
A Few AI Challenges Raised while
Developing an Architecture for Human-Robot Cooperative Task

Achievement
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F-31007 Toulouse, France
Rachid.Alami@laas.fr

Over the last five years, and while developing an ar-
chitecture for autonomous service robots in human en-
vironments, we have identified several key decisional
issues that are to be tackled for a cognitive robot to
share space and tasks with a human. We introduce
some of them here: situation assessment and mutual
modelling, management and exploitation of each agent
(human and robot) knowledge in separate cognitive
models, natural multi-modal communication, “human-
aware” task planning, and human and robot interleaved
plan achievement.

As a general “take home” message, it appears that
explicit knowledge management, both symbolic and ge-
ometric, proves to be a successful key while attempting
to address these challenges, as it pushes for a different,
more semantic way to address the decision-making issue
in human-robot interactions.

This abstract summarizes the main ideas of a full ar-
ticle submitted to the special issue on Robotics of the
Artificial Intelligence Journal.

One Architecture, Many Cognitive Skills Build-
ing a service robot for autonomous human-robot inter-
action involves many components that translate cog-
nitive skills into softwares. Connecting these multiple
independent software modules in one coherent robotic
architecture is a first challenge that goes beyond sim-
ple engineering: dealing with the intricate semantics of
human-level interaction has to be properly addressed.
We have been researching to this end a robotic architec-
ture focused on explicit knowledge representation and
manipulation (at the deliberative level): components’
“APIs” become “ASIs”: application semantic interface,
as first-order-logic statements act as lingua franca be-
tween the components.

Figure 1 gives an overview of our architecture. An
active knowledge base (Oro (Lemaignan et al. 2010)),
conveniently thought as a semantic blackboard, connects
most of the modules together: the geometric reasoning
module (Spark) produces symbolic assertions (like 〈
BOOK1 isOn TABLE〉) describing the state and dynamics
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of the robot’s environment. These logical statements
are stored in the knowledge base, and queried back by
the language processing module (Dialogs), the sym-
bolic task planner (HATP) and the execution controller.
The output of the language processing module and the
activities started by the robot controller are likewise
stored as symbolic statements.

For instance, when processing a sentence like “give
me another book”, the Dialogs module queries
the knowledge base: find(?book type Book, ?book

differentFrom BOOK1), and write back assertions like
〈 HUMAN desires GIVE ACTION45, GIVE ACTION45 actsOn

BOOK2〉. The HATP planner then uses the knowledge
base to initialise the planning domains with similar
requests (find(BOOK2 isAt ?location), etc.), and the
execution controller typically monitor conditions (by
subscribing to events like: onNewMatch(HUMAN desires

?goal)) and stores what the robot is currently doing (〈
myself currentlyPerforms GIVE ACTION45〉).

As we already see in this example, our software mod-
ules can be seen as translators from human cogni-
tive skills to robotic cognitive skills. In our context,
we call cognitive skills the deliberative behaviours
that are 1. stateful (keeping track of previous states
is typically required for the component to perform ad-
equately), 2. amodal in that the skill is not inherently
bound to a specific perception or actuation modality,
3. manipulate explicit and grounded semantics,
typically by the mean of symbolic reasoning, 4. oper-
ate at the human-level, i.e. are legible to the humans,
typically by acting at similar levels of abstraction.

Even before discussing the AI challenges specifically
raised by each of the skills we want to endow our robot
with, this definition of a cognitive skill already hints at
a range of general AI questions like: What amodal actu-
ally means for an “embodied Turing machine”? Is con-
veying human-level semantics achievable by the mean
of symbolic reasoning? Should we at all try to translate
human skills to robotic skills? Still, we can outline the
main cognitive tools that we have researched, and how
they question artificial intelligence in their own manner.

From Cognitive Skills to AI Challenges We dis-
tinguish between what we call intrinsic and extrinsic
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Figure 1: A deliberative architecture for autonomous service robots.

cognitive capabilities: intrinsic are those skills that are
tightly bound to the knowledge model (and hence im-
plemented close to the knowledge base). In our sys-
tem, they include for instance symbolic reasoning
and mutual modelling. Extrinsic cognitive skills, on
the other hand, are partially decoupled from the central
knowledge base (they can usually work – with reduced
functionalities – without any). We have investigated
human-aware situation assessment, natural lan-
guage grounding, social task planning and high-
level execution control. We introduce below four of
these skills, and relate them to the underlying AI chal-
lenges they raise (and attempt to partially address).

We manage symbolic knowledge in our architec-
ture via the Oro (Lemaignan et al. 2010) knowledge
base, that relies on standard tools: Description Log-
ics (OWL) as first-order-logic formalism and the Pel-
let open-source reasoner. This provides the whole sys-
tem with standard inference capabilities like consis-
tency checking, concept satisfiability, classification and
realisation.

Many alternatives to description logics exist and have
also been investigated in robotics (modal logic, tempo-
ral logic, different kind of probabilistic logics, special-
ized approaches like Answer Set Programming, etc.),
and a synthesis on logic formalisms that would address
the specific needs of HRI (beyond the expressiveness
vs. tractability trade-off) would certainly be a welcome
contribution.

We also conducted research on mutual modelling
through the implementation of a simple theory of mind
(the cognitive ability that allows a subject to represent
the mental state of another agent). From a robotics
point of view, it supposes the ability to build, store
and retrieve separate models of the beliefs of the agents
the robot interacts with. Our knowledge base imple-

ments such a mechanism by the mean of independent
ontologies for each agent the robot interacts with, and
maintain then different (and possibly diverging) knowl-
edge models based on visual perspective taking (Sisbot,
Ros, and Alami 2011).

While this approach enabled us to reproduce the clas-
sical False-Belief experiment (Warnier et al. 2012), it is
also clear that mutual modelling covers more than what
visual perspective taking provides to the system, and
more research is required to actually take into account
what the human knows about the robot (and vice versa)
regarding expected knowledge, skills, plans, emotions,
etc. This line of research would support an interdisci-
plinary approach, where AI would have to discuss with
the other fields of cognitive sciences.

Natural language understanding is another classical
AI challenge that we have investigated (Lemaignan et
al. 2011), focusing on the grounding (Coradeschi and
Saffiotti 2003) issue: how to establish a common ground
between the robot and the human, relying on the dif-
ferent communication modalities elicited by the robot.
We found that representing the robot’s belief state with
human-level semantics simplifies dialogue understand-
ing, both in terms of grounding (because the robot al-
ready represents what it perceives at a level of abstrac-
tion that is close to the human one) and of interpreta-
tion (the robot’s planner takes as input task descrip-
tions that are also close to what the human expresses).
Much remains however to be done, starting with bet-
ter speech recognition (which likely asks for a better
integration with speech understanding).

Finally, human-aware task planning is a cognitive
capability of interest for both the AI and HRI com-
munities: we have developed an original task planner,
HATP (Lallement, De Silva, and Alami 2014), that aug-
ments the standard HTN approach by allowing the sys-



tem to generate interleaved plans for multiple agents,
so-called shared plans. These are then used to antici-
pate human action or to propose to human to act. A set
of social rules together with cost-based plan selection
allows to promote the (shared) plans that suit better
human preferences and needs or to tune the workload
balance between participants, the human or the robot,
depending on the context.

A fruitful cooperation Human-Robot Interaction
is definitely an area full of challenges for Artificial Intel-
ligence. We have briefly outlined here a few challenges
that we attempt to address in our architecture: indeed,
besides all ”standard” robotic challenges in terms of
autonomy, it is interesting to identify and investigate
issues dealing with ”human-aware” planning and rea-
soning.
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