consider link sequence #28 = 〈l4, l5, l13, l17〉: ac-
cording to the figure, if we monitor only path pairs in class c1,
we infer that this link sequence almost never introduces congestion
(left boxplot); if we monitor only path pairs in class c2, we infer
that the same link sequence introduces congestion on average 2%
of the time (right boxplot).

We see that, for the link sequences that include link l5, l14, or
l20, the two boxplots are significantly further apart than for the rest.
This validates the basic premise of our algorithm: links implement-
ing traffic differentiation result in significantly more inconsistent
external observations than the rest of the links.

Our algorithm suffers no false-negatives in this experiment, even
though it incorrectly classifies non-neutral link sequences #19, #25,
and #26 as neutral. These three link sequences do introduce differ-
ent levels of congestion into the two performance classes, however,
the difference is small enough to confuse the clustering algorithm.
In this particular experiment, these mistakes do not result in false-
negatives, but they do worsen granularity. For instance, link se-
quence #19 = 〈l18, l14〉 is incorrectly classified as neutral. This
does not lead to a false-negative, because non-neutral link l14 is in-
cluded in link sequence #20 = 〈l18, l14, l6, l3〉, which is correctly
classified as non-neutral. However, it worsens the algorithm’s gran-
ularity, because it causes long link sequence #20 to remain in Λn̄

(whereas it would have been discarded as redundant, had #19 been
correctly classified as non-neutral).

6.5 Conclusions
Our algorithm did not misclassify a neutral link sequence as non-

neutral in any of our experiments, even when half the paths travers-
ing that link carried 1Mb flows and the other half carried 10Gb

flows. This is because our performance metric is robust to TCP
dynamics: The performance number of a path indicates how often

it suffers non-negligible packet loss, not how much packet loss it
suffers. TCP dynamics may cause the same link to introduce dif-
ferent amounts of packet loss during the same time interval; how-
ever, when the link does not explicitly differentiate between the two
paths, it is unlikely to introduce non-negligible packet loss in one
path and not in the other during the same time interval.

Congestion did not interfere with neutrality inference in any of
our experiments. In the experiment on topology B, there exist both
neutral and non-neutral, severely congested links. For instance,
both links l13 and l14 operate close to capacity; if we look at packet
loss and queue occupancy for these two links over time (shown in
our technical report), there is no clue that l14 applies traffic differ-
entiation while l13 does not. This does not affect the algorithm,
because congestion on its own does not lead to significantly incon-
sistent external observations; only congestion that is preferentially
inflicted on some paths does.

A key difference from network tomography is that we neither
target nor require accurate inference of the performance of link
sequences. For example, link l20 has actual congestion probabil-
ities 0 and 4% for the two classes (Figure 9(a)), whereas our al-
gorithm infers that it has congestion probabilities 0 and 2% (Fig-
ure 9(b), link sequence #23). This is because the algorithm infers
the link’s congestion probabilities for normalized traffic aggregates
(Section 6.2), which are conservative estimates of the link’s con-
gestion probabilities for the two performance classes. Despite this,
our algorithm correctly classifies the link as non-neutral, because
it uses clustering: a link sequence λ is classified as non-neutral as
long as its inferred performance numbers (in this case 0 and 2%)
are sufficiently different that λ is assigned to the high-unsolvability
cluster (Section 6.2).

As a side-note, we found that modern TCP variants are designed
to converge with minimal packet loss. This is detrimental to tomog-
raphy algorithms that rely on packet-loss measurements, e.g., to
identify bottleneck links. Our performance metric is robust to such

cautious congestion control, because—as mentioned above—it is
a function of the frequency, not severity of loss events. Cautious
congestion control may enable all classes to converge with mini-
mal packet loss; however, when a link implements traffic differen-
tiation, it necessarily introduces more loss events into deprioritized
traffic than the rest, even if each of these events is not severe.

We close by noting that we repeated our experiments with all the
loss thresholds and measurement intervals stated in Table 1, and
there was no significant change in the results.

7. DISCUSSION
In this section, we discuss open issues. We further discuss how

to relax Assumptions #2 and #3 (Section 2.2) in our technical re-
port [32].

Measurement platform.

We assume the existence of a measurement platform and knowl-
edge of the network graph that interconnects the measurement points.
The most realistic deployment option is to use an existing plat-
form where coalitions of end-hosts periodically measure the per-
formance of the paths between them and upload the results to a
centralized location for processing [4, 3, 24].

To discover the network topology, we can leverage existing work
like Rocketfuel [27], AS-level traceroute [20], and manually col-
lected ISP topologies [5]. Many of these proposals rely on IP
traceroute, and one may ask: if we can use traceroute for discov-
ering topology, why not use it also for measuring link or ISP per-
formance (Section 1)? One reason is that a link can treat traceroute
probes differently from other traffic (purposefully or not). That
said, when we do deploy our algorithm, we will have to compare it
against probe-based algorithms [19, 31].

Another challenge is collecting (performance and topology) mea-
surements from sufficiently diverse vantage points: Today, the end-
hosts that participate in measurement platforms are typically lo-
cated in University or residential networks. By measuring the per-
formance of the one-way paths between these end-hosts, one can
detect neutrality violations against P2P traffic [15, 11] or against
particular end-hosts. However, if we want to detect neutrality vi-
olations against a content provider, we also need to know the per-
formance and topology of the one-way paths from this provider
to various end-hosts (which we cannot measure directly, assum-
ing the provider does not participate in the measurement platform).
One option we are exploring is to infer the performance of one-way
paths from round-trip performance based on TCP semantics [25],
and to infer the topology of the one-way paths using reverse tracer-
oute [17].

Path versus flow differentiation.

We define a non-neutral link as one that differentiates between
traffic from different paths, as opposed to one that differentiates by
traffic type (which is the typical definition). What happens when
the network does differentiate by traffic type, e.g., throttles BitTor-
rent traffic?

In a realistic scenario, we expect our algorithm to detect differ-
entiation by traffic type without requiring any changes. Consider
a scenario where each path carries a mix of traffic types, but dif-
ferent paths carry different mixes. For instance, any path from a
content provider to an end-host carries only non-BitTorrent traffic,
whereas any path between two end-hosts carries both BitTorrent
and non-BitTorrent traffic. In this case, any link that differentiates
against BitTorrent traffic also differentiates against paths that carry
BitTorrent traffic (e.g., it drops packets from the these paths more
often than from the rest); hence, differentiation by type results in
differentiation by path, which is what our algorithm detects.

In the worst-case scenario, each path carries roughly the same
mix of traffic types. To deal with this case, we need to redefine
a non-neutral link as one that differentiates not between different
paths, but between different traffic aggregates (where each traffic
aggregate follows the same path, but there may be multiple traffic
aggregates per path). This change of definition affects only the way
we collect our external observations: in System 3, each element of
the vector ~y corresponds to a different set of traffic aggregates (as
opposed to a different pathset). We can create traffic aggregates
as follows: for each path, we measure the end-to-end performance
experienced by each UDP or TCP flow, and we classify flows that
experience the same performance in every time interval into the
same traffic aggregate.

Performance metrics.

We restrict ourselves to additive performance metrics that can
be defined not only for paths, but also for pathsets. What happens
when the network violates neutrality, but that results in inconsistent
latency or jitter—in general, performance metrics that cannot be
defined for pathsets?

A promising approach is to convert our desired performance met-
ric into one that can be defined for pathsets. For instance, if we
want to detect neutrality violations that result in inconsistent la-
tency, we can define a link’s performance as the probability that
the link introduces latency below some pre-configured threshold;
then we can define a pathset’s performance as the probability that
all the links traversed by the pathset introduce latency below some
pre-configured threshold.

Defining performance as a probability of a congestion event means
that our external observations are measurements of the frequency
with which paths and pathsets are congested. The limitation of our
approach is that we cannot detect a neutrality violation if it lasts
for one (in practice, a small number of) measurement interval(s).
However, our detection is not probabilistic: as long as a neutrality
violation lasts for a significant number of intervals (and it is exter-
nally observable), our approach can detect it.

8. RELATED WORK
Several proposals detect traffic differentiation based on transport-

layer headers or payload [18, 31, 15, 11]. The common theme of
these proposals is to have two end-hosts exchange two different
traffic flows (e.g., a BitTorrent flow and a flow that contains random
bytes) over the same network path; if the treatment of the two flows
is significantly different, then the network path between end-user
and monitoring server must be non-neutral. Unlike our algorithms,
these systems were not designed to detect traffic differentiation that
affects all flows of an end-host, nor localize it to specific links.

NetPolice [31] belongs to the above body of work, but moreover
detects whether an ISP treats traffic differently based on routing
information, e.g., previous- or next-hop AS. The main idea is to use
traceroute-like probes to measure the loss rate inflicted by an ISP
on traffic associated with different neighboring ASes; if these loss
rates are significantly different from each other, then the ISP must
be non-neutral. We focus, instead, on the scenario where we cannot
rely on traceroute-like probes (or any other mechanism) to directly
measure the loss rates of links or link sequences (e.g., because there
is no practical way of generating such probes, or probes are not
treated the same as other traffic).

Nano [28] “detects whether an ISP causes performance degra-
dation for a service when compared to performance for the same
service through other ISPs.” We view this work and ours as com-
plementary: it detects whether two different ISPs inflict different
performance on the same kind of traffic; we detect whether any

particular link (or link sequence) inflicts different performance on
different traffic.

ShaperProbe [16] and Packsen [30] detect whether a network
path is shaping an end-user’s traffic and also determine the param-
eters of the shaper. The main idea is to have the end-user send
traffic to a monitoring server, while keeping track of the rate at
which the server receives the user’s traffic; the evolution of the re-
ceiving rate can reveal the presence of a shaper between end-user
and server, as well as the shaper’s properties. We view this work
and ours as complementary: it detects whether any single flow is
subjected to shaping and identifies the parameters of the shaper;
we detect whether different traffic flows are subjected to different
treatment (of any kind) and localize this differentiation to specific
links.

9. CONCLUSION
We studied the problem of detecting network-neutrality viola-

tions and localizing them to specific links. We presented conditions
under which neutrality violations are observable and non-neutral
links are identifiable based solely on external observations. Based
on our analysis, we proposed an algorithm that takes as input a
network graph and end-to-end measurements, and it identifies non-
neutral link sequences; we evaluated it using network emulation.
Our results indicate that it is indeed possible to reason about net-
work neutrality, even when we know nothing about the internal be-
havior of the network. We hope that this work is a small step toward
making the Internet more transparent.

Acknowledgments. We would like to thank Constantine Dovro-
lis for encouraging us to pursue this work despite early difficulties;
Udi Weinsberg, our shepherd Aditya Akella, and the 6 anonymous
SIGCOMM reviewers, for their deep, thorough reviews; and Mihai
Dobrescu, Jonas Fietz, Dimitri Melissovas, Pavlos Nikolopoulos,
Patrick Thiran, for helping us improve the paper. This work was
supported by the Swiss National Science Foundation (SNSF).

10. REFERENCES
[1] Is my ISP Throttling YouTube? http://productforums.

google.com/forum/#!topic/youtube/fUig1oN9ce4.
[2] LINE Network Emulator. http://wiki.epfl.ch/line/.
[3] Measurement Lab. http://www.measurementlab.net/.
[4] PlanetLab: An Open Platform for Developing, Deploying, and

Accessing Planetary-scale Services.
http://www.planet-lab.org/.

[5] The Internet Topology Zoo.
http://www.topology-zoo.org/.

[6] T. Bu, N. Duffield, F. L. Presti, and D. Towsley. Network
Tomography on General Topologies. In Proceedings of the ACM

SIGMETRICS Conference, 2002.
[7] R. Caceres, N. G. Duffield, J. Horowitz, and D. Towsley.

Multicast-based Inference of Network-Internal Loss Characteristics.
IEEE Transactions on Information Theory, 45:2462–2480, 1999.

[8] M. Coates and R. Nowak. Network Loss Inference Using Unicast
End-to-End Measurement. In Proceedings of the ITC Specialist

Seminar on IP Traffic Measurement, Modeling and Management,
2000.

[9] M. E. Crovella and A. Bestavros. Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes. IEEE/ACM Transactions on

Networking, 5(6):835–846, December 1997.
[10] A. Dhamdhere, R. Teixeira, C. Drovolis, and C. Diot. NetDiagnoser:

Troubleshooting Network Unreachabilities Using End-to-end Probes
and Routing Data. In Proceedings of the ACM CoNEXT Conference,
2007.

[11] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan,
and S. Saroiu. Glasnost: Enabling End Users to Detect Traffic
Differentiation. In Proceedings of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2010.

[12] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi.
Detecting BitTorrent Blocking. In Proceedings of the ACM Internet

Measurement Conference (IMC), 2008.
[13] N. G. Duffield. Network Tomography of Binary Network

Performance Characteristics. IEEE Transactions on Information

Theory, 52(12):5373–5388, December 2006.
[14] D. Ghita, K. Argyraki, and P. Thiran. Network Tomography on

Correlated Links. In Proceedings of the ACM Internet Measurement

Conference (IMC), 2010.
[15] P. Kanuparthy and C. Dovrolis. DiffProbe: Detecting ISP Service

Discrimination. In Proceedings of the IEEE INFOCOM Conference,
2010.

[16] P. Kanuparthy and C. Dovrolis. ShaperProbe: End-to-end Detection
of ISP Traffic Shaping Using Active Methods. In Proceedings of the

ACM Internet Measurement Conference (IMC), 2011.
[17] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott,

J. Sherry, P. van Wesep, T. Anderson, and A. Krishnamurthy. Reverse
Traceroute. In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2010.
[18] G. Lu, Y. Chen, S. Birrer, F. E. Bustamante, C. Y. Cheung, and X. Li.

End-to-end Inference of Router Packet Forwarding Priority. In
Proceedings of the IEEE INFOCOM Conference, 2007.

[19] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level
Internet Path Diagnosis. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP), 2003.
[20] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an

Accurate AS-Level Traceroute Tool. In Proceedings of the ACM

SIGCOMM Conference, 2003.
[21] H. X. Nguyen and P. Thiran. Network Loss Inference with Second

Order Statistics of End-to-End Flows. In Proceedings of the IEEE

Internet Measurement Conference (IMC), 2007.
[22] H. X. Nguyen and P. Thiran. The Boolean Solution to the Congested

IP Link Location Problem: Theory and Practice. In Proceedings of

the IEEE INFOCOM Conference, 2007.
[23] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Server-based Inference

of Internet Performance. In Proceedings of the IEEE INFOCOM

Conference, 2003.
[24] M. Sanchez, J. Otto, Z. Bischof, D. Choffnes, F. Bustamante,

B. Krishnamurthy, and W. Williger. Dasu: Pushing Experiments to
the Internet’s Edge. In Proceedings of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2013.
[25] S. Savage. Sting: a TCP-based Network Measurement Tool. In

Proceedings of the USENIX Symposium on Internet Technologies and

Systems (USITS), 1999.
[26] H. H. Song, L. Qiu, and Y. Zhang. NetQuest: A Flexible Framework

for Large-Scale Network Measurement. In Proceedings of the ACM

SIGMETRICS Conference, 2006.
[27] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring

ISP topologies with Rocketfuel. IEEE/ACM Transactions on

Networking, 12(1):2–16, February 2004.
[28] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar. Detecting

Network Neutrality Violations with Causal Inference. In Proceedings

of the ACM CoNEXT Conference, 2008.
[29] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase,

and D. Becker. Scalability and Accuracy in a Large-Scale Network
Emulator. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2002.
[30] U. Weinsberg, A. Soule, and L. Massoulie. Inferring Traffic Shaping

and Policy Parameters using End Host Measurements. In
Proceedings of the IEEE INFOCOM Mini-Conference, 2011.

[31] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting Traffic
Differentiation in Backbone ISPs with NetPolice. In Proceedings of

the ACM Internet Measurement Conference (IMC), 2007.
[32] Z. Zhang, O. Mara, and K. Argyraki. Network Neutrality Inference.

Technical report, École Polytechnique Fédérale de Lausanne, 2014.
Available at
http://infoscience.epfl.ch/record/186414.

