
18

Tight Bounds for Asynchronous Renaming

DAN ALISTARH, Microsoft Research Cambridge
JAMES ASPNES, Yale
KEREN CENSOR-HILLEL, Technion
SETH GILBERT, National University of Singapore
RACHID GUERRAOUI, EPFL

This article presents the first tight bounds on the time complexity of shared-memory renaming, a funda-
mental problem in distributed computing in which a set of processes need to pick distinct identifiers from a
small namespace.

We first prove an individual lower bound of �(k) process steps for deterministic renaming into any
namespace of size subexponential in k, where k is the number of participants. The bound is tight: it draws
an exponential separation between deterministic and randomized solutions, and implies new tight bounds
for deterministic concurrent fetch-and-increment counters, queues, and stacks. The proof is based on a new
reduction from renaming to another fundamental problem in distributed computing: mutual exclusion. We
complement this individual bound with a global lower bound of �(k log(k/c)) on the total step complexity
of renaming into a namespace of size ck, for any c ≥ 1. This result applies to randomized algorithms
against a strong adversary, and helps derive new global lower bounds for randomized approximate counter
implementations, that are tight within logarithmic factors.

On the algorithmic side, we give a protocol that transforms any sorting network into a randomized strong
adaptive renaming algorithm, with expected cost equal to the depth of the sorting network. This gives a
tight adaptive renaming algorithm with expected step complexity O(log k), where k is the contention in the
current execution. This algorithm is the first to achieve sublinear time, and it is time-optimal as per our
randomized lower bound. Finally, we use this renaming protocol to build monotone-consistent counters with
logarithmic step complexity and linearizable fetch-and-increment registers with polylogarithmic cost.

Categories and Subject Descriptors: E.1 [Data Structures]: Distributed data structures; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Theory, Algorithms, Performance

Additional Key Words and Phrases: Distributed computing, shared memory, concurrent data structures,
renaming, lower bounds

This article includes results that appeared in preliminary form in Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing (PODC) and in Proceedings of the 52nd IEEE Symposium
on Foundations of Computer Science (FOCS).
The work of J. Aspnes was supported in part by NSF grant CCF-0916389. The work of S. Gilbert was
supported by Singapore AcRF-2 MOE 2011-T2-2-042.
K. Censor-Hillel is a Shalon Fellow. Part of this work was performed while K. Censor-Hillel was a postdoc at
MIT, supported by the Simons Postdoctoral Fellowship.
Authors’ addresses: D. Alistarh, Microsoft Research Cambridge, 21 Station Road, Cambridge CB1 2FB, UK;
email: daalista@microsoft.com; J. Aspnes, Yale University, Department of Computer Science, 51 Prospect
Street, P.O. Box 208285, New Haven, CT 06520-8285; email: james.aspnes@gmail.com; K. Censor-Hillel,
Technion – Israel Institute of Technology, Technion City, Haifa 3200003, Israel; email: ckeren@cs.technion.
ac.il; S. Gilbert, National University of Singapore, Department of Computer Science, 21 Lower Kent Ridge
Road, Singapore 119077; email: seth.gilbert@comp.nus.edu.sg; R. Guerraoui, EPFL IC IIF LPD, INR 310
(Bâtiment INR), Station 14, CH-1015 Lausanne, Switzerland; email: rachid.geurraoui@epfl.ch.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 0004-5411/2014/05-ART18 $15.00

DOI: http://dx.doi.org/10.1145/2597630

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:2 D. Alistarh et al.

ACM Reference Format:
Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid Guerraoui. 2014. Tight bounds
for asynchronous renaming. J. ACM 61, 3, Article 18 (May 2014), 51 pages.
DOI: http://dx.doi.org/10.1145/2597630

1. INTRODUCTION

The availability of unique names, or identifiers, is a fundamental requirement for dis-
tributed computation. Even in settings where unique identifiers such as MAC or IP
addresses are available, they often come from a very large namespace, which reduces
their usefulness. The renaming problem, in which a set of processes need to pick unique
names from a small namespace, is one of the fundamental problems in distributed com-
puting. Intuitively, renaming can be seen as the dual of the consensus problem [Pease
et al. 1980]: if solving consensus requires processes to agree on a single value, renaming
asks processes to disagree in a constructive way, by returning distinct values from a
small space of names.

More precisely, the renaming problem assumes that processes have unique initial
names from a large, virtually unbounded namespace, and requires each process to
eventually return a name (the termination condition), and that the names returned
should be unique (the uniqueness condition). The size of the resulting namespace should
be at most T > 0, which is given in advance. The namespace size T should only
depend on n, the maximum number of participating processes. The adaptive version
of the renaming problem requires the size of the namespace T to only depend on k,
the number of processes actually taking steps in the current execution, also known
as the contention in the execution. If the size of the namespace matches exactly the
number of participating processes, renaming is said to be strong, and the namespace
is said to be tight. Otherwise, renaming is loose. Intuitively, a tight namespace is
desirable since it minimizes the number of “wasted” names, which are allocated but go
unused.

A significant amount of research, for example, Attiya et al. [1990], Bar-Noy and
Dolev [1989], Burns and Peterson [1989], Moir and Anderson [1995], Herlihy and
Shavit [1999], Afek and Merritt [1999], Attiya and Fouren [2001], Eberly et al. [1998],
and Panconesi et al. [1998], has studied the solvability and complexity of renaming in
an asynchronous environment. In particular, tight, or strong deterministic renaming,
where the size of the namespace is exactly n, is known to be impossible [Herlihy and
Shavit 1999; Castañeda and Rajsbaum 2010]. In fact, (n + t − 1) is the best achiev-
able namespace size when t processes may crash [Castañeda and Rajsbaum 2010,
2012]. The proof of this result required the use of complex techniques [Herlihy and
Shavit 1999; Gafni 2009]. This impossibility result can be circumvented through the
use of randomization: there exist randomized renaming algorithms that ensure a tight
namespace of n names, guaranteeing name uniqueness in all executions and termina-
tion with probability 1, for example, Eberly et al. [1998]. Despite considerable research
effort on efficient renaming algorithms, for example, Panconesi et al. [1998], Borowsky
and Gafni [1993], Moir and Anderson [1995], Moir and Garay [1996], Afek and Merritt
[1999], Attiya and Fouren [2001], Eberly et al. [1998], Chlebus and Kowalski [2008],
and Afek et al. [1999], prior to our work there have been no time optimality results for
shared-memory renaming, either for randomized or deterministic algorithms.

1.1. Overview of the Results

In this article, we present the first tight time-complexity bounds for this problem, both
for deterministic and randomized implementations. For deterministic algorithms, we

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:3

give a tight linear lower bound on renaming into any subexponential namespace.1
For randomized algorithms, we give tight logarithmic upper and lower bounds on the
time complexity of adaptive renaming. Together, our results give an exponential-time
complexity separation between deterministic and randomized renaming.

Since renaming can be solved trivially using objects with stronger semantics, such as
stacks, queues, or fetch-and-increment counters, our lower bounds also apply to these
widely used concurrent objects. These results improve or match the previously known
lower bounds for these problems (see Figure 1 for an overview). On the other hand,
our renaming algorithms can be extended to obtain new efficient implementations of
other shared objects, such as counters, mutex, test-and-set or fetch-and-increment. (A
summary is given in Figure 2.)

From a technical perspective, this article highlights new connections between renam-
ing and other fundamental objects: sorting networks [Knuth 1998] and mutual exclu-
sion [Dijkstra 1965]. We show that sorting networks can be used to obtain optimal-time
solutions for randomized renaming. In turn, such renaming solutions can be used to
obtain efficient mutual exclusion algorithms. We then proceed by reduction, and derive
a lower bound on renaming from a known lower bound on the time complexity of mu-
tual exclusion [Kim and Anderson 2012]. This result then generalizes to more complex
objects that solve renaming. The lower bound on the time complexity of randomized
renaming follows from a separate information-based argument.

In the following, we describe these contributions in more detail.

1.2. Deterministic Renaming Lower Bound

The main contribution of this article is characterizing the time complexity of the renam-
ing problem in asynchronous shared memory. For deterministic algorithms, we prove
that �(k) process steps is a tight bound for the individual step complexity of adaptive
renaming in a subexponential namespace2 in the number of participants k. This result,
whose proof can be found in Section 7, extends to nonadaptive renaming, to yield a
linear lower bound on the complexity of renaming in a polynomial namespace in n. It
holds for wait-free algorithms using reads, writes, test-and-set, and compare-and-swap
operations, and is matched by various algorithms in the literature, for example, Moir
and Anderson [1995] and Moir and Garay [1996].

We obtain the result by reduction from a lower bound on mutual exclusion. The
proof is structured in two steps. The first step assumes a wait-free algorithm R, re-
naming adaptively into a loose namespace of size T (k), of size subexponential in k. We
transform this algorithm into a strong adaptive renaming algorithm S(R), by adding
an O(log T (k)) term to the complexity of the original algorithm R. This first trans-
formation is based on a connection between renaming and sorting networks [Knuth
1998]. (We also exploit this connection to obtain a time-optimal randomized renaming
algorithm.)

The second step in the proof relates adaptive strong renaming to mutual exclusion.
We prove that any strong adaptive renaming algorithm (and thus, also the algorithm
S(R)) can be used to solve mutual exclusion with a constant overhead in terms of com-
plexity. This second transformation yields an algorithm Mutex(S(R)) that solves mutual
exclusion with worst-case complexity O(C(R) + log T (k)), where C(R) is the worst-case
complexity of the original renaming algorithm R. We now apply a linear lower bound
by Kim and Anderson [2012] on the complexity of adaptive mutual exclusion to obtain

1This bound is matched by previously known algorithms, for example, Moir and Anderson [1995]. See
Section 4 for a detailed discussion.
2More precisely, a subexponential namespace is a namespace of size o(αk), for any constant α > 1.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:4 D. Alistarh et al.

that the algorithm R must have linear complexity in k as long as the namespace T (k)
is a subexponential function in k.

Intuitively, the argument shows that, given k processes that need to pick unique
names from a large namespace, there exists a worst-case schedule in which a process
executes for �(k) steps, roughly one step for every other process executing in the system.
This is somewhat surprising, since it implies that giving the processes more choice for
the namespace size does not help in terms of worst-case step complexity: assigning
names in a huge namespace, for example, of size �(k100), is asymptotically no easier
that renaming in a small namespace of size O(k).

The reduction technique implies an even stronger linear lower bound, on the number
of remote memory references (RMRs) that a process has to perform in a worst-case
execution in the cache-coherent shared memory model. In brief, RMRs are a complexity
measure that takes into account the number of cache misses that a process incurs while
running an algorithm, and can be orders of magnitude slower than accesses to local
memory on modern multiprocessor architectures.

1.3. Randomized Adaptive Renaming Lower Bound

We complement the deterministic lower bound by also analyzing the time complexity
of randomized adaptive renaming. More precisely, we analyze the worst-case expected
total number of steps that processes must perform. We prove a global step complexity
lower bound: given any algorithm that renames into a namespace of size ck, with c ≥ 1,
there exists an adversarial strategy that causes the k processes to take �(k log(k/c))
total steps in expectation. This lower bound applies to algorithms using reads, writes,
test-and-set and compare-and-swap primitives, and to algorithms that may not termi-
nate with some nonzero probability. This total step complexity lower bound is tight
for c = 1, that is, for strong adaptive renaming, since it is matched by the renaming
network algorithm presented in Section 5.

The same technique implies an �(k log(k/c)) total step complexity lower bound for
randomized implementations of c-approximate shared counters, that is, counters that
return a result that is within a factor of c of the real value. This lower bound is tight
within logarithmic factors [Aspnes et al. 2012a], and limits the complexity gain from
allowing approximation within constant factors.

Our argument follows the structure of a previous result by Jayanti [1998], which in
turn is similar to a lower bound by Cook et al. [1986] on the complexity of computing
basic logical operations on PRAM machines. Jayanti proved an �(log k) lower bound
on the expected step complexity of shared counters, queues, and stacks, which also
applies to renaming. We generalize his result in two ways: first, we consider total step
complexity, and thus obtain a stronger �(log k) lower bound on the average worst-
case expected step complexity of the problem. Second, our results also apply to loose
(approximate) versions of renaming and counting, bounding the benefits of relaxing
the object semantics.

1.4. Lower Bounds for Other Objects

Since more complex shared-memory objects such as queues, stacks, or fetch-and-
increment counters solve adaptive strong renaming with constant complexity overhead,
it follows that the local and global lower bounds stated in the previous two sections
apply to these objects as well.

In particular, the deterministic lower bound implies that wait-free deterministic im-
plementations of these objects have linear step complexity in the worst case, suggesting
that they do not scale well in terms of worst-case time complexity. The result holds for
algorithms that are adaptive (whose complexity depends only on the contention in the
execution), or if the algorithms do not assume any bound on the size of the initial

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:5

Fig. 1. Summary of the lower bound results and relation to previous work.

namespace of participating processes. (We discuss ways of circumventing the lower
bound in Sections 7.3 and 7.4.)

Similarly, the total step complexity lower bound also applies to queues, stacks, and
fetch-and-increment out of read-write registers with compare-and-swap operations,
giving an �(k log k) lower bound for exact implementations in executions where k pro-
cesses participate. This bound is more general since it applies to randomized algorithms
as well, and to algorithms that assume names from a small namespace. These lower
bounds are matched by several known implementations (please see Figure 1 for a
case-by-case description).

1.5. An Algorithm for Strong Randomized Renaming

Our main algorithmic contribution is a time-optimal algorithm for strong adaptive
renaming based on a variation of sorting networks [Cormen et al. 2009] which we call
renaming networks. A renaming network is a sorting network in which all comparators
have been replaced with two-process test-and-set objects.

The mechanism behind the algorithm is that each process is assigned a distinct input
port, and follows a path through the network determined by leaving each comparator on
its top output wire if it wins the test-and-set, and on the bottom output wire otherwise;
the output name is the index of the port that it reaches. This construction guarantees
that if k processes enter the network on distinct input ports, they will reach the first k
output ports, thus returning unique names from 1 to k. The expected step complexity
of the algorithm is bounded by the maximum number of comparators between an input
port and an output port in the sorting network. There exist sorting networks for which
this number is logarithmic in the number of input ports [Ajtai et al. 1983].

The key technical issues are assigning unique input ports to the renaming network,
and adapting the network size to work for unbounded values of k (required to obtain
an adaptive algorithm). We overcome the first obstacle by noticing that input port
assignment can be seen as another instance of renaming, and designing a randomized
loose renaming algorithm with low complexity, which assigns unique names from 1 to kc

for some constant c, with high probability. We overcome the second issue by introducing
a new adaptive sorting network, whose size can adapt to the number of processes that
access it, and whose complexity remains logarithmic whenever truncated to a finite
number of input and output ports.

The resulting algorithm guarantees a tight adaptive namespace with complexity
O(log k), with high probability. This is the first known algorithm to achieve tight adap-
tive renaming in less than linear time. It improves exponentially on previous strong
renaming solutions, which had worst-case complexity at least linear, for example,
Alistarh et al. [2010]. It also gives an exponential separation between deterministic
and randomized renaming algorithms. The total work lower bound in Section 8 shows
that this algorithm is in fact optimal, and that no asymptotic complexity improve-
ments are possible by relaxing namespace size within constant factors. We build on this
algorithm to obtain a new counter implementation, a bounded-use fetch-and-increment

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:6 D. Alistarh et al.

Fig. 2. Summary of algorithmic results.

object, and a mutual exclusion algorithm with logarithmic-time complexity. The algo-
rithmic results are summarized in Figure 2.

1.6. Roadmap

The article is divided in three parts. (Note that the technical presentation has a slightly
different structure than the introduction.) The first part gives the background, outlin-
ing the model (Section 2), problem statements (Section 3), and an overview of related
work (Section 4). In the second part (Sections 5 and 6), we present a time-optimal
randomized renaming algorithm and its applications to counting objects. We focus on
lower bounds in part three. We give the deterministic lower bound and its extensions
to other objects in Section 7. We then present the proof of the global step complexity
lower bound in Section 8, with applications to renaming and counting. We summarize
the results and present an overview of open questions in Section 9.

2. SYSTEM MODEL

In this section, we introduce the system model for which our algorithms and lower
bounds are designed. We also describe the cost measures under which we will analyze
algorithms. In brief, the model we consider is the standard asynchronous shared mem-
ory model [Attiya and Welch 1998; Lynch 1996] in which processes execute without
bounds on their relative execution speed, in the presence of crash failures, communi-
cating through operations on registers.

2.1. The Asynchronous Shared Memory Model

2.1.1. Model Overview. We consider the standard asynchronous shared-memory model,
in which n processes p1, . . . , pn communicate through operations on shared multiwriter
multireader atomic registers. We will denote by k the contention in an execution, that
is, the actual number of processes that take steps in the execution.

Processes follow an algorithm, which is composed of instructions. Each instruction
consists of some local computation, which may include an arbitrary number of local
coin flips, and one shared memory operation, such as a read or write to a register,
which we call a shared-memory step. A number of t < n processes may fail by crashing.
(Throughout this article, we assume that the upper bound t on the number of failures
is n−1.) A failed process does not execute any further instructions. A process that does
not crash during an execution is correct.

The order in which the processes execute shared-memory steps and their crashes are
controlled by a scheduler, which we model as an adversary. More precisely, we allow
the adversary to observe the state of all processes, including local coin flips, whenever
scheduling the next step. This type of adversary is known as the strong adversary.

In the following, we define these terms formally.

2.1.2. Processes, Algorithms, and Shared Objects. A process is a sequential unit of compu-
tation, created by an application when necessary. For simplicity, we will assume that
processes are created at the beginning of each execution, and each executes steps from
its algorithm when scheduled. Thus, we denote by � = {p1, p2, . . . , pn} the set of all
processes that may execute an algorithm. Accordingly, n will be the total number of

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:7

processes that may execute an algorithm. On the other hand, we will denote by k the
actual number of processes that execute instructions in the execution. Consequently,
we have the relation k ≤ n.

Initially, each process pi is assigned a unique initial identifier idi, which, for simplic-
ity, is an integer. We will assume that the space of initial identifiers is of infinite size.
This models the fact that, in real systems, processes may use identifiers from a very
large space, such as the space of UNIX process identifiers, or the set of all IP addresses.

Each process executes an algorithm assigned to it by the application. An algorithm is
a series of instructions. A process’ next instruction is always determined by its state and
by the algorithm. The difference between deterministic and randomized algorithms is
that, in the latter case, the state may contain the results of random coin flips performed
by the process.

Processes perform local computation, as well as execute operations on shared objects.
Each operation is described by an invocation, and a response. For example, the operation

val ← R.read()

reads the contents of shared object R, in this case a register. The response of the read
operation is stored in the local variable val. If process p invokes an operation on object
X, we say that it accesses X. Note that an operation invocation may not necessarily be
followed by a response event. Such an operation is called a pending operation.

2.1.3. Randomization. Some of the algorithms we present are randomized, in that the
processes’ actions may depend on the outcomes of local coin flips. In general, we use
randomization in algorithms in order to assign probability weight to executions, and
avoid the worst-case executions with high probability.

Processes may perform local coin flips by calling a local function coin, which takes two
integer parameters a and b with a ≤ b, and returns an integer x with a ≤ x ≤ b chosen
uniformly at random. For example, the call coin(0, 1) will return 0 with probability 1/2,
and 1 with probability 1/2.

2.1.4. Concurrent Executions and the Adversarial Scheduler. An execution is a sequence of
operations performed by a set of processes. In order to represent executions, we will
assume discrete time, where at every unit there is only one active process. In a time
unit, the active process can perform any number of local computations or local coin
flips, and then issue an event or execute a step.

Events are local to each process, that is, are always received by the process issuing
the event, and are used to mark the time when a process starts and stops invoking
an implementation of a shared object as part of its algorithm. (For example, the time
when a process calls a procedure implementing a lower-level shared object X, and the
time when it returns from this procedure.) Processes are sequential, that is, in each
step a process may execute at most one operation on at most one object. In particular,
the return event is used by the process to return from the algorithm.

A step is an execution of an operation on a base object, which comprises the invocation
and the subsequent response (therefore, every operation on a base object takes at most
one unit of time to execute). Whenever a process pi becomes active (as decided by the
scheduler), pi executes an event or a step. We assume that the scheduler has access
to the results of any local computation or local coin flips leading to the step, before
choosing to schedule it. It may be possible that a process does not have anything to
execute, for example, if it terminates its algorithm, in which case it executes an empty
no-op step.

The order in which processes take steps and issue events is determined by an ex-
ternal abstraction called a scheduler, over which processes do not have control. In the
following, we will consider the scheduler as an adversary, whose goal is to maximize

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:8 D. Alistarh et al.

the cost of the protocol (in this article, we focus on number of steps as a cost measure).
Thus, we will use the terms adversary and scheduler interchangeably. The adversary
controls the schedule, which is a (possibly infinite) sequence of process identifiers. If
process pi is in position τ of the sequence, then this implies that pi is active at time
τ . The adversary has the freedom to schedule any interleaving that complies with
the given model. In this article, we assume an asynchronous model; therefore, the
adversary may schedule any interleaving of process steps.

Consequently, an execution is a sequence of all events and steps issued by processes
in a given run of an implementation. Every execution has an associated schedule,
which yields the order in which processes are active in the execution. For deterministic
algorithms, the schedule completely determines the execution.

For randomized algorithms, notice that different assumptions on the relation be-
tween the scheduler and the random coin flips that processes perform during an exe-
cution may lead to different results. In this article, we will assume that the adversary
controlling the schedule is a strong adversary, that observes the results of the local coin
flips, together with the state of all processes, before scheduling the next process step
(in particular, the interleaving of process steps may depend on the result of their coin
flips).

This is the standard adversarial model for randomized distributed algorithms, which
reflects the fact that the speed of a process may be influenced by the results of random
coin flips that the process performs. On the one hand, it is the strongest “reasonable”
adversarial model, since a stronger adversary would have to be aware of the results of
coin flips that the processes perform in the future. On the other hand, it encompasses
weaker adversarial models, such as the oblivious adversary, for example, [Alistarh
and Aspnes 2011], which fixes the scheduling and failure pattern independently of the
processes’ coin flips.

2.2. Asynchrony and Wait-Freedom

In this article, we focus on asynchronous shared-memory systems. In such systems,
the time delay between two consecutive events of any process may be arbitrary, that
is, there are no assumptions on the relative speed of processes. This models the fact
that, in general-purpose systems, processes may be preempted or otherwise delayed for
arbitrary periods of time. While real-world systems may not be entirely asynchronous,
proving algorithms correct in the asynchronous model ensures that they will be correct
in any system in which delays are bounded. In this setting, an implementation is wait-
free if any process invoking an operation also returns within some finite number of its
own steps. In this article, we focus on wait-free algorithms.

2.3. Complexity Measures

We measure complexity in terms of process steps, where each shared-memory operation
is counted as one step. Thus, the (individual) step complexity of an algorithm is the
worst-case number of steps that a single process may have to perform in order to
return from an algorithm, including invocations to lower-level shared objects. The total
step complexity is the total number of shared memory operations that all participating
processes perform during an execution. For randomized algorithms, we will analyze the
worst-case expected number of steps that a process may perform during an execution
as a consequence of the adversarial scheduler, or give more precise probability bounds
for the number of steps performed during an execution.

For the lower bound in Section 7, we will use a stronger measure of complexity,
by counting the number of remote memory references (RMRs). In cache-coherent (CC)
shared memory, each process maintains local copies of shared variables inside its cache.
The consistency of the cache among processes is ensured by a coherence protocol. A

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:9

variable is remote to a process if its cache contains a copy of the variable whose value
is out of date (or if the cache contains no copy of the variable); otherwise, the variable
is local. A process step is local if it accesses a local variable. Otherwise, the step is a
remote memory reference (RMR). A similar definition exists for the distributed shared
memory (DSM) model. Notice that, since each RMR implies a distinct process step,
RMR complexity is always a lower bound on step complexity.

2.4. Linearizability

Linearizability [Herlihy and Wing 1990] is a correctness condition for shared object im-
plementations. Intuitively, an implementation is linearizable (or atomic) if every shared
memory operation should appear to the processes as if it was executed instantaneously
at some single and unique point in time between its invocation and its response. This
notion helps keep the algorithms simple, by eliminating technical details and provid-
ing a clean interface. The semantics of atomic objects can be described by using their
sequential behavior, that is, by giving their sequential specification.

More precisely, an implementation of an object O is linearizable if, for every exe-
cution, there exists a total order over all the complete process operations operations
together with a subset of the incomplete process operations such that every operation is
immediately (atomically) followed by a response, and the sequence of operations given
by that total order is consistent with a sequential execution of the object O.

Linearizability and Randomization. Recent results by Golab et al. [2011] show that
linearizability is not a sufficient correctness condition when randomization is employed.
More precisely, they show that the adversary can gain extra power whenever a random-
ized algorithm uses other (deterministic or randomized) linearizable implementations
as subalgorithms. In this article, we circumvent this technical issue by avoiding the
use of linearizability as a correctness condition when employing subalgorithms: in-
stead, we isolate a set of invariants whenever we use a known implementation as a
subalgorithm.

3. PROBLEM STATEMENTS AND SHARED OBJECTS

We now present the definitions and sequential specifications of the problems and objects
considered in this article.

3.1. Renaming

The renaming problem, introduced in Attiya et al. [1990], is defined as follows. Each of
the n processes has initially a distinct identifier idi taken from a domain of potentially
unbounded size M, and should return an output name oi from a smaller domain. (Note
that the index i is only used for description purposes, and is not known to the processes.)
Given an integer T , an object ensuring deterministic renaming into a target namespace
of size T , also called a T -renaming object, guarantees the following properties.

(1) Termination. In every execution, every correct process returns a name.
(2) Namespace Size. Every name returned is from 1 to T .
(3) Uniqueness. Every two names returned are distinct.

The randomized renaming problem relaxes the termination condition, ensuring ran-
domized termination: with probability 1, every correct process returns a name. The
other two properties stay the same.

The domain of values returned, which we call the target namespace, is of size T . In
the classical renaming problem [Attiya et al. 1990], the parameter T may not depend
on the range of the original names. On the other hand, it may depend on the parameter
n and on the number of possible faults t.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:10 D. Alistarh et al.

For adaptive renaming, the size of the resulting namespace, and the complexity of
the algorithm, should only depend on the number of participating processes k in the
current execution. In some instances of the problem, processes are assumed not to
know the maximum number of processes n, whereas in other instances an upper bound
on n is provided. (In this article, we consider the slightly harder version in which the
upper bound on n is not provided.)

If the size of the namespace matches exactly the number of participating processes,
then we say that the target namespace is tight. Consequently, the strong renaming
problem requires that the processes obtain unique names from 1 to n, that is, T = n.
The strong adaptive renaming problem requires that k participating processes obtain
consecutive names 1, 2, . . . , k. Thus, strong adaptive renaming is the version of the
problem with the largest number of constraints. To distinguish the classical renaming
problem from the adaptive version, we will denote the classical version, where n is given
and complexity and namespace depend on n, as the nonadaptive renaming problem.

3.2. Registers

The simplest base object we will use is the register. The sequential specification of the
object exports two operations:

—read(), which returns the current state (value) of the object,
—write(v), which changes the state of the object to value v, and returns success.

If a process pi executes a read operation on a register R, we say that pi reads
R. Similarly, we say that pi writes value v to R if it invokes a write(v) operation on
register R.

3.3. Test-and-Set and Compare-and-Swap

The test-and-set object, whose sequential specification is given in Figure 3, can be seen
as a tournament object for n processes. In brief, the object has initial value 0, and
supports a single test-and-set operation, which atomically sets the value of the object
to 1, returning the value of the object before the invocation. Notice that at most one
process may win the object by returning the initial value 0, while all other processes lose
the test-and-set by returning 1. A key property is that no losing test-and-set operation
may return before the winning operation is invoked.

More precisely, a correct deterministic implementation of a single-use test-and-set
object ensures the following properties.

(1) (Validity.) Each participating process may return one of two indications: 0, or 1.
(2) (Termination.) Each process accessing the object eventually returns or crashes.
(3) (Linearization.) Each execution has a linearization order L in which each invocation

of test-and-set is immediately followed by a response (i.e., is atomic), such that the
first response is either 0 or the caller crashes, and no return value of 1 can be
followed by a return value of 0.

(4) (Uniqueness.) At most one process may return 0.

For randomized test-and-set, the termination condition is replaced by the following
randomized termination property: with probability 1, each process accessing the object
eventually returns or crashes. The other requirements stay the same.

In this article, we will use a randomized two-process test-and-set implementation by
Tromp and Vitányi [2002] as a basis for our algorithms. Their algorithm ensures the
following properties, whose proofs can be found in their paper.

THEOREM 3.1 [TROMP AND VITÁNYI 2002]. The two-process test-and-set implementa-
tion of Tromp and Vitányi [2002] ensures the following properties.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:11

Fig. 3. Sequential specification of a one-shot test-
and-set object.

Fig. 4. Sequential specification of the compare-and-
swap object.

—(Single Winner) In any execution, at most one process may return 0.
—(Winner-Loser Ordering) Given any test-and-set operation τ that returns 1, there exists

another test-and-set operation w, starting before τ returns, such that w either returns
0 or does not complete.

—(Probabilistic Termination) Operations by correct processes terminate with probabil-
ity 1.

—(Complexity) The algorithm has expected constant read-write step complexity. For a
fixed constant α ≥ 1, and for any integer � ≥ 1, the probability that a process performs
more than α log � read and write steps while running the algorithm is at most 1/�2.

The compare-and-swap object can be seen a generalization of the test-and-set object,
whose underlying register supports multiple values (as opposed to only 0 and 1). Its
sequential specification is presented in Figure 4. More precisely, a compare-and-swap
object exports the following operations:

—read and write, having the same semantics as for registers,
—compare-and-swap(oldV, newV), which compares the state s of the object to the value

oldV, and either (1) changes the state of the object to newV and returns oldV if
s = oldV, or (b) returns the state s if s �= oldV.

Notice that the compare-and-swap object can be seen as an augmented register,
which also supports the conditional compare-and-swap operation. Also note that it is
trivial to implement a test-and-set object from a compare-and-swap object.

3.4. Counter and Max-Register Objects

A counter object has initial state 0, and supports operations increment and read, with
the following semantics:

—read(), which returns the current state (value) of the object,
—increment(), which changes v, the current value of the object to v + 1, and returns

success.

A decrementable counter has the same semantics as a counter, but offers an additional
decrement() operation, which changes the value v of the object to v − 1, and returns
success.

A fetch-and-increment object supports a single operation fetch-and-inc, which changes
the value v of the object to v + 1, and returns value v.

The max-register is a shared object maintaining a value V , initially 0, which records
the highest value ever written to it. The max-register defines a default maximal value

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:12 D. Alistarh et al.

vmax which it may store. Aspnes et al. [2012a] gave an implementation of a max-register
with logarithmic complexity in vmax.

THEOREM 3.2 [ASPNES ET AL. 2012a]. There exists a linearizable, deterministic, wait-
free max-register construction for n processes where each operation has cost
O(min(n, log vmax)).

3.5. Mutual Exclusion

The goal of the mutual exclusion (mutex) problem is to allocate a single, indivisible, non-
shareable resource among nprocesses. A process with access to the resource is said to be
in the critical section. When a user is not involved with the resource, it is said to be in the
remainder section. In order to gain admittance to the critical section, a user executes an
entry section; after it is done with the resource, it executes an exit section. Each of these
sections can be associated with a partitioning of the code that the process is executing.

Each process cycles through these sections in the order: remainder, entry, critical,
and exit. Thus, a process that wants to enter the critical section first executes the entry
section; after that, it enters the critical section, after which it executes the exit section,
returning to the remainder section. We assume that in all executions, each process exe-
cutes this section pattern infinitely many times. For simplicity, we assume that the code
in the remainder section is trivial, and every time the process is in this section, it imme-
diately enters the entry section. An execution is admissible if for every process pi, either
pi takes an infinite number of steps, or pi ’s execution ends in the remainder section. A
configuration at a time τ is given by the code section for each of the processes at time τ .

An algorithm solves mutual exclusion with no deadlock if the following hold. We
adopt the definition of Attiya and Welch [1998].

—Mutual exclusion. In every configuration of every execution, at most one process is
in the critical section.

—No deadlock. In every admissible execution, if some process is in the entry section in
a configuration, then there is a later configuration in which some process is in the
critical section.

—No lockout (Starvation-free). In every admissible execution, if some process is in the
entry section in a configuration, then there is a later configuration in which the same
process is in the critical section.

—Unobstructed exit. In every execution, every process returns from the exit section in
a finite number of steps.

In this article, we focus on shared-memory mutual exclusion algorithms. As for
renaming, there exists a distinction between adaptive and nonadaptive solutions. A
classical, nonadaptive, mutual excusion algorithm is an algorithm whose complexity
depends on n, the maximum number of processes that may participate in the execution,
which is assumed to be known by the processes at the beginning of the execution. On the
other hand, an adaptive mutual exclusion algorithm is an algorithm whose complexity
may only depend on the number of processes k participating in the current execution.

3.6. Queues and Stacks

The queue is a data structure which maintains a set of elements with first-in-first-out
(FIFO) semantics. More precisely, the state of a queue can be described as an array
[x0 = ⊥, x1, . . . , xm]. A queue is empty if its state is [⊥].

Assume a queue in state [x0 = ⊥, x1, . . . , xm]. The sequential specification of a queue
supports two operations.

—The Enqueue(v) operation changes the state of the stack to [x0 = ⊥, x1, . . . , xm, v],
returning success. We assume v �= ⊥.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:13

—The Dequeue() operation returns the “oldest” element in the queue. More precisely,
if m ≥ 1, then the Dequeue() operation returns x1 and changes the state of the stack
to [x0 = ⊥, x2, . . . , xm]. Otherwise, the operation returns ⊥.

The stack is a data structure which maintains a set of elements with last-in-first-out
(LIFO) semantics. More precisely, the state of a stack can be described as an array
[x0 = ⊥, x1, . . . , xm], where the last element xm is the top of the stack. A stack is empty
if its state is [⊥].

Assume a stack in state [x0 = ⊥, x1, . . . , xm]. The sequential specification of a stack
supports two operations.

—The Push(v) operation changes the state of the stack to [x0 = ⊥, x1, . . . , xm, v], return-
ing success. We assume v �= ⊥.

—The Pop() operation returns the top of the stack. If xm �= ⊥, then the Pop() operation
also changes the state of the stack to [x0 = ⊥, x1, . . . , xm−1].

4. RELATED WORK

In this section, we provide an overview of research on renaming and related data
structures in the shared memory and message-passing models.

4.1. Renaming

The renaming problem, defined in Section 3.1, was introduced by Attiya et al. [1990],
in the asynchronous message-passing model. Their article presented a nonadaptive
algorithm that achieves (2n − 1) names in the presence of t < n/2 faults, and showed
that a tight namespace of n names cannot be achieved in an asynchronous system with
crash failures. It also introduced and studied a version of the problem called order-
preserving renaming, in which the final names have to respect the relative order of the
initial names.

Renaming has been studied in a variety of models and under various timing as-
sumptions. For synchronous message-passing systems, Chaudhuri et al. [1999] gave
a wait-free algorithm for strong renaming in O(log n) rounds of communication, and
proved that this upper bound is asymptotically tight if the number of process failures
is t ≤ n − 1 and the algorithm is comparison-based, that is, two processes may dis-
tinguish their states only through comparison operations. Attiya and Djerassi-Shintel
[2001] studied the complexity of renaming in a semi-synchronous message-passing
system, subject to timing faults. They obtained a strong renaming algorithm with
O(log n) rounds of broadcast and proved a �(log n) time lower bound when algorithms
are comparison-based or when the initial namespace is large enough compared to n.
Both these algorithms can be made adaptive, to obtain a running time of O(log k).
Okun [2010] presented a strong renaming algorithm that is also order-preserving, with
O(log n) time complexity. The algorithm exploits a new connection between renaming
and approximate agreement [Fekete 1990]. Recently, Alistarh et al. [2012] analyzed
Okun’s algorithm and showed that it is also early-deciding, that is, its running time
can adapt to the number of failures f ≤ n − 1 in the execution. In particular, they
showed that the algorithm terminates in a constant number of rounds, if f <

√
n, and

in O(log f) rounds otherwise.
The first shared-memory renaming algorithm was given by Bar-Noy and Dolev

[1989], who ported the synchronous message-passing algorithm of Attiya et al. [1990]
to use only reads and writes. They obtained an algorithm with namespace size (k2+k)/2
that uses O(n2) steps per operation, and an algorithm with a namespace size of (2k−1)
using O(n · 4n) steps per operation.

Early work on lower bounds focused on the size of the namespace that can be
achieved using only reads and writes. Burns and Peterson [1989] proved that, for any

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:14 D. Alistarh et al.

T (n) < 2n− 1, long-lived renaming3 in a namespace of size T (n) is impossible in asyn-
chronous shared memory using reads and writes. They also gave the first long-lived
(2n − 1)-renaming algorithm. (However, the complexity of this algorithm depends on
the size of the initial namespace, which is not allowed by the original problem spec-
ification [Attiya et al. 1990].) In a landmark paper, Herlihy and Shavit [1999] used
algebraic topology to show that there exist values of n for which (2n − 2)-renaming is
impossible. Recently, Castañeda and Rajsbaum [2010, 2012] proved that if n is a prime
power, then target namespace size T (n) ≥ 2n − 1 is necessary, and, otherwise, there
exists an algorithm with 2n − 2 namespace size.

A parallel line of work [Lipton and Park 1990; Kutten et al. 2000] studied anonymous
renaming, where processes do not have initial identifiers and start in identical state.
In this case, renaming cannot be achieved with probability 1 using only reads and
writes, since one cannot distinguish between processes in the same state, and thus two
processes may always decide on the same name with nonzero probability.

Afek and Merritt [1999] presented an adaptive read-write renaming algorithm with
optimal namespace of size (2k−1), and O(k2) step complexity. Attiya and Fouren [2001]
gave an adaptive (6k− 1)-renaming algorithm with O(k log k) step complexity. Chlebus
and Kowalski [2008] gave an adaptive (8k − log k − 1)-renaming algorithm with O(k)
step complexity. For long-lived adaptive renaming, there exist implementations with
O(k2) time complexity for renaming into a namespace of size O(k2), for example, Afek
et al. [1999]. The fastest such algorithm with optimal (2k−1) namespace size has O(k4)
step complexity [Attiya and Fouren 2001].

The time lower bound in Section 7 shows that linear-time deterministic algorithms
are in fact time optimal (since they ensure namespaces of polynomial size). On the
other hand, the existence of a deterministic read-write algorithm which achieves both
an optimal namespace and linear-time complexity is an open problem.

The relation between renaming and stronger primitives such as fetch-and-increment
or test-and-set was investigated by Moir and Anderson [1995]. Fetch-and-increment
can be used to solve renaming trivially, since each process can return the result of
the operation plus 1 as its new name. Renaming can be solved by using an array of
test-and-set objects, where each process accesses test-and-set objects until winning
the first one. The process then returns the index of the test-and-set object that it
has acquired. Moir and Anderson [1995] also present implementations of renaming
from registers supporting set-first-zero and bitwise-and operations. In this article, the
authors also notice the fact that adaptive tight renaming can solve mutual exclusion.
(This connection is also mentioned in Attiya and Bortnikov [2002].) Using load-linked
and store-conditional primitives, Brodsky et al. [2006] gave a linear-time algorithm
with a tight namespace. (Their paper also presents an efficient synchronous shared-
memory algorithm.)

Randomization is a natural approach for obtaining names, since random coin flips
can be used to “balance” the processes’ choices. A trivial solution when n is known is
to have processes try out random names from 1 to n2. Name uniqueness can be vali-
dated using deterministic splitter objects [Anderson and Moir 1997], and the algorithm
uses a constant number of steps in expectation, since, by the birthday paradox, the
probability of collision is very small. The feasibility of randomized renaming in asyn-
chronous shared memory was first considered by Panconesi et al. [1998]. They pre-
sented a nonadaptive wait-free solution with a namespace of size n(1 + ε) for ε > 0
constant, with expected O(M log2 n) running time, where M is the size of the initial
namespace.

3The long-lived version of renaming allows processes to release names as well as to acquire them.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:15

A second paper to analyze randomized renaming was by Eberly et al. [1998]. The
authors obtain a strong nonadaptive renaming algorithm based on the randomized
wait-free test-and-set implementation of Afek et al. [1992]. Their algorithm is long-
lived, and is shown to have amortized step complexity O(n log n). The average-case
total step complexity is �(n3).

A paper by Alistarh et al. [2010] generalized the approach by Panconesi et al. [1998]
by introducing a new, adaptive test-and-set implementation with logarithmic step com-
plexity, and a new strategy for the processes to pick which test-and-set to compete in:
each process chooses a test-and-set between 1 and n at random. The authors prove
that this approach results in a nonadaptive tight algorithm with O(npolylog n) total
step complexity.4 (However, in this algorithm, individual processes may still perform a
linear number of accesses.) A modified version of this approach generates an adaptive
algorithm with similar complexity, which ensures a loose namespace of size (1 + ε)k,
for ε > 0 constant.

The randomized algorithm presented in this article first appeared in Alistarh et al.
[2012]. The renaming network algorithm is the first algorithm to achieve strong adap-
tive renaming in sub-linear time, improving exponentially on the time complexity of
previous solutions. The lower bound in Section 8 shows that this algorithm is in fact
time-optimal. The fact that any sorting network can be used as a counting network
when only one process enters on each wire was observed by Attiya et al. [1995] to fol-
low from earlier results of Aspnes et al. [1994]; this is equivalent to our use of sorting
networks for nonadaptive renaming in Section 5.1.1. The lower bounds in this article
first appeared in Alistarh et al. [2011b].

4.2. Counting Data Structures

Many multiprocessor coordination tasks can be expressed as counting problems, where
processes assign values from a given range. Thus, there has been considerable work
on counting data structures over the last few decades. Counting networks [Aspnes
et al. 1994] are an example of such data structures, where processes interact with
a counter by traversing a network of balancer objects.5 Efficient counting networks
with O(polylog n) complexity are known [Aspnes et al. 1994]. Counting networks are
similar to the renaming networks presented in Section 5.1.1: however, the aim of a
counting network is to balance the number of processes exiting on the output ports,
whereas renaming networks ensure that no two processes reach the same output port.
As a consequence, the structure and applications of counting networks are in general
different than those of renaming networks.

Another well-studied object is the counter. A linear-time deterministic atomic counter
implementation follows from the atomic snapshot construction of Afek et al. [1993].
Jayanti et al. [2000] proved �(n) space and time lower bounds for deterministic counter
implementations if processes may access the object multiple times, while Jayanti
[1998] gave �(log n) time lower bounds for counter objects using reads, writes, or load-
linked/store-conditional operations.

A recent result by Aspnes et al. [2012a] leveraged the fact that objects may be
accessed for a limited number of times to give an m-valued max register implementation
with O(min(n, log m)) time complexity, and a O(min(n, log mlog n)) upper bound for
deterministic wait-free counters with maximal value m. Recently [Aspnes et al. 2012b],
this technique was generalized to obtain atomic snapshots with O(log2 b · log n) time

4In the following, by polylog n, we denote logc n, for some integer c ≥ 1.
5Intuitively, a balancer acts as a toggle mechanism. It has two inputs and two outputs; processes enter the
object on its inputs, and the balancer alternates sending processes to its top and bottom output wires.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:16 D. Alistarh et al.

Fig. 5. Structure of a comparator.

complexity for a scan, and O(log b) complexity for an update, where b is the number of
update operations performed on the object.

5. ADAPTIVE STRONG RENAMING IN LOGARITHMIC EXPECTED TIME

In this section, we present an algorithm for strong adaptive renaming, which ensures
a namespace that exactly matches the number of participants k. The algorithm has
expected step complexity O(log k), which is optimal, as we show in Section 8.

Renaming Networks. The key ingredient behind the algorithm is a connection be-
tween renaming and sorting networks, a data structure used for sorting sequences of
numbers in parallel. In brief, we start from a sorting network, and replace the compara-
tor objects with two-process test-and-set objects, to obtain an object we call a renaming
network. The algorithm works as follows: each process is assigned a unique input port,
and follows a path through the network determined by leaving each two-process test-
and-set on its higher output wire if it wins the test-and-set, and on its lower output
wire if it loses. The output name is the index (from top to bottom) of the output port it
reaches.

There are two major obstacles to turning this idea into a strong adaptive renaming
algorithm. The first is that this construction is not adaptive. Since the step complexity of
running the renaming network depends on the number of input ports assigned, then,
if we simply use the processes’ initial names to assign input ports, we could obtain
an algorithm with unbounded worst-case step complexity, since the space of initial
identifiers is potentially unbounded. The second obstacle is that a regular sorting
network construction has a fixed number of input and output ports, therefore the
construction would not adapt to the contention k. Since we would like to avoid assuming
any bound on the contention, we need to build a sorting network that “extends” its size
as the number of participating processes increases.

In the following, we show how to overcome these problems, and obtain a strong
adaptive renaming algorithm with complexity O(log k), with high probability in k.6 In
the next section, we use this construction to obtain randomized implementations of
counter and fetch-and-increment objects.

5.1. Renaming using a Sorting Network

We now give a strong renaming algorithm based on a sorting network. For simplicity, we
describe the solution in the case where the bound on the size of the initial namespace,
M, is finite and known. We circumvent this limitation in Section 5.2.

5.1.1. Renaming Networks. We start from an arbitrary sorting network with M input
and output ports, in which we replace the comparators with two-process test-and-set
objects. The structure of a comparator is given in Figure 5 (please see standard texts,

6Notice that, if the contention k is small, the failure probability O(1/kc) with c ≥ 2 constant may be
nonnegligible. In this case, the failure probability can be made to depend on the parameter n at the cost of a
multiplicative �(log n) factor in the running time of the algorithm.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:17

Fig. 6. Pseudocode for executing a renaming network.

Fig. 7. Execution of a renaming network. The two processes start at arbitrary distinct input ports, and
proceed through the network until reaching an output port. The two-process test-and-set objects are depicted
as locks. A two process test-and-set object is highlighted if it has been won during the execution. The execution
depicted is one in which processes proceed sequentially (the upper process first executes to completion, then
the lower process executes). The two processes reached output ports 1 and 2, even though they started at
arbitrary input ports.

e.g. Cormen et al. [2009], for background on sorting networks). The two-process test-
and-set objects maintain the input ports x, y and the output ports x′, y′. We call this
object a renaming network.

We assume that each participating process pi has a unique initial value vi from 1
to M. (These values can be the initial names of the processes, or names obtained from
another renaming algorithm, as described in Section 5.2.) Also part of the process’s
algorithm is the blueprint of a renaming network with M input ports, which is the
same for all participants.

We use the renaming network to solve adaptive tight renaming as follows. (Please
see Figure 6 for the pseudocode.) Each participating process enters the execution on
the input wire in the sorting network corresponding to its unique initial value vi.
The process competes in two-process test-and-set instances as follows: if the process
returns 0 (wins) a two-process test-and-set, then it moves “up” in the network, that is,
follows output port x′ of the test-and-set; otherwise, it moves “down,” that is, follows
output port y′. Each process continues until it reaches an output port b�. The process
returns the index � of the output port b� as its output value. See Figure 7 for a simple
illustration of a renaming network execution.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:18 D. Alistarh et al.

Test-and-Set. In this section, the test-and-set objects used as comparators are imple-
mented using the algorithm of Tromp and Vitányi [2002]; in Section 7, we will assume
hardware implementations of test-and-set. This distinction is only important when
computing the complexity of the construction, and does not affect its correctness.

5.1.2. Renaming Network Analysis. In the following, we show that the renaming network
construction solves adaptive strong renaming, that is, that processes return values
between 1 and k, the total contention in the execution, as long as the size of the initial
namespace is bounded by M.

THEOREM 5.1 (RENAMING NETWORK CONSTRUCTION). Whenever starting from a correct
sorting network, the renaming network construction solves strong adaptive renaming,
with the same progress property as the test-and-set objects used. If the sorting network
has depth d (defined here), then each process will perform O(d) test-and-set operations
before returning from the renaming network.

PROOF. First, we prove that the renaming network is well formed, that is, that no
two processes may access the same port of a two-process test-and-set object.

CLAIM 1. No two processes may access the same port of a two-process test-and-set
object.

PROOF. Recall that each renaming network is obtained from a sorting network.
Therefore, for any renaming network, we can maintain the standard definitions of
network and wire depth as for a sorting network [Cormen et al. 2009]. In particular,
the depth of a wire is defined as follows. An input wire has depth 0. A test-and-set that
has two input wires with depths dx and dy will have depth max(dx, dy) + 1. A wire in
the network has depth equal to the depth of the test-and-set from which it originates.
Because there can be no cycles of test-and-sets in a renaming network, this notion is
well-defined. The depth of a network is the maximum depth of an output wire.

The claim is equivalent to proving that no two processes may occupy the same wire in
an execution of the network. We prove this by induction on the depth of the current wire.
The base case, when the depth is 0, that is, we are examining an input wire, follows
from the initial assumption that the initial values vi of the processes are unique, hence
no two processes may join the same input port.

Assume that the claim holds for all wires of depth d ≥ 0. We prove that it holds
for any wire of depth d + 1. Notice that the depth of a wire may only increase when
passing through a two-process test-and-set object. Consider an arbitrary two-process
test-and-set object, with two wires of depth at most d as inputs, and two wires of depth
d + 1 as outputs. By the induction hypothesis, the test-and-set is well formed in all
executions, since there may be at most two processes accessing it in any execution.
By the specification of test-and-set, it follows that, in any execution, there can be at
most one process returning 0 from the object, and at most one process returning 1 from
the object. Therefore, there can be at most one process on either output wire, and the
induction step holds. This completes the proof of this claim.

Termination follows since the base sorting network has finite depth and, by defini-
tion, contains no cycles. Therefore, the renaming network has the same termination
guarantees as the two-process test-and-set algorithm we use. In particular, if we use
the two-process test-and-set implementation of Tromp and Vitányi [2002], the network
guarantees termination with probability 1. We prove name uniqueness and namespace
tightness by ensuring the following claim.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:19

CLAIM 2. The renaming network construction ensures that no two processes return
the same output, and that the processes return values between 1 and k, the total con-
tention in the execution.

The proof is based on a simulation argument from an execution of a renaming net-
work to an execution of a sorting network. We start from an arbitrary execution E
of the renaming network, and we build a valid execution of a sorting network. The
structure of the outputs in the sorting network execution will imply that the tightness
and uniqueness properties hold in the renaming network execution.

Let P be the set of processes that have taken at least one step in E . Each process
pi ∈ P is assigned a unique input port vi in the renaming network. Let I denote the
set of input ports on which there is a process present. We then introduce a new set
of “ghost” processes G, each assigned to one of the input ports in {1, 2, . . . , M} \ I. We
denote by C the set of “crashed” processes, that is, processes that took a step in E , but
did not return an output port index.

The next step in the transformation is to assign input values to these processes. We
assign input value 0 to processes in P (and correspondingly to their input ports), and
input value 1 to processes in G.

Note that, in execution E , not all test-and-set objects in the renaming network may
have been accessed by processes (e.g., the test-and-set objects corresponding to pro-
cesses in G), and not all processes have reached an output port (i.e., crashed processes
and ghost processes). The next step is to simulate the output of these test-and-set
operations by extending the current renaming network execution.

We extend the execution by executing each process in C ∪G until completion. We first
execute each process in C, in a fixed arbitrary order, and then execute each process in
G, in a fixed arbitrary order. The rules for deciding the result of test-and-set objects for
these processes are the following.

—If the current test-and-set T already has a winner in the extension of E , that is, a
process that returned 0 and went “up”, then the current process automatically goes
“down” at this test-and-set.

—Otherwise, if the winner has not yet been decided in the extension of E , then the
current process becomes the winner of T and goes “up,” that is, takes output port x′.

In this way, we obtain an execution in which M processes participate, and each
test-and-set object has a winner and a loser. By Claim 1, the execution is well-formed,
that is, there are never two processes (or two values) on the same wire. Also note that
the resulting extension of the original execution E is a valid execution of a renaming
network, since we are assuming an asynchronous shared memory model, and the ghost
and crashed processes can be seen simply as processes that are delayed until processes
in P \ C returned.

The key observation is that, for every two-process test-and-set T in the network,
T obeys the comparison property of comparators in a sorting network, applied to the
values assigned to the participating processes. We take cases on the processes p and q
participating in T .

(1) If p and q are both in P, then both have associated value 0, so the T respects the
comparison property irrespective of the winner.

(2) If p ∈ P and q ∈ G, then notice that p necessarily wins T , while q necessarily loses
T . This is trivial if p ∈ P \ C; if p ∈ C, this property is ensured since we execute
all processes in C before processes in G when extending E . Therefore, the process
with associated value 0 always wins the test-and-set.

(3) If p and q are both in G, then both have associated value 1, so T respects the
comparison property irrespective of the winner.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:20 D. Alistarh et al.

The final step in this transformation is to replace every test-and-set operation with a
comparator between the binary values corresponding to the two processes that partici-
pate in the test-and-set. Thus, since we have started from a sorting network, we obtain
a sequence of comparator operations ordered in stages, in which each stage contains
only comparison operations that may be performed in parallel. This argument shows
that all comparators obey the comparison property applied to the values we assigned to
the corresponding processes. In particular, when input values are different, the lower
value (corresponding to participating processes) always goes “up,” while the higher
value always goes “down.”

Thus, the execution resulting from the last transformation step is in fact a valid
execution of the sorting network from which the renaming network has been obtained.
Recall that we have associated each process that took a step to a 0 input value, and each
ghost process to a 1 input value to the network. Since, by Claim 1, no two input values
may be sorted to the same output port, we first obtain that the output port indices that
the processes in P return are unique. For namespace tightness, recall that we have
obtained an execution of a sorting network with M input values, M − k of which, that
is, those corresponding to processes in G, are 1. By the sorting property of the network,
it follows that the lower M − k output ports of the sorting network are occupied by 1
values. Therefore, the M − k “ghost” processes that have not taken a step in E must be
associated with the lower M −k output ports of the network in the extended execution.
Conversely, processes in P must be associated with an output port between 1 and k
in the extension of the original execution E . The final step is to notice that, in E , we
have not modified the output port assignment for processes in P \ C, that is, for the
processes that returned a value in the execution E . Therefore, these processes must
have returned a value between 1 and k. This concludes the proof of this claim and of
the theorem.

We now apply the renaming network construction starting from sorting networks of
optimal logarithmic depth, whose existence is ensured by the AKS construction [Ajtai
et al. 1983]. (Recall that the AKS construction [Ajtai et al. 1983] gives, for any integer
N > 0, a network for sorting N integers, whose depth is O(log N). The construction is
quite complex, and therefore we do not present it here.)

COROLLARY 5.2 (AKS). The renaming network obtained from an AKS sorting net-
work [Ajtai et al. 1983] with M input ports solves the strong adaptive renaming prob-
lem with M initial names, guaranteeing name uniqueness in all executions, and using
O(log M) test-and-set operations per process in the worst case. The termination guaran-
tee is the same as that of the test-and-set objects used.

PROOF. The fact that this instance of the algorithm solves strong adaptive renaming
follows from Theorem 5.1. For the complexity claims, notice that the number of test-
and-set objects a process enters is bounded by the depth of the sorting network from
which the renaming network has been obtained. In the case of the AKS sorting network
with M inputs, the depth is O(log M).

5.2. A Strong Adaptive Renaming Algorithm

We present an algorithm for adaptive strong renaming based on an adaptive sorting
network construction. For any k ≥ 0, the algorithm guarantees that k processes obtain
unique names from 1 to k. We start by presenting a sorting network construction that
adapts its size and complexity to the number of processes executing it. We will then
use this network as a basis for an adaptive renaming algorithm

5.2.1. An Adaptive Sorting Network. We present a recursive construction of a sorting
network of arbitrary size. We will guarantee that the resulting construction ensures

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:21

Fig. 8. One stage in the construction of the adaptive sorting network. The small labels indicate port number:
upper is higher.

the properties of a sorting network whenever truncated to a finite number of input (and
output) ports. The sorting network is adaptive, in the sense that any value entering on
wire n and leaving on wire m traverses at most O(log max(n, m)) comparators.

Let the width of a sorting network be the number of input (or output) ports in the
network. The basic observation is that we can extend a small sorting network B to a
wider range by inserting it between two much larger sorting networks A and C. The
resulting network is nonuniform—different paths through the network have different
lengths, with the lowest part of the sorting network (in terms of port numbers) having
the same depth as B, whereas paths starting at higher port numbers may have higher
depth.

Formally, suppose we have sorting networks A, B, and C, where A and C have
width m and B has width k < m. Label the inputs of A as A1, A2, . . . , Am and the
outputs as A′

1, A′
2, . . . , A′

m, where i < j means that A′
i receives a value less than or

equal to A′
j . Similarly, label the inputs and outputs of B and C. Fix � ≤ k/2 and con-

struct a new sorting network ABC with inputs B1, B2, . . . , B�, A1, . . . , Am and outputs
B′

1, B′
2, . . . , B′

�, C ′
1, C ′

2, . . . , C ′
m. Internally, insert B between A and C by connecting out-

puts A′
1, . . . , A′

k−� to inputs B�+1, . . . , Bk; and outputs B′
�+1, . . . , B′

k to inputs C1, . . . , Ck−�.
The remaining outputs of A are wired directly across to the corresponding inputs of C:
outputs A′

k−�+1, . . . , A′
m are wired to inputs Ck−�+1, . . . , Cm. (See Figure 8.)

LEMMA 5.3. The network ABC constructed as described previously is a sorting
network.

PROOF. The proof uses the well-known Zero-One Principle [Cormen et al. 2009]: we
show that the network correctly sorts all input sequence of zeros and ones, and deduce
from this fact that it correctly sorts all input sequences.

Given a particular 0-1 input sequence, let zB and zA be the number of zeros in the
input that are sent to inputs B1 · · · B� and A1 · · · Am. Because A sorts all of its incoming
zeros to its lowest outputs, B gets a total of zB + max(k − �, zA) zeros on it inputs, and
sorts those zeros to outputs B′

1 · · · B′
zB+max(k−�,zA). An additional zA − max(k− �, zA) zeros

propagate directly from A to C.
We consider two cases, depending on the value of the max.

—Case 1. zA ≤ k − �. Then, B gets zB + zA zeros (all of them), sorts them to its lowest
outputs, and those that reach outputs B′

�+1 and above are not moved by C. Therefore,
the sorting network is correct in this case.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:22 D. Alistarh et al.

—Case 2. zA > k−�. Then B gets zB +k−� zeros, while zA− (k−�) zeros are propagated
directly from A to C. Because � ≤ k/2, zB + k − � ≥ k/2 ≥ �, and B sends � zeros out
its direct outputs B′

1 · · · B�. All remaining zeros are fed into C, which sorts them to
the next zA + zB − � positions. Again, the sorting network is correct.

When building the adaptive network, it will be useful to constrain which parts of the
network particular values traverse. The key tool is given by the following lemma.

LEMMA 5.4. If a value v is supplied to one of the inputs B1 through B� in the network
ABC, and is one of the � smallest values supplied on all inputs, then v never leaves B.

PROOF. Immediate from the construction and Lemma 5.3; v does not enter A initially,
and is sorted to one of the output B′

1 · · · B′
�, meaning that it also avoids C.

Now let us show how to recursively construct a large sorting network with polylog M
depth when truncated to the first M positions. We assume that we are using a construc-
tion of a sorting network that requires at most a logc n depth to sort n values, where
a and c are constants. For the AKS sorting network [Ajtai et al. 1983], we have c = 1
and very large a; for constructible networks (e.g., the bitonic sorting network [Knuth
1998]), we have c = 2 and small a.

Start with a sorting network S0 of width 2. In general, we will let w j be the width of
Sj ; so we have w0 = 2. We also write dj for the depth of Sj (the number of comparators
on the longest path through the network).

Given Sj , construct Sj+1 by appending two sorting networks Aj+1 and Cj+1 with
width w2

j − w j/2, and attach them to the top half of Sj as in Lemma 5.3, setting
� = w j/2.

Observe that w j+1 = w2
j and dj+1 = 2a logc(w2

j − w j/2) + dj ≤ 4a logc
w j + dj . Solving

these recurrences gives w j = 22 j
and dj = ∑ j

i=0 2c(i+2)a = O(2cj).
If we set M = 22 j

, then j = lg lg M, and dj = O(2c lg lg M) = O(logc M). This gives us
polylogarithmic depth for a network with M lines, and a total number of comparators
of O(M logc M).

We can in fact state a stronger result, relating the input and output port indices for
a value with the complexity of sorting that value.

THEOREM 5.5. For any j ≥ 0, the network Sj constructed here is a sorting network,
with the property that any value that enters on the nth input and leaves on the mth
output traverses O(logc max(n, m)) comparators.

PROOF. That Sj is a sorting network follows from induction on j using Lemma 5.3.
For the second property, let Sj ′ be the smallest stage in the construction of Sj to

which input n and output m are directly connected. Then w j ′−1/2 < max(n, m) ≤ w j ′/2,
which we can rewrite as 22 j′−1

< 2 max(n, m) ≤ 22 j′
or j ′ − 1 < lg lg max(n, m) ≤ j ′,

implying j ′ = �lg lg max(n, m)�. By Lemma 5.4, the given value stays in Sj ′ , meaning it
traverses at most dj ′ = O(2cj ′

) = O(2c�lg lg max(n,m)�) = O(lgc max(n, m)) comparators.

5.2.2. Transformation to a Renaming Nework. We now apply the previous results to renam-
ing networks.

COROLLARY 5.6. Consider the sequence of networks Rj resulting from replacing com-
parators with two-process test-and-set objects in the extensible sorting network construc-
tion from Section 5.2.1. For any M ≥ k > 0, assuming initial names from 1 to M, these
networks solve strong renaming for k processes with O(log M) test-and-set accesses per
process.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:23

PROOF. Fix a M ≥ k > 0, and let j be the first index in the sequence such that the
resulting network Sj has at least M inputs and M outputs. By Theorem 5.5, this net-
work sorts, and has depth O(log M) (considering the version of the construction using
the AKS sorting network as a basis). By Theorem 5.1, the corresponding renaming
network Rj solves adaptive strong renaming for any k processes with initial names
between 1 and M, performing O(log M) test-and-set accesses per process.

5.2.3. An Algorithm for Strong Adaptive Renaming. We show how to apply the adaptive sort-
ing network construction to solve strong adaptive renaming when the size of the initial
namespace, M, is unknown, and may be unbounded. This procedure can also be seen
as transforming an arbitrary renaming algorithm A, guaranteeing a namespace of size
M, into strong renaming algorithm S(A), ensuring a namespace from 1 to k. In case
the processes have initial names from 1 to M, then A is a trivial algorithm that takes
no steps. We first describe this general transformation, and then consider a particular
case to obtain a strong adaptive renaming algorithm with logarithmic time complexity.
Notice that, in order to work for unbounded contention k, the algorithm may use un-
bounded space, since the adaptive renaming network construction continues to grow
as more and more processes access it.

Description. We assume a renaming algorithm Awith complexity C(A), guaranteeing
a namespace of size M (which may be a function of k, or n). We assume that processes
share an instance of algorithm Aand an adaptive renaming network R, obtained using
the procedure in Section 5.2.1.

The transformation is composed of two stages. In the first stage, each process pi
executes the algorithm A and obtains a temporary name vi from 1 to M. In the second
stage, each process uses the temporary name vi as the index of its (unique) input port to
the renaming network R. The process then executes the renaming network R starting
at the given input port, and returns the index of its output port as its name.

Wait-Freedom. Notice that, technically, this algorithm may not be wait-free if the
number of processes k participating in an execution is infinite, then it is possible that a
process either fails to acquire a temporary name during the first stage, or it continually
fails to reach an output port by always losing the test-and-set objects it participates
in. Therefore, in the following, we assume that k is finite, and present bounds on step
complexity that depend on k.

Constructibility. Recall that we are using the AKS sorting network [Ajtai et al. 1983]
of O(log M) depth for M inputs as the basis for the adaptive renaming network construc-
tion. However, the constants hidden in the asymptotic notation for this construction are
large, and make the construction impractical [Knuth 1998]. On the other hand, since
the construction accepts any sorting network as basis, we can use Batcher’s bitonic
sorting network [Knuth 1998], with O(log2 M) depth as a basis for the construction.
Using bitonic networks trades a logarithmic factor in terms of step complexity for ease
of implementation.

5.2.4. Analysis of the Strong Adaptive Renaming Algorithm. We now show that the transfor-
mation is correct, transforming any renaming algorithm Awith namespace M and com-
plexity C(A) into a strong renaming algorithm, with complexity cost C(A) + O(log M).

THEOREM 5.7 (NAMESPACE BOOSTING). Given any renaming algorithm A ensuring
namespace M with expected worst-case step complexity C(A), the renaming network con-
struction yields an algorithm S(A) ensuring strong renaming. The number of test-and-
set operations that a process performs in the renaming network is O(log M). Moreover,
if A is adaptive, then the algorithm S(A) is also adaptive. When using the randomized

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:24 D. Alistarh et al.

test-and-set construction of Tromp and Vitányi [2002], the number of steps that a process
takes in the renaming network is O(log M) both in expectation and with high probability
in k.

PROOF. Fix an algorithm A with namespace M and worst-case step complexity C(A).
Therefore, we can assume that, during the current execution, each process enters a
unique input port between 1 and M in the adaptive renaming network. By Corollary 5.6,
each process reaches a unique output port between 1 and k, which ensures that the
transformation solves strong renaming.

If the algorithm A is adaptive, that is, the namespace size M and its complexity
C(A) depend only on k, then the entire construction is adaptive, since the adaptive
renaming network guarantees a namespace size of k, and complexity O(log M), which
only depends on k. This concludes the proof of correctness.

For the upper bound on worst-case step complexity, notice that a process may take
at most C(A) steps while running the first stage of the algorithm. By Corollary 5.6,
we obtain that a process performs O(log M) test-and-set accesses in any execution.
Since the randomized test-and-set construction of Tromp and Vitányi [2002], has con-
stant expected step complexity, the worst-case expected step complexity of the whole
construction is C(A) + O(log M).

To obtain the high probability bound on the number of read-write operations per-
formed by a process in the renaming network, first recall that the number of test-and-
set operations that a process may perform while executing the renaming network is
�(log M). Therefore, we can see the number of read-write steps that a process takes
while executing the renaming network as a sum of �(log M) geometrically distributed
random variables, one for each two-process test-and-set. It follows that the number of
steps that a process performs while executing the renaming network is O(log M) with
high probability in M. Since M ≥ k, this bound also holds with high probability in k.

We now substitute the generic algorithm A with the RatRace loose renaming al-
gorithm of Alistarh et al. [2010], whose structure and properties are given in the
Appendix. We obtain a strong renaming algorithm with logarithmic step complexity.
First, the properties of the RatRace renaming algorithm are as follows.

PROPOSITION 1 (RatRace RENAMING). For c ≥ 3 constant, the RatRace renaming algo-
rithm described previously yields an adaptive renaming algorithm ensuring a names-
pace of size O(kc) in O(log k) steps, both with high probability in k. Every process even-
tually returns with probability 1.

This implies the following.

COROLLARY 5.8. There exists an algorithm T such that, for any finite k ≥ 1, T solves
strong adaptive renaming with worst-case step complexity O(log k). The upper bound
holds in expectation and with high probability in k.

PROOF. We replace the algorithm A in Theorem 5.7 with RatRace renaming. We
obtain a correct adaptive strong renaming algorithm.

For the upper bounds on complexity, by Proposition 1, the RatRace renaming algo-
rithm ensures a namespace of size O(kc) using O(log k) steps, with probability at least
1 − 1/kc, for some constant c ≥ 3. The complexity of the resulting strong renaming
algorithm is at most the complexity of RatRace renaming plus the complexity of exe-
cuting the renaming network. By Theorem 5.7, with probability at least 1 − 1/kc, this
is at most

O(log k) + O(log kc) = O(log k).

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:25

The expected step complexity upper bound follows identically. Finally, since RatRace
is adaptive, the transformation also yields an adaptive renaming algorithm.

We also obtain the following corollary, which applies to the case when test-and-set is
available as a base object.

COROLLARY 5.9. Given any renaming algorithm Aensuring namespace M with worst-
case step complexity C(A), and assuming test-and-set base objects with constant cost,
the renaming network construction yields an algorithm S(A) ensuring strong renaming
with worst-case step complexity C(A) + O(log M). Moreover, if A is adaptive, then the
algorithm S(A) is also adaptive.

5.2.5. A Multi-Shot Algorithm. The strong adaptive algorithm described in the previ-
ous section limits each process to performing a single name request per execution.
However, we notice that essentially the same algorithm allows processes to perform
multiple name requests. If m is the total number of name requests performed during
the execution, then the algorithm ensures a namespace of size m, and step complexity
O(log m).

Description. When requesting a name, the process first executes the RatRace renam-
ing algorithm to obtain a unique input port index for the renaming network. It then
executes the renaming network to reach a new output port, whose index it returns as
its new name. Notice that the process never releases the name it acquired during a
previous request, and performs the new request as if it were a new process.

Analysis. The algorithm has the following properties.

COROLLARY 5.10. The multi-shot algorithm ensures unique names, and termination
with probability 1. Moreover, for finite m ≥ k, in any execution with m total requests,
all names returned are between 1 and m, and the step complexity of the algorithm is
O(log m), both in expectation and with high probability.

The proof is straightforward once we notice that every execution with m name re-
qurests by k < mprocesses requests is equivalent to an execution with mrequests, each
by a distinct process (since the process’s initial identifier is only used for comparisons
inside the RatRace renaming object.) The claim then follows from Corollary 5.8, where
k = m.

6. APPLICATIONS TO COUNTING

6.1. A Bounded Counter

We now build a counter algorithm based on the strong adaptive renaming algorithm in
Section 5.2. The algorithm exports read and increment operations, and has a bounded
maximum value vmax. We note that the counter relaxes the standard linearizability
correctness property, and only ensures a weaker property, called monotone consistency,
which we describe next.

6.1.1. Monotone Consistency. Monotone consistency [Aspnes et al. 2012a] is a correct-
ness condition for concurrent data structures, which is weaker than linearizability. In-
tuitively, monotone consistency ensures linearizability of the increment operations (no
updates are lost), but does not ensure that read operations can always be linearized.
One advantage of this guarantee is that, for some objects, known monotone consis-
tent implementations are more efficient known than their linearizable counterparts
[Aspnes et al. 2012a].7

7However, no complexity separation between these two consistency conditions is known.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:26 D. Alistarh et al.

For example, a counter data structure (as defined here) is monotone consistent if the
following hold.

(1) There exists a total order < over all read operations, such that, if some read opera-
tion R1 finishes before another read operation R2 starts, then R1 < R2. If R1 < R2,
the value v1 returned by R1 is less than or equal the value v2 returned by R2.

(2) The value v returned by a read operation R satisfies x ≤ v, where x is the number
of increment operations that finished before the operation R started.

(3) The value v returned by a read operation R satisfies y ≥ v, where y is the number
of increment operations that start before the read operation completes.

6.1.2. Algorithm

Description. The processes share an adaptive renaming object implemented using the
construction in the previous section, and a linearizable max-register, implemented us-
ing the construction of Aspnes et al. [2012a], whose properties are given in Section 3.4.
The max register has maximum value vmax, which may be arbitrarily large, but must
be given in advance.

For the increment operation, a process acquires a new name from the adaptive re-
naming object. It then writes the newly obtained name to the max-register and returns.
(Notice that, by the argument in Section 5.2.5, this algorithm supports multiple incre-
ments by the same process.) For the read operation, the process simply reads the value
of the max-register and returns it.

Analysis. The counter object has the following properties.

LEMMA 6.1 (COUNTER PROPERTIES). The counter implementation is monotone consis-
tent, and has expected step complexity O(log v) per increment, where v is the number
of increment operations started before the operation returns. A read operation has cost
O(min(log v, n)).

PROOF. Termination with probability 1 for finite v follows from the properties of the
objects we use. For monotone consistency, we need to prove the following:

(1) There exists a total ordering < on the read operations such that if an operation
R1 finishes before some operation R2 starts, then R1 < R2, and if R1 < R2, then
the value returned by R1 is less than or equal to the value returned by R2. For
this, we order the read operations by their linearization points when reading the
max-register object. This ordering clearly has the required properties.

(2) The value v returned by a read is always ≥ the number of completed increment
operations. Let y be the number of completed increment operations. Notice that
each completed operation obtains a unique name, and writes it to the max-register
(this holds also if a single process performs multiple increment operations). It then
follows that the value in the max-register at the time of the read is at least y.

(3) The value v returned by a read is always ≤ the number of started increment opera-
tions. Let z be the number of started increment operations. Assume for contradiction
that a process returns a value v which is larger than z. In this case, there must exist
a process that returned a name which is strictly larger than the number of name
requests on the adaptive renaming object. This contradicts the adaptive property
of the object.

Therefore, the counter object is monotone consistent. For the complexity bound on
the increment operation, notice that, by Corollary 5.10, the complexity of the first stage
of the adaptive renaming protocol is O(log v), and the number of temporary names
is O(poly v) with high probability. It then follows that the complexity of the adaptive
renaming object is O(log v) in expectation. By Theorem 5.7, the same bound holds

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:27

with high probability. By the properties of the max-register, it follows that that the
complexity of an increment operation is O(log v). The complexity of the read operation
is the same as the complexity of the max register.

Linearizability Counterexample. We show a non-linearizable execution of our counter
implementation. Consider three processes p1, p2, p3. Processes p2 and p3 start the
execution concurrently. Process p2 obtains name 2 and writes it to the max register,
while p3 is still executing the renaming network. After p2’s operation terminates, p1
starts its increment operation and “steals” name 1 from p3, and writes this value
to the max register (this execution is possible in a renaming network). We insert a
read operation R1 between the end point of p2’s operation and the start point of p1’s
operation. This operation must return value 2. We insert a second read operation R2
between the end point of p1’s operation and before p3 writes to the max register. The
second operation must also return value 2 for the counter. Notice that, in this case, p1’s
operation cannot be properly linearized, since it is located between two read operations
returning the same value.

6.2. Linearizable Bounded-Value Fetch-and-Increment

We now show how to use an adaptive tight renaming protocol to construct a lineariz-
able m-valued fetch-and-increment object, that is, a fetch-and-increment object that
supports only values up to m. The sequential specification of the object is the same as
that of fetch-and-increment, except that the object keeps returning m− 1 once it has
reached the threshold value m.

Description. The outline of the construction is as follows. We first use the tight adap-
tive renaming protocol to build a linearizable �-test-and-set object, which generalizes a
standard test-and-set object by providing � winners instead of a single one. We imple-
ment such an object by having processes run the adaptive tight renaming algorithm
and return true if and only if their acquired name is at most �. To ensure this is
linearizable, we protect the renaming protocol with a doorway bit, which guarantees
that processes arriving after some process returns false cannot prevent a process that
started the operation earlier from winning.

The second part of the m-valued fetch-and-increment construction is based on a
recursive tree construction. For � = m, m/2, m/4 down to 1, at each stage � of the
construction, we are implementing an �-fetch-and-increment object, composed of one
�/2-test-and-set object, and two �/2-fetch-and-increment objects (the left child, and the
right child of the current node, respectively). If a process wins in the �/2-test-and-set
object, then it calls the left �/2-valued fetch-and-increment object; otherwise, it calls
the right object.

Analysis. We begin by formally defining an �-test-and-set object.

Definition 6.2. An �-test-and-set object O supports one type of operation which
returns either true or false. The sequential specification of the object is that the first �
invocations of the operation return true and the rest return false.

Our implementation of an �-test-and-set object is given in Figure 9. The following
lemma shows correctness of our implementation. Intuitively, any operation that starts
late sees the doorway closed, therefore must return false.

LEMMA 6.3. Procedure �-test-and-set in Figure 9 implements a linearizable �-test-
and-set.

PROOF. By correctness of the adaptive tight renaming algorithm, � processes obtain
a name whose value is at most �, and therefore exactly � processes return true. For

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:28 D. Alistarh et al.

Fig. 9. The �-test-and-set implementation. Fig. 10. The �-fetch-and-increment object.

linearizability, we partition the operations into two disjoint categories, Ctrue and C f alse,
according to their return values. We order all operations in Ctrue before the time that the
doorway is set to closed, and all operations in C f alse afterwards. Within each category
we order the operations according to the order of nonoverlapping operations. It is clear
that this order satisfies the sequential specification of the �-test-and-set object, since all
operations that return true are linearized before those that return false, and there are
exactly � of those. To show that this order preserves the order of nonoverlapping oper-
ations, we only need to argue about nonoverlapping operations in different categories,
since within each category this order is preserved by construction. Let idop1 be an oper-
ation that returns true and op2 be an operation that returns false and assume, towards
a contradiction, that op2 finishes before op1 starts. Then, op2 must set the doorway to
closed, implying that after op1 reads the doorway it returns false. This contradiction
concludes the proof that this implements a linearizable �-test-and-set object.

Next, Figure 10 shows an implementation of an �-valued fetch-and-increment object
using two smaller fetch-and-increment objects. Note that this recursive construction
unfolds to a tree, whose leaves are 0-valued fetch-and-increment objects. We imple-
ment such an object with an empty data structure on which the fetch-and-increment
operation always returns 0.

We conclude with a proof of correctness of this implementation. The basic idea is that
the linearizability of the �/2-test-and-set object allows us to linearize all operations
incrementing to small values before those that increment to large values.

LEMMA 6.4. If O.left and O.right are linearizable �/2-fetch-and-increment objects,
then procedure recursive-fetch-and-increment implements a linearizable �-fetch-and-
increment object.

PROOF. Since O.left and O.right are linearizable, we can associate each access to
them with its linearization point. We partition the operations into two disjoint cate-
gories, Cleft and Cright, according to the �/2-fetch-and-increment object they access. We
linearize operations in Cleft before those in Cright. Within each category, we linearize
the operations according to the order of their linearization points with respect to the
�/2-fetch-and-increment object they access (O.left for Cleft, and O.right for Cright). By
correctness of the �/2-test-and-set object, exactly �/2 processes return true and the rest
return false.

Hence, this ordering preserves the sequential specification of an �-fetch-and-
increment, given the assumption that O.left and O.right are linearizable �/2-fetch-
and-increment objects. To show this preserves the order of nonoverlapping operations,

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:29

Fig. 11. The structure of the reduction in Theorem 7.1.

we need to argue only about nonoverlapping operations in different categories, since
within each category this order is preserved by the assumption on the linearizability
of O.left and O.right. Let op1 be an operation in Cleft and op2 be an operation in Cright
and assume, towards a contradiction, that op2 finishes before op1 starts. Since op2 is in
Cright, then its return value of the �/2-test-and-set object is false. Since op1 starts after
op2 finishes, it must also return false by correctness of the �/2-test-and-set object, and
therefore op1 must be in Cright as well. This contradicts the assumption that op1 is in
Cleft, which completes the proof.

Finally, we provide upper bounds for the worst-case time complexity of our imple-
mentations. The bounds follow from the properties of the tight adaptive renaming
algorithm.

LEMMA 6.5. The �-test-and-set object has expected step complexity O(log k). The m-
valued fetch-and-increment object has expected step complexity O(log k log m), where k
is the number of participating processes.

PROOF. The upper bound on the complexity of �-test-and-set follows from
Corollary 5.8. The upper bound on the expected step complexity of the fetch-and-
increment object follows from the fact that the recursive construction unfolds to a tree
of height O(log m), with an �-test-and-set at each node, where � ≤ m/2. By this lemma,
we obtain that the resulting structure has O(log mlog k) expected step complexity.

7. A LOWER BOUND ON THE TIME COMPLEXITY OF DETERMINISTIC RENAMING

In this section, we prove a linear lower bound on the time complexity of determinis-
tic renaming in asynchronous shared memory. The lower bound holds for algorithms
using reads, writes, test-and-set, and compare-and-swap operations, and is matched
within constants by existing algorithms, as discussed in Section 4. We first prove the
lower bound for adaptive deterministic renaming, and then extend it to nonadaptive
renaming by reduction. The lower bound will hold for algorithms that either rename
into a subexponential namespace in k (if the algorithm is adaptive) or into a polynomial
namespace in n (if the algorithm is not adaptive).

The Strategy. We obtain the result by reduction from a lower bound on mutual
exclusion. The argument can be split in two steps, outlined in Figure 11. The first
step assumes a wait-free algorithm R, renaming adaptively into a loose namespace of
subexponential size M(k), and obtains an algorithm T (R) for strong adaptive renaming.
As shown in Section 5, the extra complexity cost of this step is an additive factor of
O(log M(k)).8

8Since we are assuming a system with atomic test-and-set and compare-and-swap operations, we can use
such operations with unit cost in the construction from Section 5.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:30 D. Alistarh et al.

The second step uses the strong renaming algorithm T (R) to solve adaptive mutual
exclusion, with the property that the RMR complexity of the resulting adaptive mutual
exclusion algorithm ME(T (R)) is O(C(k) + log M(k)), where C(k) is the step complexity
of the initial algorithm R. Finally, we employ an �(k) lower bound on the RMR com-
plexity of adaptive mutual exclusion by Kim and Anderson [2012]. When plugging in
any subexponential function for M(k) in the expression bounding the RMR complexity
of the adaptive mutual exclusion algorithm ME(T (R)), we obtain that the algorithm R
must have step complexity at least linear in k.

Applications. We notice that we can also apply the result to obtain a linear lower
bound on the time complexity of nonadaptive renaming algorithms, that guarantee
names from 1 to some polynomial function in n, with n known. We prove this general-
ization by reduction in Section 7.2.

A second application follows from the observation that many common shared-memory
objects such as queues, stacks, and fetch-and-increment registers can be used to solve
adaptive strong renaming. In turn, this will imply that the linear lower bound will also
apply to deterministic shared-memory implementations of these objects using read,
write, compare-and-swap or test-and-set operations. We analyze the limitations of this
lower bound and ways to circumvent it in Section 7.4.

Finally, the reduction from renaming to mutual exclusion will also imply the ex-
istence of a nonadaptive mutual exclusion algorithm with optimal O(log n) RMR
complexity.

7.1. Adaptive Lower Bound

In this section, we prove the following result.

THEOREM 7.1 (INDIVIDUAL TIME LOWER BOUND). For any k ≥ 1, given n = �(k2k
), any

wait-free deterministic adaptive renaming algorithm that renames into a namespace of
size at most 2 f (k) for any function f (k) = o(k) has a worst-case execution with 2k − 1
participants in which (1) some process performs �(k) RMRs (and �(k) steps) and (2) each
participating process performs a single rename operation.

PROOF. We begin by assuming for contradiction that there exists a deterministic
adaptive algorithm R that renames into a namespace of size M(k) = 2 f (k) for f (k) ∈
o(k), with step complexity C(k) = o(k). The first step in the proof is to show that any
such algorithm can be transformed into a wait-free algorithm that solves adaptive
strong renaming in the same model, augmented with test-and-set base objects; the
complexity cost of the resulting algorithm will be O(C(k)+ log M(k)). This result follows
immediately from Corollary 5.9.

CLAIM 3. Assuming test-and-set as a base object, any wait-free algorithm R that
renames into a namespace of size M(k) with complexity C(k) can be transformed into a
strong adaptive renaming algorithm T (R) with complexity O(C(k) + log M(k)).

Returning to the main proof, in the context of assumed algorithm R, the claim
guarantees that the resulting algorithm T (R) solves strong adaptive renaming with
complexity o(k) + O(log 2 f (k)) = o(k) + O(f (k)) = o(k).

The second step in the proof shows that any wait-free strong adaptive renaming
algorithm can be used to solve adaptive mutual exclusion with only a constant increase
in terms of step complexity. We note that the mutual exclusion algorithm obtained is
single-use (i.e., each process executes it exactly once).

CLAIM 4. Any deterministic algorithm R for adaptive strong renaming implies a
correct adaptive mutual exclusion algorithm ME(R). The RMR complexity of ME(R)

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:31

is upper bounded asymptotically by the RMR complexity of R, which is in turn upper
bounded by its step complexity.

PROOF. We begin by noting a few key distinctions between renaming and mutual
exclusion. Renaming algorithms are usually wait-free, and assume a read-write shared-
memory model which may be augmented with atomic compare-and-swap or test-and-set
operations; complexity is measured in the number of steps that a process takes during
the execution. For simplicity, in the following, we abuse notation and call this the
wait-free (WF) model. Mutual exclusion assumes a more specific cache-coherent (CC)
or distributed shared memory (DSM) shared-memory model with no process failures
(otherwise, a process crashing in the critical section would block the processes in the
entry section forever). Thus, solutions to mutual exclusion are inherently blocking; the
complexity of mutex algorithms is measured in terms of remote memory references
(RMRs). We call this second model the failure-free, local spinning model, in short LS.

The transformation from adaptive tight renaming algorithm R in WF to the mutex
algorithm ME(R) in LS uses the algorithm R to solve mutual exclusion. The key idea
is to use the names obtained by processes as tickets to enter the critical section.

Processes share a copy of the algorithm R, and a right-infinite array of shared bits
Done[1, 2, . . .], initially false. For the enter procedure of the mutex implementation,
each of the k participating processes runs algorithm R, and obtains a unique name
from 1 to k. Since the algorithm R is wait-free, it can be run in the LS model with no
modifications.

The process that obtained name 1 enters the critical section; upon leaving, it sets the
Done[1] bit to true. Any process that obtains a name id ≥ 2 from the adaptive renaming
object spins on the Done[id − 1] bit associated to name id − 1, until the bit is set to
true. When this occurs, the process enters the critical section. When calling the exit
procedure to release the critical section, each process sets the Done[id] bit associated
with its name to true and returns. This construction is designed for the CC model.

We now show that this construction is a correct mutex implementation.

—For the mutual exclusion property, let qi be the process that obtained name i from
the renaming network, for i ∈ {1, . . . , k}. Notice that, by the structure of the protocol,
for any i ∈ {1, . . . , k−1}, process qi+1 may enter the critical section only after process
qi has exited the critical section, since process qi sets the Done[i] bit to true only after
executing the critical section. This creates a natural ordering between processes’
accesses in the critical section, which ensures that no two processes may enter it
concurrently.

—For the no deadlock and no lockout properties, first notice that, since the mutex
algorithm runs in a failure-free model, and the test-and-set instances we use in the
renaming network are deterministically wait-free, it follows that every process will
eventually reach an output port in the renaming network. Thus, by Theorem 5.7,
each process will eventually be assigned a name from 1 to k. Conversely, each name
i from 1 to k will eventually get assigned to a unique process qi. Therefore, each of
the Done[] bits corresponding to names 1, . . . , k will be eventually set to true, which
implies that eventually each process enters the critical section, as required.

—The unobstructed exit condition holds since each process performs a single operation
in the exit section.

For the complexity claims, notice that, once a process obtains the name from algo-
rithm R, it performs at most two extra RMRs before entering the critical section, since
RMRs may be charged only when first reading the Done[v − 1] register, and when the
value of this register is set to true. Therefore, the (individual or global) RMR complex-
ity of the mutex algorithm is the same (modulo constant multiplicative factors) as the

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:32 D. Alistarh et al.

RMR complexity of the original algorithm R. Since the algorithm R is wait-free, its
RMR complexity is a lower bound on its step complexity.

The last remaining claim is that the resulting renaming algorithm is adaptive, that
is, its complexity only depends on the contention k in the execution, and the algorithm
works for any value of the parameter n. This follows since the original algorithm R was
adaptive, and by the structure of the transformation. In fact, the transformation does
not require an upper bound on n to be known; if such an upper bound is provided, then
it can be used to bound the size of the Done[] array. This concludes the proof of the
claim.

Final Argument. To conclude the proof of Theorem 7.1, notice that the algorithm
resulting from the composition of the two claims, ME(T (R)), is an adaptive mutual
exclusion algorithm that requires o(k) + O(f (k)) = o(k) RMRs to enter and exit the
critical section, in the cache-coherent model, where 2 f (k) is the size of the namespace
guaranteed by the renaming algorithm.

However, the existence of this algorithm contradicts the �(k) lower bound on the
RMR complexity of adaptive mutual exclusion by Kim and Anderson [2012, Theorem 2],
stated in Theorem 7.2.

THEOREM 7.2 (MUTEX TIME LOWER BOUND [KIM AND ANDERSON 2012]). For any k ≥ 1,
given n = �(k2k

), any deterministic mutual exclusion algorithm using reads, writes,
and compare-and-swap operations that accepts at least n participating processes has a
computation involving (2k − 1) participants in which some process performs k remote
memory references to enter and exit the critical section [Kim and Anderson 2012].

The algorithm R is adaptive and therefore works for unbounded n. Therefore, the
adaptive mutual exclusion algorithm ME(T (R)) also works for unbounded n. Hence,
the mutual exclusion lower bound described in this article contradicts the existence
of algorithm ME(T (R)). The contradiction arises from our initial assumption on the
existence of algorithm R. The claim about step complexity follows since, for wait-free
algorithms, the RMR complexity is always a lower bound on step complexity. The claim
about the number of rename operations follows from the structure of the transformation
and from that of the mutual exclusion lower bound of Kim and Anderson [2012], in
which each process performs the entry section once.

7.1.1. Technical Notes

Relation between k and n. The lower bound of Kim and Anderson [2012] from which
we obtain our result assumes large values of n, the maximum possible number of
participating processes, in the order of k2k

. Therefore, for a fixed n, the relative value
of k for which the linear lower bound is obtained may be very small. For example, the
lower bound does not preclude an algorithm with running time O(min(k, log n)) if n is
known in advance.

Read-Write Algorithms. Notice that, although the first reduction step employs
compare-and-swap (or test-and-set) operations for building the renaming network, the
lower bound also holds for algorithms that only employ read or write operations, since
the renaming network is independent from the original renaming algorithm R.

Single-Use Mutex. As noted previously, the mutual exclusion algorithm we obtained
is single-use. This is not a problem for the lower bound, since it holds for executions
where each process invokes the entry section once; however, it limits the usefulness of
the algorithm. We note that the algorithm can be extended to a variant where processes
invoke the critical section several times (following the outline in Section 5.2.5); however,

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:33

in this case, the time complexity will be logarithmic in the total number of mutual
exclusion calls in the execution.

Progress Conditions. Known adaptive renaming algorithms, for example, Moir and
Garay [1996] and Alistarh et al. [2011a], do not guarantee wait-freedom in executions
where the number of participants is unbounded, since a process may be prevented
indefinitely from acquiring a name by new incoming processes. Note that our lower
bound applies to these algorithms as well, as the original mutual exclusion lower bound
of Kim and Anderson [2012] applies to all mutex algorithms ensuring livelock-freedom,
and our transformation does not require a strengthening of this progress condition.

7.2. Nonadaptive Renaming Lower Bound

The same technique also implies a linear lower bound on the step complexity of non-
adaptive renaming algorithms. For nonadaptive algorithms, the size of the set of partic-
ipants is bounded by a fixed, known parameter N, and the size of the target namespace
and the complexity of the algorithm depend on this parameter.

Strategy. We prove the generalization by reduction: we first show that, under some
restrictions, a non-adaptive renaming algorithm can be transformed into a renaming
algorithm with fails, which returns a fail indication whenever the number of processes
k accessing the algorithm is > N. Then, we show that any renaming algorithm with
fails can be used to obtain an adaptive renaming algorithm with similar step complexity
and namespace guarantees. The lower bound then follows from the previous result for
adaptive algorithms.

7.2.1. Renaming with Fails. We define a renaming algorithm with fails as a nonadaptive
renaming algorithm RF(N), that has the same specification as a renaming algorithm
as long as the number of participants k does not exceed the maximum number of
participants N that the algorithm allows. On the other hand, if k > N, then the
algorithm RF(N) may return a special value fail to the calling process instead of a
(unique) name. An instance of the algorithm is a variant RF(N) for a particular N.

Definition 7.3 (Renaming with Fails). The renaming with fails task for parameter
N in namespace T (N) assumes k > 0 processes with unique initial identifiers from an
unbounded namespace, and ensures the following:

(1) Termination. In every execution, every correct process returns either an integer
name or a fail indication.

(2) Namespace Size. In every execution, every integer name returned is from 1 to T (N).
(3) Uniqueness. In every execution, no two processes may return the same integer

name.
(4) Progress when k ≤ N. If the contention k in the current execution is at most N, no

process returns fail.

Note that, by the specification of the renaming problem, an instance assumes no limit
on the size of the initial identifiers that participating processes may have; however,
a non-fail return value is guaranteed only if at most N processes participate. Also,
this property ensures that the complexity of a renaming algorithm may not depend
on the size of the initial namespace that the algorithm accepts. Otherwise, since the
algorithm accepts a virtually infinite namespace, the algorithm would have unbounded
complexity.

From nonadaptive renaming to renaming with fails.. In the following, we consider
nonadaptive renaming algorithms that ensure the following properties:

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:34 D. Alistarh et al.

(1) every step of the algorithm executed by a correct process terminates eventually;
(2) any step can only access variables that are allocated by the algorithm;
(3) there exists a bounded function C(N) such that, for every execution, the number of

steps performed by a process is at most C(N).

It is straightforward to see that any wait-free algorithm can be modified to ensure
properties (1) and (2). Property (3) states that the step complexity of the algorithm
can be bounded by a function C(N). Given these properties, we give a procedure to
transform any nonadaptive renaming algorithm R into a renaming algorithm with
fails RF with the same asymptotic complexity.

Let T (N) be the namespace that R renames into; C(N) is an upper bound on R’s
complexity. We associate with each process a local program counter that counts the
number of steps that the process has performed in the current execution. Processes
share an instance of the algorithm R, and an array Split of T (N) randomized splitter
objects, as defined in Section A.1 in Appendix A.

Transformation. Each process executes algorithm R, checking the local program
counter at every step. If the local program counter exceeds the value C(N) while run-
ning R, then the process automatically returns fail. If the process obtains a name that
is larger than T (N) from R, then it automatically returns fail. If the process obtains
a name r from the current instance of R, then it checks that this name is unique by
accessing the auxiliary array Split of randomized splitter objects in position r. If the
splitter returns stop, then the process returns that name as its decision value (re-
call that the splitter properties ensure that at most one process may return stop at a
splitter). Otherwise, if the splitter returns left, or right, then the process returns fail.

We now check that this transformation results in a renaming algorithm with fails,
whose asymptotic step complexity is the same as the one of the original algorithm
R. Notice that, in general, the behavior of a nonadaptive renaming algorithm is not
specified when k exceeds N.

LEMMA 7.4 (RENAMING WITH FAILS). For any N > 0, given a renaming algorithm R
for at most N processes with complexity C(N) ensuring a namespace of size T (N), the
transformation yields a renaming with fails algorithm RF with parameter N, having
the same asymptotic step complexity as R, ensuring the same properties as R as long as
k ≤ N.

PROOF. Consider a renaming algorithm R as described previously. If k ≤ N, it is easy
to see that no process returns a fail indication, and the algorithm RF ensures the same
properties as R, with the same asymptotic complexity.

Otherwise, if k > N, then the algorithm R may break correctness either by returning
a name that is outside the range T (N), or by having two processes return the same
integer name, or by having a process run forever. Other deviations from correctness
are excluded, since we assume that every step by a correct process eventually returns,
and steps may only access memory allocated by the algorithm. However, we cover these
possibilities in the transformation by having processes return fail indications whenever
one of these events occurs: a process returning a name out of range returns fail; processes
getting the same name detect the conflict through the Split array; a process returns fail if
it takes more than C(N) steps as part of the algorithm R. Therefore, the transformation
implements a renaming algorithm with fails for parameter N.

7.2.2. From Renaming with Fails to Adaptive Renaming. In this section, we show that any
renaming algorithm with fails ensuring a namespace of polynomial size in N can
be transformed into an adaptive renaming algorithm, at the cost of a multiplicative
logarithmic increase in running time, conserving polynomial namespace size.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:35

Transformation. We start from a nonadaptive renaming with fails algorithm R,
which, for any N ≥ 1, renames into a namespace of size T (N), with complexity C(N),
as long as the number of participants k to the instance does not exceed N. We consider
an infinite series (Ri)i∈N of instances of algorithm R, where instance Ri is the algorithm
R for parameter N = 2i.

The transformation proceeds as follows. Each process accesses the instances (Ri)i∈N

in order, until it first obtains an integer name from an instance Ri (as opposed to
a fail indication). If, on the other hand, a process obtains a fail indication from Ri,
it increments its instance counter i, and proceeds to the next instance. Once it has
obtained a name v, the process returns v plus the sum resulting from adding up the
namespace sizes for the previous instances, that is, for j ≥ 2,

∑i−1
j=1 T (2 j).

We now prove that the algorithm described previously is a correct adaptive renaming
algorithm, and bound its complexity and namespace size.

LEMMA 7.5. Let A be an algorithm that renames with fails such that, for any N ≥ 1,
it guarantees a namespace of size polynomial in N with step complexity o(N). Then, this
transformation yields an adaptive renaming algorithm that renames in a namespace
polynomial in the number of participants k, whose complexity is o(k).

PROOF. Fix an arbitrary execution of the transformation, and let k be the number
of participants in the execution. Let m be the highest index of an instance in the
series (Ri)i∈N that a process accesses in this execution. Since a process may only access
an instance of a higher index if it fails in the current instance, and an instance Ri
may return fail only if the number of participants k exceeds the number of allowed
participants 2i, it follows that m = O(log k).

For bounded k, each correct process eventually returns a name in the transforma-
tion. (On the other hand, if k is infinite, then the transformation no longer guarantees
starvation-freedom.) The name uniqueness property follows since renaming with fails
guarantees uniqueness, and the namespace resulting from the transformation is par-
titioned into the namespaces returned by the instances (Ri)i∈N.

We now bound the size of the namespace that the algorithm generates as a function
of k, the number of participants. Assume that, for any N, the algorithm R returns
names between 1 and Nc. If m is the largest index of an accessed instance, then the
size of the namespace is bounded by

∑m
i=1 2ci ≤ 2c(m+1) = O(kc), that is, polynomial

in k, since m = O(log k). Notice that the transformation uses no knowledge of the
maximum number of processes that may participate in the execution. Therefore, the
transformation is an adaptive renaming algorithm that renames into a namespace of
size polynomial in the contention k.

Finally, we bound the step complexity of the transformation. By its structure, the
number of steps a process takes in total is bounded by C(2m)+C(2m−1)+· · ·+C(1). Since
Rm is the highest accessed instance of algorithm R, it follows that 2c(m+1) ≥ k ≥ 2m−1.
(The first inequality follows since k processes accessing the first m objects can occupy
at most 2c(m+1) distinct names. The second holds since object Rm−1 is not sufficient for
the processes.) We want to show that C(2m) + C(2m−1) + · · · + C(1) is in o(2m) = o(k),
knowing that C(2m) = o(2m). Therefore, we need to show that the quantity

C(2m) + C(2m−1) + · · · + C(1)
2m

converges to 0 as m → ∞. Let Am = C(2m) +C(2m−1) +· · ·+C(1), and let Bm = 2m+1 −1.
Recall the following result from basic calculus.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:36 D. Alistarh et al.

LEMMA 7.6 (STOLZ-CESÀRO). Let (An)n≥1 and (Bn)n≥1 be two sequences of real numbers,
such that (Bn)n≥1 is positive, strictly increasing, and unbounded. Then

lim
n→∞

An

Bn
= lim

n→∞
An+1 − An

Bn+1 − Bn
,

if the limit on the right-hand side exists.

We apply this result to Am and Bm as defined previously, and obtain that

lim
m→∞

C(2m) + C(2m−1) + · · · + C(1)
2m+1 − 1

= lim
n→∞

Am+1 − Am

Bm+1 − Bm
= lim

m→∞
C(2m+1)

2m+1 = 0,

where the second limit exists and is 0, since C(k) = o(k). Therefore, by a change of
variables, the complexity of the transformation is o(k), as claimed.

On the other hand, the existence of such an adaptive renaming algorithm contradicts
Theorem 7.1. Therefore, it follows that every deterministic renaming algorithm with
fails with parameter N, guaranteeing a namespace polynomial in N has complexity
�(N). From Lemma 7.4, the same result holds for nonadaptive renaming algorithms
which ensure properties (1)–(3).

COROLLARY 7.7. Any deterministic nonadaptive renaming algorithm, with the prop-
erty that for any n ≥ 1 the algorithm ensures a namespace polynomial in n, has worst-
case step complexity �(n).

7.3. Applications

7.3.1. Lower Bounds for Other Objects. These results imply time lower bounds for im-
plementations of other shared objects, such as fetch-and-increment registers, queues,
and stacks. Some of these results are new, while others improve on previously known
results.

We first show reductions between fetch-and-increment, queues, and stacks, on the
one hand, and adaptive strong renaming, on the other hand.

LEMMA 7.8. For any k > 0, we can solve adaptive strong renaming using a fetch-and-
increment register, a queue, or a counter.

PROOF. Given a linearizable fetch-and-increment register, we can solve adaptive
strong renaming by having each participant call the fetch-and-increment operation
once, and return the value received plus 1. The renaming properties are follow trivially
from the sequential specification of fetch-and-increment.

Given a linearizable shared queue, we can solve renaming as follows. If an upper
bound on n is given, then we initialize the queue with distinct integers 1, 2, . . . , n;
otherwise, we initialize it with an unbounded string of integers 1, 2, 3, In both
cases, 1 is the element at the head of the queue. Given this initialized object, we can
solve adaptive strong renaming by having each participant call the dequeue operation
once, and return the value received. Correctness follows trivially from the sequential
specification of the queue.

Finally, given a stack, we initialize it with the same string of integers, where 1 is
the top of the stack. To solve renaming, each process performs pop on the stack and
returns the element received.

This implies a linear-time lower bound for these objects.

COROLLARY 7.9 (QUEUES, STACKS, FETCH-AND-INCREMENT). Consider a wait-free lin-
earizable implementation A of a fetch-and-increment register, queue, or stack, in shared

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:37

Fig. 12. Pseudocode for the mutex algorithm.

memory with read, write, test-and-set, and compare-and-swap operations. If the algo-
rithm A is deterministic, then, for any k ≥ 1, given n = �(k2k

), there exists an execution
of A with 2k − 1 participants in which (1) each participant performs a single call to the
object, and (2) some process performs k RMRs (or steps).

7.3.2. A Time-Optimal One-Shot Nonadaptive Mutex Algorithm. Another application of the
lower bound argument is that we can obtain an asymptotically optimal one-shot mutual
exclusion algorithm from an AKS sorting network [Ajtai et al. 1983]. We present this
algorithm in the cache-coherent (CC) model.

Description. Processes share an AKS sorting network with n input (and output) ports,
and a vector Done of Boolean bits, initially false. We replace each comparator in the
network with a two-process test-and-set object with constant RMR complexity [Golab
et al. 2007]. In the mutual exclusion problem, processes are assumed hold unique
initial identifiers vi from 1 to n; therefore, we use these initial identifiers to assign
unique input ports to processes. (Please see Figure 12 for the pseudocode.) A process
progresses through the network as described in Section 5.1.1. The process adopts the
index of the output port it reaches as a temporary name id. If id = 1, then it enters the
critical section; otherwise, it busy-waits until the bit Done[id − 1] is set to true. Upon
exiting the critical section, the process sets the Done[id] bit to true.

The correctness of the algorithm above follows from Claim 4, given in Section 7.1.
In particular, the asymptotic local RMR complexity of this algorithm is the same as
the depth of the AKS sorting network (plus at most two RMRs for reading the Done
bits), that is, O(log n), therefore the algorithm is optimal by the lower bound of Attiya
et al. [2008]. Yang and Anderson [1994] presented an upper bound with the same
asymptotic complexity, but significantly better constants, using a different technique.
The same construction can be used starting from constuctible sorting networks, for
example, bitonic sorting networks [Knuth 1998], at the cost of increasing complexity

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:38 D. Alistarh et al.

by a logarithmic factor. Notice that the linear RMR lower bound of Kim and Anderson
[2012] does not yield a �(n) RMR lower bound for nonadaptive mutual exclusion (which
would contradict the existence of our algorithm).

7.4. Circumventing the Lower Bound

Intuitively, the lower bound shows that, if n processes could potentially participate,
then, for k such that n ≥ k2k

, one can obtain a schedule with k participating processes
in which one process takes a step for roughly every other participating process. There
are (at least) two ways for algorithms to circumvent the lower bound.

Randomization. As shown in Section 5, one can avoid the worst-case linear schedules
with high probability by allowing processes to flip coins as part of the execution. In
particular, for renaming, the complexity of an operation is O(log k) with high probability,
that is, exponentially less than the worst-case deterministic schedule.

Limiting the Parameter n or the Size of the Initial Namespace. Another way of cir-
cumventing the lower bound is by assuming that processes already have unique names
from 1 to n. (For example, this can be achieved by running a renaming algorithm at
the beginning of the execution.) An example of such an algorithm is the O(log n log v)
counter algorithm by Aspnes et al. [2012a], where n is the number of processes, and v
is the maximum value of the counter. This algorithm assigns a unique “input port” in
the data structure to each of the n processes. For fixed n, if k = �(log n) processes are
participating, each of them performs a number of operations which is at least linear in
k, although this number is in O(log n log v). Notice that, if n is small, linear contention
in k could be seen as negligible.

8. A TIME LOWER BOUND FOR ADAPTIVE RANDOMIZED RENAMING

In this section, we present lower bounds on the expected total step complexity of
randomized renaming and counting. (Naturally, the result also applies to deterministic
algorithms, yielding a worst-case total step complexity lower bound.) The lower bound
holds for algorithms using reads, writes, test-and-set, or compare-and-swap operations,
and is matched by the renaming network algorithm.

Strategy. We analyze an adversarial strategy that schedules the processes lock-step,
and show that this limits the amount of information that each process may gather
throughout an execution. We then relate the amount of information that each pro-
cess must gather with the set of names that the process may return in an execution.
For executions in which everyone terminates and the adversary follows the lock-step
strategy, we obtain a lower bound of �(k log(k/c)) for c-loose renaming (i.e., the variant
where processes may return names between 1 and ck, where c is a constant). We then
notice that a similar argument can be applied to obtain a lower bound for approximate
counting (defined here).

Our argument generalizes a previous result by Jayanti [1998], which in turn is
similar to a lower bound by Cook et al. [1986] on the complexity of computing basic
logical operations on PRAM machines. Jayanti proved an �(log k) lower bound on the
expected step complexity of shared counters, queues, and stacks, which can be tweaked
to apply to strong adaptive renaming. We generalize his result in two ways: first, we
consider total step complexity, and thus obtain a stronger �(log k) lower bound on the
average worst-case expected step complexity of the problem. Second, our results also
apply to loose (approximate) versions of renaming and counting, showing that the time
complexity benefits of relaxing the object semantics in this way are at most constant.

We begin by discussing some basic definitions and properties related to adversarial
schedules in Section 8.1. We then describe the adversarial scheduler and analyze its

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:39

properties in Section 8.2. From these properties, we obtain the lower bound for adaptive
renaming in Section 8.3. We refine this argument to obtain a lower bound for approxi-
mate counting in Section 8.4. We then discuss applications to more complex objects in
Section 8.6.

8.1. Preliminaries

8.1.1. Loose Adaptive Renaming and Approximate Counting. We now define loose adaptive
renaming and approximate counting. For c ≥ 1, the c-loose adaptive renaming problem
requires processes to return unique names from 1 to ck, where k is the contention in
the execution.

Let C be a counter implementation, supporting operations read and increment. The
counter is c-approximate if, for any read operation R, its return value v satisfies the
relation

γ /c ≤ v ≤ cγ,

where γ is the number of increment operations linearized before the read operation R.

8.1.2. Operations and Schedules. Recall that we consider a shared-memory model with
atomic read, write, and compare-and-swap operations (the test-and-set operation can
be trivially replaced by compare-and-swap). Notice that the read and write operations
always succeed, whereas the compare-and-swap operation is conditional, meaning that
it may or may not change the value of the register on which it is called, depending on
the value of the register when the operation is called. Notice that certain operations
change the value of the underlying object (such as a write with a new value), whereas
others are “invisible”, such as reads, and failed compare-and-swap operations. In the
following, we make this intuition precise, and analyze the existence of schedules in
which few operations are visible. We follow the presentation of Attiya and Hendler
[2010], where these notions were first defined.

Definition 8.1 (Invisible Operations [Attiya and Hendler 2010]). Let e be an opera-
tion applied by a process p to an object O, in an execution E = E1eE2. We say that e is
invisible in e if either the value of the object O is not changed by e, or if E2 = E′e′E′′,
where e′ is a write operation on O, and the prefix E′ contains no operations by p, and
no operation in the prefix E′ is applied to O. If e is not invisible in E, we say that it is
visible in E.

Based on this definition, we now define a weakly visible schedule, which minimizes
the number of operations that a process sees during an execution.

Definition 8.2 (Weakly Visible Schedule [Attiya and Hendler 2010]). Let S = {e1,
. . . , e�} be a set of operations by different processes that are enabled after some ex-
ecution prefix E, all about to apply write or compare-and-swap operations. We say that
an ordering of the operations in S is a weakly visible schedule of S after E, denoted by
σ (E, S), if the following holds. Let E1 = Eσ (E, S).

—At most a single operation of S is visible on any one object in E1. If e j ∈ S is visible
on a base object in E1, then e j is issued by a process that is not aware of any event of
S in E1.

—Any process is aware of at most a single event of S in E1.

Given these definitions, Attiya and Hendler [2010] proved the following result on
the existence of weakly visible schedules. The proof follows by constructing a suitable
ordering of the operations in S.

LEMMA 8.3 (WEAKLY VISIBLE SCHEDULES [ATTIYA AND HENDLER 2010]). Let S = {e1, . . . ,
e�} be a set of operations by different processes that are enabled after some execution E,

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:40 D. Alistarh et al.

Fig. 13. The adversarial strategy for the global lower bound.

all about to apply write or compare-and-swap operations. Then, there is a weakly visible
schedule of S after E.

8.1.3. Worst-Case Expected Step Complexity. In the following lower bounds, we will use
the following basic fact, whose proof follows from the definition of the expectation of a
random variable.

PROPOSITION 2 (EXPECTED COMPLEXITY). Fix constants α ∈ [0, 1] and γ > 0. Given an
algorithm A that terminates with probability α, if there exists an adversarial strategy
S(A) such that, in every execution under S(A) in which every process terminates, the
processes take at least γ steps, then the (worst-case) expected step complexity of A is at
least αγ .

8.2. The Adversarial Scheduler

We consider an algorithm A in shared-memory allowing atomic read, write, and
compare-and-swap operations. The adaptive adversary follows the pseudocode de-
scribed in Figure 13. The adversary schedules the processes in rounds: in each round,
each process that has not yet returned from A is scheduled to perform the next shared-
memory operation that they have enabled. More precisely, at the beginning of each
round, the adversary allows each process to perform local coin flips until it either termi-
nates or has to perform an operation that is either a read, a write, or a compare-and-swap
(lines 7–7).

In each round, the adversary partitions processes that have an operation enabled
into three sets: R, the readers, W, the writers, and C, the swappers. Processes in R
are scheduled by the adversary to perform their enabled read operations, in the order
of their initial identifiers (line 7). Then, the adversary also schedules the updating
processes (writers and swappers) in the order given by a weakly visible schedule σr
for these operations in the round. (This schedule, which minimizes information flow
between processes, was defined and shown to exist in Lemma 8.3.) Once every process
has either been scheduled or has returned, the adversary moves on to the next round.

Before we proceed with the analysis, we explain the role of the weakly visible schedule
for the processes performing write and compare-and-swap operations in round r. For
example, if a set of processes all perform compare-and-swap operations in a round, there
exist interleavings of these operations such that the last scheduled process “finds out”
about all other processes after performing its compare-and-swap, by reading a value
that these processes successively modified. However, the adversary can always break
such interleavings and ensure that, given any set of compare-and-swap operations, a
process only finds out about one other operation, using a weakly visible schedule, as
described in Section 8.1.2.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:41

Analysis. First, notice that, since the algorithms we consider are randomized, the
adversarial strategy we describe creates a set of executions in which all processes take
steps (if the algorithm is deterministic, then the strategy describes a single execution).
We denote the set of such executions by S(A). In the following, we study the flow of
information between the processes in executions from S(A).

We prove that the adversarial strategy described above prevents any process from
“finding out” about more than 4r active processes by the end of round r in any execution
from S(A). More precisely, for each process p following the algorithm A, each register
R, and for every round r ≥ 0, we define the sets UP(p, r) and UP(R, r), respectively.
Intuitively, UP(p, r) is the set of processes that process p might know at the end of
round r as having taken a step in an execution resulting from the adversarial strategy.
Similarly, UP(R, r) is the set of processes that can be inferred to have taken a step in
an execution resulting from the adversarial strategy, by reading the register R at the
end of round r. Our notation follows the one in Jayanti [1998], which defines similar
measures for a model in which LL/SC, move, and swap operations are available.

Formally, we define these sets inductively, using the following update rules. Initially,
for r = 0, we consider that UP(p, 0) = {p} and UP(R, 0) = ∅, for all processes p and
registers R. For any later round r ≥ 1, we define the following update rules.

(1) At the beginning of round r ≥ 1, for each process p and register R, we set UP(p, r) =
UP(p, r − 1) and UP(R, r) = UP(R, r − 1).

(2) If process p performs a successful write operation on register R in round r, then
UP(R, r) = UP(p, r − 1). Informally, the knowledge that process p had at the end
of round r − 1 is reflected in the contents of register R at the end of round r. On
the other hand, the writing process p gains no new knowledge from writing, that
is, UP(p, r) = UP(p, r − 1).

(3) If process p performs a compare-and-swap operation which changes the value of
register R in round r, then the information contained in the register is merged with
p’s information, that is UP(R, r) = UP(p, r − 1) ∪ UP(R, r). We also assume that
the process p gets the information previously contained in the register UP(p, r) =
UP(p, r − 1) ∪ UP(R, r) (note that the contents of UP(R, r) might have been already
updated in round r).

(4) If process p performs a compare-and-swap operation that does not change the
value of register R in round R, then UP(R, r) remains unchanged. On the other
hand, the process gets the information currently contained in the register, i.e.
UP(p, r) = UP(p, r − 1) ∪ UP(R, r).

(5) If process p performs a successful read operation on register R in round r, then
UP(R, r) remains unchanged, and UP(p, r) = UP(R, r) ∪ UP(p, r − 1).

Based on these update rules, we can compute an upper bound on the size of the UP
sets for processes and registers, as the rounds progress.

LEMMA 8.4 (BOUNDING INFORMATION). Given a run of the algorithm A controlled by
the adversarial scheduler in Figure 13, for any round r ≥ 0, and for every process or
shared register X, |UP(X, r)| ≤ 4r, where the set UP is considered at the beginning of the
round r.

PROOF. The proof follows by induction on the round number r ≥ 0. For r = 0, the
claim holds by definition.

Given r > 0 for which the claim holds, we prove it for r + 1. We first prove the
claim for UP(R, r + 1), where R is a register. Obviously, read operations do not add
information to the register. We therefore focus on update operations, that is, writes
and compare-and-swaps. By Lemma 8.3, the schedule σr ensures that at most a single
update operation in this round is visible on the register. Therefore, by the update rules,

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:42 D. Alistarh et al.

the size of UP(R, r + 1) can be at most |UP(R, r)| + |UP(p, r)|, for some process p. This
is at most 2r+1 < 4r+1, as claimed.

We now consider UP(p, r + 1) for a process p. If the process performs a read on
a register R in the first part of the phase, then the size of UP(p, r + 1) is at most
|UP(p, r)| + |UP(R, r)| ≤ 2r+1 < 4r+1, as claimed.

If the process performs a write or a compare-and-swap on a register R, then there
are two cases. If the process performs an event that is visible on the register, then, by
Lemma 8.3, the process is not aware of any update on the register R in this round. This
implies that the size of the set UP(p, r + 1) is at most |UP(p, r)| + |UP(R, r)| < 4r+1, as
claimed.

If the process does not perform a visible event on the register, the process may see
some other process’s update on the register in this round. By Lemma 8.3, the process
is aware of at most a single update on the register in this round. Assume this update
is performed by some process q. Therefore, |UP(p, r + 1)| ≤ |UP(q, r)| + |UP(p, r)| +
|UP(R, r)| ≤ 3 · 4r < 4r+1. We have covered all cases, and hence the claim follows.

Indistinguishability. Let E be an execution of the algorithm obtained using this
adversarial strategy, that is, E ∈ S(A). Given the previous construction, the intuition
is that, for a process p and a round r, if UP(p, r) = S for some set S, then p has no
evidence that any process outside the set S has taken a step in the current execution
E . Alternatively, there exists a parallel execution E ′ in which only processes in the set
S take steps, and p cannot distinguish between the two executions.

We make this intuition precise. First, we define state(E, p, r) as the local state of
process p at the end of round r (i.e., the values of its local registers and its current
program counter), and val(E, R, r) as the value of register R at the end of round r.
We also define numtosses(E, p, r) as the number of coin tosses that the process p per-
formed by the end of round r of E . Two executions E and E ′ are said to be indistin-
guishable to process p at the end of round r if (1) state(E, p, r) = state(E ′, p, r), and
(2) numtosses(E, p, r) = numtosses(E ′, p, r).

Starting from the execution E , the adversary can build an execution E ′ in which only
processes in S participate, that is indistinguishable from E from p’s point of view, by
starting from execution E and only scheduling processes in S = UP(p, r) up to the end
of round r of E ′. The proof is identical to the one presented by Jayanti [1998] in the
context of local lower bounds for shared-memory with LL/SC operations. Therefore, we
only give an overview of the construction in this article.

LEMMA 8.5 (INDISTINGUISHABILITY). Let E be an execution in S(A) and p be a process
with UP(p, r) = S at the end of round r. There exists an execution E ′ of A in which only
processes in S take steps, such that E and E ′ are indistinguishable to process p.

PROOF. To prove the claim, we provide an algorithm for the adversary to build an
execution E ′ based on the original execution E ∈ S(A), and prove that E ′ and E are
indistinguishable for process p at the end of round r. The construction is an adaptation
to the read-write model of the one presented by Jayanti [1998]. Given the execution
E , let coins(E, p, j) be the outcome of the jth coin toss that process p performs in
execution E .

Constructing the Execution. The procedure to build the desired execution E ′ of algo-
rithm A in which only |S| processes participate is described in Figure 14. The run is
also structured in rounds. Of note, only processes that are scheduled in round r are the
processes in S that have not witnessed processes outside of S by the end of round r −1.
Each process is scheduled to perform local coin tosses until it has a shared-memory
operation enabled. For every coin toss j by a process q, the adversary feeds the out-
come that occurred in the execution E , that is coins(E, q, j). Depending on their enabled

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:43

Fig. 14. The procedure for building the indistinguishable execution.

shared-memory operation, the processes that have not yet terminated are then split
into a set of readers, a set of writers, and a set of swappers, that is processes having
compare-and-swap operations enabled. The readers are then scheduled in the order of
their initial identifiers, after which the writers and the swappers are scheduled in the
order of their weakly visible schedule for that round. Finally, the adversary increments
the round counter and moves to the next round.

Correctness of the Construction. The proof of correctness proceeds by induction on
the round number r, and is identical to the one outlined in Jayanti [1998, Lemma 5.2].
More precisely, the execution E is the (All,A) run, and the execution E ′ is the (S,A)-run.
We refer the reader to Jayanti [1998] for the proof.

8.3. Renaming Lower Bound

We now prove an �(k log(k/c)) lower bound on the total step complexity of c-loose
adaptive renaming algorithms. In particular, this lower bound implies that we cannot
gain more than a constant factor in terms of step complexity by relaxing the tight
namespace requirement by a constant factor. There are two key technical points: first,
we relate the amount of information that a process gathers with the set of names it
may return (we show this relation holds even if renaming is loose); second, for each
process, we relate the number of steps it has taken with the amount of information it
has gathered.

THEOREM 8.6 (RENAMING). Fix c ≥ 1 constant. Given k participating processes, any
c-loose adaptive renaming algorithm that terminates with probability α has worst-case
expected total step complexity �(αk log(k/c)).

PROOF. Let A be a c-loose adaptive renaming algorithm. We consider a terminating
execution E ∈ S(A) with k participating processes, that is, every participating process
returns in E . We first prove that a process that returns name j ∈ [1, ck] in execution E
has to perform �(log(j/c)) shared-memory operations.

First, notice that each execution E ∈ S(A) contains no process failures, so each process
has to return a unique name in the interval 1, . . . , ck in such an execution. Therefore,
there exist distinct names m1, . . . , mk ∈ {1, 2, . . . , ck} and processes q1, . . . , qk such that
process qi returns name mi in execution E . Without loss of generality, assume that the
names returned by processes q1, . . . , qk are in monotonically increasing order; since the
names are distinct, we have that mi ≥ i for i ∈ 1, . . . , k.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:44 D. Alistarh et al.

Consider process qi returning name mi in E . Let �i be the number of shared-memory
operations that qi has performed in E . Since the adversary schedules each process once
in every round of E , until termination, it follows that process qi has returned at the end
of round �i. Let S = UP(qi, �i), as defined in Section 8.2. Since E ∈ S(A), by Lemma 8.4,
we have that |S| ≤ 4�i .

Assume for the sake of contradiction that the number of processes that qi “found out”
about in this execution, |S|, is less than mi/c. By Lemma 8.5, there exists an execution
E ′ of A which is indistinguishable from E from qi ’s point of view at the end of round �i,
in which only |S| < mi/c processes take steps. However, since the algorithm is c-loose,
the highest name that process qi may return in execution E ′, and thus in E , is strictly
less than c · (mi/c) = mi, a contradiction.

Therefore, it has to hold that |S| ≥ mi/c, which implies that �i, the number of shared-
memory operations that process qi performs in E , is at least log4(mi/c) = (1/2) log(mi/c).
Therefore, for any i ∈ 1, . . . , k, process qi returning name mi has to perform at least
(1/2) log(mi/c) shared memory operations. Then, the total number of steps that the k
processes perform in execution E is

k∑
i=1

�i ≥
(

1
2

) k∑
i=1

log
(

i
c

)
= �

(
k log

(
k
c

))
,

where, in the last step, we have used the standard Stirling approximation of k!. Since
this complexity lower bound holds for every execution resulting from the adversarial
strategy, using Proposition 2, we obtain that the expected total step complexity of the
algorithm A is �(αk log(k/c)).

8.4. Counting Lower Bound

Using a similar argument, we can show that any c-approximate counter implementa-
tion has worst-case expected total step complexity �(k log(k/c2)) in executions where
each process performs one increment and one read.

One key difference from the proof in the previous section, which implies the extra c
factor, is that processes may return the same value from the read operation; we take
this into account by studying the linearization order of the increment operations.

THEOREM 8.7 (COUNTING). Fix c ≥ 1 constant. Let A be a linearizable c-approximate
counter implementation that terminates with probability α. For any k, the algorithm A
has worst-case expected total step complexity �(αk log(k/c2)), in runs where each process
performs an increment followed by a read operation.

PROOF. Let A be a c-approximate counting algorithm in this model. We consider
terminating executions E with kparticipating processes, in which each process performs
an increment operation followed by a read operation, during which the adversary applies
the strategy described in Figure 13, that is, E ∈ S(A).

Again, we start by noticing that, since no process crashes during E , each process
has to return a value from the read operation. Depending on the linearization order of
the increment and read operations, the processes may return various values from the
read. Let γi be the number of increment operations linearized before the read operation
by process pi, and let vi be the value returned by process pi ’s read. Without loss of
generality, we will assume that the processes pi and their return values vi are sorted
in the increasing order of their γi values.

First, notice that, since every process calls increment before its read operation, for
every 1 ≤ i ≤ k, γi ≥ i. Second, by the c-approximation property of the counter imple-
mentation, vi ≥ γi/c. Therefore, vi ≥ i/c.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:45

Second, consider process pi returning value vi in execution E . Let �i be the number of
shared-memory operations that pi has performed in E . Since the adversary schedules
each process once in every round of E , it follows that process pi has returned at the end
of round �i. Let S = UP(pi, �i), as defined in Section 8.2. By Lemma 8.4, we have that
|S| ≤ 4�i .

Assume for the sake of contradiction that |S| < vi/c. By Lemma 8.5, there exists an
execution E ′ of A which is indistinguishable from E from qi ’s point of view at the end of
round �i, in which only |S| < vi/c processes take steps. However, since the counter is
c-approximate, the highest value that process pi can return in execution E ′, and thus
in E , is strictly less than c · (vi/c) = vi, a contradiction.

Therefore, |S| ≥ vi/c, and �i ≥ log4(vi/c) ≥ (1/2) log(i/c2), for every 1 ≤ i ≤ k. We
obtain that the total number of steps is bounded as follows.

k∑
i=1

�i ≥
(

1
2

) k∑
i=1

log
(

i
c2

)
= �

(
k log

(
k
c2

))
.

8.5. Circumventing the Lower Bound

In brief, the lower bound in this chapter states that for implementations of adaptive
renaming and related counting objects, the average worst-case expected step complex-
ity is logarithmic if the adversary is adaptive, that is, may adapt its schedule based
on the results of the processes’ coin flips. Thus, this logarithmic threshold can be seen
as stronger than the linear deterministic one, since it cannot be avoided by the use of
randomization in the presence of a strong adversary.

On the other hand, if the adversary is weak, or oblivious, and may not adapt the
schedule based on the results of the processes coin flips (i.e., fixes the schedule before
the execution), then there exist object implementations that avoid this lower bound.
In particular, the approximate counter of Bender and Gilbert [2011] guarantees a con-
stant approximation factor with expected running time O(log log n) against an oblivious
adversary.

Another way of potentially circumventing the lower bound would be to allow the al-
gorithm to break the approximation guarantee with small probability. Notice that the
lower-bound argument, as written, only applies to algorithms that guarantee approxi-
mation within a factor of c in all executions. The counter of Bender and Gilbert [2011]
is an example of such an object, since it guarantees the constant approximation only
with high probability. Another example is the AdaptiveSearch renaming algorithm of
Alistarh et al. [2010], which only ensures a namespace from 1 to ckwith high probability
in k.

8.6. Applications to Other Objects

Given that adaptive renaming can easily be solved using queues, stacks, or fetch-and-
increment objects, as shown in Section 7.3, the lower bound in Section 8.3 applies to
these objects.

COROLLARY 8.8 (APPLICATIONS). Consider a wait-free linearizable (randomized) imple-
mentation A of a fetch-and-increment register, queue, or stack, in shared memory with
read, write, test-and-set and compare-and-swap operations. Then, for any k ≥ 1, if A
terminates with probability α, then its expected worst-case step complexity is �(αk log k),
where k is the number of participating processes.

9. CONCLUSION

We have given the first tight bounds on the complexity of the renaming prob-
lem in asynchronous shared-memory. In particular, we showed that deterministic

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:46 D. Alistarh et al.

implementations of renaming have linear-time complexity as long as they ensure a
polynomial-size namespace. Using randomization, we achieve a tight namespace in
logarithmic expected time, which is optimal.

Several open questions remain. First, our deterministic lower bound is matched by
several algorithms in the literature. For algorithms using only reads and writes, which
have been studied more extensively, the algorithm of Chlebus and Kowalski [2008]
matches the time lower bound, giving a namespace of size (8k − log k − 1); an elegant
algorithm by Attiya and Fouren [2001] achieves a tighter namespace of size (6k − 1);
however, this last algorithm only matches the time lower bound within a logarithmic
factor. The fastest known algorithm to achieve an optimal namespace using only reads
and writes (of size (2k−1)) was given by Afek and Merritt [1999], with time complexity
O(k2). Thus, obtaining a read-write deterministic algorithm which is optimal both in
terms of time complexity and namespace size is an intriguing open question.

We also presented a randomized renaming algorithm with logarithmic complex-
ity with high probability, which achieves a tight adaptive namespace. The total time
complexity lower bound in Section 8 shows that this algorithm is optimal against an
adaptive adversary, and that no asymptotic time complexity gains may be obtained for
adaptive renaming by relaxing the namespace size within constant factors. This im-
plies that our randomized solution is optimal from two points of view: time complexity
and namespace size.

One disadvantage of the renaming network algorithm is that it is based on an AKS
sorting network [Ajtai et al. 1983], which has prohibitively high constants hidden inside
the asymptotic notation [Knuth 1998]. Thus, it would be interesting to see whether one
can obtain constructible randomized solutions that are time-optimal and namespace-
optimal. On the other hand, the total lower bound holds only for adaptive algorithms;
it is not known whether faster nonadaptive algorithms exist, which could in theory go
below the logarithmic threshold. We conjecture that �(log n) steps is a lower bound for
nonadaptive randomized algorithms as well.

The global lower bound applies to deterministic adaptive algorithms as well, implying
an �(k log k) worst-case global time complexity lower bound. On the other hand, the
fastest known algorithm to rename into a namespace of size ck for c ≥ 1 constant has
O(k2) total step complexity [Chlebus and Kowalski 2008]. Closing the gap between
upper and lower bounds is still an open question.

Another open question concerns randomized shared-memory renaming in weaker
adversarial models, in particular in the oblivious adversary model, that is, when the
scheduler has knowledge of the algorithm but fixes the schedule without knowing the
results of random coin flips. In this case, there are indications that the logarithmic
threshold could be broken, since sub-logarithmic algorithms have been shown to exist
for test-and-set [Alistarh and Aspnes 2011] and approximate counters [Bender and
Gilbert 2011] against the oblivious adversary.

One aspect of these concurrent data structures, which has been somewhat neglected
by research is space complexity, that is, the number of registers necessary for correct
shared-memory implementations. Our renaming network algorithm uses O(k log k) reg-
isters assuming hardware test-and-set operations. The linear space complexity lower
bounds of Jayanti et al. [2000] apply to adaptive renaming, therefore the renaming net-
work is space-optimal within a logarithmic factor. Tight space complexity thresholds
for renaming remain an open question.

Our lower bounds apply to implementations of more complex objects, such as queues,
stacks, or fetch-and-increment counters. The total step lower bound suggests that there
are complexity thresholds which cannot be avoided even with the use of randomiza-
tion. In particular, the average step complexity for adaptive versions of these data
structures is logarithmic, even when using randomization. However, for many such

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:47

Fig. 15. Deterministic splitter. Fig. 16. Randomized splitter.

objects, there do not exist algorithms that match this logarithmic lower bound. In
terms of circumventing this bound, recent results [Alistarh and Aspnes 2011; Bender
and Gilbert 2011] suggest that weaker adversarial models and relaxing object seman-
tics, for example, allowing approximate implementations, could be used to go below
this logarithmic threshold.

APPENDIXES

A. RANDOMIZED LOOSE RENAMING IN LOGARITHMIC EXPECTED TIME

In this section, we present a randomized algorithm that renames into a namespace of
size polynomial in k. The algorithm has logarithmic step complexity in expectation. It
is a simple adaptation of the known RatRace test-and-set algorithm of Alistarh et al.
[2010] to solve the renaming task. We present the structure of the algorithm; the proof
of correctness follows from the original analysis [Alistarh et al. 2010]. We present an
abridged version of the proof, for completeness.

A.1. The Randomized Splitter

The randomized splitter object is a weak synchronization primitive which allows a
process to acquire it if running alone, which splits the participants probabilistically if
more than one process accesses the object. More precisely, a randomized splitter has
the following properties.

—At most one process returns stop.
—If a single correct process calls split, then the process returns stop.
—If a correct process does not return stop, then the probability that it returns left

equals the probability that it returns right, which equals 1/2.

The randomized splitter was introduced in Attiya et al. [2006], where it was shown
that it can be implemented wait-free using registers. This construction is a variant of
the deterministic splitter introduced by Lamport [1987] for mutual exclusion, and was
first used for deterministic renaming by Moir and Anderson [1995]. Figures 15 and 16
give intuitive descriptions for the structure of deterministic and randomized splitters,
respectively.

A.2. The RatRace Adaptive Renaming Algorithm

Description. The algorithm is based on a binary tree structure, of unbounded height.
Each node v in this tree contains a randomized splitter object RSv. Each randomized
splitter RSv has two pointers, referring to randomized splitter objects corresponding to
the left and right children of node v. Thus, if node v has children � (left) and r (right),
the left pointer of RSv will refer to RS�, while the right pointer refers to RSr. Any

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:48 D. Alistarh et al.

process pi returning left from the randomized splitter RSv will call the split procedure
of RS�, while processes returning right will call the split procedure of RSr.

Processes start at the root node of the primary tree, and proceed left or right (with
probability 1/2) through the tree until first returning stop at the randomized splitter
RSv associated to some node v. We say that a process acquires a randomized splitter s
if it returns stop at the randomized splitter s. Once it acquires a randomized splitter,
the process stops going down the tree. We will show that every process reaches depth
at most O(log k) in the tree before acquiring a name, with high probability, and that
every process returns, with probability 1.

Decision. Each process that acquires a randomized splitter in the primary tree re-
turns the label of the corresponding node in a breadth-first search labelling of the
primary tree.

Properties. The RatRace renaming algorithm ensures the following properties. The
proof follows in a straightforward manner from the analysis for the test-and-set version
of RatRace [Alistarh et al. 2010]. We provide a short proof here for completeness.

Name uniqueness follows since no two processes may stop at the same randomized
splitter, as shown in Attiya et al. [2006]. We now provide a probabilistic upper bound
on namespace size.

PROPOSITION 1 (RatRace RENAMING). For c ≥ 3 constant, the RatRace renaming algo-
rithm described previously yields an adaptive renaming algorithm ensuring a names-
pace of size O(kc) in O(log k) steps, both with high probability in k. Every process even-
tually returns with probability 1.

PROOF. Pick a process p, and assume that the process reaches depth d in the binary
tree without acquiring a randomized splitter. By the properties of the randomized
splitter, and by the structure of the algorithm, this implies that there exists (at least)
one other process q which follows exactly the same path through the tree as process
p. Necessarily, q must have made the same random choices as process p, at every
randomized splitter on the path.

Let k be the number of participants in the execution, and pick d = c log k, where
c ≥ 3 is a constant. The probability that an arbitrary process makes exactly the same
c log k random choices as p is (1/2)c log k = (1/k)c. By the union bound, the probability
that there exists another process q which makes the same choices as p is at most
(k−1)(1/k)c ≤ (1/k)c−1. Applying the union bound again, we obtain that the probability
that there exists a process p which takes more than c log k steps is at most (1/k)c−2.
This also implies that every process returns a name between 1 and kc with probability
1 − (1/k)c. The termination bound follows by the same argument, by taking d → ∞.

REFERENCES

Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1993. Atomic snapshots
of shared memory. J. ACM 40, 4, 873–890.

Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. 1999. Long-lived renaming made
adaptive. In Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 91–103. DOI: http://dx.doi.org/10.1145/301308.301335

Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B. Vitányi. 1992. Wait-free test-and-set. In Proceedings
of the 6th International Workshop on Distributed Algorithms (WDAG) (Extended Abstract). Springer-
Verlag, 85–94.

Yehuda Afek and Michael Merritt. 1999. Fast, wait-free (2k-1)-renaming. In Proceedings of the 18th Annual
ACM Symposium on Principles of Distributed Computing (PODC). ACM, 105–112. DOI: http://dx.doi.
org/10.1145/301308.301338

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:49

Miklos Ajtai, Janos Komlós, and Endre Szemerédi. 1983. An O(n log n) sorting network. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing (STOC). ACM, 1–9. DOI: http://dx.
doi.org/10.1145/800061.808726

Dan Alistarh and James Aspnes. 2011. Sub-logarithmic test-and-set against a weak adversary. In Proceedings
of the 25th International Conference on Distributed Computing (DISC). Springer-Verlag, 97–109.

Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Morteza Zadimoghaddam. 2011a.
Optimal-time adaptive strong renaming, with applications to counting. In Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing (PODC). ACM, 239–248.

Dan Alistarh, James Aspnes, Seth Gilbert, and Rachid Guerraoui. 2011b. The complexity of renaming. In
Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 718–727.

Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. 2010. Fast randomized test-
and-set and renaming. In Proceedings of the 24th International Conference on Distributed Computing
(DISC). Springer-Verlag, 94–108. http://portal.acm.org/citation.cfm?id=1888781.1888794

Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers. 2012. Early-deciding renaming in
O(log f) rounds or less. In Proceedings of the 19th International Colloquium on Structural Information
and Communication Complexity (SIROCCO’12). Springer-Verlag.

James H. Anderson and Mark Moir. 1997. Using local-spin k-exclusion algorithms to improve wait-free object
implementations. Distrib. Comput. 11, 1, 1–20. DOI: http://dx.doi.org/10.1007/s004460050039

James Aspnes, Hagit Attiya, and Keren Censor. 2012a. Polylogarithmic concurrent data structures from
monotone circuits. J. ACM 59, 1, 2:1–2:24.

James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. 2012b. Faster than optimal snapshots
(for a while): Preliminary version. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC’12). ACM, New York, 375–384. DOI: http://dx.doi.org/10.1145/2332432.2332507

James Aspnes, Maurice Herlihy, and Nir Shavit. 1994. Counting networks. J. ACM 41, 5, 1020–1048.
Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Ruediger Reischuk. 1990. Renaming in an

asynchronous environment. J. ACM 37, 3, 524–548.
Hagit Attiya and Vita Bortnikov. 2002. Adaptive and efficient mutual exclusion. Distrib. Comput. 15, 3,

177–189.
Hagit Attiya and Taly Djerassi-Shintel. 2001. Time bounds for decision problems in the presence of timing

uncertainty and failures. J. Parall. Distrib. Comput. 61, 8, 1096–1109.
Hagit Attiya and Arie Fouren. 2001. Adaptive and efficient algorithms for lattice agreement and renaming.

SIAM J. Comput. 31, 2, 642–664. DOI: http://dx.doi.org/10.1137/S0097539700366000
Hagit Attiya and Danny Hendler. 2010. Time and space lower bounds for implementations using k-CAS.

IEEE Trans. Parall. Distrib. Syst. 21, 2, 162 –173. DOI: http://dx.doi.org/10.1109/TPDS.2009.60
Hagit Attiya, Danny Hendler, and Philipp Woelfel. 2008. Tight RMR lower bounds for mutual exclusion and

other problems. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC).
ACM, 217–226. DOI: http://dx.doi.org/10.1145/1374376.1374410

Hagit Attiya, Maurice Herlihy, and Ophir Rachman. 1995. Atomic snapshots using lattice agreement. Distrib.
Comput. 8, 3, 121–132. DOI: http://dx.doi.org/10.1007/BF02242714

Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, Mirjam Wattenhofer, and Roger Wattenhofer. 2006. Efficient
adaptive collect using randomization. Distributed Computing 18, 3, 179–188. DOI: http://dx.doi.org/
10.1007/s00446-005-0143-6

Hagit Attiya and Jennifer Welch. 1998. Distributed Computing. Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill.

Amotz Bar-Noy and Danny Dolev. 1989. Shared-memory vs. message-passing in an asynchronous distributed
environment. In Proceedings of the 8th Annual ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 307–318. DOI: http://dx.doi.org/10.1145/72981.73003

Michael A. Bender and Seth Gilbert. 2011. Mutual Exclusion with O(log2 log n) Amortized work. In Proceed-
ings of the 52nd IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 728–737.

Elizabeth Borowsky and Eli Gafni. 1993. Immediate atomic snapshots and fast renaming. In Proceedings
of the 12th Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM, 41–51.
DOI: http://dx.doi.org/10.1145/164051.164056

Alex Brodsky, Faith Ellen, and Philipp Woelfel. 2006. Fully-adaptive algorithms for long-lived renaming. In
Proceedings of the 20th International Symposium on Distributed Computing (DISC). 413–427.

James E. Burns and Gary L. Peterson. 1989. The ambiguity of choosing. In PODC’89: Proceedings of
the 8th Annual ACM Symposium on Principles of Distributed Computing. ACM, New York, 145–157.
DOI: http://dx.doi.org/10.1145/72981.72991

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

18:50 D. Alistarh et al.

Armando Castañeda and Sergio Rajsbaum. 2010. New combinatorial topology bounds for renaming: the
lower bound. Distrib. Comput. 22, 5–6, 287–301.

Armando Castañeda and Sergio Rajsbaum. 2012. New combinatorial topology bounds for renaming: The
upper bound. J. ACM 59, 1, 3.

Soma Chaudhuri, Maurice Herlihy, and Mark R. Tuttle. 1999. Wait-free implementations in message-passing
systems. Theoret. Comput. Sci. 220, 1, 211–245.

Bogdan S. Chlebus and Dariusz R. Kowalski. 2008. Asynchronous exclusive selection. In PODC’08: Proceed-
ings of the 27th ACM Symposium on Principles of Distributed Computing. ACM, New York, 375–384.
DOI: http://dx.doi.org/10.1145/1400751.1400801

Stephen A. Cook, Cynthia Dwork, and Rüdiger Reischuk. 1986. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM J. Comput. 15, 1, 87–97.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algo-
rithms 3rd Ed. The MIT Press.

Edgser W. Dijkstra. 1965. Solution of a problem in concurrent programming control. Commun. ACM 8, 9,
569. DOI: http://dx.doi.org/10.1145/365559.365617

Wayne Eberly, Lisa Higham, and Jolanta Warpechowska-Gruca. 1998. Long-lived, fast, waitfree renaming
with optimal name space and high throughput. In Proceedings of DISC. 149–160.

Alan David Fekete. 1990. Asymptotically optimal algorithms for approximate agreement. Distrib. Comput.
4, 9–29.

Faith Ellen Fich, Danny Hendler, and Nir Shavit. 2005. Linear lower bounds on real-world implementations
of concurrent objects. In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE, 165–173.

Eli Gafni. 2009. The extended BG-simulation and the characterization of t-resiliency. In Proceedings of the
41st ACM Symposium on Theory of Computing. ACM, 85–92.

Wojciech Golab, Lisa Higham, and Philipp Woelfel. 2011. Linearizable implementations do not suffice for ran-
domized distributed computation. In Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC). ACM, 373–382. DOI: http://dx.doi.org/10.1145/1993636.1993687

Wojciech M. Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. 2007. Constant-RMR implemen-
tations of CAS and other synchronization primitives using read and write operations. In Proceedings of
the 26th Annual ACM Symposium on Principles of Distributed Computing (PODC). 3–12.

Jae-heon Yang and James H. Anderson. 1995. A fast, scalable mutual exclusion algorithm. Distrib. Comput.
9, 51–60.

Maurice Herlihy. 1991. Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13, 1, 123–149.
Maurice Herlihy and Nir Shavit. 1999. The topological structure of asynchronous computability. J. ACM 46,

6, 858–923.
Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Prog. Lang. Syst. 12, 3, 463–492.
Prasad Jayanti. 1998. A time complexity lower bound for randomized implementations of some shared

objects. In Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing
(PODC). ACM, 201–210. DOI: http://dx.doi.org/10.1145/277697.277735

Prasad Jayanti, King Tan, and Sam Toueg. 2000. Time and space lower bounds for nonblocking implemen-
tations. SIAM J. Comput. 30, 2, 438–456.

Yong-Jik Kim and James H. Anderson. 2012. A time complexity lower bound for adaptive mutual exclusion.
Distrib. Comput. 24, 6, 271–297.

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: Sorting and Searching 2nd Ed.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA.

Shay Kutten, Rafail Ostrovsky, and Boaz Patt-Shamir. 2000. The Las-Vegas processor identity problem (how
and when to be unique). J. Algor. 37, 2, 468–494.

Leslie Lamport. 1987. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5, 1, 1–11. DOI: http://
dx.doi.org/10.1145/7351.7352

Richard J. Lipton and Arvin Park. 1990. The processor identity problem. Inf. Process. Lett. 36, 2, 91–94. DOI:
http://dx.doi.org/10.1016/0020-0190(90)90103-5

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan-Kaufmann.
Mark Moir and James H. Anderson. 1995. Wait-free algorithms for fast, long-lived renaming. Sci. Comput.

Program. 25, 1, 1–39. DOI: http://dx.doi.org/10.1016/0167-6423(95)00009-H
Mark Moir and Juan A. Garay. 1996. Fast, long-lived renaming improved and simplified. In Proceedings of

the 10th International Workshop on Distributed Algorithms (WDAG). Springer-Verlag, 287–303.

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

Tight Bounds for Asynchronous Renaming 18:51

Michael Okun. 2010. Strong order-preserving renaming in the synchronous message passing model. Theoret.
Comput. Sci. 411, 40–42, 3787–3794.

Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, and Paul M. B. Vitányi. 1998. Randomized
naming using wait-free shared variables. Distrib. Comput. 11, 3, 113–124.

Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement in the presence of faults.
J. ACM 27, 2, 228–234.

John Tromp and Paul Vitányi. 2002. Randomized two-process wait-free test-and-set. Distrib. Comput. 15, 3,
127–135. DOI: http://dx.doi.org/10.1007/s004460200071

Received September 2012; revised September 2013 and December 2013; accepted January 2014

Journal of the ACM, Vol. 61, No. 3, Article 18, Publication date: May 2014.

