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Low-temperature x-ray magnetic circular dichroism measurements on the endohedral

single-molecule magnet DySc2N@C80 at the Dy M4,5 edges reveal a shrinking of the opening of the

observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure

of the molecules to x-rays resonant with the Dy M5 edge accelerates the relaxation of magnetization

more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise

due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that

the resonant absorption of one x-ray photon induces the demagnetization of many molecules. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891485]

Single-molecule magnets (SMMs)1–5 have attracted a

lot of interest in view of possible applications in molecular

spintronics,6,7 and quantum information processing

schemes.8 SMMs are formed by one or more magnetic ions

surrounded by ligands which induce magnetic anisotropy.

The anisotropy in turn leads to a blocking of the magnetiza-

tion. If the resulting magnetization relaxation times are long

enough they are manifested by the opening of a magnetic

hysteresis. There is growing interest in x-ray magnetic circu-

lar dichroism (XMCD) to study SMMs because of its ability

to detect element-resolved magnetic moments combined

with submonolayer sensitivity.9–14

XMCD has been used to observe magnetic hysteresis,

i.e., nonequilibrium magnetization in SMMs.11–13 Here, we

demonstrate that in endohedral SMMs the x-ray exposure

itself can lead to an acceleration of magnetization relaxation.

The x-ray induced demagnetization can be understood by the

creation of small volumes of excited, or hot, molecules by

the secondary electrons emitted from the Auger decay of the

x-ray induced core hole. In this study, we use the single ion

member of the lanthanide based endohedral SMM family15

DySc2N@C80.16 It is the simplest member with very weak

intermolecular coupling. It exhibits magnetization relaxation

times of several hours at T¼ 2 K in a small applied magnetic

field and no measurable chemical degradation, e.g., due to

bond breaking by x-rays or because of x-ray induced desorp-

tion of the magnetic species.17 Our results explain why often

superconducting interference device (SQUID) and XMCD

measurements qualitatively give the same result, but they

differ when a precise quantitative comparison is done, e.g.,

the observation of smaller hysteresis openings in XMCD.

The findings are thus of relevance for all experiments inves-

tigating SMMs by XMCD, showing that obtained values for

relaxation times might be too small.

Samples were prepared by drop casting DySc2N@C80

dissolved in toluene onto aluminum plates until a black resi-

due was clearly visible by eye. X-ray absorption spectros-

copy (XAS) was performed at the X-Treme beamline18 at

the Swiss Light Source, Paul Scherrer Institute with a cold

finger temperature of 2 K and at magnetic fields of up to 7 T.

All measurements were done using a defocused x-ray spot of

�1� 1 mm2. The x-ray flux was measured with a

10� 10 mm2 Si photodiode (AXUV100 from Intl. Radiation

Detectors Inc.) located after the last optical element of the

beam line. The x-ray spot size was determined by moving

horizontally and vertically sharp blades through the beam.

Detailed information about the employed metal nitride clus-

ter endofullerenes can be found elsewhere.19,20

The XAS and XMCD of DySc2N@C80 obtained in total

electron yield (TEY) mode at the Dy M4,5 edges are plotted in

Fig. 1. The M5 edge exhibits the characteristic triple peak struc-

ture determined by the selection rules DJ¼ 0, 61 for electric

dipole transitions, and in the XMCD the strongest features of

both M4 and M5 edges are pointing upwards indicating a signif-

icant orbital angular momentum in line with the 6H15=2 ground

state multiplet predicted by Hund’s rules. From sum rules spin

and orbital angular momentum values, hSzi ¼ 1:2ð1Þ and

hLzi ¼ 1:9ð2Þ are obtained assuming nh¼ 5 holes in the 4f
shell. These values are lower by a factor of �2 compared to

the free DyIII ion because of strong magnetic anisotropy and

the random orientation of the molecules in the sample. The ra-

tio between both angular momentum values can be derived

without assumptions on the number of f holes. It evaluates to

hLzi=hSzi ¼ 1:6ð3Þ and is lower than expected from Hund’s

rules consistent with what was found previously.16
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Hysteresis curves obtained by XMCD on DySc2N@C80

for varying x-ray fluxes are shown in Fig. 2. Clearly, increas-

ing the flux leads to a smaller opening of the hystereses. We

have verified that irreversible radiation damage, i.e., chemi-

cal degradation, is absent by first increasing and then lower-

ing the flux which revealed the shrinking and re-expansion

of the hysteresis. To investigate further the magnitude and

origin of the x-ray induced closing of the hysteresis, time-

dependent relaxation measurements towards the correspond-

ing equilibrium magnetization were performed. The field

was ramped up to l0H¼ 6.5 T and then lowered to 0.2 T at a

speed of 2 T/min. After reaching 0.2 T, the XMCD was

measured using an alternating on-off resonance scheme, i.e.,

the x-rays were always illuminating the sample but their

energy was changed within intervals of Dttot¼ 20 s, with the

on resonance ratio j¼Dton/Dttot being the parameter that

allows the extraction of the influence of resonant absorption.

The same sequence with a given j was repeated twice for

both circular polarizations of the x-rays. Further, several

measurements were carried out with varying j. Two repre-

sentative XMCD decay curves with j1¼ 9.1% and j2¼ 91%

are shown in Fig. 3 revealing a larger relaxation rate at reso-

nance. Solid lines represent single-exponential fits demon-

strating that the magnetization relaxation proceeds with a

characteristic time s.

The observed relaxation rates Cexp¼ s�1 extracted from

exponential fits to the time-dependent measurements on

DySc2N@C80 for varying ratios j and two different x-ray

fluxes U are plotted in Fig. 4(a). Obviously, increasing the

fraction of time when x-rays are on resonance with the Dy

M5 edge leads to an increase of the relaxation rate.

Furthermore, the relaxation rate increases with x-ray flux.

Extrapolated values for j¼ 0% and 100% are plotted in Fig.

4(b) showing that both rates are increasing with the x-ray

flux. The increase is more pronounced for the resonant case

and the data in Fig. 4(b) indicate an intrinsic relaxation rate

of 0.5 min�1 at zero flux consistently found for both resonant

and nonresonant cases. Indeed, the resonant and nonresonant

rates should coincide at the zero-flux point since in this con-

dition the x-ray energy is irrelevant. The translation of this

relaxation rate to a temperature using the Arrhenius law

sArrh ¼ s0 exp½Deff=ðkBTÞ� with the parameters of Ref. 16

results in an effective temperature in the absence of x-rays of

approximately 5 K. The quantum tunneling of magnetization

was neglected because it is only relevant at smaller rates and

lower temperatures.

In the following, we will show that the magnitude of the

demagnetization effect cannot be reconciled with a homoge-

neous warming of the sample or its topmost layers by the x-

rays. At a given flux, the heat input per unit area is constant

since the soft x-rays used here are fully absorbed in the sam-

ple independent of their exact energy. In consequence, this

rules out any explanation of the observed demagnetization

effect by a homogeneous and depth-independent warming of

the sample. When assuming a depth-dependent temperature

distribution along the surface normal T¼ f(z), originating

from, e.g., a weak thermal coupling of the sample top layer,

heat deposited by the x-rays distributes differently in the

sample for on and off resonance according to the absorption

FIG. 1. Example (a) XAS and (b) XMCD spectra obtained on a drop cast

sample of DySc2N@C80 at the Dy M4,5 edges with a cold finger temperature

of 2 K and at l0 H¼�6.0 T. The structure of the molecule is shown as an

inset with the Dy atom of the endohedral unit pointing towards the reader.

FIG. 2. Flux-dependent hysteresis curves obtained on DySc2N@C80 by

XMCD with a cold finger temperature of 2 K. Field scan rate: 2 T/min.

FIG. 3. Time-dependent XMCD curves obtained on DySc2N@C80 for dif-

ferent ratios of on-resonance vs. total x-ray exposure times j¼Dton/Dttot.

The timing scheme is shown in the inset. Eon¼ 1285.4 eV and

Eoff¼ 1250.0 eV. At t¼ 0, the magnetic field reached its final value of

l0H0¼ 0.2 T. The cold finger temperature was set to 2 K and the x-ray flux

was U¼ 1.9� 1011 ph mm�2 s�1.
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strength. If the heating due to the x-rays is proportional to

the corresponding total electron yield Y, which is taken as

the average between left and right hand circularly polarized

light, we obtain with the M5 peak-to-background ratio Y
(j2): Y (j1)¼ 1.13, i.e., a 13% higher heating rate on reso-

nance as compared to off resonance. Indeed, this compares

to the same value of a 13% higher effective temperature of

6.9 K (j2) vs. 6.1 K (j1) obtained from the translation of the

relaxation rates to temperatures described beforehand using

the Arrhenius law. This suggests that the effective tempera-

ture is proportional to the TEY, yielding an upper bound for

a homogeneous temperature rise of the sample top layer due

to the x-rays of 2 K. This bound is still compatible with the

T¼ f(z) type temperature distribution. In contrast, when the

magnetization as measured with XMCD is used as a local

thermometer, a significantly smaller upper bound is

obtained: The equilibrium XMCD, i.e., the XMCD in the

limit of t!1 is proportional to the equilibrium magnetiza-

tion in the applied field of 0.2 T. The equilibrium magnetiza-

tion must decrease if the temperature increases. From this,

we can state with the equilibrium data in Fig. 3 that T1(j1)

is within a confidence interval of 80% not more than 2%

lower than T1(j2). This finding is absolutely inconsistent

with the temperature difference between 6.9 K (j2) and 6.1 K

(j1) mentioned before, corroborating that these temperatures

are only effective temperatures.

Given these considerations the constraint of a solely

depth-dependent temperature profile T¼ f(z) needs to be

relaxed. Because the observed changes of the magnetization

relaxation rate are not related to a laterally homogeneous,

depth dependent temperature increase, it is justified to

employ effective demagnetization cross sections for the x-

ray induced processes. We proceed by evaluating the on and

off resonant cross sections, and by proposing a model with

local heating T¼ f(x, y, z, t) due to the energy dissipation of

the photo excitation.

The total magnetization relaxation rate is given by the

sum of the rates of the individual relaxation processes

Cexp¼Cx (x, U)þCi (T, H), where the first term refers to

the x-ray induced processes with Eph ¼ �hx the energy of the

x-ray photons and U the x-ray flux. The second term gives

the temperature and magnetic-field dependent intrinsic relax-

ation rate that the molecules exhibit in the absence of the

x-ray illumination. The data furthermore allow for the

extraction of the demagnetization cross sections for off- and

on-resonant photons. Accordingly, the cross-sections r for

the on- and off-resonant cases can be extracted using

Cxðx;UÞ ¼ rðxÞ � U; (1)

hence the cross sections of the resonant and non-resonant

processes rr and rnr, respectively, can be determined from

the data. We obtain rr¼ 1.1 6 0.1 Gb/molecule with 1

b¼ 10�24 cm�2 and rnr¼ 0.69 6 0.1 Gb/molecule. Because

of the presence of an energy-independent background the

cross section r3d!4f due to the resonant Dy 3d ! 4f excita-

tions is likely to be even larger. These cross sections are

extremely large compared to those for the excitation of an

electron into the continuum which are less than a few

Mb/atom for all elements contained in the investigated sam-

ples, as estimated from tabulated values. The so-called white

line cross section which corresponds to local atomic-like exci-

tations of DyIII from the 3d104f9 ground state to the 3d94f10

final states21 is, of course, largest (rWL¼ 25 Mb/atom at the

M5 edge for Dy metal22) but still orders of magnitude smaller

than the observed cross sections. Resonant excitation appears

to be more efficient for demagnetization than non-resonant

excitation. One reason for this is the different x-ray attenua-

tion length, on and off resonance, respectively. In the follow-

ing, we give a possible explanation for r3d!4f on the basis of

local excitations due to the deposited photon energy of

approximately 1.3 keV. The ratio between r3d!4f and rWL

indicates that one resonant excitation at the Dy M5 edge

relaxes more than 50 molecules. The photon energy is dissi-

pated to the sample via the Auger electron (�99% probabil-

ity) emitted upon the decay of the Dy core hole created by the

absorption of a single x-ray photon. Fluorescence decay

(�1% probability) is negligible here. This Auger electron is

scattered inelastically and converts its energy locally into

heat. The resulting heat bump, initially localized in a small

volume determined by the scattering length of the Auger elec-

tron and the resulting secondary electrons, is proposed to be

responsible for the magnetization relaxation of the molecules.

The energy is dissipated along the trajectories of the second-

ary electrons, likely in packets of plasmonic excitations.23,24

Mechanisms such as reversible structural changes leading to a

faster quantum tunneling, i.e., relaxation of magnetization

cannot be resolved, because the efficiency for such a process

would be the demagnetization of one molecule per photon, in

contrast to the observed efficiency of �50 molecules per

photon.

In order to demonstrate the plausibility of magnetization

relaxation by heat bumps, we assume a temperature increase

from 0 to 20 K which would be realized for 4� 105 C60 mol-

ecules given the absorption of a 1.3 keV photon.25 At 20 K,

the extrapolated magnetization decay time of DySc2@C80 is

3 s,16 i.e., 100 out of the 4� 105 molecules reverse their

magnetic moment in 2 ms. It cannot be excluded that faster

mechanisms exist which allow for a transfer of the photo-

FIG. 4. (a) Experimentally determined relaxation rates Cexp of

DySc2N@C80 for two different fluxes as a function of j¼Dton/Dttot and (b)

flux dependence of Cexp for j¼ 0% and j¼ 100%. The extrapolation to

zero flux allows to determine an effective temperature by comparing with

SQUID data.16
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excitation to the magnetic moment of the endohedral unit

before the relatively slow thermalization via phonons. The

exact determination of the energy transfer cascade from

Auger or secondary electrons to the magnetized molecules is

beyond the scope of this work. Of course, the estimations

presented beforehand are coarse, yet they support the idea

that local thermal bumps due to the dissipation of the x-ray

photon energy typically demagnetize 50 molecules, and that

this energy is dissipated to the heat bath of the sample before

a second photon hits the site, i.e., faster than in 25 s. As long

as the heat conductivity, the x-ray absorption cross sections

and fluxes are similar to the present system, x-ray induced

heat bumps will not lead to a large increase in temperature at

macroscopic length scales. Therefore, low temperature stud-

ies with x-rays are reasonable, if the flux is low, or if the x-

ray pulse is shorter than, e.g., the characteristic spin flip

times.

The reason why the x-ray induced heat bumps are more

effective in the demagnetization of the SMMs, as compared

to the case in which x-rays would heat homogeneously the

whole sample or its top layers, can be found in the superlin-

ear, in case of Arrhenius-type excitations exponential,

increase of the SMM magnetization relaxation rate with tem-

perature: In the case of a spatially homogenous weak temper-

ature increase less molecules are relaxed than for the

inhomogeneous scenario in which locally a rather large tem-

perature increase occurs. Our results complement recent

findings of demagnetization effects triggered by visible

light.26 In this reference, it was suggested that XMCD meas-

urements could preclude the efficient detection of SMMs

since the high-energy photon irradiation greatly disturbs the

spin state or magnetization of the illuminated molecules.

Here, we find that SMM hystereses can look slightly differ-

ent under x-ray exposure as compared to methods in the dark

(e.g., SQUID) for the case of DySc2N@C80. Furthermore,

we quantify the cross section for the demagnetization proc-

esses which is orders of magnitude larger than that for the

demagnetization of a single molecule by one resonant x-ray

photon. These cross sections are obtained for densely packed

DySc2N@C80 samples, and it is expected to decrease if the

magnetic center density is decreased.

In conclusion, it is clearly possible to detect hystereses

with XMCD, even at the largest x-ray fluxes. Nevertheless,

time and flux dependent XMCD measurements show that x-

rays can lead to an increased magnetization relaxation rate of

SMMs. This is seen in systematic time-dependent experi-

ments where the x-rays are probing the SMMs only for a

given fraction of time on the M5 resonance but otherwise

they are detuned in energy. The results suggest that the x-ray

induced demagnetization of SMMs depends on the x-ray

dose. Our simple model based on local heating predicts that

our results apply to all hysteresis and relaxation studies of

SMMs using XMCD, which is the technique of choice for

dilute or ultrathin magnetic systems such as SMMs deposited

on surfaces, or when element specificity is needed.
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