
Parallel and Distributed Optimization of
Dynamic Data Structures for Multimedia
Embedded Systems

José L. Risco-Martı́n, David Atienza, J. Ignacio Hidalgo, and Juan Lanchares

Abstract. Energy-efficient design of multimedia embedded systems demands op-
timizations in both hardware and software. Software optimization has no received
much attention, although modern multimedia applications exhibit high resource uti-
lization. In order to efficiently run this kind of applications in embedded systems,
the dynamic memory subsystem needs to be optimized. A key role in this opti-
mization is played by the Dynamic Data Types (DDTs) that reside in every real-
life application. It would be desirable to organize this set of DDTs to achieve the
best performance in the target embedded system. This problem is NP-complete, and
cannot be fully explored. In these cases the use of parallel processing can be very
useful because it allows not only to explore more solutions spending the same time,
but also to implement new algorithms. In this work, we propose a method that uses
parallel processing and evolutionary computation to explore DDTs in the design of
embedded applications. We propose a parallel Multi-Objective Evolutionary Algo-
rithm (MOEA) which combines NSGA-II and SPEA2. We use Discrete Event Sys-
tems Specification (DEVS) to implement this parallel evolutionary algorithm over
Service Oriented Architecture (SOA). Parallelism improves the solutions found by
the corresponding sequential algorithms, and it allows system designers to reach
better solutions than previous approximations.

José L. Risco-Martı́n · J. Ignacio Hidalgo · Juan Lanchares
Dept. of Computer Architecture and Automation (DACYA), Complutense University of
Madrid (UCM), C/Prof. José Garcı́a Santesmases, s/n., 28040 Madrid, Spain
e-mail: {jlrisco,hidalgo,julandan}@dacya.ucm.es

David Atienza
Dept. of Computer Architecture and Automation (DACYA), Complutense University of
Madrid (UCM), C/Prof. José Garcı́a Santesmases, s/n., 28040 Madrid, Spain
e-mail: datienza@dacya.ucm.es
and
Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

F. Fernández de Vega, E. Cantú-Paz (Eds.): Paral. and Distrib. Comp. Intel., SCI 269, pp. 263–290.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148006348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{jlrisco,hidalgo,julandan}@dacya.ucm.es
datienza@dacya.ucm.es

264 J.L. Risco-Martı́n et al.

1 Introduction

Latest multimedia embedded systems typically require reliable and powerful com-
puting, superior graphical performance, multiple I/O configurations and long prod-
uct life support. Currently, these systems are able to run applications initially de-
signed for high performance desktop computers [6], which having large run-time
memory management requirements, need to be mapped onto an extremely compact
device. However, embedded systems struggle to execute these complex applications
because they hold very different constraints regarding memory usage features. Thus,
designers must pay attention in the porting process to the lack of memory of the tar-
get embedded system as well as the fact that such systems extensively employ the
dynamic memory subsystem.

A desktop application is typically implemented using data structures or Dynamic
Data Types (DDTs) [2] (dynamic arrays, linked lists, etc) to store their data. The
DDT for each container is usually selected to achieve the best performance with-
out bearing in mind other requirements such as power consumption, memory ac-
cesses and memory usage, an important factor in embedded systems. Thus, to map
a desktop application, designers must reach the best set of DDTs that minimizes the
system behavior according to some constraint of the target device, such as mem-
ory accesses, memory usage and energy consumption [3]. This is an NP-complete
problem and cannot be fully explored.

This task has been typically performed in the past using a pseudo-exhaustive
evaluation of the design space of DDTs, including multiple executions of the ap-
plication, to attain a Pareto Front (PF) of solutions [8], which tries to cover all the
optimal implementation points for the required design metrics. The construction of
this PF has been proven a very time-consuming process, sometimes even unafford-
able [10]. To solve this problem we propose to use parallel processing based on
Multi Objective Evolutionary Algorithms. This combination is very useful because
we can explore more solutions in less time. Besides, the use of parallel processing
allows us to design new algorithms that improve the number and the quality of solu-
tions. However, before explaining deeply our proposal we begin by reviewing some
related work.

Several works have been made in the field of embedded memory subsystem op-
timization, both in static and dynamic memory. In the case of static memory, Benini
et al. [4] and Panda et al. [24] presented in the last decade two thorough surveys
on static data and memory optimization techniques for embedded systems. More
recently, in [6], [10] and [7], authors achieve to reduce the memory subsystems re-
quirements by 50% using a linear time algorithm by exploring a coordinated data
and computation reordering for array-based data structures in multimedia applica-
tions. Nevertheless, they are not suitable for exploration of complex DDTs em-
ployed in modern multimedia applications.

In the field of dynamic embedded software, there are some approaches that pro-
pose power-aware transformation and use pruning strategies based on heuristics to
find the best solution [33] [24] [23]. These proposals have some weakness. On the
one hand, they need to study and develop efficient pruning cost-function and a fully

Parallel and Distributed Optimization of Dynamic Data Structures 265

manual optimization, which is not very efficient. On the other hand, these works do
not bear in mind that the final behavior of the system presents inter-dependencies in
the set of DDT implementations.

Regarding exploration methods, Multi-Objective Evolutionary Algorithms
(MOEAs) started to be used to solve different CAD optimization problems (as pro-
posed Michalewicz in [20]). In our case, the use of MOEAs to explore DDTs has
become a good alternative. In [6] and [33] several transformations are established
for DDTs and static data profiling and static memory access patterns to physical
memories, and they are used to obtain information in order to find the best solution.
In this context, MOEA-based optimization has been applied to solve linear-and non-
linear problems by exploring the entire state space in parallel. Thus, it is possible
to perform optimization in non convex regular functions, and to select the order of
algorithmic transformations in concrete types of source codes [24]. However, such
techniques are not applicable to DDT implementations due to it is not possible to
know the DDT behavior (the number of elements stored in the DDT, number of read
accesses, number of write accesses, etc.), at compile-time.

In the field of dynamic memory optimizations in embedded systems, Atienza
et al. [3] have performed an initial analysis of one single type of MOEA showing
the potential benefits of MOEAs for this kind of problems. Nevertheless, their work
does not provide a complete analysis of tradeoffs between different technologies
of sequential and parallel MOEAs. We tackle this problem in the present research
work.

In order to be able to use parallel evolutionary algorithms for multi-objective
problems, different paradigms of the parallel processing and their corresponding pa-
rameters have to be analyzed. In [31], Veldhuizen studies some important questions
in the formulation of parallel Multi-Objective Evolutionary Algorithms (pMOEA)
such as migration, replacement and niching schemes. Besides, he gives a classifica-
tion of pMOEA based on the island paradigm: (1) islands execute the same MOEA
[34]; (2) islands execute different MOEA [14]; (3) each island evaluates a different
subset of objective functions [32]; and (4) each island considers a different region
of the search domain [30].

In this work, we propose a new method that uses parallel processing and evolu-
tionary algorithm to explore the design space of DDT implementation. To this end,
we use Discrete Event Systems Specifications (DEVS) [35] over Service Oriented
Architecture (SOA) [21], which offers DEVS-based simulations as a web service
based on standard technologies, called DEVS/SOA. We explore several classical
Multi-Objective Evolutionary Algorithms (MOEA) [11] and propose an algorithm
which combines NSGA-II and SPEA2 within a DEVS/SOA framework. It allows
designers to reach a larger number of solutions than classical approaches. Our par-
allel design may be included in the second group mentioned before (islands exe-
cuting different MOEAs). Since our migration policy is synchronous, we have com-
bined two elitist evolutionary algorithms with different complexity, namely Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [36] and Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [12], implementing three variations of a pMOEA. SPEA2 is

266 J.L. Risco-Martı́n et al.

O(N3) and NSGA-II is O(mN2), where N is the population size and m is the number
of objectives.

Our experiments in a real-life dynamic embedded application show that: (1)
NSGA-II and SPEA2 reach important speed-ups (up to 469× faster) with respect to
other traditional heuristics; (2) the parallel algorithm can achieve significant speed-
ups with respect to the sequential versions in a multi-core architecture. Moreover,
we compare the sequential and parallel approaches by means of multiple metrics,
showing that the quality of the solutions is improved by the combination of NSGA-
II and SPEA2 in a parallel implementation; and (3) such combination is executed
on 16 workstations of two cores each, where several population sizes were deployed
as per our experiments. The experiments returned very promising results. In partic-
ular, we got empirical evidence that on increasing the size of the population, the
performance of the pMOEA improves as we increase the number of workstations
used.

The rest of the paper is organized as follows. Definitions of MOEAs and un-
derlying technologies such as DEVS and DEVS/SOA are given in Section 2. In
Section 3 the Dynamic Data Types optimization problem is explained. In Section 4,
we present our multi-objective optimization process. A description of the MOEAs,
including an explanation of our parallel proposal, which combines NSGA-II and
SPEA2 algorithms, is also detailed. Section 5 details our experimental setup as well
as shows some performance and quality metrics used in our experiments in Section
6. Finally, in Section 7 we summarize the main conclusions and future work.

2 Background

2.1 Multi-objective Evolutionary Algorithms

Multi-objective optimization aims at simultaneously optimizing several objectives
sometimes contradictory (memory accesses, memory usage and energy consump-
tion for our problem). For such kind of problems, there does not exist a single
optimal solution, and some trade-offs need to be considered. Without any loss of
generality, we can assume the following m-objective minimization problem:

Minimize z = (f1(x), f2(x), . . . fm(x))
sub ject to x ∈ X (1)

where z is the objective vector with m objectives to be minimized, x is the decision
vector, and X is the feasible region in the decision space. A solution x ∈ X is said to
dominate another solution y ∈ X (denoted as x ≺ y) if the following two conditions
are satisfied.

∀i ∈ {1,2, . . . ,m} , fi (x) ≤ fi (y)
∃i ∈ {1,2, . . . ,m} , fi (x) < fi (y) (2)

Parallel and Distributed Optimization of Dynamic Data Structures 267

If there is no solution which dominates x ∈ X , x is said to be a Pareto Optimal
Solution (POS). The set of all elements of the search space that are not dominated by
any other element is called the Pareto Optimal Front (POF) of the multi-objective
problem: it represents the best possible solution with respect to the contradictory
objectives.

In both algorithms, the sequential and parallel versions, we attempt to reach the
higher number of non-dominated solutions as possible.

Nowadays, many MOEAs have been developed. They can be classified into
two broad categories: non-elitist and elitist, also called first and second generation
MOEAs [8]. In the elitist approach, EAs store the best solutions of each generation
in an external set. This set will then be a part of the next generation. Thus, the best
individuals in each generation are always preserved, and this helps the algorithm to
get close to its POF. Algorithms such as PESA-II [9], MOMGA-II [38], NSGA-II
and SPEA2 are examples of this category. In contrast, the non-elitist approach does
not guarantee preserving the set of best individuals for the next generation [8]. Ex-
amples of this category include MOGA [15], HLGA [16], NPGA [18] and VEGA
[28].

When implementing a MOEA, the designer has to overcome two major problems
[37]. The first problem is how to get close to the POF [11]. The second problem is
how to keep diversity among the solutions in the obtained set. These two problems
become common criteria for most current algorithmic performance comparisons and
they will be used in the experimental results section.

Table 1. Common evolutionary algorithm framework

1. Initialize the Population P
2. (elitist EAs) Select elitist solutions from P to create external set EP
3. Create mating pool from one or both P and EP
4. Reproduction based on the pool to create the next generation P using evolutionary operators
5. (elitist EAs) Combine EP into P
6. Go to step 2 if the terminated condition is not satisfied

Although all the cited MOEAs are different from each other, we can find some
common steps in these algorithms, which are summarized in Table 1. As we have al-
ready mentioned, two representative elitist algorithms, namely, SPEA2 and NSGA-
II were selected.

2.2 DEVS and DEVSJAVA

DEVS formalism consists of models, the simulator and the experimental frame. We
will focus our attention to the specified two types of models i.e. atomic and coupled

268 J.L. Risco-Martı́n et al.

models. The atomic model is the irreducible model definition that specifies the be-
havior for any modeled entity. The coupled model is the aggregation/composition
of two or more atomic and coupled models connected by explicit couplings. The
formal definition of parallel DEVS (P-DEVS) is given in [35]. An atomic model is
defined by the following equation:

M = 〈X ,S,Y,δint ,δext ,δcon,λ 〉 (3)

where,

• X is the set of input values
• S is the state space
• Y is the set of output values
• δint : S → S is the internal transition function
• δext : Q×Xb → S is the external transition function

– Q = {(s,e) : s ∈ S,0 ≤ e ≤ ta(s)} is the total state set, where e is the time
elapsed since last transition

– Xb is a set of bags over elements in X

• δcon is the confluent transition function, subject to δcon (s,
) = δint(s)
• λ : S → Y is the output function
• ta(s) : S → ℜ+

0 ∪∞ is the time advance function.

The formal definition of a coupled model is described as:

N = 〈X ,Y,D,EIC,EOC, IC〉 (4)

where,

• X is the set of external input events
• Y is the set of output events
• D is a set of DEVS component models
• EIC is the external input coupling relation
• EOC is the external output coupling relation
• IC is the internal coupling relation.

The coupled model N can itself be a part of component in a larger coupled model
system giving rise to a hierarchical DEVS model construction.

Fig. 1 shows a coupled DEVS model. M1 and M2 are DEVS models. M1 has
two input ports: “in1” and “in2”, and one output port: “out”. The M2 has one input
port: “in1”, and two output ports: “out1” and “out2”. They are connected by input
and output ports internally (this is the set of internal couplings, IC). M1 is connected
by external input “in” of Coupled Model to “in1” port, which is an external input
coupling (EIC). Finally, M2 is connected to output port “out” of Coupled Model,
which is an external output coupling (EOC).

The DEVSJAVA [1] is a Java based DEVS simulation environment. It provides
the advantages of Object Oriented framework such as encapsulation, inheritance,

Parallel and Distributed Optimization of Dynamic Data Structures 269

Fig. 1. Coupled DEVS model

and polymorphism. DEVSJAVA manages the simulation time, coordinates event
schedules, and provides a library for simulation, a graphical user interface to view
the results, and other utilities. Detailed descriptions about DEVS Simulator, Exper-
imental Frame and of both atomic and coupled models can be found in [35].

2.3 DEVS/SOA

The Service oriented Architecture (SOA) is a framework consisting of various W3C
standards, in which various computational components are made available as “ser-
vices” interacting in an automated manner achieve machine-to-machine interoper-
able interaction over the network. Web-based simulation requires the convergence
of simulation methodology and WWW technology (mainly Web Service technol-
ogy). The fundamental concept of web services is to integrate software application
as services. Web services allow the applications to communicate with other appli-
cations using open standards. We are offering DEVS-based simulators as a web
service, which are based on these standard technologies: communication protocol
(Simple Object Access Protocol, SOAP), service description (Web Service Descrip-
tion Language, WSDL), and service discovery (Universal Description Discovery
and Integration, UDDI).

Fig. 2 shows the framework of our distributed simulation using SOA. The com-
plete setup requires one or more servers that are capable of running DEVS Simula-
tion Service. The capability to run the simulation service is provided by the server
side design of DEVS Simulation protocol supported by the latest DEVSJAVA Ver-
sion 3.1.

The Simulation Service framework is two layered framework. The top-layer is
the user coordination layer that oversees the lower layer. The lower layer is the true
simulation service layer that executes the DEVS simulation protocol as a Service.
The lower layer is transparent to the modeler and only the top-level is provided to
the user.

The top-level has three main services: upload DEVS model, compile DEVS
model, and simulate DEVS model. The second lower layer provides the DEVS

270 J.L. Risco-Martı́n et al.

Fig. 2. DEVS/SOA distributed architecture

Simulation protocol services: initialize simulator i, run transition in simulator i, run
lambda function in simulator i, inject message to simulator i, get time of next event
from simulator i, get time advance from simulator i, get console log from all the
simulators, and finalize simulation service.

The explicit transition functions, namely, the internal transition function, the ex-
ternal transition function, and the confluent transition function, are abstracted to a
single transition function that is made available as a Service. The transition function
that needs to be executed depends on the simulator implementation and is decided at
the runtime. For example, if the simulator implements the Parallel DEVS (P-DEVS)
formalism, it will choose among internal transition, external transition or confluent
transition.

The client is provided a list of servers hosting DEVS Service. He selects some
servers to distribute the simulation of his model. Then, the model is uploaded and
compiled in all the servers. The main server selected creates a coordinator that cre-
ates simulators in the server where the coordinator resides and/or over the other
servers selected. This whole framework is known as DEVS/SOA framework and
details are available at [22], [21].

Summarizing from a user’s perspective, the simulation process is done through
three steps (Fig. 3): (1) write a DEVS model (currently DEVSJAVA is only sup-
ported), (2) provide a list of DEVS servers (through UDDI, for example). Since we
are testing the application, these services have not been published using UDDI by
now. Select N number of servers from the list available, and (3), run the simulation
(upload, compile and simulate) and wait for the results.

Parallel and Distributed Optimization of Dynamic Data Structures 271

Fig. 3. Execution of DEVS SOA-Based M&S

3 The Dynamic Data Types Exploration Problem

DDTs are software abstractions by means of which we can manipulate and access
data. The implementation of DDT has two main effects on the performance of an
application. First, it involves storage aspects that determine how data memory is al-
located and freed at run-time, and how this memory is tracked. Second, it includes
an access component, which can refer to two different basic access patterns: sequen-
tial (or iterator-based) and random access.

Fig. 4 shows an example of DDTs exploration. The initial code contains two
containers, c1 and c2, instantiated as a vector and a list, respectively. After the ex-
ploration process, we can obtain for example a candidate solution that recommends
c1 to be instantiated as Single Linked List (SLL) and c2 as Double Linked List of
Arrays (DLLAR).

More generally we can state that the application to optimize contains a set of con-
tainers C, which are candidates to be instantiated as a certain DDT from the set of
possible implementation of DDTs library D presented in [3] [10]. Thus, the goal of
our optimization flow is to obtain a set of pairs (container, DDT)

{
ci ∈C,d j ∈ D

}
,

such that minimizes memory accesses, memory usage and power consumption for
the target embedded system. Additional constraints as the minimum and maximum
values for all three objectives may be defined. Clearly, this is a multi-objective opti-
mization problem.

To measure the quality of a solution, we have defined the equations to evaluate
the behavior of DDT implementations by means of parameters such as the number

272 J.L. Risco-Martı́n et al.

Fig. 4. Code before and after the exploration of Dynamic Data Types

of sequential accesses, random accesses, average size, etc. In our case we have
classified the DDT implementations in basic DDT and multi-layer implementations
relevant for embedded multimedia applications. Table 2 contains the DDTs imple-
mented [3].

Table 2. DDT library

DDT Description

AR Array
AR(P) Array of pointers
SLL Single-linked list
DLL Doubly-linked list
SLL(O) Single-linked list with roving pointer
DLL(O) Doubly-linked list with roving pointer
SLL(AR) Single-linked list of arrays
DLL(AR) Doubly-linked list of arrays
SLL(ARO) Single-linked list of arrays and roving pointer
DLL(ARO) Doubly-linked list of arrays and roving pointer

Once we have fixed the problem optimization process for DDTs, we can describe
the whole process shown in Fig. 5. It has three main steps: Profiling of the ap-
plication, estimation of the parameters and multi-objective optimization algorithms
execution. These three steps are described in the next sections.

Parallel and Distributed Optimization of Dynamic Data Structures 273

Fig. 5. DDTs optimization flow

3.1 Profiling of the Application

In order to evaluate the different metrics we need to obtain the real execution infor-
mation from the application. Unfortunately, the execution of the whole application
is not a viable solution. An alternative good solution recently proposed [10] is to ob-
tain a profiling report of the application where the following information is logged:
number and location of the accesses of an element, addition of an element, removal
of an element, the clearing of the container, iterator operations such as pre-increment
or dereference, constructor, destructor, copy constructor and swap operation. To this
end, we need to replace all the candidate variables in the application by our vector
DDT implementation, which logs all the information needed to evaluate them the
using equations developed in [3].

3.2 Parameters Estimation

In this phase, we extract all information needed from the profiling report. The pur-
pose is to measure the quality of a solution (ci,d j) in the DDT exploration, using
several parameters, namely, the number of candidate variables, number of elements
stored in the container in the worst case (Ne), average of the number of elements
stored (Nve), size of the elements in bytes (Te), size of the pointers in bytes (Tre f),
number of read accesses (Nr), number of write accesses (Nw) and cache misses
(Npa). All these parameters can be extracted from the profiling report. To this end,

274 J.L. Risco-Martı́n et al.

we have developed a tool called Profile Analyzer. Cache misses are also obtained
by means of simulation, generating memory traces from the profiling report and the
DDT library, using them as input for the Dinero IV cache simulator [13] for the
particular memory configuration of the target embedded system. This phase is the
most-time consuming part of the exploration, although it is done only once for each
target architecture, and for each tested application.

3.3 Optimization

The last phase is the optimization process. It takes as input the parameters obtained
in the previous phase and minimizes three objectives: memory accesses (MA), mem-
ory usage (MU) and energy (E), defined by the following equations, where Hw rep-
resents the effect that hardware parameters (memory architecture, CPU power, line
sizes, memory access time, etc.) have on the optimization [25].

MA(c,d) = fMA(Ne,Nve,Nr,Nw)
MU(c,d) = fMU (Te,Tre f ,Ne) (5)

E(c,d) = fE(Nr,Nw,Npa,Hw)

Memory accesses of the system fMA is given by the following equation:

fMA ∝ Ne × (Nr + Nw)+ Nve (6)

The exact form of equation 6 depends on each DDT selected in (c,d). It takes
into account the number of random and sequential accesses to the elements stored
in the DDT, as well as the number of creations and destructions of the container.

Memory usage fMU is given by the following equation:

fMU ∝ Tre f + Ne ×
(
Tre f + Te

)
(7)

As in equation 6, the exact form of equation 7 depends on each DDT selected. It
calculates the amount of memory used by each element stored in the DDT.

Finally, energy equation of the system is given by the following equation:

fE = tex ×CPUpow +
(Nr + Nw)× (1−Npa)×CaccE +
(Nr + Nw)×Npa ×CaccE ×ClineS +
(Nr + Nw)×Npa ×DRAMaccP ×
(

DRAMaccT +
ClineS

DRAMbandW

)
(8)

where tex is the system’s total execution time, CPUpow is the total processor power
excluding the cache power, CaccE is the cache access energy, ClineS is the cache

Parallel and Distributed Optimization of Dynamic Data Structures 275

line size, DRAMaccP is the active power consumed by the DRAM, DRAMaccT is the
DRAM latency time, and DRAMbandW is the bandwidth of the DRAM.

There exist four components in the energy equation 8. The first term tex×CPUpow

calculates the processor energy given that execution time takes tex amount of time.
The second term, (Nr + Nw)× (1−Npa)×CaccE calculates the amount of energy
consumed by the cache. The third term, (Nr + Nw)×Npa ×CaccE ×ClineS calculates
the energy cost of writing to cache for each cache miss. The last term, calculates the
energy cost of the DRAM to service all the cache misses.

The equation for calculating the system’s total execution time tex is given by:

tex = (Nr + Nw)× (1−Npa)×CaccT +
(Nr + Nw)×Npa ×DRAMaccT +

(Nr + Nw)×Npa × ClineS

DRAMbandW
+

Tbus (9)

where CaccT is the access time of the cache.
There exist four components in the system’s execution time shown in equation 9.

The first term (Nr + Nw)× (1−Npa)×CaccT is for calculating the amount of time
taken for the processor to access the cache. The second term (Nr + Nw)×Npa ×
DRAMaccT calculates the amount of time required for the DRAM to respond to each
cache miss. The third term calculates the amount of time taken to fill a cache line
on each cache miss. The bus communication time cost is supposed to be constant
(Tbus). As the bus communication time is expected to be similar to other systems,
such decision will not adversely affect the final results.

Units for time variables in the equations are in seconds, bandwidth is in Bytes/sec.,
cache line size is in Bytes, power variable is in Watts, and energy unit is in Joules.

These equations are used by the optimization algorithm to evaluate the fitness of
the solutions found in the exploration process. When the optimization process ends,
it gives the DDT instantiation policy, i.e., which container should be implemented
by which DDT. We also obtain the gain on memory accesses, memory usage and
energy consumption.

3.4 Encoding a Solution

In order to apply a MOEA correctly we need to define a genetic representation of
the design space of all possible DDT implementations alternatives. Moreover, to be
able to cover all possible inter-dependencies of DDT implementations for different
dynamic variables of an application, we must guarantee that all the individuals rep-
resent real and feasible solutions to the problem and ensure that the search space is
covered in a continuous and optimal way [11].

Table 3 shows the representation of a chromosome. Genes are represented in
the first row. Each of the chromosomes represents the set of DDT that should be
used to instantiate all the corresponding containers in the application from Table 2.

276 J.L. Risco-Martı́n et al.

For example, the second container c2 ∈ C will be instantiated by an array (AR). A
chromosome contains n genes, where n is the number of the containers logged in the
application, n = size(C). We may use an integer to represent the values of a gene,
and the constraint a gene must satisfy is: 1 ≤ ddt ≤ size(D).

Table 3. Example of an individual

Dynamic Data Type AR AR SLL . . . DLL
Container c1 c2 c3 . . . cn

Consequently, if an application contains n containers, each individual (chromo-
some) has to be constituted by n integer fields (i.e., n genes). Our current implemen-
tation of the exploration framework optimizes up to 3128 variables using variations
of the 10 possible DDTs contained in Table 2 for each of them. Thus, it can cover
large real-life dynamic embedded applications.

4 Parallel Implementation

In this section we describe the parallel MOEA designed and how it is implemented
in a DEVS environment.

4.1 pMOEA

We are employing pMOEAs for better performance when solving the exploration
of DDTs in embedded applications described in Section 3, i.e., we are improving
the quality of the solutions found and the time to obtain them. When developing
pMOEA, some parameters must be defined [31]: MOEA(s) parallelized, topology,
population size, migration rate, and replacement.

Regarding MOEAs and topology, we propose a coarse-grained pMOEA where
each island may execute a different MOEA, in our case either NSGA-II [12] or
SPEA2 [36]. We have used these two MOEAs because of their different complexity,
but other algorithms could be included. SPEA2 is O(N3) and NSGA-II is O(mN2),
where N is the population size and m is the number of objectives. Our islands are
suited for a ring topology [5]. Experiments with other topologies are left for future
study.

With respect to the population size of each island, few studies have been made in
the literature[31]. For example, in [27], the sequential population is divided by the
number of islands, remaining the size of the external set constant and equal to the
initial population size. In this way, the number of islands increases, the execution
time is reduced and the number of non-dominated solutions grows up. However,

Parallel and Distributed Optimization of Dynamic Data Structures 277

some metrics such as hypervolume or spread loose quality. In this work, we apply
the following equation to the population size [26]:

Pi =
P
I

+ α ×
(

P− P
I

)
(10)

where Pi is the population size of island i ∈ [1..I], P is the population size in the
sequential approach, I > 1 is the number of islands and α ∈ [0..1] is a scaling factor.
Note that when I tends to infinity, Pi is constant: α ×P. It is a design parameter that
depends on the migration rate and hardware configuration (i.e. network bandwidth,
processor types, etc). The purpose is to obtain better solutions in less computing
time when the number of islands is increased. After several tests, we have set α = 2

I .
Regarding the external file size, we apply the following equation [26]:

PE
i = Pi + NI (11)

where NI is the total number of immigrants that island i will receive.
As in most of the pMOEAs, migration from one subpopulation to another is con-

trolled by several parameters specified at the beginning of the execution and remains
unchanged. These parameters are: (a) the topology defined by the connections be-
tween islands, a ring in our case; (b) a migration rate that controls how many individ-
uals migrate; and (c) a migration interval that determines the migration frequency.
Our migration rate is set to P/100, where P is the population size in the sequen-
tial algorithm. The best P/100 individuals are selected in the following way. First,
we extract the set of non-dominated solutions in the current population Pi. Second,
we sort the resulting set with respect to one random objective, and extract the first
P/100 individuals. Moreover, since NSGA-II is faster than SPEA2 (O(mN2) vs.
O(N3), NSGA-II could finish first while SPEA2 is still exploring early generations.
Thus, our migration policy is synchronized every 100 generations.

4.2 DEVS and DEVS/SOA Implementation

Fig. 6 provides a scheme of the parallel procedure with two atomic models (top
of the figure) and their execution over time (bottom of the figure). Each atomic
model represents an island and includes two pair of request, response output and
input ports. Request connections are used to ask for the best individual of the adja-
cent atomic model, and response connections are used to send this individual when
available (every 100 generations, in Fig. 6). In other words, the specific MOEA
(NSGA-II or SPEA2) is applied to each atomic model separately, and the best par-
tial results are periodically sent from one atomic model to its neighbor on a ring
communication topology.

We have implemented three variations that are tested in a multi-core and dis-
tributed architecture. The only difference between these variations is the MOEA
algorithm that is controlling the subpopulation, i.e. running on each atomic model:

278 J.L. Risco-Martı́n et al.

1. NSK configuration: K atomic models executing NSGA-II and the same quantity
running SPEA2, 2K islands in total.

2. SSK configuration: 2K atomic models, but running all of them SPEA2 algorithm.
3. NNK configuration: 2K atomic models using the NSGA-II algorithm.

The fitness function, the operators, and the stop criterion are the same as in the
sequential version.

The algorithm shown in Fig. 6 follows a multi-threaded design, which is suitable
to be executed in multi-core architectures. Another approach we have implemented
consists of executing our proposed pMOEA in a set of workstations connected over
a LAN. To this end, using our DEVS/SOA framework, we have executed 32 atomic
models on 16 workstations each of two cores. The algorithm is exactly the same, but
each workstation executes two atomic models. Individuals are sent between different
workstations using web services [22]. Fig. 7 depicts an illustrative example of two
workstations each running two MOEAs. Every workstation executes two MOEAs as
a DEVS coupled model. The coupled models are connected in the desired topology
(a ring in our case), which again is another design parameter that could impact the
performance. Our atomic models are suited for a ring topology as well.

Fig. 6. A graphic representation of the DEVS model (multi-core architecture) and its evolu-
tion over time

Parallel and Distributed Optimization of Dynamic Data Structures 279

Fig. 7. A graphic representation of the DEVS model (multi-core/distributed architecture)

5 Experimental Methodology

In this section we describe the complete method applied to compare the different
type of sequential and parallel MOEAs while optimizing a real-life dynamic em-
bedded application.

We have evaluated the proposed optimization framework for a 3D Physics En-
gine for elastic and deformable bodies [19], which is a 3D engine that displays the
interaction of non-rigid bodies. It includes 3128 dynamic containers in its source
code for which we select the optimal DDT implementation in Table 2. It can cover
all of the real-life embedded applications we are aware off.

5.1 Embedded System HW/SW Specification

The model of the embedded system architecture consisted of a processor with an
instruction cache, a data cache, and embedded DRAM as main memory. The data
cache uses a write-through strategy. The system architecture is illustrated in Fig. 8.

To analyze the effect of MOEAs on embedded system’s memory accesses, mem-
ory usage and energy consumption, we utilized processor energy from [6], and the
access time and energy values for caches of 32KB and embedded 16MB DRAM
main memory from [29] and [17], respectively. The processor and memory specifi-
cation is described in Table 4.

5.2 Performance Metrics

To compare the performance of different MOEAs, we need to evaluate the obtained
set of non-dominated solutions considering: (1) Convergence to POF. (2) Diversity

280 J.L. Risco-Martı́n et al.

Fig. 8 System architec-
ture: Instruction cache,
data cache, and embedded
DRAM as main memory

Table 4. System specification

Processor Energy 168mW, 100MHz

Embedded DRAM 100MHz
Energy 19.5 mW
Latency 19.5 ns
Bandwidth 50MB/s

on POF. Since the size of possible DDT implementations is large and it is not pos-
sible to cover the exact set of the POF, we compare the obtained Pareto Front (PF)
with each other. In this direction, we select the following metrics to evaluate the
performance of our approach.

5.2.1 Coverage

We use the coverage metric [37] to measure convergence. Let PF ′, PF ′′ be two sets
of non-dominated solutions. The coverage metric can be defined as follows:

C(PF ′,PF ′′) =
|p′′ ∈ PF ′′;∃p′ ∈ PF ′ : p′≺p′′|

|PF ′′| (12)

The value C(PF ′,PF ′′) = 1 means that all points in PF ′′ are dominated by or
equal to points in PF ′. On the other hand, C(PF ′,PF ′′) = 0 means that no so-
lutions in PF ′′ are covered by the set PF ′. Both C(PF ′,PF ′′) and C(PF ′′,PF ′),
have to be considered, since C(PF ′,PF ′′) is not necessary equal to C(PF ′′,PF ′). If
C(PF ′,PF ′′) > C(PF ′′,PF ′), the rate of dominated solutions in PF ′ is higher than
in PF ′′.

Parallel and Distributed Optimization of Dynamic Data Structures 281

5.2.2 Hypervolume or S-Metric

This metric calculates the volume (in the objective space) covered by members of a
nondominated set of solutions Q [37]. Let vi be the volume enclosed by solution i ∈
Q. Then, a union of all hypercubes is found and its hypervolume (HV) is calculated.

HV =
⋃|Q|

1
vi (13)

The hypervolume of a set is measured relative to a reference point, usually the
anti-optimal point or “worst possible” point in space. (We do not address here the
problem of choosing a reference point, if the anti-optimal point is not known or does
not exist one suggestion is to take, in each objective, the worst value from any of
the fronts being compared). If a set X has a greater hypervolume than a set Y , then
X is taken to be a better set of solutions than Y . Since this metric is not free from
arbitrary scaling of objectives, we have evaluated the metric by using normalized
objective function values.

5.2.3 Non-dominated Solutions

Given that DDTs optimization is a difficult problem, finding a high number of non-
dominated solutions could be itself a hard challenge for any multi-objective opti-
mizer. In this sense, the number of non-dominated solutions can be considered as a
measure of the ability of the algorithm for exploring difficult search spaces.

We compare the obtained sets of non-dominated solutions by means of the above
three criteria.

6 Experimental Results

To compare the performance of both sequential and parallel algorithms, the num-
ber of generations, and probability of crossover and mutation are set to the same
values. After different tests, we have fixed them to the values indicated in Table 5.
The sequential population size is set to 200 for each atomic model. In our parallel
simulations, the population size follows equation 10. Migration rate and frequency
are those described in Section 4. In all cases, the external archive size (where non-
dominated solutions are stored) is set to the value given by equation 11.

Next, we summarize the results obtained by the sequential and parallel evolution-
ary algorithms. As it was mentioned in Section 4, we are able to run our MOEAs
under three configurations: (1) a stand-alone atomic model (sequential architecture),
(2) several atomic models running in separated threads (multi-core architecture)
which utilize multiple processors when available, and (3) several atomic models
running in separated threads and distributed amid a set of workstations (multi-
core/distributed architecture). The distributed version is configured by using the
DEVS/SOA framework. The experiments have been made using 16 workstations

282 J.L. Risco-Martı́n et al.

Table 5. Parameters for evolutionary algorithms

Parameter Value

Population size 200
Number of generations 8000
Probability of crossover 0.80
Probability of mutation 0.01

Intel R© CoreTM 2 CPU 6600 2.40GHz with 2GB DDR memory connected via
100Mbps Ethernet network.

6.1 Sequential DEVS Architecture

We have tested the sequential DDTs exploration speed in comparison to different
alternative methods for the 3D Physics Engine application on a Intel R© CoreTM 2
CPU 6600 2.40GHz with 2GB DDR memory. Execution times are calculated by av-
eraging results of 10 trials. The results obtained for the different tested exploration
methods are shown in Table 6. We have compared our algorithms with state-of-
the-art pruning and optimization methods for DDT implementations presented in
[33], [10]. In these cases breadth-first, deep-first and branch & bound exploration
heuristics are used to minimize overall memory access, memory usage and energy
consumption in embedded multimedia applications. In this context, we have used
a weighted sum of the three objectives as the fitness function for these three algo-
rithms. Since there are 103128 feasible solutions (10 DDTs for 3128 containers) it
is unfeasible to reach the complete POF by means of exhaustive exploration. The
results in Table 6 outline that the exploration process with our method (using NSGA-
II and SPEA2) is much faster than using directly the implementations of DDTs and
other heuristics, namely, 470× faster. Note that although in theory VEGA is faster
than both NSGA-II and SPEA2, our design framework is able to obtain better speed-
ups. This is because of our Profile Analyzer tool (Section 3), which can extract all

Table 6. Comparison between the proposed sequential algorithms and other techniques

Exploration method Time (seconds)

Breadth-First 11.23×105 ±98.62
Depth-First 43.20×104 ±87.13
Branch&Bound 10.80×103 ±55.42
VEGA [3] 7.20×103 ±103.20
NSGA-II 2.39×103 ±0.78
SPEA2 3.83×103 ±4.37

Parallel and Distributed Optimization of Dynamic Data Structures 283

the needed information from the profiling report, and it is done once for the target
embedded application.

6.2 Multi-core DEVS Architecture

In order to exploit our 2-cores architecture, we have explored DDTs with some con-
figurations of the three algorithms proposed (i.e., NNK , NSK and SSK) on an Intel R©

CoreTM 2 CPU 6600 2.40GHz with 2GB DDR memory. All the values presented
are calculated by averaging results of 50 trials.

Fig. 9. Comparison between our sequential and multi-core algorithms

Fig. 9 shows the comparisons between the execution times of both sequential
and parallel algorithms. Regarding pMOEAs, the number of islands is increased,
the execution time is reduced. With respect to NN, SS and NS, we can see that the
execution time is greater than in the sequential version. It is because equation 10 has
been designed to balance the loss of non-dominated solutions when the number of
islands grows up. However, as Fig. 9 depicts, NN2 is faster than NSGA-II, and SS2 is
faster than SPEA2. To conclude, except in the case of two islands, all the pMOEAs
are faster than the sequential version, even if more islands than cores are used (see
SS2 vs. SPEA2 in Fig. 9, for example). Between pMOEAs, the fastest one is NN2,
as each island uses the smallest population size with the fastest algorithm.

Fig. 10 depicts the number of non-dominated individuals obtained. NSGA-II of-
fers the same non-dominated solutions as SPEA2. NS offers 49.3% more optimal
solutions than both NSGA-II and SPEA2, and NS2 4.69% more than NS. Thus,
with respect to ND, NSK offers more optimal alternatives to the system designer for
the implementation of the final embedded application.

284 J.L. Risco-Martı́n et al.

Fig. 10. Non-dominated individuals obtained by NSGA-II, SPEA2, NNK , SSK and NSK , with
K = 1,2

Fig. 11. Hypervolume or S-metric obtained by NSGA-II, SPEA2, NNK , SSK and NSK , with
K = 1,2

Fig. 11 shows the hypervolume or S-metric obtained. NSK algorithms reach better
values compared to the other MOEAs, sequential or parallel. Thus, the result set
from NSK algorithms is taken to be a better set of solutions than those obtained
from other algorithms.

Parallel and Distributed Optimization of Dynamic Data Structures 285

Table 7. Coverage metric

NSGA-II SPEA2 NN NS SS NN2 NS2 SS2 AVG
NSGA-II – 0.0660 0.0959 0.0813 0.1132 0.1546 0.1208 0.1246 0.1081
SPEA2 0.2260 – 0.1719 0.1149 0.1684 0.1518 0.1100 0.1519 0.1564

NN 0.3030 0.2450 – 0.1476 0.1776 0.2122 0.1764 0.2130 0.2107
NS 0.3890 0.3180 0.4031 – 0.3213 0.2153 0.2207 0.2299 0.2996
SS 0.3440 0.3170 0.3223 0.1030 – 0.2404 0.1256 0.2677 0.2457

NN2 0.3680 0.2810 0.2795 0.0693 0.2478 – 0.1092 0.1869 0.2202
NS2 0.3620 0.3650 0.3131 0.1575 0.2429 0.2580 – 0.2897 0.2840
SS2 0.3580 0.3570 0.2753 0.1723 0.2984 0.2937 0.1249 – 0.2685
AVG 0.3357 0.2784 0.2659 0.1208 0.2242 0.2180 0.1411 0.2091 –

Finally, Table 7 shows the coverage values obtained. Last row and last col-
umn show the averaged coverage over each column and each row, respectively.
Regarding convergence comparisons, Table 7 shows that, in average, NSK algo-
rithms are better than any other algorithm. For example, Cavg(NS,∗) > Cavg(∗,NS)
is 0.2996 > 0.1208 or Cavg(NS2,∗) > Cavg(∗,NS2) is 0.2840 > 0.1411. In the same
way, Cavg(NS,∗) > Cavg(SS,∗) is 0.2996 > 0.2457 and Cavg(∗,NS) < Cavg(∗,SS) is
0.1208 < 0.2242.Thus, NSK offers more optimal alternatives to the system designer
for the implementation of the final embedded application.

Fig. 12. Comparison of the real application with results obtained by our design framework
(logarithmic scale).

286 J.L. Risco-Martı́n et al.

For comparative reasons with the original application, we present Fig. 12 to illus-
trate the optimization process that our methodology performs. In this test, we com-
pare the evaluation of our multi-objective function to the results obtained by all the
algorithms used in our design framework. Since breadth-first, depth-first and branch
& bound exploration methods offer the same solution, these results are grouped and
labeled as BDB in Fig. 12. In the case of evolutionary algorithms, the set of solu-
tions obtained is averaged. The figure shows the achieved level of optimization and
final gains after applying the proposed design flow shown in Fig. 5. Furthermore,
as this figure indicates, evolutionary algorithms offered the best compromise among
objectives.

6.3 Multi-core DEVS/SOA Architecture

Finally, the NSK configuration was distributed on a set of 16 workstations Intel R©

CoreTM 2 CPU 6600 2.40GHz with 2GB DDR memory, connected via a 100Mbps
Ethernet network. To this end, we placed two threads per workstation and the com-
munication among workstations was made through our DEVS/SOA framework. All
the values presented are calculated by averaging results of 10 trials.

Fig. 13. Execution times (a), non-dominated solutions (b), and hypervolume (c) as a function
of the number of workstations. Each workstation executes two DEVS atomic models

Parallel and Distributed Optimization of Dynamic Data Structures 287

We tested our algorithm using from 1 to 16 workstations. This leads to 2, 4, 6,
..., 32 MOEAs running in parallel, namely NS1, NS2, NS3, ..., NS16, and different
population sizes (128, 256, 512 and 1024). The tests were performed by changing
only the number of workstations in order to observe and study the increase in perfor-
mance (speed-up, ND and HV). In all these cases the number of generations was set
to 8000. The population and external archive size of each island was set following
equations 10 and 11, respectively.

In light of the results presented in Fig. 13, as the size of the population increased,
the execution time of the parallel version improved proportionally to the number of
islands (see Fig. 13a). Also, Fig. 13b indicates that the number of non-dominated
individuals increased at logarithmic rate as the number of islands increased. Finally,
as Fig. 13c depicts, the hypervolume remains constant along all the simulations,
with non-significant variations.

This shows that the proposed pMOEA is better suited for large populations. It is
also worthwhile to mention that with small populations, a parallel and distributed
version of a genetic algorithm is most likely to converge to a local minimum due to
a small gene pool.

7 Conclusions and Future Work

New multimedia embedded applications are increasingly dynamic, and rely on
DDTs to store their data. The selection of optimal DDT implementations for each
variable in a particular target embedded system is a very time-consuming process
due to the large design space of possible DDTs implementations. In this research
work we have studied several MOEAs to solve this problem. Particularly, we have
proposed a new parallel algorithm (NSK) which combines in a novel manner two
widely used MOEAs. The problem is formulated as a multi-objective combinato-
rial optimization problem, for which we used three objective functions: memory
accesses, memory usage and energy consumption. The results obtained shows that
this parallel approach performs very well. In fact, NSK reaches more optimal solu-
tions than the other sequential and parallel algorithms, obtaining an execution time
that decreases with the number of islands used.

We also have executed NSK in a cluster of 16 workstations of two cores each.
Our results show that if the size of the population is increased, the performance of
the parallel version improves proportionally with respect to the number of avail-
able islands. As a result, we can conclude that not only parallel implementations
improve the speed of the optimization process, but also the quality and the variety
of the solutions, especially for large populations. Although we conducted our re-
search experiments in a LAN setting, deploying the application over a grid enabled
DEVS/SOA infrastructure allows us to capitalize on the speedup that we achieved
in our proposed NSK .

Future work includes the development of dynamic control parameters, such as,
the topology, and a deeper study of migration rates and frequency. We are also work-
ing on exploring other alternatives with new combinations of different MOEAs to
those used in this research work.

288 J.L. Risco-Martı́n et al.

References

1. Arizona center of integrative modeling & simulation, acims (2008),
http://www.acims.arizona.edu

2. Antonakos, J.L., Mansfield, K.C.: Practical Data Structures using C/C++. Prentice-Hall,
Englewood Cliffs (1999)

3. Atienza, D., Baloukas, C., Papadopoulos, L., Poucet, C., Mamagkakis, S., Hidalgo, J.I.,
Catthoor, F., Soudris, D., Lanchares, J.: Optimization of dynamic data structures in mul-
timedia embedded systems using evolutionary computation. In: SCOPES 2007: Proceed-
ingsof the 10th international workshop on Software & compilers for embedded systems,
pp. 31–40. ACM Press, New York (2007),
http://doi.acm.org/10.1145/1269843.1269849

4. Benini, L., de Micheli, G.: System-level power optimization: techniques and tools. ACM
Trans. Des. Autom. Electron. Syst. 5(2), 115–192 (2000),
http://doi.acm.org/10.1145/335043.335044

5. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, Dordrecht (2000)

6. Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.G., Achteren,
T.V., Omnes, T.: Data access and storage management for embedded programmable pro-
cessors. Kluwer Academic Publishers, Dordrecht (2002)

7. Choi, Y., Kim, T., Han, H.: Memory layout techniques for variables utilizing efficient
dram access modes in embedded system design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 24(2), 278–287 (2005)

8. Coello, C.: A comparative survey of evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems 1, 269–308 (1999)

9. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: Pesa-ii: Region-based selection
in evolutionary multiobjective optimization. In: Spector, L., Goodman, E.D., Wu, A.,
Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H.,
Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2001), pp. 283–290. Morgan Kaufmann, San Francisco (2001)

10. Daylight, E.G., Atienza, D., Vandecappelle, A., Catthoor, F., Mendias, J.M.: Memory-
access-aware data structure transformations for embedded software with dynamic data
accesses. IEEE Transactions on VLSI Systems 12, 269–280 (2004)

11. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. John Wiley and
Son Ltd., Chichester (2001)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

13. Edler, J.: Dinero iv trace-driven uniprocessor cache simulator (2008),
http://pages.cs.wisc.edu/˜markhill/DineroIV

14. Fernandez, J.M., Vila, P., Calle, E., Marzo, J.L.: Design of virtual topologies using the
elitist team of multiobjective evolutionary algorithms. In: Obaidat, M., Gburzynski, P.
(eds.) Proceedings of International Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS 2007), San Diego, USA, pp. 266–271 (2007)

15. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: For-
mulation discussion and generalization. In: Proceedings of the Fifth International Con-
ference on Genetic Algorithms (ICGA 1993), pp. 416–423 (1993)

16. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural
Opt. 4, 99–107 (1992)

http://www.acims.arizona.edu
http://doi.acm.org/10.1145/1269843.1269849
http://doi.acm.org/10.1145/335043.335044
http://pages.cs.wisc.edu/~markhill/DineroIV

Parallel and Distributed Optimization of Dynamic Data Structures 289

17. Hardee, K., Jones, F., Butler, D., Parris, M., Mound, M., Calendar, H., Jones, G., Aldrich,
L., Gruenschlaeger, C., Miyabayashil, M., Taniguchi, K., Arakawa, I.: A 0.6v 205mhz
19.5ns trc 16mb embedded dram. In: IEEE International Solid-State Circuits Conference,
ISSCC (2004)

18. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multi-
objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary
Computation, vol. 1, pp. 82–87 (1994)

19. Kharevych, L., Khan, R.: 3d physics engine for elastic and deformable bodies. University
of Maryland, College Park (2002),
http://www.cs.umd.edu/Honors/reports/kharevych.html

20. Michalewicz, Z.: Genetic Algorithms + data structures = Evolution Programs. Springer,
Heidelberg (1996)

21. Mittal, S., Risco-Martin, J.L., Zeigler, B.P.: Devs/soa: A cross-platform framework for
net-centric modeling and simulation using devs. Submitted to SIMULATION: Transac-
tions of SCS, in review (2007)

22. Mittal, S., Risco-Martı́n, J.L., Zeigler, B.P.: Devs-based web services for net-centric t&e.
In: Summer Computer Simulation Conference, SCSC 2006 (2006)

23. Muttreja, A., Raghunathan, A., Ravi, S., Jha, N.K.: Automated energy/performance
macromodeling of embedded software. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26(3), 542–552 (2007)

24. Panda, P.R., Catthoor, F., Dutt, N.D., Danckaert, K., Brockmeyer, E., Kulkarni, C., Van-
dercappelle, A., Kjeldsberg, P.G.: Data and memory optimization techniques for embed-
ded systems. ACM Trans. Des. Autom. Electron. Syst. 6(2), 149–206 (2001),
http://doi.acm.org/10.1145/375977.375978

25. Risco-Martin, J.L., Atienza, D., Hidalgo, J.I., Lanchares, J.: Analysis of multi-objective
evolutionary algorithms to optimize dynamic data types in embedded systems. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008
(2008)

26. Risco-Martin, J.L., Atienza, D., Hidalgo, J.I., Lanchares, J., Mittal, S.: Optimization of
multimedia embedded applications using genetic algorithms and discrete event simula-
tion over soa. Submitted to IEEE Transactions on Computer-Aided Design

27. Risco-Martı́n, J.L., Atienza, D., Hidalgo, J.I., Lanchares, J.: A parallel evolutionary algo-
rithm to optimize dynamic data types in embedded systems. Soft Computing - A Fusion
of Foundations, Methodologies and Applications 12(12), 1157–1167 (2008)

28. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms.
In: Genetic Algorithms and their Applications: Proceedings of the First International
Conference on Genetic Algorithms, pp. 93–100. Hillsdale, New Jersey (1985)

29. Shivakumar, P., Jouppi, N.P.: Cacti 3.0: An integrated cache timing, power, and area
model. Tech. Rep. 2001/2, Compaq Computer Corporation (2001)

30. de Toro Negro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martı́n, J.: Psfga: Parallel
processing and evolutionary computation for multiobjective optimisation. Parallel Com-
puting 30(5-6), 721–739 (2004)

31. Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computa-
tion 7(2), 144–173 (2003)

32. Wilson, L., Moore, M.: Cross-pollinating parallel genetic algorithms for multiobjec-
tive search and optimization. International Journal of Foundations of Computer Sci-
ence 16(2), 261–280 (2005)

33. Wuytack, S., Catthoor, F., De Man, H.: Transforming set data types to power optimal
data structures. IEEE Transactions on Computer-Aided Design 15(6), 619–629 (1996)

http://www.cs.umd.edu/Honors/reports/kharevych.html
http://doi.acm.org/10.1145/375977.375978

290 J.L. Risco-Martı́n et al.

34. Xiong, S., Li, F.: Parallel strength pareto multi-objective evolutionary algorithm for opti-
mization problems. In: Proceedings of the 2003 Congress on Evolutionary Computation
(CEC 2003), vol. 4, pp. 2712–2718. IEEE Press, Canberra (2003)

35. Zeigler, B.P., Kim, T., Praehofer, H.: Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems. Academic Press, London
(2000)

36. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolu-
tionary algorithm for multiobjective optimization. In: Proceedings of the Evolutionary
Methods for Design, Optimization and Control with Application to Industrial Problems,
Barcelona, Spain, pp. 95–100 (2002)

37. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE Transactions on Evolutionary Computing 3(4),
257–271 (1998)

38. Zydallis, J.B., Van Veldhuizen, D.A., Lamont, G.B.: A statistical comparison of mul-
tiobjective evolutionary algorithms including the MOMGA-II. In: Zitzler, E., Deb, K.,
Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp.
226–240. Springer, Heidelberg (2001)

	Parallel and Distributed Optimization of Dynamic Data Structures for Multimedia Embedded Systems
	Introduction
	Background
	Multi-objective Evolutionary Algorithms
	DEVS and DEVSJAVA
	DEVS/SOA

	The Dynamic Data Types Exploration Problem
	Profiling of the Application
	Parameters Estimation
	Optimization
	Encoding a Solution

	Parallel Implementation
	pMOEA
	DEVS and DEVS/SOA Implementation

	Experimental Methodology
	Embedded System HW/SW Specification
	Performance Metrics

	Experimental Results
	Sequential DEVS Architecture
	Multi-core DEVS Architecture
	Multi-core DEVS/SOA Architecture

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

