
ScalaDyno: Making Name Resolution
and Type Checking Fault-Tolerant

Cédric Bastin Vlad Ureche Martin Odersky
EPFL, Switzerland

{firstname.lastname}@epfl.ch

Abstract
The ScalaDyno compiler1 plugin allows fast prototyping
with the Scala programming language, in a way that com-
bines the benefits of both statically and dynamically typed
languages. Static name resolution and type checking prevent
partially-correct code from being compiled and executed.
Yet, allowing programmers to test critical paths in a pro-
gram without worrying about the consistency of the entire
code base is crucial to fast prototyping and agile develop-
ment. This is where ScalaDyno comes in: it allows partially-
correct programs to be compiled and executed, while shift-
ing compile-time errors to program runtime.

The key insight in ScalaDyno is that name and type errors
affect limited areas of the code, which can be replaced by in-
structions to output the respective errors at runtime. This al-
lows byte code generation and execution for partially correct
programs, thus allowing Python or JavaScript-like fast pro-
totyping in Scala. This is all done without sacrificing name
resolution, full type checking and optimizations for the cor-
rect parts of the code – they are still performed, but without
getting in the way of agile development. Finally, for release
code or sensitive refactoring, runtime errors can be disabled,
thus allowing full static name resolution and type checking
typical of the Scala compiler.

Keywords Scala, dynamic typing, deferred type errors

1. Introduction
In the academic and the professional community, it is agreed
that both statically and dynamically typed languages have
benefits and drawbacks. In a statically typed programming
language the type checker attempts to prove a program is

1 https://github.com/scaladyno/scaladyno-plugin

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Scala ’14, July 28 – 29 2014, Uppsala, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2868-5/14/07. . . $15.00.
http://dx.doi.org/10.1145/2637647.2637649

correct up to the constraints encoded by types. This advan-
tageously results in rejecting any program that does not con-
form, thus ruling out entire classes of runtime errors, such
as, for example, calling a method with the wrong number
of arguments or with the wrong types. On the contrary, the
restrictive type system can get in the way of agile develop-
ment, since changes need to be reflected in the entire code
base to keep its consistency. This forces significant refactor-
ing efforts, with little benefit in terms of prototyping, only to
satisfy the type checker.

Dynamically typed languages enable fast prototyping by
allowing the programmer to run incomplete prototypes and
outputting the errors occurred during execution. However,
without a type system and static checks, even the most basic
mistakes are discovered only at runtime. This also makes
refactoring harder as no tools are available to detect and
modify all the related code automatically. The runtime per-
formance of dynamic languages is also generally slower or at
least cannot be optimized beyond a specific threshold due to
runtime type checks and monkey patching, where any field
or method can be added during the execution.

In an ideal programming language, static feedback should
be optional, such that the programmer can decide when to
use a more dynamic or static approach depending on the de-
velopment phase (such as bug-fixing, refactoring or prepar-
ing for release). Firstly, during bug fixing or new feature de-
velopment, the programmer might want a more dynamic ap-
proach to favor experimentation. However, the correct parts
of the code should be compiled as before, without introduc-
ing any runtime overhead.

1 object Program {
2 // result of running the program: "Hello!"
3 def main(args: Array[String]): Unit = {
4 if (0 == 1)
5 never_called()
6 println("Hello!")
7 }
8

9 // should this method prevent compilation
10 // and execution of the entire program?!?
11 def never_called() = {
12 val x = "Goodbye!"
13 x.noSuchMethod()
14 }
15 }

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148006344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A typical bug-fixing scenario includes adding an extra ar-
gument in several methods. Doing so manually by modify-
ing the signature can lead to an inconsistent code base un-
til all call sites have been manually updated. In this case it
would be desirable to be able to execute only the path in
the program relevant to the bug, while ignoring overall con-
sistency until the fix is working correctly. In the following
example, where the title field was added, setting default
arguments is not an option, so the programmer needs to pro-
ceed with refactoring all method calls:

1 def main(args: Array[String]) {
2 val country = "USA"
3 if (country == "Germany") {
4 greet("Merkel")
5 // ^ expected 2 arguments, received 1
6 } else {
7 greet("Mr.", "Obama")
8 }
9 }

10

11 def greet(title: String, name: String) {
12 println(s"Dear $title $name")
13 }

There are two fundamental approaches to address the
problem of combining static and dynamic language features.
One can either start with a dynamic language and add static
checking or start with a static language and make it dynamic.
The former is generally impossible due to code patterns such
as duck typing and monkey patching which cannot be stati-
cally checked. The latter is almost always possible by inter-
preting the program. Yet, interpretation is slow and cannot
accommodate certain features of Scala, such as implicit ar-
guments, which allow filling in the program AST (abstract
syntax tree) by reasoning about types and scopes. Therefore
simply interpreting Scala code is impossible.

ScalaDyno takes a middle ground approach: it type-
checks the program but ignores the parts that are erroneous.
This relies on the insight that errors are localized and thus,
in many cases, the program can still run correctly despite
having erroneous parts. This makes it possible to replace
erroneous code by the actual error messages, much like the
execution in Python would proceed. The main difficulty here
is that later phases of the compiler rely on the code having
correctly been type-checked and verified, therefore simply
ignoring errors is not enough to compile the program. In-
stead, ScalaDyno is capable of cleaning up the tree and the
symbol table, thus allowing the rest of the compiler phases
to proceed:

1 $../dy-scalac program.scala
2 program.scala:13: warning: [scaladyno] value

noSuchMethod is not a member of String
3 x.noSuchMethod()
4 ^
5 one warning found
6 $../dy-scala Program
7 Hello!

However, compiling type correct programs with the
ScalaDyno plugin produces the exact same set of instruc-

tions as if compiled without. Furthermore executing an in-
correct program for a type correct path will yield the same
trace as if compiled without the plugin and with all errors
fixed.

The contributions of this paper are:

• developing a method to allow fast prototyping in Scala;
• showing how the abstract syntax tree and symbol table

consistency can be restored after encountering errors;
• implementing the theory in a compiler plugin of less than

200 lines of code.

2. Approach
Our goal in the ScalaDyno project was to create a modi-
fied version of the Scala compiler which allows agile de-
velopment, especially for prototyping breaking changes to
the code base. Such breaking changes include adding or re-
moving fields, methods or classes, changing parameter types
or referring to non-existing names. In addition to handling
such cases, our solution should not change the semantics of
correct code: implicits should still be resolved where possi-
ble and the performance of the correct parts of the program
should not be impacted. Finally, once the prototyping ses-
sion is over, all the errors should be available to enable de-
velopers to prepare the release.

In our approach we want to collect the errors during
compilation, clean the erroneous parts of the tree and replace
them by instructions to trigger the error messages at runtime.
This makes it possible to compile the erroneous tree down to
bytecode and execute it correctly up to the first erroneous
instruction.

3. Theory
In order to remove erroneous parts of the AST we have to
make some critical assumptions about the types of errors
that we can handle. First of all one can note that type errors
in Scala, including their side-effects, are localized; they are
bound inside a scope defined by a block which might be a
method or class body, but the code outside this scope can still
be considered correct. However these localized errors can
still trigger other (localized) errors in other parts of the code
that use the erroneous identifiers, such as instantiations and
method calls. In a normal compilation, this should trigger an
avalanche of errors in the program.

Yet, in modern compilers, this is not the case: only sin-
gle, relevant errors are reported to programmers, but the
avalanches resulting from these errors are not shown. This
has been studied in [10] and is currently being applied in
most compilers. In Scala, this is implemented using the
ErrorType, an alternative bottom type which records the
fact that it was produced by an error. Using this marker
type combined with specialized typing rules allows the scala
compiler to avoid avalanche errors, thus only reporting the
relevant error messages.

In the current compiler however, a single compile-time
error still halts the entire compilation process. This is be-

cause the later phases in the compiler rely on the assump-
tion that the tree is correct before proceeding. Our approach
eliminates the erroneous nodes in the tree and the erroneous
symbols created while type-checking the program. This al-
lows later phases to compile the program to bytecode which
can be executed.

Yet, the cleaned up code may be missing core parts of its
functionality, and thus may produce undesired side effects:

1 var path = "/"
2 path = s"/home/$user/.config/myfiles"
3 // ^ value user undefined
4 sys.run(s"rm -rf $path") // oh noes...

The example shows that removing parts of the tree is not
enough to guarantee safe execution. What we want is to pre-
vent execution past an erroneous node in the tree. This is
why Scaladyno replaces erroneous code by throwing run-
time exceptions which prevent further code from being ex-
ecuted. These exceptions contain the exact compiler error
message that caused the erroneous tree in the first place. Af-
ter this cleanup, the rest of the compiler pipeline is able to
correctly transform the AST and compile it down to exe-
cutable bytecode.

Even if some of the type errors have cascading behavior
there are still paths through the code that can execute suc-
cessfully. Allowing these paths to be executed and pass tests
is crucial to fast prototyping and refactoring.

4. Implementation
A plugin for the Scala compiler is a separate program that
can inject one or more compilation phases and alter the com-
piler options. In the case of ScalaDyno, we inject a single
phase that takes as input the AST from the type checker
phase (typer), traverses and cleans its erroneous statements
by recursively running through all AST nodes. It also cleans
up the symbol table by removing any erroneous symbol,
namely any symbol whose type is either ErrorType or
a derivate (e.g. List[ErrorType]). The final result is a
pruned AST containing only references to correct symbols
and a symbol table which only contains correct symbols.

The normal behavior of the name resolution and type
checking phases is to issue errors which prevent further com-
pilation of the program. To achieve our goal of allowing par-
tially correct programs to compile, we first need to prevent
the compiler built-in Reporter from issuing errors which
makes further compilation impossible. This can be done
by changing the error reporter and transforming errors into
warnings. This conversion is however only done for nam-
ing and typing errors and not for errors from other phases,
e.g. parsing errors as well as overriding and abstract errors
which are triggered by the refchecks phase and are not
currently fixed by ScalaDyno. Since errors are converted to
warnings, the programmer already receives some feedback
during compilation, in the form of warnings. During report-
ing, we also record the suppressed errors, which we use to
later patch the tree.

Figure 1. sketch of the comiler plugin and related behaviour

In the type checker, typing errors which happen on some
branches in the AST propagate outwards until a stable
boundary is reached. Examples of stable boundaries are:
the next statement in a block or the next definition in a
class, trait, object or package. In order to clean up the tree,
we remove the erroneous statements. Yet, as discussed be-
fore, we cannot allow the code to execute past an erroneous
statement. To implement this, we actually replace erroneous
statements by statements which throw exceptions. The mes-
sage in the exception is the actual error output by the com-
piler for that particular part of the tree. This is implemented
by matching source positions in the tree with source posi-
tions of the error messages. Positions are a mechanism by
which the compiler records the position of each AST node in
the source code. Errors also have positions attached, allow-
ing their messages to point to the exact lines in the source
code that triggered them. Therefore, based on the recorded
messages and positions and the tree positions we can safely
replace the tree nodes by exception-throwing statements.

There are a number of places where simply replacing an
erroneous node by a statement doesn’t work. Such cases
are pattern matches, definitions inside classes, type-defining
nodes and annotations. For these cases, we either have spe-
cial rules which bubble up the statement (in the case of pat-
tern matches) or we issue an error message that we can’t
properly clean up the tree and abort the compilation. While
these errors could be mitigated, the additional complexity
significantly burdens the plugin and does not bring signifi-
cant benefit. Therefore we chose to focus on the most com-
mon errors which can easily be cleaned up.

1 object Test {
2 def main(args: Array[String]) {
3 val c = Class1(3)
4 val ret =
5 c match {
6 case Class1(1) => "one"
7 case NoSuchClass(2) => "two"
8 case Class1(3) => "three"
9 }

10 println(ret)
11 }
12 }

The above code will result in a cleaned-up AST, after the
work of the compiler plugin, with the node:

1 val ret: String = sys.error("
2 examples/Test3compilesMatch.scala:10: not

found: value NoSuchClass
3 case NoSuchClass(2) => "two"
4 ^
5

6 ");

This translation enables fast prototyping by allowing
partially-incorrect code to still compile, but does not allow
it to run by throwing an exception that prevents further ex-
ecution past the erroneous statement. The next section will
present the related work.

5. Related work

Several approaches to enabling faster prototyping are cur-
rently in use: (1) dynamic languages with checking, (2) re-
flection, (3) proxies and (4) moving type computations to
runtime.

5.1 Dynamic Languages with Checking

A dynamic language can be augmented it with type anno-
tations which can then be used to give static feedback at
compile time. These annotations would be optional, and the
checks would only trigger if both the actual and the expected
type are annotated, as the Dart programming language does
[1]. Yet, such approaches are still fundamentally dynamic,
as checking all the code would require adding annotations
everywhere. Typed Racket [11] as well as Strongtalk (a
Smalltalk dialect with optional static typing support) [5], are
other examples of brining static typing to a dynamic lan-
guage.

A pitfall in dynamic languages is allowing patterns such
as monkey patching and duck typing, such as, for example,
in JavaScript. These patterns, once used, make the code
base impossible to statically typecheck, since proving their
correctness can, in adversarial cases, require solving the
termination problem, which is undecidable. Still there are
solutions, such as like types [13], which split the work
between compile time and run time.

Combining dynamic and static typing is possible with
like types [13]. With this method one can use either static
typing with a nominal type system or dynamic typing us-
ing the dyn type. However there is a possibility to use static
checks for dynamically typed objects as well. To do this an
intermediate type structure is introduced where each nomi-
nal type gets a corresponding like version: A <: like A.
This means that you can convert an instance of type dyn
to any like type, which, at runtime, triggers an interface
conformance test which can abort the execution in case of
failure. After the conversion, explicit or implicitly, when
used as method parameters, static checks can be done on the
new object. However due to the possibly different field and
method layout only runtime checks but not resolution can be
done on those objects.

5.2 Using Reflection

A second approach is completely switching to the use of re-
flection, practically turning a statically typed language such
as Java or Scala into a dynamic language. This has been im-
plemented in DuctileJ and DuctileScala [4, 8]. Yet this ap-
proach makes heavy use of reflection and is unable to re-
solve implicits. This makes it unsuitable for our use case,
as it introduces significant overheads for correct programs
and it potentially prevents correct programs that use implicit
arguments from running at all.

To add dynamic behavior to the Java programming lan-
guage, DuctileJ [4] does a detyping transformation before
the real typing phase. This detyping consists of converting
the types of all the variables and fields, as well as all the
method parameters, to Object, which is a the Java super
class of any other types (the top type). In addition to these
transformations, a runtime library RT is needed to support
late binding:

1 RT.newInstance("ClassName")
2 RT.select(instance, "fieldName")
3 RT.invoke("methodName", instanceName, args)
4 RT.assign(instance, "fieldName", value)
5 RT.cast("ClassName", instance)

Such a transformation however requires the duplication
of the typing phase in the compiler, the first to detype the
code and collect possible error messages the second to do
the standard typing on the modified tree. Also due to method
overloading, method signatures needs to be mangled which
means that each original parameter needs to be duplicated,
one is needed to carry the type, the other to carry the value.
Of course this creates some additional problems when work-
ing with pre-compiled libraries. However this transformation
allows duck-typing which is also considered an important
feature of dynamically typed languages.

Very similar to DuctileJ, DuctileScala [8] also introduces
a set of new compiler phases (signature, earlynamer,
earlypackageobjects, earlytyper, detyper) which
perform detyping as well as other necessary transforma-
tion (e.g. signature mangling). Some transformations how-
ever are even more complicated due to implicit conversions
(views) as well as pattern-matching which are unique fea-
tures of Scala compared to Java.

5.3 Proxies

A third approach is using an proxy technique, such as the
Dynamic trait in Scala [2] which acts as a proxy that allows
rewriting unresolved methods to more general proxies that
can later use reflection to call the correct methods. Such
approaches have been used to allow interoperability between
Scala and JavaScript [6], but they are not able to handle all
cases necessary for prototyping, notably they require correct
name and type resolution to work properly. Unfortunately,
in many practical scenarios, once an error has occurred, type
inference doesn’t kick in anymore and is not able to infer the
Dynamic marker in a value’s type, such that methods may
be called on it.

Instead of making the entire Scala language more dy-
namic, the scala-js approach [6] focuses on integrating com-
bined development with Scala an Javascript. A specific set of
Scala classes is created which are only facade types for a cor-
responding Javascript object, those constructs can then either
be compiled to dynamic Javascript or to Scala code. Some
complications encountered were due to implicit conversions
and the connections with existing Javascript libraries.

A somewhat similar approach is taken by scala-virtualized
[9]: using the analogy to hardware virtualization for pro-
gramming languages, one can customize the build-in lan-
guage constructs by transforming them into method calls:

1 def __ifThenElse[T](cond: Rep[Boolean], thene:
=> Rep[T], elsee: => Rep[T])

Scala-Virtualized enables advanced multi-stage program-
ming in Scala, using the Lightweight Modular Staging
(LMS) framework. The LMS framework has been very suc-
cessful at optimizing embedded domain-specific languages
(DSLs). One such DSL is JavaScript, which can be embed-
ded in Scala [7]. Gradual typing allows granularity such that
external JavaScript libraries do not need to be typed as they
are only needed in later phases. In addition the DSL code can
either be compiled to JavaScript or be used as Scala which
means that computation can either be done on the server side
or the client side.

5.4 Deferred Type Errors
The GHC [12] compiler allows the addition of equality
proofs to the system FC intermediate language. Equality
proofs can be completely erased so that they induce no run-
time overhead. They are also first class citizens such that
proof-as-values allow to defer type errors to runtime so par-
tially type incorrect programs can compile and execute.

The techniques presented are summarized in Table 1.

D
uc

til
eS

ca
la

H
as

ke
ll

D
yn

am
ic

/S
ca

la
-J

S

Sc
al

a-
V

ir
tu

al
iz

ed

D
ar

t

dy
na

m
ic

la
ng

ua
ge

s

Sc
al

aD
yn

o

def. name res. errors 7 7 7 7 7 3 3

def. type errors 3 3 3 3 3 3 3

fast runtime 7 3 7 3 3 3 3

compile-time res. 7 3 3 3 7 7 3

Table 1. Summary of different approaches to deferring type
errors. Abbreviations: def. = deferred, res. = resolution

6. Evaluation
To evaluate the plugin we compiled scalaz [3], a well known
type class library in Scala. To test the functionality, we com-
mented out class CobindOps. We received 4 warnings but
the compilation succeeded and we were able to execute some
of the scalaz-tests. This transformation does however not
work for all the cases due to an incomplete tree cleanup and
the fact that parsing and overriding errors can still prevent
the code from being compiled all the way.

7. Conclusion
Deferring type errors are a very important feature which en-
ables quick prototyping and development. Most implemen-
tations that allow fast prototyping fall short of the goals of
optional type checking, maximum performance for correct
code and applicability for the Scala language. The prototype
we have presented shows promising results with a small de-
velopment investment of only 200 lines of code.

8. Acknowledgments
The authors would like to thank Damien Engels for his help
with setting up the infrastructure, the reviewers who read
the initial draft of the paper and gave us useful feedback and
the members of the Programming Languages Laboratory in
EPFL with whom we had very frutiful discussions on the
fundamentals of avoiding type checking errors (and espe-
cially to Hubert Plociniczak, Eugene Burmako and Sandro
Stucki).

References
[1] Dart Programming Language. URL https://www.dartlang.org/.

[2] SIP-17: Type Dynamic. URL http://docs.scala-lang.org/
sips/completed/type-dynamic.html.

[3] The Scalaz library. URLhttps://github.com/scalaz/scalaz.

[4] M. Bayne, R. Cook, and M. D. Ernst. Always-available static and dynamic
feedback. In ICSE. ACM, 2011.

[5] G. Bracha and D. Griswold. Strongtalk: Typechecking smalltalk in a production
environment. In ACM SIGPLAN Notices. ACM, 1993.

[6] S. Doeraene. Scala. js: Type-Directed Interoperability with Dynamically Typed
Languages. Technical report, 2013.

[7] G. Kossakowski, N. Amin, T. Rompf, and M. Odersky. JavaScript As an
Embedded DSL. In ECOOP. Springer-Verlag, 2012.

[8] R. Martin, D. Perelman, J. Lei, and B. Burg. Ductilescala: Combined static and
dynamic feedback for scala.

[9] A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-virtualized. In PEPM.
ACM, 2012.

[10] N. Ramsey. Eliminating spurious error messages using exceptions, polymor-
phism, and higher-order functions. The Computer Journal, 42(5):360–372, 1999.

[11] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed
scheme. In POPL ’08. ACM, 2008.

[12] D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality proofs and deferred
type errors: A compiler pearl. SIGPLAN Notices, 2012.

[13] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating
typed and untyped code in a scripting language. In POPL ’10. ACM, 2010.

