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Abstract

Targeted alteration of the genome lies at the heart of the exploitation of S. pombe as a model system. The rate of analysis is
often determined by the efficiency with which a target locus can be manipulated. For most loci this is not a problem,
however for some loci, such as fin1+, rates of gene targeting below 5% can limit the scope and scale of manipulations that
are feasible within a reasonable time frame. We now describe a simple modification of transformation procedure for
directing integration of genomic sequences that leads to a 5-fold increase in the transformation efficiency when antibiotic
based dominant selection markers are used. We also show that removal of the pku70+ and pku80+ genes, which encode
DNA end binding proteins required for the non-homologous end joining DNA repair pathway, increases the efficiency of
gene targeting at fin1+ to around 75–80% (a 16-fold increase). We describe how a natMX6/rpl42+ cassette can be used for
positive and negative selection for integration at a targeted locus. To facilitate the evaluation of the impact of a series of
mutations on the function of a gene of interest we have generated three vector series that rely upon different selectable
markers to direct the expression of tagged/untagged molecules from distinct genomic integration sites. pINTL and pINTK
vectors use ura4+ selection to direct disruptive integration of leu1+ and lys1+ respectively, while pINTH vectors exploit
nourseothricin resistance to detect the targeted disruption of a hygromycin B resistance conferring hphMX6 cassette that
has been integrated on chromosome III. Finally, we have generated a series of multi-copy expression vectors that use
resistance to nourseothricin or kanamycin/G418 to select for propagation in prototrophic hosts. Collectively these protocol
modifications and vectors extend the versatility of this key model system.
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Introduction

The genetic malleability of the fission yeast S. pombe has helped it

to maintain a prominent position alongside the more extensively

exploited budding yeast Saccharomyces cerevisiae, as a powerful model

system for the characterisation of the basic facets of eukaryotic cell

and molecular biology. This malleability is based upon an

extensive repertoire of classical and molecular genetic techniques

[1,2,3]. As in budding yeast these techniques were initially based

upon the exploitation of key auxotrophic markers.

Classical genetic analysis the adenine biosynthesis pathway in S.

pombe highlighted the utility of the colony-colour change resulting

from the accumulation of P-ribosylaminoimidazole in ade6

mutants that is then oxidised to a red pigment [4]. The ability

to use this red pigmentation as a reporter for Ade6 function made

this locus a major focus for studies of core genetic principles. These

studies led to the development of a number of useful genetic tools

including ade6.M210/ade6.M216 hetero-allelic complementation

for the selection and maintenance of diploid strains [5] and the use

of the sup3.5 opal suppressor tRNAser mutation as a marker for

selection in an ade6.704 mutant background [6,7,8]. Cross species

complementation of S. pombe leu1 mutations with the S. cereviaisae

LEU2+ gene was initially used to apply existing budding yeast

technology to fission yeast [9], but remains a widely used selectable
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marker to this day because the lack of homology to sequences in

the S. pombe genome means that it does not direct integration into a

specific genomic site. However, when used as a marker to select for

site specific integration, multiple integration events can occur [10],

suggesting either that the heterologous expression of the LEU2+

gene is barely sufficient for growth at low copy number or that the

budding yeast enzyme is less attuned to fission yeast physiology

than the native 3-isopropyl malate dehydrogenase enzyme, Leu1.

Transposition of the lessons learnt from the exploitation of the

budding yeast ornithine decarboxylase URA3+ gene for positive

and negative selection [11] led to the deletion of the ura4+ gene

from S. pombe to generate the ura4.d18 allele that is so widely used

in the field today [12] with many ura4+ based vectors

[13,14,15,16]. Continued developments are considerably expand-

ing the array of available auxotrophy-complementing markers to

include: ade7, his1, his2, his3, his5, arg3, arg12, lys1, lys2 and tyr1

[17,18,19,20,21,22,23,24]. However, his3+, LEU2+and ura4+

remain the most widely-used markers for selection of multi-copy

vectors in common use. Integration vectors that target a particular

heterologous locus have been less extensively developed, however

the pDUAL series and pJK148 vectors are used widely as they

exploit recombination to convert the leucine auxotrophy of leu1.32

to leucine prototrophy to select integration at the leu1 locus

[25,26,27]. The pJK210 uses a similar rescue of ura4.294 to target

integration at the ura4 locus [25].

While these auxotrophic selection markers offer powerful tools,

they also create the need to introduce an increasingly complex

array of background markers into a strain of interest. Not only is

this time consuming but many combinations of deficiencies in

amino acid provision compromise a host strain’s fitness on certain

media, which may complicate the interpretation of the phenotype

arising from the mutation of interest. Furthermore, the sensitivity

of the broadly acting TOR signalling network to addition of

leucine to the medium [28] indicates that provision of amino acids

demanded by the use of auxotrophic markers and perhaps the

auxotrophic markers themselves are not merely passive players in

cellular homeostasis, but can influence the control networks that

impinge upon diverse processes from metabolism, through cell

cycle control, sexual differentiation, and the actin cytoskeleton.

Thus, controlling the genetic context within which the conse-

quences of particular mutations are studied in prototrophs not

only accelerates the rate of analysis, but avoids both anticipated

and unforeseen complications arising from interplay between

pathways.

Following the highly successful exploitation of antibiotic

resistance genes as dominant selectable markers for PCR based

tagging and deletion approaches in the budding yeast S. cerevisiae

[29,30,31,32,33,34], the technology has been adapted for use in a

variety of fungi including S. pombe. Genes conferring resistance to

kanamycin/G418, hygromycin B, phleomycin/bleomycin and

nourseothricin/ClonNat are highly effective dominant markers

in fission yeast [35,36,37,38]. They have been extensively

exploited in an increasing array of ‘‘PCR tagging vectors’’ in

which oligo-nucleotides, that fuse vector sequences to short

stretches of homology to the target locus, are used to amplify

cassettes that will place ‘‘tags’’ and markers of choice in particular

genomic contexts following targeted recombination into the host

genome [29,30,38,39,40,41,42,43,44,45]. While this approach is

very powerful, it still faces the challenge that the number of

manipulations is limited by the range of markers available.

However, this problem can be circumvented by flanking the

marker with loxP sites so that it can be excised from the genome

following integration by the induction of Cre recombinase [46].

Host strains can then be sequentially modified with the same

selectable marker, irrespective of previous manipulations.

Although attempts to define the extent of the problem have

proved challenging [25,47,48], many anecdotal accounts suggest

that the efficiency of targeting different loci by PCR tagging is

variable; some loci can be targeted with very high efficiency while

others only poorly, or not at all. It has been suggested that

illegitimate recombination poses a major issue in these cases. In

such circumstances the problem may be resolved by extending the

region of homology with the genome can enhance the efficiency of

targeting. In many other fungi deletion of the genes encoding the

DNA end recognition proteins that are required for non-

homologous end joining (NHEJ), Ku70 and Ku80 [49] greatly

increases targeting efficiencies [50,51,52,53,54,55,56].

We now show that the removal of either the Ku70 or Ku80

homologues from S. pombe (Pku70 and Pku80 respectively)

increases targeting efficiency at the fin1+ locus from 5% to 80%

(16-fold increase). A modification to transformation procedures

enhances transformation frequencies by a further 5–8 fold when

selecting for antibiotic resistance markers. We show that a PCR

cassette that combines the cycloheximide sensitivity of rpl42+ in an

rpl42.sP56Q background [57] with the nourseothricin resistance

conferred by natMX6 [58] offers a robust and cheaper alternative

to positive and negative selection cycles with ura4+ and 5 fluoro-

orotic acid (FOA) [12]. We describe two complementary

integration vector series that exploit disruption of an auxotrophic

marker with a second auxotrophic marker to direct the regulated

expression of tagged or untagged molecules from a reproducible

genome context. A further set of integration vectors exploits

antibiotic resistance markers to direct the integration of both

tagged and untagged expression cassettes into a site on chromo-

some III. We have also switched the markers in our multi-copy

pREP41 based tagging/expression series [16] to generate vectors

that exploit natMX6 or kanMX6 as a selectable marker.

Materials and Methods

Strain Growth, Selection and Maintenance
E. coli strain DH5a was used to propagate plasmids in standard

LB medium. The S. pombe leu1.32 his2 h+(IH147) and 972h-

(IH5974) strains were grown by standard procedures [2]. The

following stock solutions of 100 mg ml21 Geneticin (MP

Biomedicals, 158782), Hygromycin B (Calbiochem, 400050),

Nourseothricin/ClonNat (Werner BioAgents, 96736-11-7), Phleo-

mycin (Sigma, P9564), and Cyclohexamide (Sigma, C1988) were

added to generate final concentrations of 100 mg/ml in the growth

medium where appropriate.

Transformation of S. pombe
Cells were grown to mid-log phase in YES (46106 cells/ml).

After harvesting cells were washed with H2O, 0.1 M Lithium

Acetate (pH 4.9) and re-suspended in 0.1 M Lithium Acetate (pH

4.9) at 109 cells ml21. After 1 h incubation at 25uC 1–5 mg DNA

and 290 ml of 50% PEG4000 (freshly made in sterile 0.1 M

Lithium Acetate, pH 4.9 for each transformation) was added to

100 ml cell-suspension. After 1h incubation at 25uC and 15 min

heat shock at 43uC, cells were harvested, washed with H2O and

re-suspended in MSL-N or spread to YES.

Molecular Genetics
Generating pINTL vectors. A 686 bp fragment of pUC19,

including the MCS and NdeI site, were removed by Phusion

mediated deletion (New England Biolabs) using oligo nucleotides

BH1 and BH2, creating a NotI site. A 2.32 kb fragment extending

S. pombe Molecular Toolbox
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from 2456 to +752 of the S. pombe leu1+ gene was amplified as a

NotI fragment using oligo-nucleotides BH3 and BH4 and cloned

into the modified pUC19 vector to create pINT1. An 1.78 kb

fragment extending from –516 to +1186 of the S. pombe ura4+ gene

was amplified from pURA4 [12] using oligonucleotides BH5 and

BH6 to flank the ura4+ sequences with 59 PstI site and 39 SacI sites.

Oligos BH7 and BH8 were used to amplify pINT1, which was

then used as recipient for the amplified ura4+ fragment within the

leu1+ open reading frame by Gibson-mediated integration (New

England Biolabs) to generate pINTLA that can act as recipient for

any PstI/SacI fragment containing promoter-insert-terminator

(Figure S1). The remaining plasmids in the pINTL series were

generated by cloning the appropriate PstI–SacI fragment from a

relevant pREP tagging vector [16]. pINTL41PkN was generated

by insertion of the PstI/SacI fragment of pREP41PkN into

pINTLA followed by the SacI/SacI fragment from pREP41PkN.

Full sequences of the pINTL vectors are presented in Figure S1.

Generating pINTK vectors. The lys1 59 region was ampli-

fied (VS642/VS644) to introduce HindIII NotI sites at one end and

PstI site at the other end. The lys1 39region was amplified (VS645/

VS646) to introduce a KpnI site at one end and EcoRI NotI sites at

the other end. Both fragments were cloned HindIII - PstI and KpnI

– EcoRI, respectively into pGEM3. The loxP–ura4 cassette was

generated by PCR amplification of the ura4+ gene (VS647/VS648)

to introduce KpnI site and a LoxP site on one end and SmaI SacI

sites with the LoxP site on the other end. This fragment was then

cloned as a KpnI – SmaI fragment into the lys1+ containing vector

to generate pINTK, pINTK81, pINTK41 and pINTK1 by

Figure 1. Manipulating native loci with an rpl42+/natMX6 cassette. A) Approaches used for targeted mutagenesis. B) The structure of the
pFA6arpl42natMX6 plasmid. C) The phenotype switches arising from the progression through the indicated genotypes.
doi:10.1371/journal.pone.0097683.g001

S. pombe Molecular Toolbox

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97683



cloning the nmt promoters from pREP81, pREP41 and pREP1

respectively as PstI – BamHI fragments into pINTK. GFP, CFP

and YFP tags were amplified to introduce a BamHI site at the

59end and NheI SmaI SacI sites at the 39end. The tags were then

cloned BamHI – SacI into the pINTK81/41/1. The 6His tag was

cloned as a BamHI – NheI fragment generated after annealing of

complementary oligonucleotides (VS1482/VS1483) into the

pINTK1GFP to generate pINTK1-6His. The sequence of the

pINTK vector is presented in Figure S2.

Generating pINTH vectors. The first step in the generation

of the pINTH vector was Quickchange (Stragene) silent muta-

genesis to remove the PstI and NdeI sites from hphMX6

(CTGCAG.CTGCAA and CATATG.CATTTG, respectively)

and a XmaI/SmaI site from natMX6 (CCCGGG.CCCAGG). The

following fragments were amplified using the indicated primers to

introduce restriction sites at their termini before being cloned into

the vector ZeroBluntTOPO (Invitrogen): one 0.85 kb half of

hphMX6 flanked with PstI and NotI HindIII (primers DF1 and DF2);

the remaining 0.85 kb fragment flanked by EcoRI and EcoRI NotI

(primers DF3 and DF4); natMX6 flanked with SacI and EcoRI

(primers DF5 and DF6). The SacI – EcoRI natMX6 fragment was

inserted into pUC19 followed by the EcoRI and Pst1-HindIII

hphMX6 fragments to generate pINT*. pINT* was digested PfoI

and KpnI, end filled with Klenow polymerase (New England

Biolabs) to remove a 189 bp fragment and re-ligated to remove the

NdeI site of pUC19 to generate pINT**. PstI SacI sequences

containing the nmt promoter - cloning site/tag - nmt teminator

cassettes from pREP1, pREP41 and pREP81 based plasmids were

then inserted between PstI SacI sites in pINT** to generate the

vector series. Because the multi-cloning site of pREP41PkN and

pREP81PkN contains a SacI site, the pINTH41PkN and

pINTH81PkN were generated by sequential insertion of the

appropriate SacI and PstI-SacI fragments from pREP41PkN and

pREP81PkN respectively. pINT* was digested with NdeI, end filled

with Klenow polymerase (New England Biolabs) and re-ligated to

Table 1. Transformation efficiencies.

108 cells transformed with 1 mg DNA for the indicated transformation

ura4+ into
leu1+

kanMX6 into
pku80+

natMX6 into
pku80+

hphMX6 into
pku80+

bleMX6 into
pku80+

Spread directly to selective media 950 0 0 0 0

Spread to YES, replica plate to selective media after 20 h 1000 150 140 120 100

Incubate in MSL for 2 h, spread to selective media 900 0 0 0 0

Incubate in MSL for 4 h, spread to selective media 950 3 2 0 1

Incubate in MSL for 8 h, spread to selective media 1000 4 5 3 3

Incubate in MSL for 16 h, spread to selective media 1100 650 700 600 650

Incubate in MSL for 20 h, spread to selective media 1100 850 800 750 800

The table shows the number of transformants obtained when 1 mg of the indicated DNA fragments was transformed into identical numbers of competent cells of the
indicated strains. Each transformation mix was split into seven equal aliquots that were treated as indicated in the column on the left.
doi:10.1371/journal.pone.0097683.t001

Table 2. Strains used in this study.

Lab Strain number Genotype YGRC strain number Source

IH5974 972 h2 Lab stock

IH1308 ura4.D18 h2 Lab stock

IH8794 rpl42.sP56Q leu1.32 ura4.D18 h+ Roguev et al. 2007

IH5221 pku70::his3 leu1.32 his3.d1 ade6.M216 ura4.d18 h2 FY23684 Lab stock

IH6067 pku70::kanMX6 leu1.32 ura4.D18 his2 h+ FY23686 Manolis et al. 2001

IH12994 pku70::natMX6 ura4.D18 FY23687 This study

IH12959 pku70::hphMX6+ leu1.32 ura4.D18 his2 h+ FY23685 This study

IH6114 pku80::ura4+ leu1.32 ura4.D18 his2 h+ FY23691 Manolis et al. 2001

IH13006 pku80::kanMX6 FY23689 This study

IH12958 pku80::natMX6+ leu1.32 ura4.D18 FY23690 This study

IH12960 pku80::hphMX6 ura4.D18 his2 h+ FY23688 This study

IH5869 hph171k h2 FY23692 This study

IH6365 leu1::nmt41fin1.KD-pkn:ura4+ ura4.D18 This study

IH6366 leu1::nmt81fin1.KD-pkn:ura4+ ura4.D18 This study

IH6364 hph171k::nmt41fin1.KD-pkn:natMX6 ura4.D18 This study

IH6409 hph171k::nmt81fin1.KD-pkn:natMX6 ura4.D18 This study

doi:10.1371/journal.pone.0097683.t002
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Figure 2. Inclusion of pku70.D and pku80.D in host strain radically enhances targeting at the fin1+ locus. A) Cartoons depicting the
structure of the DNA fragments used to direct the integration of a natMX6 cassette 39 to the Fin1 coding sequences at the fin1+ locus and the
integration of sequences encoding three GFP molecules, a stop codon and the kanRMX6 marker at the end of the fin1+ locus. B) PCR amplification
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generate pINTHA. Full sequences of the pINTH vectors are

presented in Figure S3.

Generating pREPN and pREPK vectors. To generate the

pREPN vectors, the SmaI sites of the natMX6 gene in natMX6

cassette were destroyed (the NdeI site in pFA6anatMX6 is outside

of the cassette). The natMX6 gene was amplified with the

oligonucleotides AG1and AG2 that had 20 nucleotides homology

to the ends of the natMX6 cassette and 80 bp homology with the

sequences adjacent to the LEU2+ integration site of pREP1. 5 mg

of the natMX6 fragment was transformed alongside 1 mg of the

appropriate LEU2+ based pREP vector that had been linearised by

digestion with KpnI that cut inside the LEU2+ marker gene of the

relevant vector in host IH147. Plasmids were isolated from two

antibiotic resistant leucine auxotrophic colonies with the DNA

isolation kit (Flowgen), before 5 ml was transformed into DH5a.

Restriction mapping and sequencing of DNA from two transfor-

mants identified the desired vector. The pREPK series were made

in the same way as pREPN, but the co-transformation used a

KanMX6 fragment amplified from pFA6a-kanMX6 [40].

Biochemistry. Generation of cell extracts and western

blotting of these extracts was as described previously [59].

Results

A natMX6/rpl42 Cassette for Positive and Negative
Selection

To study the significance of phosphorylation events in the

timing and execution of cell division we mutate candidate sites at

endogenous loci [60,61,62]. We first integrate a marker at the gene

of interest (goi+) before transforming this new host strain with a

fragment whose homology to the genome extends beyond either

side of the integration site. As this fragment harbours a goi

mutation, positively selecting for marker loss and screening by

DNA sequencing identifies the candidate with the desired

mutation (Figure 1A). Although the ability to apply both positive

and negative selection for ura4+ make it an ideal marker for this

purpose [12], the cost of FOA can become limiting in a

programme that targets multiple mutants to multiple loci.

Similarly, the need to express human equilibrative nucleoside

transporter, hENT1, to use thymidine analogues for positive

selection [63] limits the appeal of this alternative approach. To

generate a rapid and cheap alternative to these two options we

have combined the strong positive selection of natMX6 [58] with

the rpl42 recessive cycloheximide resistance marker system

developed by Krogan and colleagues [57] in a natMX6/rpl42+

double cassette in pFA6arpl42natMX6 (Figure 1B). Resistance to

nourseothricin selects for integration of this cassette in an

rpl42.sP56Q host strain. Subsequent replacement of the cassette

by an overlapping sequence is selected for by placing transfor-

mants onto plates containing cycloheximide (Figure 1C).

Overnight MSL-N Incubation Enhances Transformation
Efficiency

Our ability to manipulate native loci has been confounded by

varying efficiencies of targeted integration. For some loci, such as

fin1+, targeted integration was uncommon, with around a 5%

chance that a transformant was the desired integration event,

prompting us to seek strategies that may improve transformation

and targeting efficiencies.

When using antibiotic selection for integrative transformation,

transformants are incubated in non-selective conditions for 18

hours before applying selection to enable them to accumulate

sufficient enzyme from the newly generated expression cassette to

survive the otherwise lethal impact of the antibiotic [40].

Traditionally this ‘‘recovery phase’’ has been applied by spreading

cells on non-selective plates before replica plating the ensuing lawn

of cells onto antibiotic containing plates 18 hours later [40]. While

highly effective, it is inevitable that the transfer efficiency during

reactions with the oligonucleotides indicated by arrows in panel A to monitor the structure of the genomic regions at the fin1+ locus. For the ‘‘fin1
ORF’’ transformation amplification gives an 850 bp fragment (red cross next to each panel), whereas with successful integration generates an
2050 bp fragment (red tick next to each panel). For the ‘‘fin1.3GFP’’ transformation amplification with the same primers used to screen ‘‘ fin1 ORF’’
transformants generated an 850 bp fragment in the recipient host (red cross next to each panel) and an 4650 bp fragment in the correct
transformant (red tick next to each panel). C) A table showing the frequency of correct integration events in the indicated strains with the indicated
concentrations of each DNA fragment as determined by PCR analysis of 48 candidate transformants in each case.
doi:10.1371/journal.pone.0097683.g002

Figure 3. A cartoon indicating the approach used by all three integration vector systems.
doi:10.1371/journal.pone.0097683.g003
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replica plating is less than 100%. Furthermore, if the targeting

event compromises fitness, vigorous growth of the non-trans-

formed host clones may out compete the less fit transformant

clones. We therefore sought recovery conditions in which cell

division would be blocked and yet the antibiotic metabolising

enzymes could accumulate in all transformants before exposure of

the entire mix of transformants and untransformed neighbours to

selection pressure.

Cells are unable to divide in the absence of a nitrogen source

[64]. We therefore asked whether we could simply substitute the

overnight incubation on solid medium with incubation in a liquid

minimal medium that lacked a nitrogen source. The MSL medium

that was developed by Richard Egel [65], is ideal for this goal

Figure 4. The pINTL series of vectors for the expression of a gene of interest from the leu1 locus. Cartoons depicting the structure of the
indicated pINTL vectors.
doi:10.1371/journal.pone.0097683.g004
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Figure 5. The pINTK series of vectors for the expression of a gene of interest from the lys1 locus. Cartoons depicting the structure of the
indicated pINTK vectors.
doi:10.1371/journal.pone.0097683.g005
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because it efficiently invokes a nitrogen starvation response. Amino

acid supplements were omitted from this medium in our tests to

limit provision of nitrogen from in vivo amino acid catabolism.

We used the integration of a marker at the pku80+ and leu1+ loci

to assess the impact of MSL-N recovery phase of differing

durations upon the transformation efficiency. Cells were grown to

mid log phase (46106 cells ml21) in rich YES medium before

standard procedures were used to make the cells competent to

receive DNA. The DNA fragments that were added to these

competent cells were generated by PCR amplification of pFA6a

antibiotic resistance deletion vector series templates with the same

oligonucleotides being used with each template [40,58]. For each

marker tested the transformed cell mix was split into 6. One

portion was immediately spread onto non-selective YES plates at

Figure 6. The pINTH series of vectors for the expression of a gene of interest from the hph.171k locus on chromosome III. Cartoons
depicting the structure of the indicated pINTH vectors.
doi:10.1371/journal.pone.0097683.g006
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25uC, while the others were re-suspended in 1 ml of MSL-N and

incubated with agitation at 25uC. The MSL-N transformation

mixes were spread onto selective plates 2, 4, 8, 16 and 24 hours

later. Cell counts confirmed that no cell division occurred during

the 24 hours of incubation in MSL-N medium (data not shown).

The lawn of cells on the YES plates that had received the

Figure 7. Integration at either the hph.171k or leu1 loci gave identical levels of protein expression. A) Cartoons showing the structure of
the two nmt41 integrated cassettes from which catalytically inactive Fin1.KD fusion proteins (three ‘‘Pk’’ SV5 epitopes fused, in frame, to their amino
termini) are expressed upon removal of thiamine. B) Cells were grown to early log phase in EMM2+15 mM thiamine at 25uC before being washed
three times in thiamine free EMM2 medium and re-suspended in EMM2 at a density of 1.86105. Protein extracts were prepared from the mid-log
phase cultures and processed for Western Blots after a further 15 hours culture at 25uC. Blots were cut in two; high molecular weight regions were
probed with Fin1 antibodies while the loading control, While Cdc2 was detected on the lower molecular weight portion of the same blot. C) The
same samples as shown in B probed with Cdc2 and mAb336 antibodies that recognised the Pk tags on the Fin1.KD3Pk fusion protein. D) A plot of the
intensity ratios between the Fin1 and Cdc2 bands in each lane of the blots in B setting the ratio seen in wild type cells as 1 and that detected in fin1.D
control as 0.
doi:10.1371/journal.pone.0097683.g007
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transformation mix immediately were replica plated 20 hours after

the initial spreading of the transformation mix. There were no

major differences in the number of transformants between any of

the protocols when uracil prototrophy was used as the selectable

marker to detect ura4+ integration (Table 1). In contrast, when

antibiotic resistance formed the basis for the selection for the

Figure 8. The pREPN series of vectors for the expression of a gene of interest from an ectopic plasmid. Cartoons depicting the structure
of the indicated pREPN vectors.
doi:10.1371/journal.pone.0097683.g008
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integration event between 5 to 8 fold more transformants were

obtained in the samples that received a 24 hour MSL-N recovery

period than when the aliquot had been replica plated aliquot

(Table 1). PCR analysis revealed a similar rate of integrative

transformation in either the replica plated or liquid recovery

samples (data not shown).

Figure 9. The pREPK series of vectors for the expression of a gene of interest from an ectopic plasmid. Cartoons depicting the structure
of the indicated pREPK vectors.
doi:10.1371/journal.pone.0097683.g009
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Enhanced Efficiency of Integrative Targeting in pku70.D
or pku80.D Backgrounds

Our attempts to target integration at a range of loci concur with

the anecdotal experiences of the S. pombe community that the

efficiency of targeting different loci varies widely. In many fungi

removal of the Ku70 and Ku80 end recognition proteins blocks

non-homologous end joining DNA repair pathway [49] to greatly

enhances the frequency of gene targeting [50,51,52,53,54,55,56].

We therefore asked whether deletion of either molecule might

enhance the 5% efficiency of integration at the S. pombe fin1+ locus.

Two types of DNA fragment were used for transformation: a

large fragment excised from a plasmid in which the natMX6

marker was flanked by extensive regions of homology (1.2 kb 59

and 0.8 kb 39) to the fin1+ locus (Figure 2A, upper ‘‘fin1+ ORF’’)

and a short fragment with 80 bp regions of homology either side of

the stop codon that generated a fin1+.3GFP fusion sequence by

standard PCR amplification [40] from the pSM1023 template

[66,67] (Figure 2A, lower ‘‘fin1+.3GFP’’). For the ‘‘fin1+ ORF’’

DNA fragment, a single sample of donor DNA was split into four.

One quarter was transformed into a pku70::kanMX6 strain, another

into an otherwise isogenic pku70+ strain and the remaining two

aliquots into pku80::ura4+ and isogenic pku80+ hosts. As the

selectable marker for the ‘‘fin1+.3GFP’’ fragment was the same

geneticin/G418 resistance marker that had been used to delete

pku70+ with kanMX6, this fin1+.3GFP fragment was only trans-

formed into pku80::ura4+ and isogenic hosts. Diagnostic PCR

analysis of transformants from each comparison revealed that the

efficiency of gene targeting was elevated to between 75 and 80%

(at least 16 fold increase) by the removal of either Pku70 or Pku80

(Figure 2B, C). Such a marked improvement in transformation

efficiency upon removal of these end recognition factors prompted

us to generate strains in which pku70+ and pku80+ have been

replaced with the kanMX6, hphMX6 and natMX6 cassettes. These

strains have been deposited in the Yeast Genome Resource Centre

Japan (http://yeast.lab.nig.ac.jp/nig/index_en.html, for YGRC

strain numbers see Table 2).

Integration Vectors
Although the expression of molecules from multi-copy vectors

can be highly informative, the highly variable stoichiometry of

protein levels between neighbouring cells can make it difficult to

derive concrete conclusions from a particular manipulation. In

contrast, direct comparisons can be made between the conse-

quences of expressing different mutant alleles when integrated in

the same vector context into the same genomic location. We have

therefore developed three different vector series that each direct

integration of an expression cassette into distinct, defined locations

in the fission yeast genome. The same principle is employed in

each case; the correct integration event is identified through the

simultaneous gain of one marker and the disruption, and therefore

loss, of another (Figure 3). For two systems the markers are classic

amino acid auxotrophies, while the third exploits dominant

antibiotic markers. Each system exploits the nmt1 based thiamine

repressible promoter series: nmt1, nmt1* and nmt1** derived from

the plasmids pREP1, pREP41 and pREP81 respectively

[14,15,68]. The ‘‘A’’ plasmid in each series has no insert but

can receive the entire promoter – gene – terminator expression

cassette from existing pREP plasmids as a Pst1-Sac1 fragment. It is

also the easiest recipient vector for integration of any sequence of

choice.

Auxotrophic pINTL and pINTK Integration Vectors
In the INTL vectors the leu1+ gene has been disrupted by a

cloning module (expression or expression + tag) and ura4+

(Figure 4). The entire cassette is flanked by Not1 restriction sites.

Once the desired sequences have been inserted, the Not1 fragment

is excised and transformed into an ura4.d18 host. In correct

transformants the disruption of leu1+ by the vector sequences flips

auxotrophy from leu+ ura2 to leu2 ura+. INTK vectors direct

the disruption of lys1+ with a similar ura4+ expression/tagging

module to switch auxotrophy from lys+ ura2 to lys2 ura+
(Figure 5). The use of ura4+ as a positive selection in both the

INTL and INTK systems excluding subsequent use of ura4+ based

multi-copy vectors in either case. Consequently the ura4+

sequences within the INTK cassette have been flanked with loxP

sites to facilitate marker excision upon expression of Cre

recombinase (Figure 5).

Nourseothricin Resistance Based pINTH Integration
Vectors

Modification of the amino acid requirements and amino acid

content of the medium can significantly change flux through the

TOR signalling pathway to impact upon diverse aspects of cell

physiology [28]. We therefore generated an integrative vector

system that can be used in prototrophs because it relies upon

switching resistance to antibiotics rather than amino acid

requirements. To achieve this goal we needed to select a site at

which to integrate the recipient antibiotic marker that would later

act as a target site for vector integration. As the smallest

chromosome, chromosome III, harbours the smallest proportion

of the genome of the three chromosomes, inserting a marker on

this chromosome would lend itself to easier manipulation in

subsequent crosses to introduce an expression cassette into a

particular background. We therefore scanned chromosome III

using the dataset of Wihelm et al. to find regions with low or no

transcriptional activity [69]. Because no transcription was detected

around position 171385 we integrated the Hygromycin B

resistance cassette, hphMX6, at this site to generate an integration

target locus that we refer to as the ‘‘hph.171k’’ locus (available from

Yeast Genome Resource Centre Japan (http://yeast.lab.nig.ac.jp/

nig/index_en.html). YGRC strain number listed in Table 2). The

growth rate and fitness of hph.171k cells was indistinguishable from

wild type at all temperatures tested (20uC, 25uC, 30uC, 32uC,

36uC) in both rich YES and minimal EMM2 medium. We then

generated the pINTH series of vectors shown in Figure 6B that

can be used to target any integration to any hphMX6 sequence in

the genome (Figure 6B). In our case we use it to target hph.171k.

To assess the level of expression obtained following integration

of the pINTH expression cassettes at hph.171k we cloned a fin1

allele that encodes a catalytically inactive kinase, fin1.KD [62], into

the pINTH41PkN vector. The Not1 restriction enzyme digested

fragment was transformed into a hph.171k host (Figure 7A). 135 of

the 141 transformants obtained were hygromycin resistance

negative and nourseothricin resistance positive (i.e. a targeting

efficiency of 96% in this hph.171k pku70+ pku80+ host). After

backcrossing, protein samples were prepared from mid-log phase

cultures 15 hours after expression from the nmt41 promoter was

de-repressed by the removal of thiamine and processed for western

blotting. To compare the expression level of the pINTH vectors

with that obtained with the pINTL series vectors, the same fin1.KD

insert had been cloned into the pINTL41PkN vector before

integration into the genome, backcrossing and the production of

protein extracts from mid-log phase cultures 15 hours after

thiamine removal. The levels of Fin1.KD protein attained

following induction of expression from either the leu1 targeted
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pINTL41PkN or the hph.171k targeted pINTH41PkN construct

(Figure 7B, C) were indistinguishable from one another (3 fold

higher than that of the native Fin1 kinase (Figure 7B)). As

expected, the expression levels from the nmt81 based cassette was

lower than from the nmt41 cassettes. We note that the 2 fold

differential in protein levels between the two strength promoters

(Figure 7D) is less than the 10 fold difference reported for the

production of RNA levels from the nmt81 and nmt41 promoters on

multi-copy vectors [70], however, Fin1 is subject to proteolytic

control [62] making it impossible to draw solid conclusions about

transcription rates when integrated into the leu1+ locus.

pREPN and pREPK Vectors
Multi-copy plasmids that can be selected for in prototrophs to

drive the expression of tagged molecules remain popular. To

generate a series of vectors we used in vivo gap repair in fission

yeast [24,71] to switch the markers in pREP81 and pREP41/42

based vector backbones [68]. We have previously reported the

construction of these donor vectors [16]. Of the four antibiotic

resistance markers in use in S. pombe, only nourseothricin/ClonNat

and Kanamycin/G418 resistance can be used in the minimal

medium in which the nmt1 based promoters of the pREP series

vectors can be de-repressed, making these the only markers that

would be of utility for a pREP based series of vectors. The LEU2+

marker of pREP81 and pREP41 derived plasmids was removed by

restriction digestion and the linear vector sequences were co-

transformed with a DNA fragment in which the natMX6 or the

kanMX6 cassette had been amplified with primers that had 80 bp

of homology with either end of the opened vector sequences.

Plasmids were re-isolated from two nat + or kan + transformants

and the new vector sequenced. As reported previously for this

approach [24,71], recombination had faithfully created the desired

vectors in each case (Figure 8, 9). The transformation efficiency

and stability of the pREP1N plasmid was indistinguishable from

that of pREP1 (data not shown).

Discussion

We describe a number of the tools that we have developed to

assist our efforts that exploit the molecular genetics of S. pombe to

understand the signal transduction pathways that control cell

division. The tools and methods presented in this paper make a

significant contribution to resolving the problem of locus-

dependent gene targetting efficiency. Manipulation of all loci has

now become routine with the enhancements of transformation

efficiency after switching the recovery incubation to an overnight

incubation in un-supplemented MSL and the removal of the

NHEJ response by deleting either pku70+ or pku80+ (the choice of

which deletion to use depends upon the genomic location of the

gene of interest to be targeted). We have generated pkuX0::-

kanMX6, pkuX0::hygMX6, pkuX0::natMX6 strains for greatest

flexibility in designing a particular knockout strategy (available

from the Yeast Genome Resource Centre Japan (http://yeast.lab.

nig.ac.jp/nig/index_en.html)). We note that ura4+ and LEU2+

deleted alleles have been generated in other studies [72,73].

While removal of the NHEJ pathway radically enhances the

frequency of gene targeting in our work on cell cycle control, our

experience with genes in the TOR signalling pathway has been

different as targeting can be less efficient in pku70.D and pku80.D
strains than in wild type strains (data not shown). Why this should

be is unclear, however we suggest that pku70+ and pku80+ deletions

be used as host strains for manipulations of genes in processes

other than TOR signalling, but reverting to targeting in a wild

type prototrophic strain should targeting efficiencies prove to be

poor.

We found that the efficiency of integration was radically

enhanced by altering the nature of the recovery period that is used

to enable the expression of antibiotic resistance markers before

they are challenged with selective conditions. Switching a from

recovery phase on solid medium to a liquid recovery phase in

nitrogen free medium increased transformation efficiencies 5–8

fold with antibiotic resistance cassettes. Although the greatest

enhancement of transformation efficiencies arose at the 24 hour

time point, an overnight incubation is normally sufficient and

avoids delays in strain construction. While the MSL-N recovery

period was a great benefit when the integrated expression cassette

directed the expression of antibiotic resistance markers to

counteract the otherwise lethal impact of antibiotics, it had only

a modest impact when the selection relied upon ura4+ comple-

mentation of ura4.d18 in media lacking uracil. We assume that this

is due to the inherent differences in the nature of the selection

pressure in the two cases. Expression of antibiotic resistance

molecules is required to prevent an apparently immediate death

from a lethal assault by the antibiotic, whereas the ornithine

decarboxylase is required to permit the generation of uracil. Cells

will simply remain in a stationary phase until ornithine decarbox-

ylase levels reach the critical threshold to allow them to resume

growth and division.

The generation of three series of integration vectors that allow

the expression of wild type, mutant, tagged or un-tagged native

molecules from three different loci greatly facilitates the analysis of

the impact of mutations on individual molecules or compound

interactions of mutant molecules in a protein complex. The

pINTXX.A vectors can accept the entire promoter–gene–termi-

nator cassette as a Pst1-Sac1 restriction fragment from any existing

pREP based vector [74]. Furthermore, the cloning approaches can

be adapted to express full length non-coding RNAs from these sites

of integration [75]. While we describe the full vector series here,

we have used some members of each series in a number of studies

that validate the application of these vectors in molecular cell

biology in fission yeast [62,74,76,77,78,79,80,81,82,83,84].

Supporting Information

Figure S1 DNA sequences of the pINTL series.
(DOCX)

Figure S2 DNA sequence of pINTK.
(DOCX)

Figure S3 DNA sequences of the pINTH series.
(DOCX)
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