View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

2010 International Workshop on Innovative Architecture for Future Generation High-Performance Processors and Systems

Energy Efficiency using Loop Buffer based
Instruction Memory Organizations

A. Artes *T, F. Duarte *, M. Ashouei *, J. Huisken *, J. L. Ayala f, D. Atienza * and F. Catthoor $

*Holst Centre / imec
Eindhoven (The Netherlands)
{antonio.artes, filipa.duarte, maryam.ashouei, jos.huisken} @imec-nl.nl

tFacultad de Informatica
Universidad Complutense de Madrid (Spain)
{a.artes, jayala} @fdi.ucm.es

'EPFL
Laussane (Switzerland)
{david.atienza} @epfl.ch

Simec
Leuven (Belgium)
{catthoor} @imec.be

Abstract—Energy consumption in embedded systems is
strongly dominated by instruction memory organizations. Based
on this, any architectural enhancement introduced in this compo-
nent will produce a significant reduction of the total energy bud-
get of the system. Loop buffering is an effective scheme to reduce
the energy consumption of the instruction memory organization.
In this paper, a novel classification of architectural enhancements
based on the use of loop buffer concept is presented. Using this
classification, an energy design space exploration is performed
to show the impact in the energy consumption on different
application scenarios. From gate-level simulations, the energy
analysis demonstrates that the instruction level paralellism of
the system brings not only improvements in performance, but
also improvements in the energy consumption of the system.
The increase in instruction level paralellism makes easy the
adaptation of the sizes of the loop buffers to the sizes of the
loops that form the application, because gives more freedom to
combine the execution of the loops that form the application.

I. INTRODUCTION

The "Memory Wall” is a well known problem in computer
systems. It is based on the growing disparity between the
rate of improvement in microprocessor speed and the rate
of improvement in off-chip memory speed. This problem
becomes even worse in embedded systems, where designers do
not only need to consider the performance, but also the energy
consumption. In an embedded system, the instruction memory
organization and the data memory hierarchy take portions of
chip area and energy consumption that are not negligible.
Several works like [1], [2] and [3] demonstrate that memories
now account for nearly 50% — 70% of the total energy budget
of the instruction-set processor platform.

Loop buffering is an effective scheme to reduce energy
consumption in instruction memory organizations. In signal
and image processing applications, a significant amount of

978-0-7695-4396-3/10 $26.00 © 2010 IEEE
DOI 10.1109/ITWIA.2010.10

0

60

50

40

30

Power [uW/MHz]

20

16 32 64 128 256 512 1024 2048 4096 8192 16384

Memory size [Instruction words]

Fig. 1. Power consumption per access in 16-bit instruction word commercial
90nm SRAMs.

execution time is spent in small segments of the application
code. Reference [4] presents a study on the loop behavior of
embedded applications. This study demonstrates that 77% of
the total execution time of an application is spent in loops of 32
instructions or less. Using loop buffering, it is possible to store
these small segments of the application code in memories that
are smaller than the program memories that are normally used.
As shown in Figure 1, these small memories have less energy
per access, leading to reduce the total energy consumption of
the instruction fetch logic significantly.

In this paper, an energy design space exploration of the loop
buffer concept is presented. Our analysis introduces a novel
architectural classification based on three scenarios where
all loop based architectures can fall in. The characterization
of the mentioned architectures, the demonstration of this
classification into the existing state-of-the-art, and the study
of the energy impact of each scenario are performed along

cps™

Conference Publishing Services

https://core.ac.uk/display/148006347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this paper. Besides, a real-life embedded application is used
as a case study to present the energy reduction that can be
achieved using instruction memory organizations based on the
loop buffer concept. To evaluate the energy impact, post-layout
simulations are used to have an accurate estimation of para-
sitics and switching activity. The evaluation is performed using
TSMC 90nm Low Power library and commercial memories.

The rest of the paper is organized as follows. Section
IT presents the related work classification where all loop
based architectures can fall in. Section III describes the
experimental framework used in the energy design space
exploration, whereas Section IV is focused on the description
of the benchmarks used in the evaluation of the architectural
models proposed in Section II. Section V shows and analyzes
the results obtained from the evaluation of the experimental
framework. Finally, the conclusions are briefly summarized in
Section VI.

II. RELATED WORK

During the last decade, researchers have demonstrated that
the energy consumption of instruction memory organizations
is not negligible. Reference [2] demonstrates, based on a
case study, that the contribution of the instruction memory
organization is close to 20% —40% of the energy consumption
of the whole system. Normally, architectural enhancements
that target the reduction of energy consumption make use of
loop buffers. In order to study the energy efficiency of the
loop buffer concept, an architectural classification based on
three scenarios where all loop buffer based instruction memory
organizations can be grouped in is presented.

The most traditional usage of the loop buffer concept is
the first item of this classification. The architectural model
that represents it is the central loop buffer architecture for
single processor organization. References [5], [6], [7], [8],
[9], [10], [11] and [12] are examples of the work done in this
set of architectures.

N. P. Jouppi [5] analyzes three hardware techniques to
improve direct-mapped cache performance: miss caching, vic-
tim caching and stream buffers prefetch. Chuanjun Zhang
[6] proposes a configurable instruction cache, which can be
tailored in size in order to utilize the sets efficiently for a
particular application, without any increase in the cache size,
associativity, or cache access time. Koji Inoue et al. [7] propose
an alternative approach to detect and remove unnecessary
tag-checks at run-time. Using execution footprints that are
recorded previously in a branch target buffer, it is possible to
omit the tag-checks for all instructions contained in a fetched
block. If loops can be identified, fetched and decoded only
once, Raminder S. Bajwa et al. [8] propose an architectural en-
hancement that can switch off the fetch and decode logic. The
instructions of the loop are decoded and stored locally, from
where they are executed. The energy savings come from the
reduction of memory accesses as well as the lesser use of the
decode logic. In order to avoid any performance degradation,
Lea Hwang Lee et al. [13] implement a small instruction buffer
based on the definition, detection and utilization of special

60

branch instructions. This architectural enhancement has neither
an address tag store nor valid bit associated with each loop
cache entry. Johnson Kin et al. [9] evaluate the Filter Cache.
This enhancement is an unusually small first-level cache that
sacrifices a portion of performance in order to save energy. The
program memory is only required when a miss occurs in the
Filter Cache, otherwise it remains in standby mode. Based on
this special loop buffer, K. Vivekanandarajah et al. [10] present
an architectural enhancement that detects the opportunity to
use the Filter Cache, and enables or disables it dynamically.
Also, Weiyu Tang et al. [11] introduce a Decoder Filter Cache
in the instruction memory organization in order to reduce the
use of the instruction fetch and decode logic by providing
directly decoded instructions to the processor. On the other
hand, Nikolaos Bellas et al. [12] propose a scheme, where
the compiler generates code annotations in order to reduce the
possibility of a miss in the loop buffer cache. The drawback of
this work is the trade-off between the performance degradation
and the power savings, which is created by the selection of
the basic blocks.

Parallelism is a well known solution in order to increase
performance efficiency. Due to the fact that loops form the
most important part of an application (as it was mentioned in
Section I), loop transformation techniques are applied to ex-
ploit parallelism within loops on single-threaded architectures.
Centralized resources and global communication make these
architectures less energy efficient. In order to reduce these
bottlenecks, several solutions that use multiple loop buffers
have been proposed in literature. References [14], [15] and
[16] are examples of the work done in this field. In our
classification, these architectures are classify as multiple loop
buffer architectures with shared loop-nest organizations.
References [14], [15] and [16] are examples of the work done
in this set of architectures.

Hongtao et al. [14] present a distributed control-path ar-
chitecture for DVLIW (Distributed Very Long Instruction
Word) processors, that overcomes the scalability problem of
VLIW control-paths. The main idea is to distribute the fetch
and decode logic in the same way that the register file is
distributed in a multi-cluster data-path. On the other hand,
Hongtao et al. [15] propose a multi-core architecture that
extends traditional multi-core systems in two ways. First,
it provides a dual-mode scalar operand network to enable
efficient inter-core communication without using the memory.
Second, it can organize the cores for execution in either
coupled or decoupled mode through the compiler. In coupled
mode, the cores execute multiple instructions streams in lock-
step to collectively work as a wide-issue VLIW. In decoupled
mode, the cores execute independently a set of fine-grain
communicating threads extracted by the compiler. These two
modes create a trade-off between communication latency and
flexibility, that it will be optimum depending on the parallelism
that we want to exploit. David Black-Schaffer et al. [16]
analyze a set of architectures for efficient delivery of VLIW
instructions. A baseline cache implementation is compared to
a variety of organizations, where the evaluation includes the

cost of the memory accesses and the wires which are necessary
to distribute the instruction bits.

An efficient parallelism is not achieved with the archi-
tectures described previously. Using multiple loop buffer ar-
chitectures with shared loop-nest organizations, loops with
different threads of control have to be merged (e.g., using
loop fusion) into a single loop with single thread of control.
In the case of incompatible loops, the parallelism cannot
be efficiently exploited because they require multiple loop
controllers. It results in loss of performance. A new set of
architectures based on distributed loop controllers solves this
problem. In our classification, these architectures are named
as distributed loop buffer architectures with incompatible
loop-nest organizations. References [17], [18] and [19] are
examples of the work done in this set of architectures.

Jayapala et al. [17] propose a low energy clustered instruc-
tion memory hierarchy for long instruction word processors.
In this architecture, a simple profile based algorithm is used
in order to perform an optimal synthesis of the clusters for
a given application. On the other hand, Praveen Raghavan et
al. [18] present a multi-thread distributed instruction memory
hierarchy that can support execution of multiple incompatible
loops in parallel. In the proposed architecture, each loop
buffer has its own local controller, which is responsible for
indexing and regulating accesses to its loop buffer. J.I Gomez
et al. [19] present a new loop technique that optimizes the
memory bandwidth based on the combination of loops with
an unconformable header. With this technique, the compiler
can then better exploit the available bandwidth and increase
the performance of the system.

Summarizing, the three scenarios where all loop based
architectures can fall in are:

o Central loop buffer architectures for single processor
organization
Multiple loop buffers architectures with shared loop-nest
organization
Distributed loop buffer architectures with incompatible
loop-nest organization

In the following Sections, we will see how the experimental
framework is built based on this architectural classification in
order to perform a complete energy design space exploration
of the loop buffer concept.

III. EXPERIMENTAL FRAMEWORK

As shown in Figure 2, the experimental framework is made
up of a data memory hierarchy, an instruction memory orga-
nization, a loop buffer, an IO interface, and a processor. The
processor is designed and implemented using Target Compiler
Technologies [20], and both memories are designed by Virage
Logic Corporation tools [21] using TSMC 90nm process. The
data memory included in the data memory hierarchy is a
memory with a capacity of 16k words/16 bits, and the program
memory included in the instruction memory organization is a
memory with a capacity of 2k words/16 bits.

The general-purpose processor is based on a processor
provided by Target Compiler Technologies [20], which is used

61

10
Processor interface
J |

,I” ‘\\\ ,II’ \‘\‘
! Loop Vo i
1 o

i| Buffer Program |i |) !
’ : & i Data Memories i
i | Archite- || Memory |i ! ,
i _ cture b |
i i |
i Instruction Memory : i i
1 '| H ll

AL Organization VAR

Data Memory Hierarchy‘,/ ...-"'

Fig. 2. Experimental framework.

as starting point for the development of ASIPs (Application-
Specific Instruction-set Processors). The processor architecture
has the following characteristics:

e 16-bit integer arithmetic, bitwise logical, compare and
shift instructions. These instructions are executed on a
16-bit ALU and operate on an 8 field register file.
Integer multiplications with 16-bit operands and 32-bit
results.

Load and store instructions from and to a 16-bit data
memory with an address space of 64k words, using
indirect addressing.

Various control instructions such as jumps and subroutine
calls and returns.

o Support for interrupts and on chip debugging.

The processor also supports zero-overhead looping control
hardware. This feature allows fast looping over a block of
instructions. Therefore, once the loop is set using a special
instruction, additional instructions are not need in order to
control the loop. The loop is executed a pre-specified number
of iterations (known at compile time). The status of this
dedicated hardware is stored in the following set of special
registers:

LS Loop Start address register - It stores the address of the
first loop instruction.

Loop End address register - It stores the address of the
last loop instruction.

Loop Count register - It stores the remaining number of
iterations of the loop.

Loop Flag register - It keeps track of the hardware loop
activity.

LE
LC

LF

The special instruction, that controls the loops, takes the
values of LC and LE as input parameters. This instruction
introduces only one delay slot.

The experimental framework uses an IO interface in order
to provide the capability of receiving and sending data in real-
time. This IO interface is implemented directly in the processor
architecture. It uses 16-bit FIFOs as data input or output. They

Processor

LF LC LS LE

LF LC LS LE
s State

Machine

CE__ME

N

.

ME
oF Program Memory

A Q D

Loop Buffer E
cE I

Fig. 3.
buffer.

Instruction Memory Organization interface for a single central loop

are directly connected to the register file, and new instructions
are added to the ISA (Instruction Set Architecture) in order to
control them.

From Figure 2, it is possible to see that the loop buffer
architecture is already included in the instruction memory
organization. The details about the interconnections of the
processor architecture, program memory, loop buffer archi-
tecture and state-machine are included in Figure 3. Although
Figure 3 presents a single central loop buffer, our experimental
framework is generic enough and can be easily extended to
multiple decentralized loop buffer organizations. Section IV
demonstrates this. However, for simplicity, a single central
loop buffer architecture is used in the next paragraphs to
explain the loop buffer operation.

In essence, the loop buffer concept operation is as follows.
During the first iteration, the instructions are fetched from the
program memory to the loop buffer and the processor. The
register LF changes its value in the first instruction of the loop
body. This change is detected by the state-machine in order to
set the proper connections between the different components
of the instruction memory organization. The first iteration is
when the loop buffer records the instructions that the body of
the loop contains. Once the loop is recorded in the loop buffer,
for the rest of the loop iterations, the instructions are fetched
from the loop buffer instead of the program memory. In the last
iteration, the state-machine detects that the value of the register
LC is “1” and sets the connections inside of the instruction
memory organization, such that subsequent instructions are
fetched only from the program memory. During the execution
of non-loop parts of the code, instructions are fetched directly
from the program memory.

Our implementation of the loop buffer is a flip-flop array
that can be configured to fit the size and number of the
instruction words. The choice of a flip-flop implementation is
due to the energy reduction of using flip-flops arrays instead
of SRAM memories for small memory sizes [3].

The state-machine is the element that controls the connec-
tions inside of the instruction memory organization. It has 6
states in order to control the loop buffer behavior:

sO Initial state.

62

58

Fig. 4. State-machine.

sl
s2

Transition state between sO and s2.

State where the loop buffer is recording the instructions
that the program memory supplies to the processor.
Transition state between s2 and s4.

State where only the loop buffer is the component that
supplies the instructions to the processor.

Transition state between s4 and s0.

s3
s4

)

Figure 4 shows the state-machine diagram. The transition
states s/, s3 and s5 are necessary in order to give the control
of the instruction supply from the program memory to the
loop buffer and vice-versa. The transition between s4 and s/
is necessary because the body size of a loop can change in
real-time (i.e., in a loop body which if-statements or function
calls exist). In order to check in real-time whether the loop
body size changes or not, a 1-bit tag is added to each address
space.

Along this Section, an implementation of the loop buffer
concept in a central loop buffer architecture for single pro-
cessor organizations is presented. In order to mimic multiple
loop buffer architectures with shared loop-nest organizations
and distributed loop buffer architectures with incompatible
loop-nest organizations, the loop buffer architecture has been
synthesized with different configurations.

IV. EXPERIMENTAL EVALUATION

To perform a complete energy design space exploration
of the loop buffer concept benchmarks with different pat-
terns are needed. Subsection IV-A describes the synthetic
benchmarks that have been developed to show the trends in
energy consumption of the architectural models proposed in
the classification presented in Section II. Subsection IV-B
presents a real-life embedded application mapped on bio-
medical wireless sensor node which is used to evaluate the
energy improvements related with the introduction of the
loop buffer concept. Finally, Subsection IV-C explains the
simulation methodology used.

A. Synthetic Benchmarks

The complete energy design space exploration is based on
the architectural models presented in Section II. In order to
build these architectural models on the experimental frame-
work described in Section III, specific synthetic benchmarks
are needed. The required synthetic benchmarks mimic loops
that one can find in real-life embedded applications. Every

loop that is included in the synthetic benchmarks is character-
ized based on two parameters: the size of the loop body and
the number of loop iterations. The range of loop body sizes of
the loops that are included in the synthetic benchmark is based
on Reference [4]. This Reference presents a study on the loop
behavior of embedded applications that demonstrates that 77%
of the execution time of an application is spent in loops with
32 instructions or less. Hence, the size of the loop body of
the loops ranges from 1 to 32 instruction words. A limit of
32000 iterations is also imposed based on the same Reference,
because it shows that 84% of the execution time is spent in
loops with 32000 iterations or less. In order to have precision
in the sizes of the loop bodies, the synthetic benchmarks are
implemented in assembly code. The instructions and theirs
operands that are presented in each loop are randomized. This
is different from reality where some correlation is present in
these instruction bits, but for the purpose of our loop buffer
experiment, these correlations are not that relevant, so they
can be ignored here.

In order to mimic the energy behavior of the central
loop buffer architecture for single processor organizations, a
synthetic benchmark with sequential loops is developed. In this
synthetic benchmark, the loop body size of the loops ranges
between 1 and 32 instruction words, whereas the number
of loop iterations ranges between 1 and 32000. The size of
the loop buffer of this architecture is fixed to 32 instructions
words. With a loop buffer of this size, all the loops that form
the synthetic benchmark can be stored without splitting any
one of them.

In the case of multiple loop buffers architectures with
shared loop-nest organizations, the architectural model based
on Reference [16] is used. The architecture proposed by
this Reference has a loop buffer implementation per each
functional unit, where all the loop buffers share the same
loop controller. Using the centralized loop buffer architecture
presented in Section III), it is possible to imitate the execution
of loops in such types of architectures by synthesizing the loop
buffer architecture with different sizes. For these architectures,
the loops that form the synthetic benchmark has the same
variations in the loop body size and number of loop iterations
than in the synthetic benchmark presented for the central loop
buffer architectures for single processor organizations.

For the case of distributed loop buffer architectures with
incompatible loop-nest organizations, the synthetic benchmark
is based on Reference [18]. In this architecture, not only the
loop buffer concept is distributed but also the loop controller.
Each loop buffer has its own local loop controller. In order to
simulate the execution of loops over this architecture, the same
synthetic benchmark like the one described for the multiple
loop buffers architectures with shared loop-nest organizations
is used in this case. Because we use the same synthetic
benchmark, the power figures for both architectures are the
same. However, the energy figures are different due to the
different instruction level parallelism that each one has. For
instance, while multiple loop buffers architectures with shared
loop-nest organizations work as single-threaded platforms,

63

distributed loop buffer architectures with incompatible loop-
nest organizations can work like multi-threaded platforms
allowing the execution of incompatible loops in parallel with
minimal hardware overhead.

B. HBD algorithm

A real-life embedded application mapped on a bio-medical
wireless sensor node is used to evaluate the energy im-
provements related with the introduction of the loop buffer
concept in embedded systems. The bio-medical application,
used as benchmark in our experimental evaluation, is the
HBD (Heart Beat Detection) algorithm which is based on a
previous algorithm that Romero et al. [22] developed. This
algorithm uses the CWT (Continuous Wavelet Transform) [23]
in order to detect heart beats automatically. The algorithm
is an optimized C-language version for bio-medical wireless
sensor nodes, which does not require pre-filtering and is
robust against interfering signals under ambulatory monitoring
conditions. The algorithm works with an input frame of 3
seconds, that includes 2 overlaps with consecutive frames of
0.5 seconds each, to avoid the lost of data between frames.
The input of this algorithm is an ECG signal from MIT/BIH
database [24]. The output is the positions in time-domain of
the heart beats included in the input frame.

Figure 5 shows the power breakdown related with this
algorithm. In this power breakdowns, the components of the
processor core are grouped. It is easy to see that the energy
consumption in this system is strongly influenced by the
consumption of the instruction memory organization.

Instruction Memory
QOrganization
39%

alu2%

decoder
6%

Processor Core

mul 10%

Register file R 3%

Fig. 5. Power breakdown for the experimental framework running the HBD
algorithm.

After seeing how the instruction memory organization af-
fects the rest of the system, a profiling based on the loops that
form the applications was also performed. Figure 6 shows the
profile based on the number of cycles per program counter
related with the HBD algorithm. From this Figure, and based
on the fact that the PC is directly related with the program
address space, we can see that there are regions that are more
frequently accessed than others. This situation implies the
existence of loops.

4 Number of executed cycles per PC
T T T T T T

Number of executed cycles

AN LN L — S T) |
200 500 600

00 400 700
PC value

Fig. 6. Number of cycles per program counter (PC).

As we can see from the previous Figures, the HBD algo-
rithm is a perfect candidate to perform the energy evaluation,
because the execution time of the loops represents approx-
imately 75% of the total execution time of this algorithm,
and the total energy consumption of the system is strongly
influenced by the instruction memory organization.

C. Simulation Methodology

The simulation methodology used for both applications is
described in the following paragraphs.

Target
1SS & RTL

HDL |

Cadence
RTL Compiler

Synopsys

PrimeTime

Synopsys

PrimeTime PX

Dynamic Power
Leakage Power

Fig. 7. Simulation Methodology.

The first step in this methodology is to map the application
to the system architecture. With this step, we set how the appli-
cation receives the input data and how it generates the output
data. The second step is to simulate the mapped application on
the processor in order to check the correct functionality of the
system. For that purpose, an Instruction-Set Simulator (ISS)
from Target Compiler Technologies is used. Once the correct
functionality of the application is checked, VHDL files of the
processor architecture are automatically generated using the

64

HDL generation tool from Target Compiler Technologies. Be-
cause of the HDL generation tool only generates the interfaces
of the memories in the design, the data memory hierarchy and
the instruction memory organizations had to be added in order
to build the whole system.

After every component of the system architecture has been
built in RTL level, the design is then synthesized using a 90
nm Low Power TSMC library. In this design, a frequency
of 100 MHz is fixed and clock gating is used whenever
possible. After the synthesis, place and route is performed
using Encounter (Cadence tool [25]). After place and route,
it is necessary to generate a VCD (Value Change Dump)
file for the time interval of the netlist simulation. These files
contain the information of the activity of every net and every
component of the whole system. As a final step, the average
power consumption information is extracted with Primetime
(Synopsis tool [26]). For both applications, the time interval
given to create the VCD file corresponds to the execution time
to process an input data frame.

V. RESULTS

The results from the energy design space exploration of the
loop buffer architectures based on the classification presented
in Section II are presented and analyzed in this Section.

A. Energy analysis of the synthetic benchmarks

The energy analysis of each synthetic benchmark described
in Subsection I'V-A is presented in the next paragraphs. Each
architectural model corresponds with one of the paragraphs.

This Figure shows that the energy savings that come from
the use of loop buffer architectures are proportional to the
number of iterations and the size of the loops that are executed
over these architectures. It is possible to see that these energy
savings tend to be larger for larger number of iterations.
However, when we increase the loop body size, we find a
top limit in energy savings due to the maximum of number
of instruction words that can be stored in the loop buffer
architecture. As shown in Figure 8, the energy savings that we
can achieve by introducing a central loop buffer architecture
represent a reduction of 68% —74% of the energy consumption
that is related with the instruction memory organization. It
is necessary to mention that these results are based on the
assumption that all the execution time of the application is
spent in loops. This is not a realistic case, and therefore the
absolute value of these results cannot be apply in real-life
embedded systems.

As was explained in Subsection IV-A, multiple loop buffer
architectures with shared loop-nest organizations and dis-
tributed loop buffer architectures with incompatible loop-nest
organizations share the same synthetic benchmark. This syn-
thetic benchmark mimic the execution of loops in such types
of architectures by synthesizing the loop buffer architecture
with different sizes. Besides, the number of iterations and
size of the loops that form this synthetic benchmark suffer
variations in their values. Table I presents power consumptions
of different loops, when they are executed from loop buffers

Reduction in energy consumption (%)

1 73.00%-74.00%
™ 72.00%-73.00%
M 71.00%-72.00%
M 70.00%-71.00%
M 69.00%-70.00%
W 68.00%-69.00%
H67.00%-68.00%
M 66.00%-67.00%
M 65.00%-66.00%

28

<20

“ 12
Loop body
[instruction words]

Loop iterations

Fig. 8. Reduction in energy consumption due to the introduction of loop
buffer architectures.

architectures that differ in the number of instruction words
they can stored. The trends in power consumption that are
observed in Table I differ from the ones presented in previous
paragraphs. This behavior in power consumption trends can be
explained by the fact that in the results presented in Table I, for
the configurations where the loop buffer size is smaller than
the loop body size, parts of the instruction words that form
the loops are fetched from the program memory instead of the
loop buffer architecture. Therefore, these results demonstrate
that the more you use small memories like the ones that form
the loop buffer architecture the more reduction in the total
energy consumption of the instruction fetch logic we get.

TABLE I
POWER CONSUMPTION [W] OF DIFFERENT CONFIGURATIONS OF LOOPS
AND LOOP BUFFERS.

Loop body size Loop buffer size [instruction words]
[instruction words] 4 ‘ 16 ‘ 32
4 1.02% 10794 | 172410794 | 3.73 %1004
16 1.05%1079 | 1.72%107%4 | 3.73x 10704
32 1.05% 10793 | 1.10%10793 | 3.73 %1004

For the analysis of the energy consumption of the multiple
loop buffer architectures with shared loop-nest organizations
and the distributed loop buffer architectures with incompatible
loop-nest organizations, the instruction level parallelism that
each of these architectures has should be take into account.
For this purpose, the case study presented in Figure 9 is used.

Assuming that an application is formed by 3 loops of
4, 16 and 32 instructions words respectively, its execution
over a central loop buffer architecture for single processor
organizations can be represented like is shown in the case
(a) of Figure 9. The loops are sequentially mapped during the
execution of the application, and the size of the loop buffer
is fixed in 32 instructions words, because this is the size of
the bigger loop. With this size of loop buffer, all loops that
form the application can be stored without any split. If there is
any split in the loops, part of the instructions are fetched from
the program memory leading to reduce the energy efficiency

65

fori=1.10 fori=1.10 fori=1.10

[
o

1 |
1 . | .

forj=1..8 I forj=1.8 fori=1.10 | forj=1.8 fori=1.10
1 s A |
| Ce]

32 ! 32 ' 32 | form=1s
I 1
forn=1.6
1 |
| |
1 | 16
1 |
fori=1.10 1 form=1.5 I

1 forn=1..6 |

I .
1 |

form=1.5 1 16 |

forn=1.6 1 . I
I 1
1 |
| |
I 1
1 |
1 1

(a) (b) (c)

Fig. 9. Execution of an application in different architectures.

of the loop buffer architecture. Using the power consumptions
of Table I, we can estimate the energy consumption of this
instruction memory organization for the system frequency of
operation (i.e., 100MHz): Ecrp = Eparpse + Ewisrpse +
Epsorpse = (3.73% 107 x4 % 10 % 1078) + (3.73 x 10~ «
16%30%1078)+(3.73% 10794 %32%80%1078) = 1.15% 1078 J.
Note that in all the calculations, Fj,x gy is the energy that a
loop of X instruction words of loop body consumes in a loop
buffer with a size of Y instruction words.

If the application is executed on a multiple loop buffer
architecture with shared loop-nest organization, the first step
is to analyze the data dependencies between loops and see
whether the loops are not incompatible. In our case study,
because we assume that there are not data dependencies, only
the loops that have a size of 4 and 32 instruction words
can be executed in parallel. The loop that has a size of 16
instruction words is incompatible with both of them, and this
architecture do not support execution of multiple incompatible
loops in parallel. This scenario can be seen in the case (b) of
Figure 9. On one hand, if we use 2 loop buffers with the
same size (i.e., 32 instruction words), the energy consumption
estimated is: Eyrrp1 = Eparps2 + EwierBs2 + Ews2rpse =
(3.73 % 1079 % 4 % 10 x 1078) + (3.73 x 1079 % 16 * 30
1078) + (3.73% 10794 % 32 x 80 * 107%) = 1.15% 1078J. On
the other hand, if our choice is to adapt the loop buffer size to
the loops that are executed over them (i.e., loop buffers of 4
and 32 instruction words), the energy consumption estimated
is Enrp2 = Ewarpa + Ewienns2 + Ewpsarpse = (1.02
107%% %45 10%1078) +(3.73% 1074 % 16 %30 % 10~%) +(3.73
107%4%32%80%1078) = 1.14%10~8.J. Based on these results,
we can conclude that the improvement in energy savings, that
comes from the use of multiple loop buffer architectures with
shared loop-nest organizations instead of central loop buffer
architectures for single processor organizations, is related with
a better adaptation of the sizes of the loop buffers to the sizes
of the loops that form the application.

If the application is executed on a distributed loop buffer ar-
chitecture with incompatible loop-nest organizations, the first
step is also analyzed the data dependencies between loops, but

TABLE II
POWER CONSUMPTION [W] OF THE INSTRUCTION MEMORY
ORGANIZATIONS USED BY THE HEART BEAT DETECTION ALGORITHM.

Dynamic Leakage Total
Power Power Power
Initial 1.03%1073 | 279.0%107° | 1.03 %1073
architecture
Central loop buffer || 627.0 1076 | 573.0 %1079 | 628.0 %1076
architecture

there is no need to check whether the loops are not incompat-
ible or not. These architectures support execution of multiple
incompatible loops in parallel. This scenario can be seen in
the case (c) of Figure 9. On one hand, if we use 2 loop buffers
with the same size (i.e., 32 instruction words), the energy
consumption estimated is: Eprp1 = Eparpse + Ewier B3z +
Epsorps2 = (3.73x 10794 %4 %10 1078) +(3.73% 10794416
30%1078)+(3.73%10794%32%80%1078) = 1.15%x108.J. On
the other hand, if our choice is to adapt the loop buffer size
to the loops that are executed over them (i.e., loop buffers
of 16 and 32 instruction words), the energy consumption
estimated is Eprp2 = Fparpie + Ewierpie + Ewserpse =
(1.72 % 107% % 4 % 10 * 1078) + (1.72 % 107%% % 16 * 30 *
1078) +(3.73% 1079 % 32580 % 107%) = 1.04% 10~8.J. Based
on these results, we can conclude that any improvement in
the instruction level paralellism of the system brings not only
improvements in performance, but also improvements in the
energy consumption of the system. The increase in instruction
level paralellism makes easy the adaptation of the sizes of the
loop buffers to the sizes of the loops that form the application,
because gives more freedom to combine the execution of the
loops that form the application.

B. Energy analysis of the HBD algorithm

The heart beat detection algorithm is described in Subsec-
tion IV-B. For this benchmark, the analysis of the energy
consumption of the loop buffer concept is focused on a central
loop buffer architecture.

The system frequency is fixed to I00MHz in order to meet
time requirements. The number of cycles that this application
spends in order to process an input data frame is 274464
cycles. The percentage of them in which the loop buffer is
active is 76.9%. This percentage is bigger than the percentage
of the execution time of the loops that form the application
(Subsection IV-B), because the cycles used in the transitory
states are also taken into account. Table II presents the power
consumption of the instruction memory organizations used in
this benchmark.

From Table II, we can see the power consumption of the
systems with a loop buffer architecture (initial architecture)
and without it (Central loop buffer architecture). On one hand,
it is possible to see that using a central loop buffer architecture,
the dynamic power is decreased because part of the application
code is fetched from a smaller memory than the normal
program memory leading to reduce the power consumed by

66

the instruction memory organization. On the other hand, the
leakage power is increased from the initial architecture to the
architecture with central loop buffer, because of the increase in
number of gates that form the instruction memory organization
due to the introduction of the loop control unit. However, as
we can see from the total power consumption of both systems,
the system architecture with loop buffer has a reduction of
40% of the power of the system. As the execution time of
the application is the same in both systems, we can conclude
that this percentage is the same in terms of energy. From
Table II, we can see the power consumption of both the
system with a loop buffer architecture (initial architecture) and
without it (Central loop buffer architecture). On one hand, it is
possible to see that using a central loop buffer architecture, the
dynamic power is decreased because part of the application
code is fetched from a smaller memory than the normal
program memory leading to reduce the power consumed by
the instruction memory organization. On the other hand, the
leakage power is increased from the initial architecture to the
architecture with central loop buffer, because of the increase
in number of gates related with the introduction of the loop
buffer architecture. A bigger number of gates increases the
energy consumption of the system. However, a reduction of
40% of the total power consumption is observed between both
systems. The same percentage is applied for the reduction
of the total energy consumption of the instruction memory
organizations that form the system, because the execution time
of the application does not suffer any change.

VI. CONCLUSIONS

In this paper, a novel classification of architectural enhance-
ments based on the use of the loop buffer concept is presented:

o Central loop buffer architectures for single processor
organizations
o Multiple loop buffers architectures with shared loop-nest
organizations
« Distribute loop buffers architectures with incompatible
loop-nest organizations
Based on this classification, a design space exploration of
the loop buffer concept from energy consumption point of
view is performed. This design space exploration is focused on
different architecture variants based on the loop buffer concept,
and their energy impact on different application scenarios.
Gate-level simulations demonstrate that the energy savings
that can be achieved introducing a loop buffer architecture
in a system, are directly related with the loop body size and
the number of iterations of the loops. An energy reduction
of 68% — 74% of the energy consumption of the instruction
memory organization can be achieved based on these loop
characteristis. Besides, based on the energy design space
exploration, we can conclude that the improvement in energy
savings, that comes from the use of multiple loop buffer archi-
tectures with shared loop-nest organizations instead of central
loop buffer architectures for single processor organizations, is
related with a better adaptation of the sizes of the loop buffers
to the sizes of the loops that form the application. On the other

hand, the instruction level paralellism of the system brings not
only improvements in performance, but also improvements
in the energy consumption of the system. The increase in
instruction level paralellism makes easy the adaptation of the
sizes of the loop buffers to the sizes of the loops that form
the application, because gives more freedom to combine the
execution of the loops that form the application.

As a real-life benchmark, an embedded application is used
to present the achieved reduction in energy consumption
using instruction memory organizations based on loop buffers.
These architectural enhancements reduce a 40% of the energy
consumption of the instruction memory organization presented
in the bio-medical application selected.

[1]
[2]

[3]

[4]

[5

=

[7]

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

REFERENCES

J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-
titative Approach, D. E. M. Penrose, Ed. Morgan Kaufmann, 2007.
F. Catthoor, P. Raghavan, A. Lambrechts, M. Jayapala, A. Kritikakou,
and J. Absar, Ultra-Low Energy Domain-Specific Instruction-Set Pro-
cessors. Springer Publishing Company, Incorporated, 2010.

M. Verma and P. Marwedel, Advanced Memory Optimization Techniques
for Low-Power Embedded Processors. Springer Publishing Company,
Incorporated, 2007.

J. Villarreal, R. Lysecky, S. Cotterell, and F. Vahid, “A Study on
the Loop Behavior of Embedded Programs,” University of California,
Riverside, Tech. Rep. UCR-CSE-01-03, December 2001.

N. Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” in Computer
Architecture, 1990. Proceedings., 17th Annual International Symposium
on, 28-31 1990, pp. 364-373.

C. Zhang, “An efficient direct mapped instruction cache for application-
specific embedded systems,” in Hardware/Software Codesign and Sys-
tem Synthesis, 2005. CODES+ISSS '05. Third IEEE/ACM/IFIP Interna-
tional Conference on, sept. 2005, pp. 45-50.

K. Inoue, V. Moshnyaga, and K. Murakarni, “A history-based i-cache
for low-energy multimedia applications,” in Low Power Electronics
and Design, 2002. ISLPED ’02. Proceedings of the 2002 International
Symposium on, 2002, pp. 148-153.

R. Bajwa, M. Hiraki, H. Kojima, D. Gorny, K. Nitta, A. Shridhar,
K. Seki, and K. Sasaki, “Instruction buffering to reduce power in
processors for signal processing,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 5, no. 4, pp. 417-424, dec 1997.
J. Kin, M. Gupta, and W. Mangione-Smith, “The filter cache: an energy
efficient memory structure,” in Microarchitecture, 1997. Proceedings.,
Thirtieth Annual IEEE/ACM International Symposium on, 1-3 1997, pp.
184-193.

K. Vivekanandarajah, T. Srikanthan, and S. Bhattacharyya, “Dynamic
filter cache for low power instruction memory hierarchy,” in Digital
System Design, 2004. DSD 2004. Euromicro Symposium on, 31 2004,
pp. 607-610.

W. Tang, R. Gupta, and A. Nicolau, “Power savings in embedded
processors through decode filter cache,” in Design, Automation and Test
in Europe Conference and Exhibition, 2002. Proceedings, 2002, pp. 443—
448.

N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, “Energy
and performance improvements in microprocessor design using a loop
cache,” in Computer Design, 1999. (ICCD ’99) International Conference
on, 1999, pp. 378-383.

L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction
using loop caches for embedded applications with small tight loops,” in
Low Power Electronics and Design, 1999. Proceedings. 1999 Interna-
tional Symposium on, 1999, pp. 267-269.

H. Zhong, K. Fan, S. Mahlke, and M. Schlansker, “A distributed
control path architecture for vliw processors,” in Parallel Architectures
and Compilation Techniques, 2005. PACT 2005. 14th International
Conference on, 17-21 2005, pp. 197-206.

H. Zhong, S. Lieberman, and S. Mahlke, “Extending multicore archi-
tectures to exploit hybrid parallelism in single-thread applications,” in
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on, 10-14 2007, pp. 25-36.

67

[16]

(17]

(18]

[19]

[20]
(21]

[22]

[23]

[24]

[25]

[26]

D. Black-Schaffer, J. Balfour, W. Dally, V. Parikh, and J. Park, “Hi-
erarchical instruction register organization,” in Computer Architecture
Letters, vol. 7, no. 2, july-dec. 2008, pp. 41-44.

M. Jayapala, F. Barat, P. O. d. Beeck, F. Catthoor, G. Deconinck, and
H. Corporaal, “A low energy clustered instruction memory hierarchy for
long instruction word processors,” in PATMOS '02: Proceedings of the
12th International Workshop on Integrated Circuit Design. Power and
Timing Modeling, Optimization and Simulation. London, UK: Springer-
Verlag, 2002, pp. 258-267.

P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, and D. Verkest,
“Distributed loop controller architecture for multi-threading in uni-
threaded vliw processors,” in Design, Automation and Test in Europe,
2006. DATE °06. Proceedings, vol. 1, 6-10 2006, pp. 1-6.

J. Gomez, P. Marchal, S. Verdoorlaege, L. Pinuel, and L. Catthoor, “Op-
timizing the memory bandwidth with loop morphing,” in Application-
Specific Systems, Architectures and Processors, 2004. Proceedings. 15th
IEEE International Conference on, sept. 2004, pp. 213-223.
Target website. [Online]. Available: http://www.retarget.com/
(2010) Virage logic corporation website. [Online].
http://www.viragelogic.com/

Romero Legarreta, 1., Addison, P.S., Reed, M.J., Grubb, N., Clegg, G.R.
and Robertson, C.E., “Continuous wavelet transform modulus maxima
analysis of the electrocardiogram: beat characterisation and beat-to-beat
measurement,” in Wavelets, Multiresolution and Information Process,
no. 1, 2005, pp. 19-42.

S. Yunhui and R. Qiuqi, “Continuous wavelet transforms,” in Signal
Processing, 2004. Proceedings. ICSP "04. 2004 7th International Con-
ference on, vol. 1, aug.-4 sept. 2004, pp. 207-210.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215-e220, 2000 (June 13), circulation Electronic
Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215.

Available:

(2010) Cadence design system website. [Online]. Available:
http://www.cadence.com/
(2010) Synopsys website. [Online]. Available:

http://www.synopsys.com/

